活性聚合 (ATRP)简介
原子转移自由基聚合理论
(1)ATRP 介绍王锦山等⑴采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy)的络合物作为催化剂,在130C下引发苯乙烯(St)的本体聚合,反应3h产率可达95%。
理论分子量和实验值符合较好。
为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。
并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。
由此他们提出了原子转移自由基聚合(ATRP)。
ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。
聚合原理引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R •及处于高氧化态的金属卤化物Mt n+1-X,自由基R •可引发单体聚合,形成链自由基R-M n • R-M n可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。
增长阶段,R-M n-X与R-X 一样(不总一样)可与Mt n发生促活反应生成相应的R-M n和Mt n+1-X,R-M n与R-M-性质相似均为活性种,同时R-M n和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n, 则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。
由此可见,ATRP 的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。
引发剂ATRP聚合体系的引发剂主要是卤代烷RX(X=Br,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。
RX的主要作用是定量产生增长链。
a碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。
活性自由基聚合
Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901-7910
11
Iniferter试剂 氮氧自由基 引发剂,催化剂/配体 链转移剂(RAFT试剂)
引发-转移-终止剂法聚合
(Initiator-Transfer agent-Terminator, Iniferter )
G. K. Hamer, Macromolecules 26, 2987 (1993).
10
Iniferter试剂 氮氧自由基
引发-转移-终止剂法聚合
(Initiator-Transfer agent-Terminator, Iniferter )
稳定自由基聚合
(Stable Free Radical Polymerization, SFRP)
Vol. 38, 2121–2136 (2000)
4
Dr. Takayuki Otsu is a Professor Emeritus, Osaka City University. He was born in Osaka in 1929 and received his B.Sc. degree from the Osaka Institute of Science and Technology in 1951. He then was appointed as an instructor at Osaka City University and started his research work on radical polymerization under the late Professor Minoru Imoto.
This being the case, I had an interest in new initiators and their mechanisms, and I focused my attention on the unique reaction behavior of organic sulfur compounds, which have been used as a thiyl radical source, an accelerator, a modifier, a terminator for vinyl or diene polymerization, and an accelerator for vulcanization in the rubber industry.
原子转移自由基聚合(ATRP)
实验部分
聚甲基丙烯酸甲酯(PMMA)的合成及表征 聚甲基丙烯酸甲酯(PMMA)的合成及表征 大分子引发剂的合成及表征 乙基纤维素接枝甲基丙烯酸甲酯的合成及表征
1.聚甲基丙烯酸甲酯的合成与表征 1.聚甲基丙烯酸甲酯的合成与表征
表1.1 相同情况下单体转化率与反应时间的关系
序号 1 2 3 4
单体质量 5.64 5.64 5.64 5.64
从谱图中可知,1137.95 cm-1和1132.28 cm-1,以及1264.46 cm-1体现了C—O—C的伸缩振动,3441.76 cm-1处的峰较弱,说 明,乙基纤维素上的羟基发生了反应,生成了大分子引发剂。
3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 • 表3.1接枝共聚物的接枝率随反应时间的关系 接枝共聚物的接枝率随反应时间的关系 反应时间 反应前大 分子引发 剂 4h 0.500 6h 0.500 8h 0.500 10 h 0.500 产物质量 所接单 体总质 量 1.137 0.637 1.411 0.911 1.487 0.987 1.688 1.188 接枝率
结论
• 本实验采用的是一种简便可行,研究价值高,应用前景广的聚合方
法—原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 发剂分别引发甲基丙烯酸甲酯原子转移自由基聚合反应,以此作对比, 小分子和大分子引发过程再分别考察不同反应时间对聚合的影响,从 而证明反应是成功的。 • (1)通过乙基纤维素上的羟基与 2 — 溴异丁酰溴的取代反应,在乙 基纤维素上引入了较多的溴异丁酸酯基团,合成了取代度不同的大分 子引发剂。 • (2)通过PMMA的红外谱图和EC-g-PMMA红外谱图对比说明乙基纤 )通过PMMA的红外谱图和EC- PMMA红外谱图对比说明乙基纤 维素已成功接枝到聚甲基丙烯酸甲酯上。并且,在反应的极限时间内, 接枝率随反应时间增大而增大。且分别采用了两种不同取代度的大分 子引发剂引发了甲基丙烯酸甲酯的原子转移自由基聚合反应,得到了 不同接枝率的EC- PMMA接枝共聚物。证明了ATRP方法能使聚合反 不同接枝率的EC-g-PMMA接枝共聚物。证明了ATRP方法能使聚合反 应做到真正的活性/ 应做到真正的活性/可控。
ATRP
四:ATRP的发展
• ①反向ATRP 常规的A TRP 存在两个缺陷: ① 引发剂为卤化物, 毒性较大; ② 催化剂中的还原态过渡金属离子易被空气中的氧气 氧化, 不易保存及操作.
四:ATRP的发展
• ①反向ATRP 王锦山博士和Matyjaszewski采用了偶氮二异 丁腈为引发剂, 氧化态的过渡金属卤化物 (CuX2) 与bpy的络合物为催化剂, 进行苯乙烯 的反向ATRP
四:ATRP的发展
• ②由非均相反应向均相反应的转变 Matyjaszewski等为增进卤化亚铜在聚合体系中的溶解性, 在配 体联吡啶的4, 4′—位上引入可溶性的侧链。他们利用4, 4′—二—特丁基—2, 2′—联吡啶(dTbpy)、4, 4′—二—正 庚基—2, 2′—联吡啶(dHbpy)、4, 4′—二(5—壬基) —2, 2′—联吡啶(dNbpy) 代替联吡啶, 实现了均相的A TRP, 所得 的PSt 和聚丙烯酸酯聚合物的分子量分布明显降低。对12溴 代乙苯作引发剂的St 聚合, 得到的聚合物分子量可达105, 多分 散系数低至1.04~ 1.05。而目前商品化的用于凝胶渗透色谱柱 标样的PSt (由阴离子聚合制备) 的多分散系数为1.03~ 1.05。。
三:ATRP的优缺点
• (一)ATRP的优点 (1)适于ATRP的单体种类较多:大多数单体 如甲基丙烯酸酯,丙烯酸酯,苯乙烯和电荷 转移络合物等均可顺利的进行ATRP,并已 成功制得了活性均聚物,嵌段和接枝共聚物。
三:ATRP的优缺点
• (一)ATRP的优点 (2)可以合成梯度共聚物:例如Greszta等曾用 活性差别较大的苯乙烯和丙烯腈,以混合一 步法进行ATRP,在聚合初期活性较大的单 体进入聚合物,随着反应的进行,活性较大 的单体浓度下降,而活性较低的单体更多地 进入聚合物链,这样就形成了共聚单体随时 间的延长而呈梯度变化的梯度共聚物
ATRP&RAFT活性聚合
ATRP活性聚合1背景ATRP是最近几年发展起来的,由Matyjaszewski课题组发现。
王锦山和Matyjaszewski川采用1一氯代苯乙烷作为引发剂,氯化亚铜和联吡啶形成的络合物作为催化剂,在130℃下引发苯乙烯本体聚合,反应3h产率可达95%,聚合物的分子质量分布在1.5以下,理论分子质量和实验值符合较好。
原子转移自由基聚合(ATRP)兼具自由基聚合与活性聚合的特点,适用单体范围广ATRP作为一种新颖的精确聚合反应,能实现可控/活性聚合,产物可达到预期的分子量,且分子量分布较窄,因此是大分子设计的有效工具。
许多烯类单体已成功地用ATRP合成出结构确定的均聚物、无规共聚物、交替共聚物、梯形共聚物、嵌段/接枝共聚物和新型聚合物刷、梳形聚合物、星形聚合物、树枝状聚合物及有机/无机杂化材料。
2机理及组成典型的原子转移自由基聚合的基本原理如图1.1所示:在引发阶段,处于低氧化态的转移金属卤化物(盐)M t n从有机卤化物R—X中吸取卤原子X,生成引发自由基R.发单体聚合,形成链自由基R—M n·,R—M n·可从高氧化态的金属络合物M t n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态M t n,即:始终伴随着一个自由基活性种与有机大分子卤化物休眠种的可逆转移平衡反应正是由于M t n/ M t n+1催化剂的氧化和还原过程,能使体系保持一个很低的自由基浓度,大大减少了自由基之间的终止反应。
1引发剂ATRP引发剂一般是碳上具有诱导或者共轭结构的R—X,卤素基团必须能够快速、选择性地在增长链和转移金属之间交换,快引发对控制聚合物低分散系数很重要此外R.x引发剂引发ATRP之后,经过增长反应可以得到端基很明确的聚合物.也就是引发剂可以被引入到聚合物的两端.这样,通过设计合成带有小同基团的引发剂,经过ATRP反应后实现对高分子链末端功能化或生成高分子反应中间体,如大分子单体、遥爪聚合物、大分引发剂等.另外引发剂的片段还可以作为标记基团引入聚合物,对聚合物进行跟踪分析,进一步功能化得到特殊性能高分子及分子组装等2单体理论上讲大部分的可以进行自由基聚合单体都可以进行ATRP聚合,但是必须要求能找到合适的引发剂,催化剂,配体。
原子转移自由基聚合(ATRP)简介
原子转移自由基聚合(ATRP)简介1引言聚合物合成的控制一般指对聚合物结构和分子量的控制。
活性聚合可以得到分子量分布极窄的聚合物,是制备结构明晰的聚合物的理想方法。
与传统聚合相比,活性聚合具有如下特征:(1)一级动力学特征,即聚合速率与时间呈线性关系;(2)聚合物的目标分子量可事先设计,且聚合物数均分子量随单体转化率的增长而线性增长;(3)分子量分布窄;(4)聚合物链末端在单体耗尽后仍能保持活性,再次加入单体可继续引发增长。
活性聚合最早报道于1956年,Szwarc课题组以萘钠为引发剂,在低温四氢呋喃溶剂中实现了苯乙烯的阴离子聚合,即为高分子科学史上的第一例活性聚合。
因聚合物溶液在反应停止后保存数月仍能引发新的单体进行聚合,因而被称为“活性”聚合。
这一聚合方法率先实现了对聚合物分子量的控制性,亦为功能化聚合物结构设计的研究开辟了新思路。
但阴离子聚合反应有其难以避免的局限性,如:需要高纯度试剂,反应条件极为苛刻,聚合体系必须严格无水无氧,反应不能含有其他杂质,单体适用性也十分有限。
20世纪末期,高分子科学家逐渐将目光转向了“活性”自由基聚合(LRP)。
1982年Otsu课题组报道了引发-转移-终止剂聚合法(Iniferter),该方法中Iniferter试剂可产生两种活性不同的自由基,活性较高的自由基引发单体聚合,活性较低的自由基不能引发聚合,而是与增长自由基发生链终止。
通过这一策略有效降低了增长自由基的浓度,从而实现了“活性”聚合。
此后,人们发现建立活性种与休眠种之间的可逆平衡,以此控制体系中增长自由基的浓度,是实现“活性”自由基聚合的关键所在。
遵循这一思路,人们逐渐实现了各种各样的“活性”自由基聚合方法,如氮氧稳定自由基聚合法(NMP),原子转移自由基聚合法(ATRP),可逆加成断裂转移聚合法(RAFT),单电子转移自由基聚合法(SET-LRP)等。
原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是1994至1995年由Matyjaszewski和Sawamoto等人同时提出的一种聚合方法。
原子转移自由基聚合-ATRP
3. ATRP法
3、制备嵌段共聚物
迄今为止只有活性聚合反应才能合成出不含均聚物、分子 量及组成均可控制的嵌段共聚物。 用ATRP方法可直接制备二和三嵌段共聚物。 某些单体不能进行 ATRP ,但由于将 ATRP 引发末端引入聚 合物链不是一件十分困难的事,因此可先通过一定方法制备 ATRP大分子引发剂,再用ATRP 法合成嵌段共聚物,这就是所
接枝等结构明确的聚合物的合成等。ATRP的不足之处:催化剂
用量高,不易除净。
11
3. ATRP法
3.2 ATRP与高分子的分子设计
1、制备窄分子量分布聚合物
有机卤化物 /CuX(X 为 Cl ,Br) /2,2′-bpy 引发体系,高温下 (100~120 °C) 仍是非均相,可得到分子量分布为1.1~1. 2 的均 聚物。 2 ,2′-bpy 杂环上带上某些油溶性取代基团,如正丁基、叔 丁基等,则上述引发体系变为均相体系,由此得到的聚合物的 分子量分布可低到Mw/Mn≈1.04. 这是历史上人们用自由基聚合
向单体转移
或
6
2. 活性聚合
2.1 活性聚合概念
不存在链转移和链终止的聚合,称为活性聚合。
自由基聚合的链增长对自由基浓度呈一级反应,而链终止则 成二级反应,如能降低自由基的浓度[M· ]或活性,就可减弱双基 终止,有望成为可控/“活性”聚合。 实现可控/“活性”聚合的基本思想:在自由基聚合体系中
引入一个可以和增长自由基之间存在偶合-解离可逆反应的物
种,抑制增长自由基的浓度,减少双基终止和转移反应的发生。
7
2. 活性聚合
2.2 活性聚合的分类
按照活性种和休眠种可逆互变机理,目前主要发展了四种 活性聚合方法: 氮氧稳定自由基法; 引发转移终止剂(Iniferter)法; 原子转移自由基聚合(ATRP)法; 可逆加成-断链转移(RAFT)法。
活性聚合_精品文档
活性聚合活性聚合(Living Polymerization)摘要:活性聚合(Living Polymerization)是一种特殊的聚合反应方法,可以在反应过程中控制聚合物的分子量和分子量分布。
活性聚合反应中的聚合物链可以在不与其他链发生反应的情况下不断延长,使得聚合物具有更高的结构控制性和功能化潜力。
本文将介绍活性聚合的基本原理、常见的活性聚合方法以及其在材料科学和工业中的应用。
1. 活性聚合的基本原理活性聚合是一种通过控制聚合物的生长速率和反应活性来实现的聚合过程。
与传统的自由基聚合不同,活性聚合是一种具有可逆性和控制性的反应,其中单体分子通过与活性种子发生反应而聚合,而活性种子可以通过适当的反应条件进行控制。
这种可控的聚合方式使得聚合物的结构和性质具备更高的可调性和定制性。
2. 常见的活性聚合方法2.1 原子转移自由基聚合(ATRP)原子转移自由基聚合是一种常见的活性聚合方法,可以以较高的控制度合成具有规则结构和可控分子量的高分子。
在ATRP中,通过引入适当的转移剂(如卤代烷烃)和催化剂(如铜络合物),可以实现聚合物链的生长和停止。
这种方法适用于各种单体,如甲基丙烯酸酯、丙烯酸酯和丙烯酸等,可以用于合成聚合物的共聚物和嵌段共聚物。
2.2 硅醚聚合(SIP)硅醚聚合是一种在低温条件下进行的活性聚合方法,它通过引入硅醚链传递剂来控制聚合物的生长和反应速率。
硅醚链传递剂可以在聚合反应中引发传递反应,从而实现聚合链的延长和停止。
这种方法可用于合成线性和星形共聚物,如聚乳酸-聚乙二醇嵌段共聚物。
2.3 离子液体-金属有机框架催化剂聚合(IL-MOFs)离子液体-金属有机框架催化剂聚合是一种新兴的活性聚合方法,可以通过引入具有催化活性的离子液体-金属有机框架催化剂来控制聚合反应。
这种方法在聚合物链的生长和停止过程中具有高度的可控性和选择性,并且可以用于合成精确结构和多功能聚合物。
3. 活性聚合的应用3.1 材料科学领域活性聚合在材料科学领域具有广泛的应用,可以合成具有精确结构和控制形态的聚合物。
“活性”可控自由基聚合
“活性”/可控自由基聚合熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。
本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。
关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。
自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。
鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。
就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。
所以实现可控自由基聚合要基于以下三个原则:1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。
这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。
2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。
活性聚合 (ATRP)简介
ATRP聚合机理
ATRP 的基本原理是通过一个交替的“促活-失活”可逆反应使得体系中的游离基浓度处于极 低, 迫使不可逆终止反应被降到最低程度, 从而实 现“活性”/可控自由基聚合.
引发剂R- X 与 M t发生氧化还原反应变为初级 自由基 R· 初级自由基 R· , 与单体M 反应生成单体自由 基R - M· 即活性种. R - M·与R - M· , 性质相似均为活性 n 种, 既可继续引发单体进行自由基聚合, 也可从休眠种 R-Mn –X/R-M-X上夺取卤原子, 自身变成休眠种, 从而 在休眠种与活性种之间建立一个可逆平衡.
n
再以RX/CuX/BPY 体系(其中RX 为卤代烷烃、 BPY 为2 , 2 ′-- 联二吡啶、CuX 为卤化亚铜) 引发 ATRP 反应为例, 典型的原子(基团) 转移自由基聚合的基本原理如下: 引发阶段:
增长阶段:
终止阶段:
ATRP的特点
ATRP的独特之处在于使用了有机卤代物作引发剂,并 用过渡金属催化剂或退化转移的方式使链增长,自由基 被可逆钝化成休眠种,有效抑制了自由基之间的双基终 止反应,其相对分子质量可控制在1000~i00000之间, 分子质量分布为1.O5~1.5。与传统的活性阴离子聚 合及基团转移聚合相比,ATRP具有适用单体覆盖面, 、 原料易得、聚合条件温和、合成工艺多样、操作简便、 易于实现工业化等显著特点
ATRP的应用
1.ATRP在聚合物刷的 应用
聚合物刷作为一种 支链尺寸较规整的接枝 聚合物,当其支链的接 枝密度足够大时,由于 空间位阻的原因而使这 些支链与聚合物主链垂 直向外伸展,以避免支 链间的重叠,从而使整 个聚合物分子形成类似 于刷子的构型。
聚合物分子刷主侧链的相对长度对其 形态有很大影响。如果主链远长于侧链, 分子刷将呈现柱状形态,反之,分子刷将 呈现球状形态。在高密度下,聚合链从基 质表面垂直伸展开,每条聚合链像刷子上 的一根毛,子引发剂,通过ATRP 反应合成单体A 的均聚物,然后作为大分 子引发剂,引发单体B 的ATRP 反应,然后再引发单体C 的ATRP 反应,得到ABC 型三嵌 段共聚物。ABC 嵌段共聚物具有形成纳米形态的潜力,具有有趣的化学和物理性质。 利用不同分子量的PEO 大分子引发剂,通过DMA 和DEA 单体的连续ATRP 反应,合成了 聚[环氧乙烷-2-(二甲氨基) 乙基甲基丙烯酸酯-2-(二乙氨基) 甲基丙烯酸酯](PEODMA-DEA) 三嵌段共聚物(见图6) ,并研究了pH 诱发胶体自组装和胶束的尺寸与胶体 的稳定性核交联的影响。该聚合物在低pH 下溶解于水溶液中;pH = 7.1 时,出现胶束 化现象,形成三层“洋葱状”胶束,含DEA 核、DMA 内核与PEO 外晕。最近他们又采用 ATRP 技术,PEO 大分子引发剂首先与2-(二乙氨基) 乙基甲基丙烯酸酯(DEA) 聚合,然 后与2-羟乙基丙烯酸酯(HEMA) 的“一锅法”合成了三嵌段共聚物PEO-PDEA-PHEMA , 通过HEMA 嵌段上羟基的酯化形成相应的PEO-PDEA-PSEMA 两性离子三嵌段共聚物。在 室温下,通过调整溶液的pH 值,两性离子的PEO-PDEA-PSEMA 三嵌段共聚物形成三种胶 束聚集态。
原子转移自由基聚合(ATRP)
具有十分广阔的应用前景.
精选ppt
23
采用原子转移自由基引发体系引发带卤原子的双 官能团单体, 可以得到超支化聚合物.
利用对氯甲基苯乙烯在CuCl和bpy存在下的自引 发均聚反应合成相对分子质量可达150 000的高支化 聚苯乙烯
1基94的7年竞在争曼反应彻、斯非特水大体学系获中物过理硫化酸学盐博士学
位的引,发194过9年程、因研高分究子化化学键学反离应解、能而气相获得科
高M分. M子S化zw学a方rc面最著学1和应9名5博液、2的年士相阴成起学中离就,位自子:;由聚任1同基合纽95年的、约6年任反自州发该应由立现校活基大阴研性离学离究、子林子员笼化学活。蔽学院性效等教聚。授, 合。用这个方法可制19得56单~分19散64高年分任子研、究嵌教段授共。聚物、其他 “分子设计”而成的19高69分年子在国内外几个大学任教授或讲学
替的“促活--失活”可逆反应使得体系 中
的游离基浓度处于极低, 迫使不可逆终
止反应被降到最低程度, 从而实现“活
性”/可控自由基聚合.
精选ppt
14
Hale Waihona Puke ATRP 在高分子设计中的应用
星形 聚合物
接枝 聚合物
ATRP 技术
超支化 聚合物
其它类型 聚合物
嵌段 聚合物
精选ppt
15
嵌段聚合物
嵌段聚合物具有独特的结构和性能, 可用作稳定剂、乳化剂、分散剂等, 而 且在聚合物的改性共混等方面有着广泛 的应用.
精选ppt
16
活性聚合技术在合成嵌段共聚物方 面具有明显的优势,可以制得预定结构 的共聚物。与其它“活性”自由基聚合
相 比,原子转移自由基聚合的反应条件较 为温和,适用单体广泛,而对杂质不太 敏感。
第2讲原子转移自由基活性聚合
端官能化聚合物的用途: 经扩链或交联合成高分子量聚合物,如热塑性弹性体, 液体橡胶,粘合剂等,改变加工方式。(缩聚反应) 经共聚合成梳形接枝共聚物,或交联网络(大分子交 联剂)(加成聚合反应)
• ATRA是有机化学中形成C—C键的有效方法。1963年,铜 催化下,烯类或共轭烯类化合物与烷基卤化物的加成反应, 生成1:1的加成产物。
CuCl + CCl4
. + CCl3 CH2 CH-R
+ CuCl2 CCl3
. CCl3 CH2 CH CuCl2 CCl3
R
CH2 CH Cl + CuCl
1-氯代苯乙烷为引发剂、氯化亚铜与2,2—联二吡啶的络 合物为催化剂,在130℃条件下进行苯乙烯的聚合,获得 了窄分布的聚合物,具有活性聚合的特征。D<1.1
CH3 CH Cl
CuCl2
Ph
2
• 原子转移自由基聚合的概念源于有机化学中的过渡金属催化 原子转移自由基加成 (Atom TransferRadical Addition, ATRA)
配位剂的作用:
① 稳定过渡金属,与过渡金属配位后对其氧化还原电位产 生影响,从而调节催化剂的活性。② 增加过渡金属盐催 化剂在有机相中的溶解性。
N配体,多齿配体,联吡啶,多乙烯多胺类 P配体,PPh3 O配体,有机酸,邻苯二甲酸等。
早期的配位剂是联二吡啶,与卤代烷、卤化铜组成引发体系: 非均相体系,用量大,引发效率低,产物分子量分布较宽 现采用多胺(如N,N,N’,N’’,N’’-五甲基二亚乙
ATRP
原子转移活性自由基聚合(ATRP)一个高效的ATRP催化剂应该包含以下几部分:一个可以扩展其配位层并且增加其氧化数的过渡金属种(Mt n)、配位体(L),以及可以与过渡金属中心形成共价键或者离子键的反离子。
过渡金属复合物(Mt n/L)作用于卤代烷烃的R-X 键使其裂解产生对应的更高氧化态的过渡金属氯化物复合物Mt n+1X/L(速率常数为k act)和有机的自由基R*,见Figure 1-3【17-18】。
R*可以引发乙烯类单体反应,同时也可以像传统自由基聚合那样发生偶合、歧化(kt)终止,或者在Mt n+1X/L 平衡中形成卤代的聚合物链可逆失活(k deact)而终止。
从图中可以看出通过卤原子从卤化物到卤化亚铜、再从卤化铜到自由基这样一个反复循环的原子转移过程(动力学上为铜的可逆还原反应),在活性种和休眠种间形成了可逆动态的平衡,导致了自由基浓度减小,可以有效的避免双基终止的副反应,实现聚合反应的可控控制。
Figure 1-3 ATRP聚合机理ATRP最初是起源于一个广泛使用的有机合成反应-原子转移自由基加成反应(ATRA)【19-20】。
在这个反应中,原子从有机卤化物中转移到过渡金属复合物中,这让人联想到激活了一个有机自由基,然后就像原子通过从过渡金属重新转移回到有机自由基上而可以很快失活。
有人怀疑过这个中间自由基在溶剂以及金属中心的作用下是否是真正的活性自由基,这也是关系到ATRP机理的一个重要因素。
然而,大量的事实已经证明了中间态在这个过程中是真正的自由基。
这些事实包括:(1)原子转移自由基聚合与传统的自由基聚合具有相似的竞聚率;(2)加入试剂如质子性溶剂、自由基捕抓剂、链转移剂等,会产生相似的作用;(3)通过ATRP聚合的聚合物的无规立构度;(4)在反应过程中同时形成的更好氧化态的金属种【21-22】;(5)传统自由基聚合与ATRP相似的外消旋、交换比率;(6)传统自由基聚合与ATRP之间不可辨别的13C动力学同位素效应。
ATRP活性聚合
ATRP 在嵌段共聚物合成中的应用进展摘要:段共聚物作为一种新型的高分子材料越来越受到人们的关注,原子转移自由基聚合(ATRP)作为一种“活性/可控”聚合方法,在嵌段共聚物合成领域发挥着重要的作用。
文中主要介绍了近年来采用ATRP 合成的不同性能的嵌段高分子聚合物,并对ATRP 在嵌段共聚物中的应用前景进行了展望。
关键词:原子转移自由基聚合;合成;嵌段共聚物0 引言原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)现在作为“活性/可控”自由基聚合技术,具有聚合条件温和(甚至可以在少量氧存在下进行),使用单体范围广范,分子设计能力强等特点,正逐渐成为合成功能高分子材料的有力手段而备受关注[1~4]。
是现在其他活性聚合方法所无法比拟的。
1 ATRP 的反应机理1.1 ATRP 简介原子转移自由基聚合(ATRP)是以低价态过渡金属配合物作为催化剂的“活性/可控”聚合,是制备具有预期分子量、精确末端官能团和预期链结构聚合物的新技术。
早在1995 年王锦山和Matyjaszewski 等人首先报道了一种新型自由基聚合方法[ 5,6 ],它是以卤代化合物为引发剂,过渡金属化合物以适当的配体为催化剂,使可进行自由基聚合的单体进行具有活性特征的聚合。
ATRP 方法进行聚合反应的单体,一般都是一端含有一个卤素端基,另一端含有功能化引发端基;或者两端皆为卤素端基。
这些端基很容易进一步的功能化,合成出相对分子量分布较窄的聚合物。
1.2 ATRP 反应机理过渡金属化合物Mtn 从有机卤化物“提取”出卤原子,产生氧化物种Mtn+1X 和初级自由基R· ;随后自由基R·和烯烃M 反应,生成单体自由基R-M· (即活性种);R-M·与40 Mtn+1X 反应,得到目标物种R-M-X;同时过渡金属被还原为Mtn,可再次引发新一轮的氧化还原反应。
原子转移自由基聚合
原子转移自由基聚合简介
原子转移自由基聚合是近年发展起来的 活性自由基聚合方法。1995年由美国 Carnegie Mellon University的王锦山、 Matyjaszewski和日本京都大学的泽本光南 Sawamoto分别独立地发现,并由王锦山首 次提出原子转移自由基聚合(Atom Transfer Radical Polymerization,简称ATRP)的概 念。
ATRP的组成 的组成
原子转移自由基聚合一般由单体、 有机卤化物引发剂、低价过渡金属卤 化物催化剂及配体组成。
ATRP聚合机理 聚合机理
在休眠种与活性种之间建立一个可 逆平衡, 通过一个交替的“ 促活— 逆平衡 , 通过一个交替的 “ 促活 — 失 活 ” 可逆反应使得体系中的游离基浓 度处于极低, 度处于极低 , 迫使不可逆终止反应被 降到最低程度, 从而实现“活性” 降到最低程度, 从而实现“活性”/可 控自由基聚合。 控自由基聚合。
ATRP的优点 的优点
• 1、快引发、慢增长、无终止、链转移 • 2、反应周期短、单体适用范围广、反 应条件温和 • 3、生成的小分子产物易脱除,大多数 为水 • 4、分子设计能力强
ATRP的应用 的应用
接枝 聚合物 星形 聚合物 超支化 聚合物
ATRP 技术
其它类型 聚合物
嵌段 聚合物
嵌段聚合物
其他类型聚合物
此外, 还可用ATRP 技术制备出聚合物刷 子、有机/无机杂化材料等高分子功能材料。 如M arcHusseman等用带有原子转移自由基 引发基团的硅烷在硅表面发生ATRP, 制得 烯类单体的均聚物刷及嵌段或无规聚合物 刷子, 用于控制聚合物的表面性质.
ATRP的缺点 的缺点
原子转移自由基聚合
Reaction 2 3 4 5
t/min 60 60 60 60
conversion/% 43.28 60.21 65.13 72.61
Mn 13653 9723 8583 8018
PDI 1.17 1.17 1.22 1.14
精选ppt课件
14
含末端官能团的聚合物制备
末端带有卤原子的聚合物:
根据原子转移自由基聚合原理,用有机卤化物RX作为 引发剂时,产物的末端带有卤原子,而卤原子本身就 是一种官能团。如用1-苯基氯乙烷或1-苯基溴乙烷作引 发剂进行的苯乙烯的聚合,产物为末端带有卤原子的 聚苯乙烯。如引发剂为1,4-二氯(溴)甲基苯,产物 分子链两端均为卤原子的聚苯乙烯。
10
精选ppt课件
11
精选ppt课件
12
ATRP技术的应用
1.制备窄分子量分布聚合物 2.制备末端官能团聚合物 3.制备嵌段共聚物 4.制备星状聚合物 5.制备接枝和梳状聚合物 6.制备梯度共聚物 7. 固体表面接枝嵌段共聚物制备
精选ppt课件
13
窄分子量分布聚合物的制备
作为一种活性可控聚合,原子转移自由基聚合可得到分 子量分布很窄的聚合物。 以下为在不同的引发剂和单体的比例下活性聚合的结果:
通过ATRP的合成技术可以进行目标分子的结构及大 小的设 计。理论分子量用
可求得
Mn,th=
[M]0 [I]
+ MI
所得的聚合物分子量分布较窄 Mw/Mn < 1.5 。
聚合过程为动力学一级反应
ln ([M] /[M]) 0
1.4
70
ln ([M] /[M])
1.2
0
conversion / %
ATRP
24/0142/210/241/14
5
• 这些由过渡金属化合物与配体为催化剂,有机卤化物为引 发剂引发不饱和乙烯单体进行自由基聚合的过程,具有有 机合成反应中原子转移自由基加成反应(Atom transfer radical addition, ATRA)的特征,故这种类型的聚合, Matyjaszewski称之为原子转移自由基聚合(Atom transfer radical polymerization, ATRP),或者称之为催化引发原子 转移自由基聚合(Catalyzed Initiated Atom Transfer Radical Polymerization,CIATRP)
10
a)苯乙烯及取代苯乙烯
如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、 间甲基苯乙烯、对氯甲基苯乙烯、间氯甲基苯乙烯、对三氟 甲基苯乙烯、间三氟甲基苯乙烯、对叔丁基苯乙烯等。
b)(甲基)丙烯酸酯
如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙 烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异冰 片酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二 甲氨基乙酯等;
24/0142/210/241/14
31
体系的其它两个研究热点
(1)研究催化体系、引发剂、单体的结构、溶剂 及反应温度与ATRP反应常数的关系,目的是为 了选择和设计合适的配体、开发更为有效的催 化体系以及确定合适的ATRP反应条件。 (2)研究并探索克服与ATRP反应同时发生的各类 副反应的有效方法。
由于SR&NI ATRP体系利用传统自由基引发剂分解 产生有机自由基对催化体系进行活化,此过程中 不可避免产生少量均聚物,因此通过这种体系不 能获得纯净的嵌段共聚物。
24/0142/210/241/14
活性聚合
活性聚合(living polymerization)的概念是1956年 Szwarc[1]提出的,即无终止、无转移、引发速率远大于增 长速率的聚合反应。由于没有链转移,聚合过程中聚合物 链的数目保持恒定;而没有链终止,直到体系中单体消耗完 ,聚合反应停止时,聚合物链仍然保持活性基。一旦加入 新的单体,聚合反应即可继续进行。所以Szwarc把这种聚 合方法叫做“活性聚合”(Living Polymerization) 。
典型的热引发转移终止剂是1,2-二取代四苯基乙烷类衍生物,研究发现[11, 12]这些 对称的碳一碳键热引发转移终止剂引发极性单体甲基丙烯酸甲酯(MMA )的聚合为活性聚 合,并且引发剂的活性顺序为PPE>TMPSN>TPSN。所得的PMMA可以作为大分子引发 剂引发第二单体苯乙烯(St)聚合,制备PMMA-b-PSt共聚物,但嵌段效率比较低。然而对 于引发非极性单体St的聚合来说,它们的作用与传统自由基聚合引发剂类似,没有活性 聚合的特征。Braun[13,14]认为,当1,2-二取代的四苯基乙烷衍生物引发苯乙烯聚合时,得 到的聚合物ω-端为五取代的C-C键,键能比较高,受热时不能再分解,为死端聚合;而在 引发MMA聚合时,得到的聚合物。一端为六取代的C-C键,键能较低,受热时仍能可逆 分解,实现活性自由基聚合。 由于文献中报道的热引发转移终止剂种类少,活性低, 只能在较高的温度(>800℃)下实现极性单体MMA的活性聚合,对非极性单体St的聚合是 传统的自由基聚合,无活性聚合特征。丘坤元等[I5, 16]研究了两种C-C键型热引发转移终 止剂:2,3-二氰基-2,3-二苯基丁二酸二乙酯(DCDPS )和2,3-二氰基-2,3-二(对-甲苯基)丁二 酸二乙酯 (DCDTS )引发乙烯基单体的聚合。结果发现,与Otsu和Braun所报道的四苯基 取代的乙烷衍生物类热引发转移终止剂相比较,DCDPS和DCDTS的活性较高,不但在 较低温度(50~ 100℃)下实现了MMA的活性聚合,而且首次在小分子热引发转移终止剂领 域实现了St的活性聚合。另外,他们还首次合成了一种氨酯型非对称性结构的小分子热 引发转移终止剂,用它引发MMA的本体聚合具有活性自由基聚合的特点;而在二甲基甲 酰胺 (DMF)溶剂中的溶液聚合却不是活性自由基聚合。但本体及溶液聚合产物PMMA 都能起大分子引发剂的作用可合成嵌段聚合物。
原子转移自由基聚合
• 拓展功能性聚合物的合成与应用:随着科技的不断发展,对功能性聚合物的需 求不断增加。未来研究可进一步探索利用原子转移自由基聚合技术合成具有特 殊功能和性能的功能性聚合物,并拓展其在生物医学、光电子等领域的应用。
功能性聚合物的合成与应用
利用原子转移自由基聚合技术,成功合成了一系列具有特殊功能和性能的功能性聚合物, 如生物相容性聚合物、光响应性聚合物等,拓展了聚合物的应用领域。
对未来研究的建议
• 深入研究反应机理和动力学:尽管对原子转移自由基聚合反应机理已有一定了 解,但仍需深入研究反应过程中的详细步骤、影响因素以及动力学行为,以更 好地指导聚合反应的设计和优化。
ABCD
催化剂残留问题
在聚合过程中,催化剂可能残留在聚合物中,影 响聚合物的性能和稳定性。
难以实现高分子量聚合物的合成
由于ATRP的链转移反应,难以实现高分子量聚 合物的合成。
改进方向探索
开发高效催化剂
研究新型高效、低残留的催化剂,降低催化剂用 量和成本,同时提高聚合效率和聚合物性能。
提高聚合物的功能性
生物探针与传感器
利用原子转移自由基聚合技术,可以合成具有生 物探针和传感器功能的聚合物材料,用于生物分 子检测和成像分析。
原子转移自由基聚合
05
的优缺点及改进方向
优点分析
活性聚合
适用单体范围广
原子转移自由基聚合(ATRP)是一种活性聚 合方法,可以合成具有预定分子量和窄分子 量分布的聚合物。
ATRP适用于多种类型的单体,包括乙烯基 单体、丙烯酸酯、甲基丙烯酸酯等,为合 成不同性能的聚合物提供了灵活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ATRP法可以最大程度根据设计合成功 能聚合物刷,聚合过程可控
2.以ATRP技术合成的共嵌段聚合物
采用ATRP 技术合成多嵌段共聚物主要有以下两种方法:
一 采用单官能团引发剂,依次加入不同单体的活性聚合。
即先引发单体A 聚合,再与单体B 聚合,然后与单体A 或C 聚合,可形成ABA 型非 对称三嵌段共聚物或ABC 型三嵌段共聚物。
(3)ABC 型三嵌段共聚物
以单官能团小分子引发剂,通过ATRP 反应合成单体A 的均聚物,然后作为大分 子引发剂,引发单体B 的ATRP 反应,然后再引发单体C 的ATRP 反应,得到ABC 型三嵌 段共聚物。ABC 嵌段共聚物具有形成纳米形态的潜力,具有有趣的化学和物理性质。 利用不同分子量的PEO 大分子引发剂,通过DMA 和DEA 单体的连续ATRP 反应,合成了 聚[环氧乙烷-2-(二甲氨基) 乙基甲基丙烯酸酯-2-(二乙氨基) 甲基丙烯酸酯](PEODMA-DEA) 三嵌段共聚物(见图6) ,并研究了pH 诱发胶体自组装和胶束的尺寸与胶体 的稳定性核交联的影响。该聚合物在低pH 下溶解于水溶液中;pH = 7.1 时,出现胶束 化现象,形成三层“洋葱状”胶束,含DEA 核、DMA 内核与PEO 外晕。最近他们又采用 ATRP 技术,PEO 大分子引发剂首先与2-(二乙氨基) 乙基甲基丙烯酸酯(DEA) 聚合,然 后与2-羟乙基丙烯酸酯(HEMA) 的“一锅法”合成了三嵌段共聚物PEO-PDEA-PHEMA , 通过HEMA 嵌段上羟基的酯化形成相应的PEO-PDEA-PSEMA 两性离子三嵌段共聚物。在 室温下,通过调整溶液的pH 值,两性离子的PEO-PDEA-PSEMA 三嵌段共聚物形成三种胶 束聚集态。
近年来ATRP法在聚合物刷的制备中得到了广泛应用, 首先,在不同的基体表面如固体、球形分子以及大分子 表面引入烷基卤代烃引发剂,然后进一步在其表面引发 聚合,可以得到具有不同组成、聚合度和形状的聚合物 刷。 (1) 例如用ATRP法在硅片表面制备了低表面能的2,3, 4,5,6一五氟苯乙烯聚合物刷,利用椭圆偏正光测厚 仪、接触角测定仪和x射线光电子能谱仪对薄膜结构进 行了表征,结果表明,随着聚合时间的延长,聚合物刷 的厚度不断增加,反应16h后薄膜厚度增长变慢,接触角 数据证明引发剂已组装在硅片上制备了聚合物刷。又如 对聚偏氟乙烯(PVDF)进行化学处理使其表面羟基化,然 后与2一溴异丁酰溴反应在其表面接上ATRP引发剂,引 发三甲基硅保护的甲基丙烯酸羟乙酯(HEMAnTMS)聚合, 在PVDF表面形成PHEMA聚合物刷,动力学研究揭示出 PHEMA 的接枝浓度随反应时问的延长呈线性关系。
(2)通过ATRP法不仅可以生成主链也能生成支链,不 仅能制备均聚物刷也能制备嵌段共聚物刷。
例如通过表面引发ATRP聚合在聚对苯二甲酸乙二醇酯薄膜 表面接枝PMMA、PAM 和它们的嵌段聚合物刷,这种聚合物刷 有效地改善了聚对苯二甲酸乙二醇酯膜的表面结构和性质。
再如通过两步反应合成了以醋酸纤维素(cDA)为主链,聚己内酯(PCL) 和聚苯乙烯(PS)/聚丙烯酸丁酯(PBAK)/聚甲基丙烯酸甲酯(PMMA)为接 枝链的接枝聚合物刷
n
再以RX/CuX/BPY 体系(其中RX 为卤代烷烃、 BPY 为2 , 2 ′-- 联二吡啶、CuX 为卤化亚铜) 引发 ATRP 反应为例, 典型的原子(基团) 转移自由基聚合的基本原理如下: 引发阶段:
增长阶段:
终止阶段:
ATRP的特点
ATRP的独特之处在于使用了有机卤代物作引发剂,并 用过渡金属催化剂或退化转移的方式使链增长,自由基 被可逆钝化成休眠种,有效抑制了自由基之间的双基终 止反应,其相对分子质量可控制在1000~i00000之间, 分子质量分布为1.O5~1.5。与传统的活性阴离子聚 合及基团转移聚合相比,ATRP具有适用单体覆盖面, 、 原料易得、聚合条件温和、合成工艺多样、操作简便、 易于实现工业化等显著特点
引言
活性聚合是高分子化学的重要技术, 是实现分子设计, 合 成一系列结构不同、性能特异的聚合物材料, 如嵌段、接 枝、星状、梯状、超支化等特殊结构的聚合物的重要手段. 自从1956 年施瓦茨等报道了一种没有链转移和链终止的阴 离子聚合技术以来, 活性聚合的研究得到了巨大的发展. ATRP 作为一种新颖的精确聚合反应,能实现可控P活性聚 合,产物可达到预期的分子量,且分子量分布较窄,因此是大 分子设计的有效工具。许多烯类单体已成功地用ATRP 合 成出结构确定的均聚物、无规共聚物、交替共聚物、梯形 共聚物、嵌段P接枝共聚物和新型聚合物刷、梳形聚合物、 星形聚合物、树枝状聚合物及有机/无机杂化材料。
(2)ABA 型双亲嵌段共聚物
双亲嵌段共聚物由于同时具有亲水和疏水的特性,可具有多种应用。 以双官能团聚丙烯酸正丁酯为大分子引发剂合成了系列ABA 三嵌段共聚物—具有光 活性的偶氮类热塑性弹性体(见图3) 。该系列聚合物中间嵌段B 为弹性的聚丙烯酸正丁酯 (PnBA) ,而以甲基丙烯酸酯偶氮侧链液晶聚合物(Azo2SCLCP) 聚{6-[ 4-(4-甲氧基苯基偶 氮) 苯氧基]己基丙烯酸酯}为末端嵌段A(聚合度不同) 。当溶液浇铸膜在偶氮侧链聚合物 的玻璃化转变温度( Tg ) 以上拉伸时,其微区表现为物理交联,而传统的热塑性弹性体,例如 聚(苯乙烯-丁二烯-苯乙烯) 共聚物在同样条件下则失去弹性,液晶微区可作为交联剂,支持 聚丙烯酸正丁酯链的弹性伸展,同时变形导致偶氮苯介晶基元的远程取向。弹性、液晶性 与光活性之间相互作用赋予了该类热塑性弹性体许多有趣的性质。
二 利用多官能团引发剂依次使不同单体进行活性对称聚合。 即先引发单体B 的聚合,再与单体A 聚合,形成ABA 型对称三嵌段共聚物。
或以BCB 型三嵌段共聚物为引发剂,再与单体A 聚合,形成ABCBA 型五嵌段共聚物。
(1)ABA 型三A 型三嵌段共聚物聚(甲基 丙烯酸叔丁酯-甲基丙烯酸甲酯-甲基丙烯酸叔丁酯) (PtBMA2PMMA2PtBMA) (见图1) 。以2-溴异丁酰溴与乙二醇反应生成双官能团引发剂1 ,2-双(溴异 丁酰氧) 乙烷,引发MMA 的ATRP 反应,生成含二溴官能团的活性PMMA 大分子 引发剂,引发甲基丙烯酸叔丁酯( tBMA) 的ATRP 反应。在嵌段共聚物合成中 应用了卤素替换技术,以CuCl 替代CuBr ,使之快速引发,快速终止,以实现分 子量可控和窄的分子量分布。
ATRP聚合机理
ATRP 的基本原理是通过一个交替的“促活-失活”可逆反应使得体系中的游离基浓度处于极 低, 迫使不可逆终止反应被降到最低程度, 从而实 现“活性”/可控自由基聚合.
引发剂R- X 与 M t发生氧化还原反应变为初级 自由基 R· 初级自由基 R· , 与单体M 反应生成单体自由 基R - M· 即活性种. R - M·与R - M· , 性质相似均为活性 n 种, 既可继续引发单体进行自由基聚合, 也可从休眠种 R-Mn –X/R-M-X上夺取卤原子, 自身变成休眠种, 从而 在休眠种与活性种之间建立一个可逆平衡.
ATRP的应用
1.ATRP在聚合物刷的 应用
聚合物刷作为一种 支链尺寸较规整的接枝 聚合物,当其支链的接 枝密度足够大时,由于 空间位阻的原因而使这 些支链与聚合物主链垂 直向外伸展,以避免支 链间的重叠,从而使整 个聚合物分子形成类似 于刷子的构型。
聚合物分子刷主侧链的相对长度对其 形态有很大影响。如果主链远长于侧链, 分子刷将呈现柱状形态,反之,分子刷将 呈现球状形态。在高密度下,聚合链从基 质表面垂直伸展开,每条聚合链像刷子上 的一根毛,其微观形态如图1所示