数与代数综合练习及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数与代数》综合测试卷一

(总分120分)

一、选择题(单项选择,每小题3分,共18分).

1、在下列语句中:

①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;

④无限小数不一定是无理数. 其中正确的是( ).

(A )②③; (B )②③④; (C )①②④; (D )②④. 2、下列运算正确的是( ).

(A )1535·

a a a =; (B )1025a a =)(-; (C )235a a a =-; (D )932

-=-.

3、“鸡兔同笼”是我国民间流传的诗歌形式的数学题,“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,

几只鸡儿几只兔”解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ).

(A )⎩⎨

⎧=+=+1004236y x y x ; (B )⎩⎨⎧=+=+100

236

y x y x ;

(C )⎩⎨⎧=+=+1002236y x y x ; (D )⎩

⎨⎧=+=+1002436y x y x .

4、如图,已知函数b ax y +=和kx y =的图象交于点P ,根据图象可得,关于y x 、的二元一次方程组

⎧=+=kx y b

ax y 的解是( ). (A )⎩⎨

⎧==2

3

y x ; (B )⎩⎨⎧=-=23y x ;

(C )⎩⎨⎧-==23y x ; (D )⎩⎨⎧-=-=2

3

y x .

5、已知0>>b a ,则下列不等式不一定成立.....的是( ). (A )2

b ab >; (B )

c b c a +>+; (C )

b

a 1

1<; (D )bc ac >. 6、将抛物线2

x y =向左平移4个单位后,再向下平移2个单位,则所得到的抛物线的解析式为( ). (A )2)4(2

++=x y ; (B )2)4(2

-+=x y ; (C )2)4(2

+-=x y ; (D )2)4(2

--=x y .

二、填空(每小题3分,共36分).

1、2007的相反数是 .

2、地球的表面积约为0平方千米,用科学记数法可以表示为 平方千米.

3、当x 时,分式2

4

2--x x 的值为0.

4、已知:53

3y x

a +与3+-

b xy 是同类项,则b a += .

5、请你写出满足73<

<-x 的整数x = .

6、分解因式:2

2

69y xy x ++= . 7、已知实数y x 、满足=0,则代数式的值为 .

8、已知方程组⎩⎨⎧=+=+8302by x y ax 的解是⎩

⎨⎧-==12

y x ,则a = ,b = .

9、抛物线x x y 42

+=的顶点坐标是 . 10、如图,P 是反比例函数x

k

y =

图象上的一点,x PA ⊥轴于A 点,y PB ⊥轴于B 点,若矩形OAPB 的面积为2,则此反比例函数的关系式为 .

11、如图,已知二次函数c bx ax y ++=2

1和一次函数n mx y +=2的图象,由图象知,当12y ≥y 时,x 的取值范围是: .

12、一只跳蚤在一条数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次停下来休息时,此时离原点的距离是 个单位. 三、解答题.

1、(6分)计算:3÷12)1()2(02

-+-⨯--;

2、(6分)先化简,后求值:a

a a 2

1a a a ÷1a 1222

2++--+-,其中3=a ,结果精确到.

3、(6分)解方程x x 22

+=2. 4、(6分)解不等式组⎪⎩⎪⎨⎧->--x x x ≥3

121)1(21

5、(8分)如图,在矩形ABCD 中,AB =4,AD =10,动点P 由点A (起点)沿着折线AB -BC -CD 向点D (终点)移动,设点P 移动的路程为x ,△PAD 的面积为S ,试写出S 与x 之间的函数关系式.

6、(8分)在“情系灾区”的捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息: 信息一:甲班共捐款300元,乙班共捐款232元;

信息二:乙班平均每人捐款数是甲班平均每人捐款数的

5

4; 信息三:甲班的人数比乙班的人数多2人.

根据以上信息,请你求出甲、乙两班的人数各是多少 7、(8分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.

(1)符合公司要求的购车数量搭配方案有哪几种

(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案

8、(8分)某市A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C 、D 两个冷冻厂,已知C 厂可储存240吨,D 厂可储存260吨;从A 村运往C 、D 两厂的费用分别为每吨20元和25元,从B 村运往C 、D 两厂的费用分别为每吨15元和18元,设从A 村运往C 厂的柑桔重量为x 吨,A 、B 两村运往两厂的柑桔运输费用分别y A 元和y B 元.

(1)请根据题意填写下表:

(2)分别求出A y 、B y 与x 之间的函数关系式,并写出自变量x 的取值范围;

(3)若B 村的柑桔运费不得超过4830元,在这种情况下,请问怎样调配数量,才能使两村所花运费之和最小并求出这个最小值.

9、(10分)某环保器材公司销售一种新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元/件)存在如图所示的一次函数关系,每年销售该产品的总开支z (万元)(不含进价成本)与年销售y (万件)存在函数关系z =10y +.

(1)求y 与x 之间的函数关系式; (2)试求出该公司销售该产品年获利w (万元)与销售单价x (元/件)的函数关系式(年获利=年销售总收入金额 - 年销售产品的总进价 - 年总开支金额);

当销售单价x 为何值时,年获利最大最大值是多少

(3)若公司希望该产品一年的销售获利不低于万元,请你利用(2)题中的函数图象确定x 的取值范围.

《数与代数》综合练习(一)参考答案

一、1、C ; 2、B ; 3、A ; 4、D ; 5、D ; 6、B.

二、1、-2007; 2、×108

; 3、x =-2; 4、0; 5、x =-1,0、1、2; 6、2

)3(y x 7、-1; 8、a =1,b =-2;

相关文档
最新文档