初中数学解题技巧:几何作图

合集下载

初中数学几何绘图方法梳理

初中数学几何绘图方法梳理

初中数学几何绘图方法梳理数学几何是初中数学中的一大重点内容,而几何绘图则是数学几何中不可或缺的一部分。

在几何绘图中,我们需要掌握一些基本的绘图方法,这些方法能够帮助我们准确地绘制各种几何图形。

本文将对初中数学中常用的几何绘图方法进行梳理,以帮助同学们更好地理解和掌握这些方法。

一、准备工具在进行几何绘图之前,我们首先需要准备好一些绘图工具,包括直尺、尺规和圆规等。

直尺用于绘制直线,尺规用于绘制等分线,圆规用于绘制圆和弧线。

通过合理使用这些工具,我们能够更加方便和准确地绘制几何图形。

二、基本绘图方法1. 绘制线段绘制线段时,我们可以使用直尺,根据给定的长度在纸上划出一段等长的线段。

线段的两端点用字母A、B等表示。

2. 绘制射线与线段类似,绘制射线时也可以使用直尺。

在给定的一点上划出一段长度不限的线段,该线段延伸的方向表示射线的方向。

3. 绘制直线绘制直线时,可以使用直尺,通过连接两个或更多的点来划出一条直线。

在纸上使用直尺,将它贴住给定的两个点,然后沿着直尺的边缘绘制直线。

直线可以延伸到纸的边缘。

4. 绘制垂直线绘制垂直线时,我们需要使用尺规。

首先在给定的一点上划出一段任意长的线段,然后使用尺规,将它的一端放在这个点上,以该线段为半径绘制一个圆弧。

然后,在这条弧上选择两个交点,再使用尺规连接这两个交点与给定点,得到的线段就是所需的垂直线。

5. 绘制平行线绘制平行线时,我们需要使用尺规。

在给定的一点上划出一段任意长的线段,然后使用尺规,以该线段为半径绘制一个圆弧。

然后,在这条弧上选择两个交点,再使用尺规连接这两个交点与给定点,得到的线段就是所需的平行线。

6. 绘制等分线绘制等分线时,我们需要使用尺规。

在给定线段的一端点上划出一段任意长的线段,然后使用尺规,在这条线段上选择一个点。

然后,使用尺规连接该点与原线段的另一个端点。

最后,在这条连接线上选择等分点,并使用尺规连接这些等分点与给定线段的另一个端点,得到的线段就是所需的等分线。

发展中学数学几何画图能力的七个方法

发展中学数学几何画图能力的七个方法

发展中学数学几何画图能力的七个方法数学几何是中学数学中重要的一个分支,对学生的逻辑思维和想象力有着很大的要求。

而画图能力在解决几何问题时起着至关重要的作用。

下面将介绍七个方法,以帮助中学生发展数学几何画图能力。

1. 清晰的线条和标记:在画图时,要保持线条的清晰和标记的准确。

使用直尺工具和图形模板可以帮助保持线条的直线和标准。

标记的位置要准确,同时要使用合适的符号和字母表示各个角度、线段和点。

2. 合理的比例和尺寸:画图时要注意保持合理的比例和尺寸。

对于已知的角度和线段,根据其数值大小合理选择长度和角度的大小。

这样能更好地展示图形的特征和相对关系。

3. 利用同类图形和相似比例:在画图时,经常会遇到相似的几何图形。

利用同类图形和相似比例可以快速画出复杂的图形,提高画图的效率。

可以通过观察图形中各个线段的长度比例来确定相似比例。

4. 运用辅助线和辅助角:有时候,一个复杂的几何问题可以通过引入辅助线和辅助角来简化。

辅助线和辅助角可以帮助我们找到更多的图形性质,从而解决问题。

在画图时,要巧妙地引入辅助线和辅助角,使其能够起到有效的辅助作用。

5. 利用切线和垂线:切线和垂线在几何图形中经常会出现,并且具有重要的几何性质。

在画图时,要善于利用这两条直线,通过它们来确定图形的特征和关系。

画切线时要注意画出正确的切点,画垂线时要注意垂直于所需的线段或角度。

6. 利用平行线和角平分线:平行线和角平分线可以帮助我们找到图形中的相似部分和角度的相等关系。

在画图时,要善于利用这两个概念,通过画出平行线和角平分线来确定图形的特征和关系。

画平行线时可以利用直尺工具,画角平分线时可以利用量角器。

7. 反复练习和思考:画图能力需要通过反复的练习和思考来不断提高。

只有在不断的实践中,摸索出适合自己的方法和技巧,才能在画图中做到熟练和准确。

可以通过完成大量的几何习题和练习,以及参加几何竞赛来不断提升画图能力。

通过以上七个方法的综合运用,中学生可以有效地提高数学几何画图能力。

初三数学几何作图步骤与技巧

初三数学几何作图步骤与技巧

初三数学几何作图步骤与技巧数学几何作图是初三数学中的重要内容,它在培养学生的空间想象力和逻辑思维能力方面起着重要作用。

下面将结合几何作图的基本步骤和技巧,为大家介绍初三数学几何作图的方法。

一、几何作图的基本步骤几何作图有一定的规范和步骤,下面将给出几何作图的基本步骤:1. 题目分析:仔细阅读题目,理解图形特征和要求。

2. 绘制基础线段:根据给定的条件,画出基础线段,如已知的直线段、线段比例、等分线段等。

3. 作出必要角度:根据题目要求和给定条件,画出必要的角度,如已知的垂直角、等角等。

4. 确定图形位置:根据条件和图形特征,确定图形的位置与大小。

5. 作出其他线段和角度:根据已知的条件,分析图形特征,作出其他线段和角度。

6. 检查与判断:检查所绘制的图形是否满足条件和要求,根据需要进行修正。

7. 写明过程:在纸上清晰地写出作图的步骤和关键点。

8. 作图尺规化:对于需要使用尺规作图的题目,还需要用尺规器进行作图。

二、几何作图的技巧除了基本的作图步骤外,还有一些技巧可以帮助我们更好地完成几何作图。

1. 合理利用已知条件:在作图之前,仔细分析已知条件和题目要求,合理利用已知条件来确定作图的重点和方向。

2. 尺子的运用:在使用尺子时要注意尺子与纸张之间的垂直关系,尽量保持尺子平稳,尽量用尺子上的较短刻度进行量度。

3. 判断线段和角度:对于长度或角度不明确的题目,可通过观察图形特征来判断线段的长度和角度的大小。

4. 作图过程中的检查:在作图过程中,不断检查所画的线段和角度是否满足条件和要求,发现错误及时修正。

5. 慎用尺规作图:对于不需要使用尺规作图的题目,尽量避免使用尺规器,以免增加复杂度和出错的可能性。

三、几何作图的注意事项在几何作图过程中,还需要注意以下几点:1. 作图清晰美观:在作图时,要保持图形线条的清晰和整洁,字迹工整,以便读者或老师能够清晰地看出作图步骤和关键点。

2. 作图比例合理:在绘制图形时,要注意线段和角度的比例关系,根据题目要求和已知条件,合理安排图形的大小。

九年级几何作图知识点

九年级几何作图知识点

九年级几何作图知识点作图是几何学中的重要内容,通过作图可以更好地理解和应用几何知识。

在九年级几何学中,有许多重要的作图知识点需要我们掌握。

本文将介绍一些常见的作图知识点,包括直线的作图、角的作图和三角形的作图。

直线的作图在九年级几何学中,我们经常需要根据给定条件作出直线。

直线的作图是取得许多几何结论和解决几何问题的重要步骤。

1. 通过两点作直线:已知两个点A和B,可以通过作图的方法将它们连接起来,作出一条通过这两点的直线。

2. 通过点作垂直平分线:已知一点A,如何作出过该点的直线,且与给定线段BC垂直且平分该线段的直线?首先,在纸上作出线段BC,然后以点A为圆心,BC的长度为半径作圆,该圆与BC相交于点D和E,连接AD和AE即可得到所需的直线。

角的作图在九年级几何学中,我们也需要掌握一些常见角的作图方法。

1. 作出给定角:已知角的顶点和两条边,我们可以通过作图的方法作出给定角。

首先,在纸上作出该角的顶点,然后用直尺连接该点和两条边即可。

2. 作两条角的平分线:已知一个角ABC,如何作出与该角的两边相等且互相垂直的两条直线?首先,以点B为圆心,BC的长度为半径作圆,再以点C为圆心,AC的长度为半径作圆,这两个圆相交于点D和E,连接BD和CE即可。

三角形的作图三角形的作图在几何学中也是非常重要的。

1. 作等边三角形:已知一个边长,如何作出一个等边三角形?首先,在纸上画出这条边AB,然后以A和B为圆心,以这个边长为半径作弧,两个弧相交于点C,连接AC和BC即可得到等边三角形。

2. 作等腰三角形:已知一个底边和两个底角,如何作出一个等腰三角形?首先,在纸上画出底边AB和两个底角A和B,然后以A和B为圆心,以AB的长度为半径作弧,两个弧交于点C,连接AC和BC即可得到等腰三角形。

总结:九年级几何作图是我们学习几何学的重要部分,掌握了作图知识点,我们能够更好地理解几何概念和解决几何问题。

本文介绍了直线的作图、角的作图和三角形的作图等几个常见知识点,通过实践和练习,相信大家可以熟练掌握这些知识,提高几何学的解题能力。

几何画图与论证的基本方法

几何画图与论证的基本方法

几何画图与论证的基本方法数学是一门需要理论与实践相结合的学科,而几何作为数学的重要分支之一,更是需要通过画图与论证相结合的方法来进行学习与掌握。

本文将介绍几何画图与论证的基本方法,帮助中学生和他们的父母更好地理解和应用几何知识。

一、画图的基本方法在几何学习中,画图是非常重要的一环。

通过画图,我们可以直观地看到几何形状的特征和关系,从而更好地理解和应用几何知识。

在画图时,我们需要掌握以下几个基本方法:1.选择合适的比例:在画图时,我们需要根据题目给出的条件和要求,选择合适的比例来确定图形的大小和形状。

比如,当题目要求画一个等边三角形时,我们可以选择一个适当的比例来确定三角形的边长。

2.使用合适的工具:在画图时,我们需要使用合适的工具来保证图形的准确性和美观性。

常用的画图工具有直尺、圆规、量角器等。

通过合理使用这些工具,我们可以画出准确的几何图形。

3.标注清晰的点、线、面:在画图时,我们需要标注清晰的点、线、面,以便于后续的论证和计算。

标注时,我们可以使用字母、数字等符号来表示不同的点、线、面,同时要注意标注的清晰度和规范性。

二、论证的基本方法几何中的论证是指通过逻辑推理和推导,证明几何命题的真实性。

论证是几何学习中的重要环节,通过论证,我们可以深入理解几何概念和定理,提高解题的能力和思维的灵活性。

下面介绍几个常用的论证方法:1.直接证明法:直接证明法是最常见的论证方法之一,它通过逻辑推理和推导,直接证明所要证明的命题。

例如,要证明两条平行线的切线相等,我们可以通过画图和逻辑推理,直接证明这个命题的真实性。

2.反证法:反证法是一种常用的论证方法,它通过假设命题的反面,然后推导出矛盾的结论,从而证明原命题的真实性。

例如,要证明一个三角形是等边三角形,我们可以假设它不是等边三角形,然后推导出矛盾的结论,从而证明它是等边三角形。

3.归纳法:归纳法是一种通过具体实例推导出普遍结论的论证方法。

例如,要证明一个多边形的内角和公式,我们可以通过具体的三角形、四边形等实例,总结出普遍的结论。

初中数学几何作图基本作图技巧与方法

初中数学几何作图基本作图技巧与方法

初中数学几何作图基本作图技巧与方法在初中数学的学习中,几何作图是一项重要的技能。

它不仅能够帮助我们更好地理解几何概念和定理,还能培养我们的空间想象力和逻辑思维能力。

接下来,让我们一起深入探讨初中数学几何作图的基本作图技巧与方法。

一、线段的作图1、作一条等于已知线段长度的线段首先,我们需要准备好直尺和铅笔。

假设已知线段为 AB,我们要作一条与 AB 长度相等的线段 CD。

步骤如下:(1)用直尺将已知线段 AB 量出长度。

(2)在纸上确定一个起点 C。

(3)将直尺的零刻度线与点 C 对齐,沿着直尺的边缘,从点 C 开始,根据量出的 AB 长度,在直尺相应刻度处标记出点 D。

(4)连接点C 和点D,线段CD 就是与线段AB 长度相等的线段。

2、作线段的平分线作线段的平分线,需要用到圆规。

假设要平分线段 AB。

(1)以点 A 为圆心,大于线段 AB 一半的长度为半径画弧。

(2)再以点 B 为圆心,同样长度为半径画弧,两弧分别交于点 M和点 N。

(3)连接点 M 和点 N,与线段 AB 相交于点 O,点 O 就是线段AB 的中点,直线 MO 就是线段 AB 的平分线。

二、角的作图1、作一个等于已知角大小的角已知角为∠AOB,要作一个与之相等的角∠MON。

步骤如下:(1)先作一条射线 OM。

(2)以点 O 为圆心,任意长为半径画弧,交∠AOB 的两边于点 P和点 Q。

(3)以点 M 为圆心,以 OP 的长为半径画弧,交射线 OM 于点 A'。

(4)以点 A'为圆心,以 PQ 的长为半径画弧,交前弧于点 B'。

(5)过点 B'作射线 ON,则∠MON 就是与∠AOB 相等的角。

2、作角的平分线对于一个角,比如∠AOB,要作其平分线。

(1)以点 O 为圆心,适当长度为半径画弧,分别交 OA、OB 于点C、D。

(2)分别以点 C、D 为圆心,大于二分之一 CD 长为半径画弧,两弧在∠AOB 内部交于点 E。

初中数学作图知识点总结

初中数学作图知识点总结

初中数学作图知识点总结一、几何画法1. 直线的画法(1)用尺规作线(2)用圆规作线(3)用直尺作线2. 角的画法(1)用圆规作角(2)用直尺作角3. 圆的画法(1)用尺规画圆(2)用圆规画圆二、图形的绘制1. 直线(1)知道直线的特点和方程(2)了解不同直线的特征和性质,如平行直线、垂直直线等(3)使用直尺和圆规来画出直线2. 角(1)知道角的定义和性质(2)了解不同角的种类,如锐角、直角、钝角等(3)使用圆规和直尺来画出角3. 三角形(1)知道三角形的特点和性质(2)了解不同种类的三角形,如等边三角形、等腰三角形、直角三角形等(3)使用尺规和圆规来画出三角形4. 四边形(1)知道四边形的特点和性质(2)了解不同种类的四边形,如矩形、正方形、平行四边形、菱形等(3)使用尺规和圆规来画出四边形5. 圆(1)知道圆的定义和性质(2)了解圆的直径、半径、弧长、面积等相关概念(3)使用圆规和尺规来画出圆6. 折线(1)知道折线的定义和性质(2)了解不同种类的折线,如封闭折线、开放折线等(3)使用直尺和圆规来画出折线三、作图的应用1. 利用作图求解问题(1)通过作图求解平面几何问题,如证明等腰三角形、平行四边形等的性质(2)通过作图求解空间几何问题,如证明三棱锥的性质、证明平面与立体的位置关系等2. 利用作图辅助解答(1)通过作图辅助解答数学题目,如求解平面几何问题、解答空间几何问题等3. 绘制图形解决实际问题(1)通过绘制图形来解决实际问题,如绘制地图、图表等四、注意事项1. 作图要仔细、准确,尺规和圆规要使用得当,直尺和圆规要放置得稳,保证作图的准确性。

2. 作图时要注意标注,给出必要的标注,如角的度数、直线的长度等,让别人能够清晰地理解你的作图意图。

3. 作图时要注意审题,根据问题要求来选择合适的作图方法和步骤,保证作图的正确性和有效性。

通过对初中数学作图知识点的总结,我们可以更全面、系统地理解和掌握作图的方法和技巧,提高我们的空间想象能力和几何问题的解决能力。

初中数学几何模型的60种解题技巧

初中数学几何模型的60种解题技巧

初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。

掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。

本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。

1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。

2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。

3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。

4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。

5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。

6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。

7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。

8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。

9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。

10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。

11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。

12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。

13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。

中考几何“五种作图”的基本概念及技巧梳理汇总…

中考几何“五种作图”的基本概念及技巧梳理汇总…

中考几何“五种作图”的基本概念及技巧梳理汇总…数学大师尺规作图,是中考的高频考点,难度不大,但是细节却容易出错,大师整理了这些技巧给大家,这样,大家再也不用担心几何了!基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.五种基本作图方法演示尺规作图的基本步骤和作图语言一、作线段等于已知线段已知:线段a求作:线段AB,使AB=a作法:1、作射线AC2、在射线AC上截取AB=a ,则线段AB就是所要求作的线段二、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.三、作角的平分线已知:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.四、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)五、过直线外一点作直线的垂线.(1)已知点在直线外已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)(2)已知点在直线上已知:直线a、及直线a上一点A.求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B 两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b常用的作图语言:(1)过点×、×作线段或射线、直线;(2)连结两点××;(3)在线段××或射线××上截取××=××;(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;(6)延长××到点×,使××=××。

中考数学题型解析与技巧点拨 专题五 尺规作图解题技巧(教师版学生版)

中考数学题型解析与技巧点拨 专题五 尺规作图解题技巧(教师版学生版)

专题五 中考数学中的尺规作图解题技巧只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图不一定要写作图步骤,但必须保留作图痕迹.从各省市的中考来看,尺规作图题在选择题填空题和解答题都有考到,题目比较丰富,占的分值有3分,4分或者6分。

难度一般。

熟记下面五种基本的尺规作图,此类问题可破解。

五种基本尺规作图作一条线段等于已知线段步骤:1.作射线OP ; 2.在OP 上截取OA=a ,OA 即为所求线段作角的平分线步骤:1.以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点N 、M ; 2.分别以点M 、N 为圆心,大于21MN 的长为半径作弧,相交于点P ;3.画射线OP,OP 即为所求角平分线作线段的垂直平分线步骤:1.分别以点A 、B 为圆心,以大于21AB 的长为半径,在AB 两侧作弧;2.连接两弧交点所成直线即为所求线段的垂直平分线作一个角等于已知角步骤:1.在∠α上以点O 为圆心、以适当的长为半径作弧,交∠α的两边于点P 、Q ; 2.作射线O′A ;3.以O′为圆心、OP 长为半径作弧,交O′A 于点M ;4.以点M 为圆心,PQ 长为半径作弧,交前弧于点N ;5.过点N 作射线O′B ,∠BO′A 即为所求角 过一点作已知直线的垂线过直线外一点作已知直线的垂线步骤:1.在直线另一侧取点M ; 2.以P 为圆心,以PM 为半径画弧,交直线于A 、B 两点; 3.分别以A 、B 为圆心,以大于12AB 长为半径画弧,交M 同侧于点N ;4. 连接PN,则直线PN 即为所求垂线过直线上一点作已知直线的垂线步骤:1.以点O为圆心,任意长为半径向点O两侧作弧,交直线于A、B两点;2.分别以点A、B为圆心,以大于21AB长为半径向直线两侧作弧,交点分别为M、N;3.连接MN,MN即为所求垂线类型一:选择题中的尺规作图【例题展示】例题1(2017深圳市)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40° B.50° C.60° D.70°【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】基本作图;线段垂直平分线的性质.例题2(2018江苏省南通市)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于点E 、F ,再分别以E 、F 为圆心,大于21EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M ,若∠ACD=110°,则∠CMA 的度数为( )A .30°B .35°C .70°D .45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案. 【解答】解:∵AB ∥CD ,∠ACD=110°, ∴∠CAB=70°,∵以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于21EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M , ∴AP 平分∠CAB , ∴∠CAM=∠BAM=35°, ∵AB ∥CD ,∴∠CMA=∠MAB=35°. 故选:B .【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.例题3(2018湖北省襄阳市)如图,在△ABC 中,分别以点A 和点C 为圆心,大于21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E .若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm【分析】利用线段的垂直平分线的性质即可解决问题. 【解答】解:∵DE 垂直平分线段AC ,∴DA=DC ,AE=EC=6cm , ∵AB+AD+BD=13cm , ∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm , 故选:B .【点评】本题考查基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.例题4(2018山东省潍坊市)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B 为圆心,以AB 长为半径作弧,两弧的交点为C ; (2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接BD,BC下列说法不正确的是( )A.∠CBD=30°B.C. 点C 是△ABD 的外心D.【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC , ∴△ABC 是等边三角形, 由作图可知:CB=CA=CD ,∴点C 是△ABD 的外心,∠ABD=90°, BD= AB , ∴S △ABD = AB 2, ∵AC=CD , ∴S △BDC = AB 2, 故A 、B 、C 正确,243AB S BDC =∆1cos sin 22=+D A 32343故选D .【点评】本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【跟踪训练】1.(2018湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .2.(2018贵州省安顺市) 已知△ABC(AC<BC),用尺规作图的方法在BC 上确定一点,使PA+PC=BC ,则符合要求的作图痕迹是( )A. B.C. D.3.(2018河南省)如图,已知平行四边形AOBC 的顶点O (0,0),A (﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )A .(5﹣1,2)B .(5,2)C .(3﹣5,2)D .(5﹣2,2)4.(2018云南省昆明市)如图,点A 在双曲线xky =(x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于21OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC=1,则k 的值为( )A .2B .2532 C .534 D .5252+ 5.(2018浙江省台州市)如图,在平行四边形ABCD 中,AB=2,BC=3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于21PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .21 B .1 C .56 D .23 6.(2018江苏省南通市)如图,Rt △ABC 中,∠ACB=90°,CD 平分∠ACB 交AB 于点D ,按下列步骤作图:步骤1:分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M ,N 两点; 步骤2:作直线MN ,分别交AC ,BC 于点E ,F ; 步骤3:连接DE ,DF .若AC=4,BC=2,则线段DE 的长为( )A .35 B .23 C .2 D .34 7.(2018四川省巴中)如图,在Rt △ABC 中,∠C=90°,按下列步骤作图:①以点B 为圆心,适当长为半径画弧,与AB ,BC 分别交于点D ,E ;②分别以D ,E 为圆心,大于21DE 的长为半径画弧,两弧交于点P ;③作射线BP 交AC 于点F ;④过点F 作FG ⊥AB 于点G .下列结论正确的是( )A .CF=FGB .AF=AGC .AF=CFD .AG=FG8.(2018云南省曲靖市)如图,在正方形ABCD 中,连接AC ,以点A 为圆心,适当长为半径画弧,交AB 、AC 于点M ,N ,分别以M ,N 为圆心,大于MN 长的一半为半径画弧,两弧交于点H ,连结AH 并延长交BC 于点E ,再分别以A 、E 为圆心,以大于AE 长的一半为半径画弧,两弧交于点P ,Q ,作直线PQ ,分别交CD ,AC ,AB 于点F ,G ,L ,交CB 的延长线于点K ,连接GE ,下列结论:①∠LKB=22.5°,②GE ∥AB ,③tan ∠CGF=LBKB,④S △CGE :S △CAB =1:4.其中正确的是( )A .①②③B .②③④C .①③④D .①②④类型二:填空题中的作图题【例题展示】1.(2018江苏省南京市)如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC=10cm ,则DE= cm .【分析】直接利用线段垂直平分线的性质得出DE 是△ABC 的中位线,进而得出答案. 【解答】解:∵用直尺和圆规作AB 、AC 的垂直平分线, ∴D 为AB 的中点,E 为AC 的中点, ∴DE 是△ABC 的中位线, ∴DE=BC=5cm .故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE 是△ABC 的中位线是解题关键.2.(2018山东省东营市)如图,在Rt △ABC 中,∠B=90°,以顶点C 为圆心,适当长为半径画弧,分别交AC ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于21EF 的长为半径画弧,两弧交于点P ,作射线CP 交AB 于点D .若BD=3,AC=10,则△ACD 的面积是 .【分析】作DQ ⊥AC ,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得. 【解答】解:如图,过点D 作DQ ⊥AC 于点Q ,由作图知CP 是∠ACB 的平分线, ∵∠B=90°,BD=3, ∴DB=DQ=3, ∵AC=10, ∴S △ACD =21AC •DQ=21×10×3=15, 故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.3.(2018江苏省淮安市)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于21AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .【分析】连接AD 由PQ 垂直平分线段AB ,推出DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,根据AD 2=AC 2+CD 2构建方程即可解决问题; 【解答】解:连接AD .∵PQ 垂直平分线段AB , ∴DA=DB ,设DA=DB=x ,在Rt △ACD 中,∠C=90°,AD 2=AC 2+CD 2, ∴x 2=32+(5﹣x )2, 解得x=517, ∴CD=BC ﹣DB=5﹣517=58, 故答案为58. 【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.(2018吉林省长春市)如图,在△ABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A=32°,则∠CDB 的大小为 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC 中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD 中可求得∠CDB=∠CBD=21∠ACB=37°. 【解答】解:∵AB=AC ,∠A=32°, ∴∠ABC=∠ACB=74°, 又∵BC=DC , ∴∠CDB=∠CBD=21∠ACB=37°. 故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.【跟踪训练】1.(2018辽宁省葫芦岛市)如图,OP 平分∠MON ,A 是边OM 上一点,以点A 为圆心、大于点A 到ON 的距离为半径作弧,交ON 于点B 、C ,再分别以点B 、C 为圆心,大于21BC 的长为半径作弧,两弧交于点D 、作直线AD 分别交OP 、ON 于点E 、F .若∠MON=60°,EF=1,则OA= .2.(2018辽宁省抚顺市)如图,平行四边形ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是 .3.(2018内蒙古通辽市)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于21AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接AD .若AB=BD ,AB=6,∠C=30°,则△ACD 的面积为 .4.(2018湖北省枣阳市一模)如图,在△ABC 中,∠ACB=90°,∠B=32°.分别以A 、B 为圆心,大于AB 的长为半径画弧,两弧交于点D 和E ,连接DE ,交AB 于点F ,连接CF ,则∠AFC 的度数为 .类型三:解答题中的作图题 【例题展示】例题1(2018广东省 6分)如图,BD 是菱形ABCD 的对角线,∠CBD=75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【分析】(1)分别以A 、B 为圆心,大于21AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD ﹣∠ABF 计算即可; 【解答】解:(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形, ∴∠ABD=∠DBC=21∠ABC=75°,DC ∥AB ,∠A=∠C . ∴∠ABC=150°,∠ABC+∠C=180°, ∴∠C=∠A=30°, ∵EF 垂直平分线线段AB , ∴AF=FB ,∴∠A=∠FBA=30°,∴∠DBF=∠ABD ﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.例题2(2018深圳市8分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE 中,CF=6,CE=12,∠FCE=45°,以点C 为圆心,以任意长为半径作AD ,再分别以点A 和点D 为圆心,大于21AD 长为半径作弧,交EF 于点B ,AB ∥CD .(1)求证:四边形ACDB 为△FEC 的亲密菱形; (2)求四边形ACDB 的面积.【分析】(1)根据折叠和已知得出AC=CD ,AB=DB ,∠ACB=∠DCB ,求出AC=AB ,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可. 【解答】(1)证明:∵由已知得:AC=CD ,AB=DB , 由已知尺规作图痕迹得:BC 是∠FCE 的角平分线, ∴∠ACB=∠DCB , 又∵AB ∥CD , ∴∠ABC=∠DCB , ∴∠ACB=∠ABC , ∴AC=AB ,又∵AC=CD ,AB=DB ,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上, ∴四边形ACDB 为△FEC 的亲密菱形; (2)解:设菱形ACDB 的边长为x , ∵四边形ABCD 是菱形, ∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E , △EAB ∽△FCE则:CE ABFC FA =, 即6x 612x -=, 解得:x=4,过A 点作AH ⊥CD 于H 点, ∵在Rt △ACH 中,∠ACH=45°, ∴AH=222=AC,∴四边形ACDB 的面积为:428224=⨯.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.例题3(2018甘肃省定西市6分 )如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO ,进而以点O 为圆心,OB 为半径作⊙O 即可; (2)利用角平分线的性质以及直线与圆的位置关系进而求出即可. 【解答】解:(1)如图所示:(2)相切;过O 点作OD ⊥AC 于D 点, ∵CO 平分∠ACB , ∴OB=OD ,即d=r , ∴⊙O 与直线AC 相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.例题4(2018山东省威海市 8分 )如图,在△ABC 中,∠ABC=90°. (1)作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O (要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B 的另外一点D ,若⊙O 的直径为5,BC=4;求DE 的长(如果用尺规作图画不出图形,可画出草图完成(2)问)【答案】解:(1)⊙O 如图所示;(1)作OH ⊥BC 于H .是的切线, ,,四边形ECHO 是矩形,,, 在中,, ,, ,,∽,, ,.【解析】作的角平分线交AC 于E ,作交AB 于点O ,以O 为圆心,OB 为半径画圆即可解决问题; 作于首先求出OH 、EC 、BE ,利用∽,可得,解决问题;本题考查作图复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【跟踪训练】1.(2018四川省达州市)已知:如图,在四边形ABCD 中,AD ∥BC .点E 为CD 边上一点,AE 与BE 分别为∠DAB 和∠CBA 的平分线.(1)请你添加一个适当的条件 ,使得四边形ABCD 是平行四边形,并证明你的结论; (2)作线段AB 的垂直平分线交AB 于点O ,并以AB 为直径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O 交边AD 于点F ,连接BF ,交AE 于点G ,若AE=4,sin ∠AGF=54,求⊙O 的半径.2.(2018广东省潮州市一模)如图,△ABC是直角三角形,∠ACB=90°,(1)尺规作图:作⊙C,使它与AB相切于点D,与AC交于点E(保留作图痕迹,不写作法,请标明字母);(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,CD的长是.3.(2018广东省东莞市一模)如图,在Rt△ABC中,∠BAC=90°,∠C=30°.(1)请在图中用尺规作图的方法作出AC的垂直平分线交BC于点D,交AC于点E (不写作法,保留作图痕迹).(2)在(1)的条件下,连接AD,求证:△ABC∽△EDA.4.(2018广东省普宁市一模)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.5.(2018广西贵港市一模)根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).如图,已知△ABC中,AB=AC,BD是BA边的延长线.(1)作∠DAC的平分线AM;(2)作AC边的垂直平分线,与AM交于点E,与BC边交于点F;(3)联接AF,则线段AE与AF的数量关系为.6.(2018广东省南海市一模)如图所示,在△ABC中,AB=AC,∠A=36°.(1)作∠ABC的平分线BD,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)条件下,比较线段DA与BC的大小关系,请说明理由.。

初中数学中的尺规作图

初中数学中的尺规作图

尺规作图是一种古老而神奇的工具,能够用简单的工具和技巧绘制出精确的几何图形。

在初中数学中,尺规作图是一个必修的内容,对于学生来说,掌握它是非常重要的。

本文将详细介绍尺规作图的基础知识、步骤和实践技巧。

一、什么是尺规作图?尺规作图,又称欧氏几何作图,是一种利用尺子和圆规进行的几何作图方法。

它的基本原理是:利用尺子测量长度,用圆规画出圆和弧,然后通过将这些线段和圆弧相交、平移、旋转等操作,得到所需的几何图形。

尺规作图是欧几里得几何的基础,也是很多复杂几何问题的解决方法之一。

二、尺规作图的基本步骤1. 给定图形尺规作图的第一步是给定一个几何图形,通常是已知几条线段或者角度的大小关系。

例如,给定一个直角三角形,其中两条直角边的长度分别为3cm和4cm,要求作出这个三角形。

2. 作出基础线段根据给定的条件,用尺子和圆规作出基础线段。

例如,在一个纸上画一条长度为3cm的线段AB,再画一条长度为4cm的线段AC,其中∠BAC为直角。

3. 作出辅助线段根据需要,作出一些辅助线段,以便通过相交、平移、旋转等操作得到所需的图形。

例如,可以在线段AB上取一点D,再以点C为圆心、AC为半径画一个圆,得到一个圆弧,将其与线段AB相交于点E,再连接线段AE和BE,就得到了一个直角三角形ABC。

三、尺规作图的实践技巧1. 细心测量尺规作图需要精确测量线段的长度和角度的大小,因此必须细心认真地进行测量,避免出现误差。

特别是在作大型图形时,必须使用长尺和精密测量工具,以确保准确性。

2. 多加练习尺规作图需要的是手眼协调能力和灵活性,这些技能需要通过不断地练习才能掌握。

建议初学者多做练习题,逐渐提高自己的技巧和速度。

3. 熟练运用尺规尺规作图需要灵活运用圆规和尺子,掌握不同的测量技巧和作图方法。

例如,可以利用圆规的不同刻度测量半径和角度,或者利用尺子的折叠功能作出垂线等。

四、总结归纳尺规作图是一种重要的几何工具,能够在解决复杂几何问题时提供有力的支持。

中考数学几何五种作图的基本概念与技巧梳理汇总

中考数学几何五种作图的基本概念与技巧梳理汇总

一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图。

2.基本作图:最基本、最常用的尺规作图,通常称基本作图。

3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.尺规作图的基本步骤和作图语言一、作线段等于已知线段:已知:线段a求作:线段AB,使AB=a作法:1.作射线AC2.在射线AC上截取AB=a ,则线段AB就是所要求作的线段二、作角等于已知角:已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角三、作角的平分线:已知:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C(3)作射线OC,OC就是所求作的射线四、作线段的垂直平分线(中垂线)或中点:已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)五、过直线外一点作直线的垂线:(1)已知点在直线外已知:直线a、及直线a外一点A(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB,直线AB就是所画的垂线b(如图)(2)已知点在直线上已知:直线a、及直线a上一点A求作:直线a的垂线直线b,使得直线b经过点A作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b常用的作图语言:(1)过点×、×作线段或射线、直线;(2)连结两点××;(3)在线段××或射线××上截取××=××;(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;(6)延长××到点×,使××=××。

初中一年级数学几何绘图基础

初中一年级数学几何绘图基础

初中一年级数学几何绘图基础在初中数学的学习中,几何绘图是一个非常重要的基础知识。

学好几何绘图,可以帮助我们更好地理解几何概念和定理,同时也能培养我们的观察力和空间思维能力。

本文将介绍初中一年级数学几何绘图的基础知识和技巧。

一、几何绘图工具的使用几何绘图需要一些基本的工具,例如直尺、量角器、圆规等。

使用这些工具可以帮助我们绘制直线、角、圆等几何图形。

在使用工具时,我们需要注意保持工具的垂直和水平,以确保绘制出的图形准确无误。

二、直线、线段和射线的绘制直线、线段和射线是几何中最基本的图形,它们是几何图形的基础。

绘制直线只需要使用直尺,在合适位置上连接两个点即可。

绘制线段时,需要确定两个端点的位置,并使用直尺连接。

而绘制射线时,则需要一条直线和一个起点来确定射线的位置和方向。

三、角的绘制角是由两条线段或射线共享同一个端点而形成的图形。

绘制角时,需要确定角的顶点和两条边的位置,并使用直尺连接两条边。

在绘制角时,我们可以使用量角器来准确测量和绘制角度。

四、三角形的绘制三角形是由三条线段连接而成的图形,是几何中最基本的多边形。

在绘制三角形时,我们需要确定三个顶点的位置,并使用直尺连接这些顶点,画出三边。

在绘制三角形时,要注意保持三边的长度和角度的准确性。

五、四边形的绘制四边形是由四条线段连接而成的图形。

常见的四边形有正方形、长方形、菱形等。

在绘制四边形时,我们需要确定四个顶点的位置,并使用直尺连接这些顶点,画出四条边。

在绘制不同类型的四边形时,需要注意保持各边的长度和各角的大小。

六、圆的绘制圆是由一条弧线和一个确定的中心点组成的图形。

在绘制圆时,我们需要确定圆心的位置,并使用圆规或者其他的画圆工具来绘制圆的弧线。

在绘制圆时,要注意保持弧线的形状和大小,确保画出一个完整的圆。

七、镜像和旋转在几何绘图中,镜像和旋转是两种常见的变换方式。

镜像是以一条直线为轴,把图形按照对称的方式翻折过来。

旋转是以一个确定的中心点,按照一定的角度把图形旋转一定的角度。

初中尺规作图详细讲解(含图)

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图.1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!. 五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线 4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点. ⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12M M ,为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】设半径为1..我们的任务就是做出这个长度..1的长度自然就出来了. 【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,角形..) ⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ; ⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积; ⑵ 这样的直线有多少条?请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄NM P CB Al金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由. ⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△,∴ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△.又∵点D 为边AB 的黄金分割点,∴AD BD AB AD=.∴ADC BDCABC ADCS S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DECFCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△.∴ADCFGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法;M (答案图1)M (答案图2)A CB 图1 A D B 图2CAD B图3C F E 图4画法一:如答图1,取EF中点G,再过点G作一直线分别交AB,DC于M,N点,则直线MN就是ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM NE∥交AB于点M,连接MN,则直线MN就是ABCD的黄金分割线.。

初二数学几何作图基本作图方法与技巧

初二数学几何作图基本作图方法与技巧

初二数学几何作图基本作图方法与技巧在初二数学的学习中,几何作图是一项非常重要的内容。

它不仅能够帮助我们更直观地理解几何概念和定理,还能培养我们的动手能力和空间想象力。

接下来,就让我们一起来了解一下初二数学几何作图中常见的基本作图方法与技巧。

一、作一条线段等于已知线段这是几何作图中最基础的操作之一。

首先,我们需要准备好直尺和圆规。

步骤如下:1、用直尺画出一条射线。

2、以射线的端点为圆心,以已知线段的长度为半径,用圆规在射线上截取一段,所得到的线段就等于已知线段。

这个作图方法的关键在于圆规半径的调整要准确,以确保作出的线段长度与已知线段相等。

二、作一个角等于已知角这个作图稍微复杂一些,但按照以下步骤来做,也能轻松完成。

1、先作一条射线,作为新角的一边。

2、以已知角的顶点为圆心,任意长为半径画弧,交已知角的两边于两点。

3、以新角一边的端点为圆心,以刚才同样的长度为半径画弧,交新角的这边于一点。

4、以这点为圆心,量取已知角弧上两点之间的距离为半径画弧,与前弧相交。

5、连接新角一边的端点和这个交点,就得到了与已知角相等的角。

在这个作图过程中,要注意每一步的操作都要准确,特别是弧的半径和弧上两点之间距离的量取。

三、作已知线段的垂直平分线垂直平分线的作图在解决很多几何问题时都非常有用。

步骤如下:1、分别以线段的两个端点为圆心,以大于线段一半长度为半径画弧,两弧分别在线段两侧相交。

2、连接这两个交点,所得到的直线就是线段的垂直平分线。

这里要注意圆规半径的选择,一定要大于线段长度的一半,否则两弧可能无法相交。

四、作已知角的平分线角平分线的作图可以帮助我们更好地理解角的性质。

具体步骤:1、以角的顶点为圆心,任意长度为半径画弧,交角的两边于两点。

2、分别以这两个交点为圆心,以大于两点之间距离一半的长度为半径画弧,两弧在角内相交。

3、连接角的顶点和这个交点,这条射线就是角的平分线。

同样,圆规半径的选择要恰当,以保证作图的准确性。

初中作图题知识点总结

初中作图题知识点总结

初中作图题知识点总结一、基本概念1.1 作图的定义作图是根据已知条件,用几何工具或计算机辅助绘制出几何图形来解决问题的一种方法。

1.2 作图的基本要求(1)作图需准确;(2)作图需要简洁明了;(3)作图需整洁美观。

1.3 作图的步骤(1)了解题意,明确问题;(2)掌握作图关键条件;(3)按顺序完成准备工作;(4)绘制几何图形。

二、常见作图题知识点2.1 三角形的作图(1)根据已知条件,作等腰三角形;(2)根据已知条件,分别作出等边三角形和直角三角形;(3)根据已知条件,绘制不等边三角形。

2.2 四边形的作图(1)绘制平行四边形;(2)绘制菱形和正方形;(3)根据已知条件绘制矩形和梯形。

2.3 圆的作图(1)根据已知条件绘制圆;(2)绘制内切圆和外接圆;(3)根据已知条件,绘制相切圆。

2.4 图形的旋转(1)以某一线段为定轴旋转图形;(2)以某点为中心旋转图形。

2.5 图形的平移(1)图形的平移变换;(2)平移变换下的图形性质。

2.6 同位角作图(1)根据角的同位关系进行作图;(2)根据角的同位关系解题。

2.7 相似图形的作图(1)相似图形的基本概念;(2)相似图形的作图条件;(3)相似图形的应用。

2.8 作图技巧(1)利用平移变换求解问题;(2)利用同位角关系进行作图;(3)利用相似图形的性质进行作图。

三、作图题解题方法3.1 作图题的解题步骤(1)理解题意,明确问题;(2)根据题目中的已知条件,确定作图的类型;(3)根据作图类型进行具体操作;(4)根据完成的几何图形,解决问题。

3.2 作图题的解题技巧(1)灵活利用平移变换和同位角关系;(2)关注相似三角形的性质,简化问题;(3)善于利用已知条件,缩小作图范围。

3.3 作图题的常见误区(1)对题目不做仔细分析,直接做图;(2)对题目中的已知条件理解不清晰;(3)在作图过程中,出现操作失误。

四、作图题的综合练习4.1 综合练习题目一已知△ABC,D是AB的中点,E是BC的中点,F是AC的中点。

初三数学几何作图技巧分析

初三数学几何作图技巧分析

初三数学几何作图技巧分析在初三数学学科中,几何作图是一个非常重要的部分。

几何作图既能够帮助我们更好地理解和掌握几何知识,又能够锻炼我们的思维能力和空间想象力。

本文将对初三数学几何作图的技巧进行详细的分析和探讨。

一、绘制线段在几何作图中,绘制线段是最基本也是最常见的操作。

线段由两个端点确定,我们可以通过以下几种方式进行作图:1. 通过给定的长度绘制线段:当我们知道线段的长度时,可以使用尺规作图或者使用直尺和图钉来绘制线段。

首先,将图纸上的一点作为线段的一个端点,然后按照给定的长度用尺子或者直尺绘制另一个端点,连接两个端点即可得到所求线段。

2. 通过已知线段的平分点绘制线段:当我们知道线段上某个点将线段平分时,可以使用尺规作图或者使用直尺和图钉来绘制线段。

首先,将图纸上的一点作为线段的一个端点,然后在线段上将其平分,连接两个端点即可得到所求线段。

二、作图中的垂直和平行关系在几何作图中,垂直和平行关系是经常出现的。

下面将分别介绍如何作图:1. 绘制垂直线:当我们知道一条直线上某点垂直于另一条直线时,可以使用尺规作图或者使用直尺和图钉来绘制垂直线。

首先,在图纸上画出已知直线,然后以已知直线上某点为顶点,使用直尺或者尺规画出一个90度的角,该角的另一条边与已知直线相交的点即为所求垂直线。

2. 绘制平行线:当我们知道一条直线上某点平行于另一条直线时,可以使用尺规作图或者使用直尺和图钉来绘制平行线。

首先,在图纸上画出已知直线,然后以已知直线上某点为顶点,使用直尺或者尺规画出一个平行于已知直线的线段,该线段的端点即为所求平行线的两个交点。

三、作图中的角的构造角是几何作图中常见的图形,下面将介绍一些常见角的构造方法:1. 绘制等腰三角形:当我们知道一个角是等腰三角形的角时,可以使用尺规作图或者使用直尺和图钉来绘制等腰三角形。

首先,在图纸上画出已知角的两条边,然后以已知角的顶点为圆心,以任意边的长度为半径画一个弧线,在该弧线上再取两个点,这两个点与已知角的两条边等长,连接这两个点与已知角的顶点即可得到所求等腰三角形。

初三数学几何作图技巧分析详解

初三数学几何作图技巧分析详解

初三数学几何作图技巧分析详解几何作图是初中数学中的重要内容之一,它不仅有助于学生对几何图形的认识和理解,还培养了学生的观察力和逻辑思维能力。

在初三阶段,学生需要掌握一些基本的几何作图技巧,以便能够解决更加复杂的几何问题。

本文将分析并详细解释一些初三数学几何作图的技巧。

一、画三角形三角形是几何学中常见的图形,学生需要学会根据给定条件画出与之相应的三角形。

首先,当我们知道一个三角形的边长时,只需在纸上用直尺依次连接这些点即可画出这个三角形。

其次,如果我们知道一个三角形的底边和底边两边的夹角,可以先画出底边,然后以底边为边用量角器测出夹角,再连接其他两个顶点。

最后,如果我们知道一个三角形的底边和两个底边的对角线,可以先画出底边,然后作出两个对角线,最后连接顶点即可。

二、画正方形和长方形正方形和长方形是几何中的特殊四边形,它们有各自的画法。

首先,当我们知道一个正方形的边长时,只需在纸上用直尺画出四条边相等的线段,然后连接这些线段的端点即可。

其次,如果我们只知道正方形的对角线长度,可以先画出对角线,然后找到对角线中点,以此为圆心作出一个半径为对角线一半长度的圆,最后连接圆上的两个点和对角线的两个端点即可。

对于长方形的画法类似,只需注意各边长度即可。

三、画圆画圆是初三数学中的一个重要环节,同时也是一个相对较难的部分。

学生需要学会根据给定条件画出与之相应的圆。

首先,如果我们知道一个圆的半径或直径,可以以这个半径或直径为边用圆规或者直尺和量角器画出。

其次,如果我们知道一个圆的弦长和弦对应的圆心角,可以先画出弦,然后根据圆心角的大小找到该角平分线,用这条平分线和弦的中点来画出圆。

最后,如果我们知道一个圆的切线和切点,可以先画出切线,然后以切点为圆心,切线长度为半径画出圆。

通过对初三数学几何作图的技巧分析可以发现,几何作图并不是一项难以掌握的技能。

只要我们掌握了画三角形、正方形、长方形和圆的基本画法,再加上一些基本的测量和度量工具,就可以轻松应对各类几何问题。

初中数学~掌握五种基本作图

初中数学~掌握五种基本作图

初中数学~~掌握五种基本作图1、过直线外一点作直线的垂线过直线外一点作直线的垂线.问题症结:大概知道解题方向了,但没有解出来,请老师分析考查知识点:•画线段、角、角平分线、过定点作已知直线的垂线、作线段的垂直平分线难度:中过直线外一点作直线的垂线.已知:直线a外有一点M,求作:直线l⊥a且l过M点.作法:1)在a与M点的另一侧任取一点N.2)以M为圆心,以MN为半径作弧交a于A、B.3)分别以A,B为圆心,大于1/2AB的长为半径作弧,两弧交于P,4)过MP作直线l.l⊥a且过M点.规律方法:尺规作图法。

2、一道尺规作图题尺规作一条直线垂直已知直线问题症结:无法下手补充说明希望讲的仔细点,最好配图考查知识点:•画线段、角、角平分线、过定点作已知直线的垂线、作线段的垂直平分线难度:中已知直线l,O为直线外一点,求做直线CD⊥L。

解析过程:已知直线l,O为直线外一点,求做直线CD⊥L。

作法:(1)以任意点O为圆心作一个足够大的圆,使它交直线l于两点A、B;(2)以A、B为圆心作两个圆交于C、D(其中AC=BC,即两圆半径相等),连接CD (肯定过O点),则CD垂直直线l。

规律方法::(1)以任意点O为圆心作一个足够大的圆,使它交直线l于两点A、B;(2)以A、B为圆心作两个圆交于C、D(其中AC=BC,即两圆半径相等),连接CD(肯知识点:概述所属知识点:[尺规作图]包含次级知识点:画线段、角、角平分线、过定点作已知直线的垂线、作线段的垂直平分线掌握五种基本作图一、基本作图的有关概念:1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。

2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。

二、基本作图的原理和步骤:1.原理:边边边公理2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。

专题12尺规作图题型总结-2024年中考数学答题技巧与模板构建(解析版)

专题12尺规作图题型总结-2024年中考数学答题技巧与模板构建(解析版)

专题12尺规作图题型总结题型解读|模型构建|通关试练本专题主要对初中阶段的一般考查学生对基本作图的掌握情况和实践操作能力,并且在作图的基础上进一步推理计算(或证明)。

尺规作图是指用没有刻度的直尺和圆规作图。

尺规作图是中考必考知识点之一,复习该版块时要动手多画图,熟能生巧!本专题主要总结了五个常考的基本作图题型,(1)作相等角;(2)作角平分线;(3)作线段垂直平分线;(4)作垂直(过一点作垂线或圆切线);(5)用无刻度的直尺作图。

模型01作相等角①以∠α的顶点O为圆心,以任意长为半径作弧,交∠α的两边于点P,Q;②作射线O'A';③以O'为圆心,OP长为半径作弧,交O'A'于点M;④以点M为圆心,PQ长为半径作弧,交③中所作的弧于点N;⑤过点N作射线O'B',∠A'O'B'即为所求作的角.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:作平行线模型02作角平分线①以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③过点O作射线OP,OP即为∠AOB的平分线.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:2到两边的距离相等的点②作三角形的内切圆模型03作线段垂直平分线①分别以点A,B为圆心,大于AB长为半径,在AB两侧作弧,分别交于点M和点N;②过点M,N作直线MN,直线MN即为线段AB的垂直平分线.原理:到线段两端距离相等的点在这条线段的垂直平分线上延伸:①到两点的距离相等的点②作三角形的外接圆3找对称轴(旋转中心)4找圆的圆心模型04作垂直(过一点作垂线或圆切线)(点P在直线上)①以点P为圆心,任意长为半径向点P两侧作弧,分别交直线l于A,B两点;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于点M;③过点M,P作直线MP,则直线MP即为所求垂线.原理:等腰三角形的“三线合一”,两点确定一条直线延伸:确定点到直线的距离(内切圆半径)(点P在直线外)①以点P为圆心,大于P到直线l的距离为半径作弧,分别交直线l于A,B两点;②分别以A,B为圆心,以大于AB的长为半径作弧交于点N;③过点P,N作直线PN,则直线PN即为所求垂线.原理:到线段两端距离相等的点在这条线段的垂直平分线上模型05仅用无刻度直尺作图无刻度直尺作图通常会与等腰三角形的判定,三角形中位线定理,矩形的性质和勾股定理等几何知识点结合,熟练掌握相关性质是解题关键.模型01作相等角考|向|预|测做相等角该题型近年主要以解答题形式出现,一般为解答题型的其中一问,难度系数较小,在各类考试中基本为送分题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解题技巧:几何作图
初中数学解题技巧:几何作图
1、掌握最基本的五种尺规作图
⑴、作一条线段等于已知线段。

⑴、作一个角等于已知角。

⑴、平分已知角。

⑴、经过一点作已知直线的垂线。

⑴、作线段的垂直平分线。

2、掌握课本中各章要求的作图题
⑴、根据条件作任意的三角形、等要素那角性、直角三角形。

⑴、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。

⑴、作已知图形关于一点、一条直线对称的图形。

⑴、会作三角形的外接圆、内切圆。

⑴、平分已知弧。

⑴、作两条线段的比例中项。

⑴、作正三角形、正四边形、正六边形等。

相关文档
最新文档