高中数学:第二章 章末检测

合集下载

高中数学:第二章章末检测

高中数学:第二章章末检测

第二章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列各式叙述不正确的是( )A.若a=λb,则a、b共线B.若b=3a(a为非零向量),则a、b共线C.若m=3a+4b,n=错误!a-2b,则m∥nD.若a+b+c=0,则a+b=-c答案:C解析:根据共线向量定理及向量的线性运算易解.2.已知向量a,b和实数λ,下列选项中错误的是( )A.|a|=错误!B.|a·b|=|a|·|b|C.λ(a·b)=λa·b D.|a·b|≤|a|·|b|答案:B解析:|a·b|=|a|·|b||cosθ|,只有a与b共线时,才有|a·b|=|a||b|,可知B是错误的.3.已知点A(1,3),B(4,-1),则与向量错误!同方向的单位向量为()A。

错误! B.错误!C.错误!D.错误!答案:A解析:错误!=(3,-4),则与其同方向的单位向量e=错误!=错误!(3,-4)=错误!.4.已知O是△ABC所在平面内一点,D为BC边的中点,且2错误!+错误!+错误!=0,那么()A。

错误!=错误!B。

错误!=2错误!C。

错误!=3错误!D.2错误!=错误!答案:A解析:由于2错误!+错误!+错误!=0,则错误!+错误!=-2错误!=2错误!。

所以错误!(错误!+错误!)=错误!,又D为BC边中点,所以错误!=错误!(错误!+错误!).所以错误!=错误!.5.若|a|=1,|b|=6,a·(b-a)=2,则a与b的夹角为( )A.错误!B。

错误!C。

错误! D.错误!答案:C解析:a·(b-a)=a·b-a2=1×6×cosθ-1=2,cosθ=错误!,θ∈[0,π],故θ=错误!。

高中数学 第二章 随机变量及其分布章末检测试卷 新人教A版选修23

高中数学 第二章 随机变量及其分布章末检测试卷 新人教A版选修23

第二章 随机变量及其分布章末检测试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.设由“0”“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( ) A.25 B.34 C.12 D.18 考点 条件概率题点 直接利用公式求条件概率 答案 C解析 ∵P (B )=1×2×22×2×2=12,P (AB )=1×1×22×2×2=14,∴P (A |B )=P (AB )P (B )=12. 2.10张奖券中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为( ) A.310 B.112 C.12 D.1112 考点 排列与组合的应用 题点 排列、组合在概率中的应用 答案 D解析 设事件A 为“无人中奖”,即P (A )=C 57C 510=112,则至少有1个人中奖的概率P =1-P (A )=1-112=1112.3.张老师上数学课时,给班里同学出了两道选择题,他预估做对第一道题的概率是0.80,做对两道题的概率是0.60,则预估做对第二道题的概率是( ) A .0.80 B .0.75 C .0.60 D .0.48 考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 设事件A i (i =1,2)表示“做对第i 道题”,A 1,A 2相互独立, 由已知得:P (A 1)=0.8,P (A 1A 2)=0.6,由P (A 1A 2)=P (A 1)·P (A 2)=0.8×P (A 2)=0.6, 解得P (A 2)=0.60.8=0.75.4.设随机变量X 等可能地取值1,2,3,…,10.又设随机变量Y =2X -1,则P (Y <6)的值为( ) A .0.3 B .0.5 C .0.1 D .0.2 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由Y =2X -1<6,得X <3.5,∴P (Y <6)=P (X <3.5)=P (X =1)+P (X =2)+P (X =3)=0.3. 5.设随机变量X ~N (μ,σ2)且P (X <1)=12,P (X >2)=p ,则P (0<X <1)的值为( )A.12p B .1-p C .1-2pD.12-p 考点 正态分布的概念及性质 题点 求正态分布的均值或方差 答案 D解析 由正态曲线的对称性知P (X <1)=12,故μ=1,即正态曲线关于直线x =1对称,于是P (X <0)=P (X >2),所以P (0<X <1)=P (X <1)-P (X <0)=P (X <1)-P (X >2)=12-p .6.已知离散型随机变量X 的分布列如下:则均值E (X )与方差D (X )分别为( ) A .1.4,0.2 B .0.44,1.4 C .1.4,0.44D .0.44,0.2考点 均值、方差的综合应用 题点 求随机变量的均值与方差 答案 C解析 由离散型随机变量的性质知a +4a +5a =1,∴a =0.1.∴P (X =0)=0.1,P (X =1)=0.4,P (X =2)=0.5,∴均值E (X )=0×0.1+1×0.4+2×0.5=1.4;方差D (X )=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.196+0.064+0.18=0.44.7.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 16+C 14C 16C 112C 112的是( )A .P (X ≤1)B .P (X ≤2)C .P (X =1)D .P (X =2)考点 超几何分布题点 利用超几何分布求概率 答案 C解析 P (X =1)=C 18C 16+C 14C 16C 112C 112.8.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为( )A.16B.13C.12D.635考点 条件概率的定义及计算公式 题点 直接利用公式求条件概率 答案 A解析 设事件A 为“周日值班”,事件B 为“周六值班”,则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P (AB )P (A )=16. 9.设随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132 考点 二项分布的计算及应用 题点 利用二项分布求概率 答案 D解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴方程x 2+4x +X =0存在实数根, ∴Δ=16-4X ≥0,∴X ≤4,∵随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12,∴P (X ≤4)=1-P (X =5)=1-125=3132,故选D.10.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( )A .0.93B .1-(1-0.9)3C .C 35×0.93×0.12D .C 35×0.13×0.92考点 二项分布的计算及应用 题点 利用二项分布求概率 答案 C解析 5头猪中恰有3头被治愈的概率为C 35×0.93×0.12.11.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A.49B.1927C.1127D.4081考点 相互独立事件的性质及应用 题点 独立事件与互斥事件的综合应用 答案 B解析 最后乙队获胜事件含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P =13+23×13+⎝ ⎛⎭⎪⎫232×13=1927,故选B.12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的面上的数之积的均值是( ) A.19 B.29 C.13 .D.49 考点 常见的几种均值 题点 相互独立事件的均值 答案 D解析 将小正方体抛掷1次,向上的面上可能出现的数有0,1,2,概率分别为12,13,16,将这个小正方体抛掷2次,可以表示为下表:令ξ为小正方体抛掷2次后向上的面上的数之积,则积为0的概率P (ξ=0)=12×12+12×13+12×16+12×13+12×16=34.积为1的概率P (ξ=1)=13×13=19.积为2的概率P (ξ=2)=13×16+13×16=19.积为4的概率P (ξ=4)=16×16=136,所以向上的面上的数之积的均值E (ξ)=0×34+1×19+2×19+4×136=49.二、填空题(本大题共4小题,每小题5分,共20分)13.已知随机变量ξ~B (n ,p ),若E (ξ)=4,η=2ξ+3,D (η)=3.2,则P (ξ=2)=________.考点 二项分布的计算及应用 题点 利用二项分布的分布列求概率 答案32625解析 由已知np =4,4np (1-p )=3.2,∴n =5,p =0.8,∴P (ξ=2)=C 25p 2(1-p )3=32625.14.某处有水龙头5个,调查表示每个水龙头被打开的可能性均为110,则3个水龙头同时被打开的概率为________. 考点 独立重复试验的计算题点 用独立重复试验的概率公式求概率 答案 0.008 1解析 对5个水龙头的处理可视为做5次独立重复试验,每次试验有2种可能结果:打开或不打开,相应的概率为0.1或0.9,根据题意得3个水龙头同时被打开的概率为C 35×0.13×0.92=0.008 1.15.设随机变量ξ服从正态分布N (μ,σ2),向量a =(1,2)与向量b =(ξ,-1)的夹角为锐角的概率是12,则μ=______.考点 正态分布的概念及性质 题点 求正态分布的均值或方差 答案 2解析 由向量a =(1,2)与向量b =(ξ,-1)的夹角是锐角,得a ·b >0,即ξ-2>0,解得ξ>2,则P (ξ>2)=12.根据正态分布密度曲线的对称性,可知μ=2.16.一射手对靶射击,直到第一次中靶或用光子弹为止.若他每次射击中靶的概率是0.9,他有3颗子弹,则射击结束后剩余子弹的数目X 的均值E (X )=________. 考点 常见的几种均值 题点 相互独立事件的均值 答案 1.89解析 由题意知,X 的可能取值是0,1,2,对应的概率分别为P (X =2)=0.9,P (X =1)=0.1×0.9=0.09,P (X =0)=0.13+0.12×0.9=0.01, 由此可得均值E (X )=2×0.9+1×0.09+0×0.01=1.89. 三、解答题(本大题共6小题,共70分)17.(10分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分,100分,200分,答错得0分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响. (1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率. 考点 互斥、对立、独立重复试验的综合应用 题点 互斥事件、对立事件、独立事件的概率问题解 记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)·P (A 2)·P (A 3)=0.228+0.8×0.7×0.6=0.564.18.(12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间. (1)求ξ的分布列; (2)求ξ的均值.考点 均值与方差的综合应用题点 离散型随机变量的分布列及均值 解 (1)ξ的所有可能取值为1,3,4,6.P (ξ=1)=13, P (ξ=3)=13×12=16, P (ξ=4)=13×12=16,P (ξ=6)=2×⎝ ⎛⎭⎪⎫13×12×1=13,ξ的分布列为(2)E (ξ)=1×13+3×16+4×16+6×13=72.19.(12分)从1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数恰有1个偶数的概率;(2)记X 为3个数中两数相邻的组数,例如取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时X 的值为2,求随机变量X 的分布列及均值E (X ). 考点 均值与方差的综合应用 题点 离散型随机变量的分布列及均值解 (1)设Y 表示“任取的3个数中偶数的个数”, 则Y 服从N =9,M =4,n =3的超几何分布, ∴P (Y =1)=C 14C 25C 39=1021.(2)X 的取值为0,1,2,P (X =1)=2×6+6×5C 39=12, P (X =2)=7C 39=112,P (X =0)=1-P (X =1)-P (X =2)=512.∴X 的分布列为∴E(X)=0×512+1×12+2×112=23.20.(12分)某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的分布列如下表:(1)求a的值和ξ的均值;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.考点互斥、对立、独立重复试验的概率问题题点互斥事件、对立事件、独立事件的概率问题解(1)由分布列的性质得0.1+0.3+2a+a=1,解得a=0.2,∴ξ的分布列为∴E(ξ)=0×0.1+1×0.3+2×0.4+3×0.2=1.7.(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另一个月被投诉0次”;事件A2表示“两个月均被投诉1次”.则由事件的独立性得P(A1)=C12P(ξ=2)P(ξ=0)=2×0.4×0.1=0.08,P(A2)=[P(ξ=1)]2=0.32=0.09.∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.21.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值.考点 均值与方差的应用题点 离散型随机变量的分布列及均值解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A . P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610=35.故X 的分布列为E (X )=200×110+300×310+400×35=350.22.(12分)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有(n +m )道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类型试题的数量. (1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值.解 以A i 表示第i 次调题调用到A 类型试题,i =1,2. (1)P (X =n +2)=P (A 1A 2)=nm +n ·n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1A 2)=n n +n ·n n +n =14,P (X =n +1)=P (A 1A 2)+P (A 1A 2)=nn +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14.从而X 的分布列为所以E (X )=n ×14+(n +1)×12+(n +2)×14=n +1.。

高中数学第二章一元二次函数方程和不等式章末检测新人教A版必修第一册

高中数学第二章一元二次函数方程和不等式章末检测新人教A版必修第一册

第二章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B【答案】B 【解析】因为A -B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,所以A ≥B .2.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q【答案】C 【解析】因为m >1,所以P =m +4m -1=m -1+4m -1+1≥2m -1·4m -1+1=5=Q ,当且仅当m -1=4m -1,即m =3时等号成立.故选C . 3.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .{x |x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}【答案】A 【解析】(方法一)取x =-2,知符合x <1x<x 2,即-2是此不等式的解集中的一个元素,所以可排除选项B ,C ,D .(方法二)由题知,不等式等价于⎩⎪⎨⎪⎧x -1x<0,1x -x 2<0,解得x <-1.故选A .4.已知y =3x 2+12x 2,则y 的取值范围为( )A .(-∞,-4]∪[4,+∞)B .(-∞,-2]∪[2,+∞)C .(0,+∞)D .[6,+∞)【答案】D 【解析】因为x 2>0,所以3x 2+12x 2≥23x 2·12x2=6,所以y 的取值范围为[6,+∞).故选D .5.设a ,b 均为正数,且a +b =3,则2a +bab的最小值为( )A .2 2B .2+23C .1+223D .2+2 2【答案】C 【解析】2a +bab =2b +1a =13×(a +b )×⎝ ⎛⎭⎪⎫2b +1a =13×⎝ ⎛⎭⎪⎫2a b +b a +3≥13×2×2a b ·b a +1=223+1,当且仅当2a b =ba,且a +b =3,即a =32-3,b =6-32时取“=”,所以2a +b ab 的最小值为1+223.故选C .6.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,那么a +b 等于( )A .3B .1C .-1D .-3【答案】D 【解析】由题意得A ={x |-1<x <3},B ={x |-3<x <2},则A ∩B ={x |-1<x <2},由根与系数的关系可知-1和2是方程x 2+ax +b =0的两根,所以⎩⎪⎨⎪⎧-1+2=-a ,-1×2=b ,故a =-1,b =-2,故a +b =-3.7.(2021年长春模拟)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是( ) A .32 B .3 C .12D .1【答案】B 【解析】由题意得y =3-x 22x ,∴2x +y =2x +3-x 22x =3x 2+32x =32⎝ ⎛⎭⎪⎫x +1x ≥3,当且仅当x =y =1时,等号成立.8.已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为{x |x 1<x <x 2},则x 1+x 2+a x 1x 2的最大值是( )A .63B .-233C .433D .-433【答案】D 【解析】由题意可知x 1,x 2为方程x 2-4ax +3a 2=0(a <0)的两根,所以x 1x 2=3a 2,x 1+x 2=4a .则x 1+x 2+a x 1x 2=4a +13a .因为a <0,所以-⎝⎛⎭⎪⎫4a +13a ≥24a ×13a =433,即4a +13a ≤-433,当且仅当a =-36时取等号.故x 1+x 2+a x 1x 2的最大值为-433.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021年济南期中)已知a ,b ,c ,d 是任意实数,则以下命题中正确的是( ) A .若ac 2>bc 2,则a >b B .若a >b ,c >d ,则a +c >b +d C .若a >b ,c >d ,则ac >bdD .若a >b ,则1a >1b【答案】AB 【解析】A .由ac 2>bc 2,得c ≠0,则a >b ,A 正确;B .由不等式的同向可加性可知B 正确;C 错误,当0>c >d 时,不等式不成立;D 错误,令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选AB .10.设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>aB .a 2+9>6aC .(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4D .⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b ≥4 【答案】ACD 【解析】设a >0,b >0,a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0,A 成立;a 2+9-6a=(a -3)2≥0,B 不成立;(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4,当且仅当a =b 时等号成立,故C 成立;a +1a≥2,b +1b≥2,故D 成立.故选ACD .11.下列各小题中,最大值是12的是( )A .y =x 2+116x2 B .y =x 1-x 2,x ∈[0,1] C .y =x 2x 4+1D .y =x +4x +2(x >-2) 【答案】BC 【解析】选项A ,y 没有最大值;选项B ,y 2=x 2(1-x 2)≤⎝ ⎛⎭⎪⎫x 2+1-x 222=14,所以y ≤12,当且仅当x =22时等号成立;选项C ,x =0时,y =0,x ≠0时,y =1x 2+1x2≤12,当且仅当x =±1时等号成立;选项D ,y =x +2+4x +2-2≥2x +2·4x +2-2=2,当且仅当x =0时等号成立.故选BC .12.若正实数a ,b 满足a +b =1,则下列选项中正确的是( ) A .ab 有最大值14B .a +b 有最小值1C .1a +1b有最小值4D .a 2+b 2有最小值22【答案】AC 【解析】1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立,所以ab 有最大值14,所以A 正确;a +b ≥2ab ,2ab ≤2,所以a +b 的最小值不是1,所以B 错误;1a +1b =a +b ab =1ab ≥4,所以1a +1b有最小值4,所以C 正确;a 2+b 2≥2ab,2ab ≤12,所以a 2+b 2的最小值不是22,所以D 错误.故选AC . 三、填空题:本题共4小题,每小题5分,共20分. 13.如果a >b ,ab <0,那么1a 与1b的大小关系是________.【答案】1a >1b 【解析】1a -1b =b -a ab >0,所以1a >1b.14.已知a >0,b >0,且1a +1b =1,则3a -1+2b -1的最小值为________.【答案】2 6 【解析】由题意得1a =1-1b =b -1b >0,所以a -1=1b -1.所以3a -1+2b -1=3(b -1)+2b -1≥23b -1·2b -1=26,当且仅当3(b -1)=2b -1,即b =1+63时,上式等号成立.15.(2021年山东模拟)已知a >1,b >0,且1a -1+1b=1,则a +b 的最小值是________. 【答案】5 【解析】∵a >1,∴a -1>0.∵1a -1+1b=1,∴a +b =[(a -1)+b ]+1=[(a -1)+b ]⎝⎛⎭⎪⎫1a -1+1b +1=3+b a -1+a -1b ≥3+2ba -1·a -1b =5.当且仅当ba -1=a -1b,即a =3,b =2时取等号,∴a +b 的最小值为5. 16.(2021年绍兴模拟)设a ,b ,x ,y 均为正数且a ≠b ,则有a 2x +b 2y ≥a +b2x +y,当且仅当a x =b y 时,等号成立.利用以上结论,可得当0<x <12时,2x +91-2x的最小值为________,此时x 的值为________.【答案】25 15 【解析】根据已知结论, 2x +91-2x =42x +91-2x ≥2+322x +1-2x =25,当且仅当22x =31-2x ,即x =15时取得最小值.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.设a >0,b >0,比较a 2b +b 2a与a +b 的大小. 解:因为a >0,b >0,所以a 2b+b 2a =a b +b a .根据均值不等式可得ab+b ≥2a ,①ba+a ≥2b ,② 当且仅当a =b 时取等号.由①+②,得a b +ba +a +b ≥2(a +b ),即a 2b+b 2a≥a +b . 18.解关于x 的不等式:x 2+(1-m )x -m >0,其中m ∈R . 解:由x 2+(1-m )x -m >0,可得(x +1)(x -m )>0.当m =-1时,解得x ≠-1;当m >-1时,解得x <-1或x >m ;当m <-1时,解得x <m 或x >-1.综上所述,当m =-1时,不等式的解集是{x |x ≠-1};当m >-1时,不等式的解集为{x |x <-1或x >m };当m <-1时,不等式的解集为{x |x <m 或x >-1}. 19.(2021年南通期末)已知y =x +2x 2+x +1(x >-2).(1)求1y的取值范围;(2)当x 为何值时,y 取得最大值?解:(1)设x +2=t ,则x =t -2,t >0(x >-2).故1y =x 2+x +1x +2=t -22+t -2+1t=t 2-3t +3t =t +3t -3≥23-3.∴1y≥23-3.(2)由题意知y >0,故欲使y 最大,必有1y 最小,此时t =3t ,t =3,x =3-2,y =123-3=23+33.∴当x =3-2时,y 最大,最大值为23+33.20.如图所示,动物园要围成相同面积的长方形无顶虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有36 m 长的钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?解:(1)设每间虎笼长为x m ,宽为y m ,则由条件得4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .因为2x +3y ≥22x ·3y =26xy ,所以26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3,故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.(2)设每间虎笼长为x m ,宽为y m.(方法一)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y . 因为2x +3y ≥22x ·3y =26xy =24,所以l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.(方法二)由xy =24,得x =24y.所以l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y +y ≥6×216y·y =48,当且仅当16y=y ,即y =4时等号成立,此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.21.已知一元二次不等式ax 2+bx +c >0的解集为{x |α<x <β},且0<α<β,求不等式cx 2+bx +a <0的解集.解:因为不等式ax 2+bx +c >0(a ≠0)的解为α<x <β,其中β>α>0,所以有α+β=-ba ,αβ=c a且a <0,c <0.设方程cx 2+bx +a =0的两根为m ,n ,且m <n ,则m +n =-b c =α+βαβ=1α+1β,mn=a c =1αβ=1α·1β,所以n =1α,m =1β.又因为c <0,所以不等式cx 2+bx +a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1α或x <1β. 22.已知关于x 的方程x 2-2(m +2)x +m 2-1=0. (1)m 为何实数时,方程有两正实数根?(2)m 为何实数时,方程有一个正实数根、一个负实数根?解:方法一:(1)由已知得⎩⎪⎨⎪⎧Δ=b 2-4ac =4m +22-4m 2-1≥0,x 1+x 2=2m +2>0,x 1x 2=m 2-1>0,解得-54≤m <-1或m >1.(2)由已知得⎩⎪⎨⎪⎧Δ>0,x 1x 2=m 2-1<0,解得-1<m <1.方法二:(1)设y =x 2-2(m +2)x +m 2-1, 因为方程有两正实数根,所以函数图象如图所示,则应满足⎩⎪⎨⎪⎧Δ≥0,-b2a =m +2>0,m 2-1>0,解得-54≤m <-1或m >1.(2)因为方程有一正实数根、一负实数根,则函数图象如图所示. 当x =0时,y =m 2-1.由题意知m 2-1<0,解得-1<m <1.。

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

高中数学 第2章 圆锥曲线与方程章末综合检测(二) 湘教版高二选修2-1数学试题

章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:选D.由题意知椭圆的焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 解析:选A.依题意得c =4,e =c a =4a=2,a =2,b 2=c 2-a 2=12,因此所求的双曲线的标准方程为x 24-y 212=1,故选A.3.若点P 到直线x =-1的距离比到点(2,0)的距离小1,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选D.点P 到直线x =-1的距离比到点(2,0)的距离小1,即点P 到直线x =-2的距离与到点(2,0)的距离相等,根据抛物线的定义可知,点P 的轨迹是抛物线.4.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A.15B.25C.45D.215解析:选B.根据椭圆定义可得4+2a =14,解得a =5,故其离心率e =c a =25,故选B.5.双曲线的两条渐近线的夹角为60°,则双曲线的离心率是( ) A .2或233B .2C.233D. 3解析:选A.不妨设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则渐近线方程为y =±bax .由题意,则ba =33或a b =33, 所以b 2a 2=13或a 2b 2=13,可以求得e =233或2.6.直线l 过点(2,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C.点(2,0)为双曲线的右顶点,过该点有两条与双曲线的渐近线平行的直线,这两条直线与双曲线仅有一个公共点,另外,过该点且与x 轴垂直的直线也与双曲线只有一个公共点.所以共有3条.7.已知双曲线与椭圆x 216+y 264=1有共同的焦点,且双曲线的一条渐近线方程为x +y =0,则双曲线的方程为( )A .x 2-y 2=50 B .x 2-y 2=24 C .x 2-y 2=-50 D .x 2-y 2=-24解析:选D.因为双曲线与椭圆x 216+y 264=1有共同的焦点,所以双曲线的焦点在y 轴上,且焦点坐标为(0,-43),(0,43).又双曲线的一条渐近线方程为x +y =0,所以可设双曲线方程为y 2-x 2=λ(λ>0),则2λ=48,λ=24,故所求双曲线的方程为y 2-x 2=24,即x 2-y 2=-24.8.过抛物线y 2=8x 的焦点,作倾斜角为45°的直线,则被抛物线截得的弦长为( ) A .8 B .16 C .32D .64解析:选B.抛物线中2p =8,p =4,则焦点坐标为(2,0),过焦点且倾斜角为45°的直线方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,y 2=8x ,得x 2-12x +4=0, 则x 1+x 2=12(x 1,x 2为直线与抛物线两个交点的横坐标).从而弦长为x 1+x 2+p =12+4=16.9.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值X 围是( )A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1解析:选C.直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,所以025+1m ≤1,解得m ≥1,又m ≠5,故选C.10.已知点A (0,2),B (2,0).若点C 在抛物线x 2=y 的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1解析:选A.由已知可得|AB |=22,要使S △ABC =2,则点C 到直线AB 的距离必须为2,设C (x ,x 2),而l AB ∶x +y -2=0,所以有|x +x 2-2|2=2,所以x 2+x -2=±2,当x 2+x -2=2时,有两个不同的C 点;当x 2+x -2=-2时,亦有两个不同的C 点.因此满足条件的C 点有4个,故选A.11.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA |=2|FB |,则k 等于( )A.13B.23C.23D.223解析:选D.设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0.由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x得k 2x 2+(4k 2-8)x +4k 2=0, 所以x 1x 2=4,①根据抛物线的定义得,|FA |=x 1+p2=x 1+2,|FB |=x 2+2.因为|FA |=2|FB |, 所以x 1=2x 2+2,②由①②得x 2=1(x 2=-2舍去),所以B (1,22),代入y =k (x +2)得k =223.12.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:选C.由题意,知a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,所以直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a ,解得a 2=112,b 2=12. 二、填空题:本题共4小题,每小题5分.13.若椭圆x 2a 2+y 2b2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为________.解析:抛物线y 2=8x 的焦点坐标为(2,0), 双曲线x 2-y 2=1的焦点坐标为(±2,0)由题意得⎩⎪⎨⎪⎧a 2-b 2=2,4a2=1,所以a 2=4,b 2=2,所以椭圆的方程为x 24+y 22=1.答案:x 24+y 22=114.过直线y =2与抛物线x 2=8y 的两个交点,并且与抛物线的准线相切的圆的方程为________.解析:依题意,抛物线x 2=8y 的焦点(0,2)即为圆心,准线y =-2与圆相切,圆心到切线的距离等于半径,所以半径为2-(-2)=4,故圆的方程为x 2+(y -2)2=16.答案:x 2+(y -2)2=1615.已知双曲线中心在原点,一个顶点的坐标是(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程为________.解析:由题意得双曲线的焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,又c 2=a 2+b 2,所以c =5,b =4,所以双曲线的标准方程为x 29-y 216=1.答案:x 29-y 216=116.如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上,则抛物线E 的方程为________.解析:依题意知,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在抛物线E :x 2=2py (p >0)上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .答案:x 2=4y三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知抛物线C :x 2=4y 的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32.求椭圆E 的方程. 解:因为椭圆焦点在x 轴上,所以设椭圆E 的方程为x 2a 2+y 2b 2=1,半焦距为c (a >0,b >0,c >0).由题意知F (0,1)为椭圆的短轴的上顶点, 所以b =1,又由c a =32,a 2=b 2+c 2, 得a =2,c = 3.所以椭圆E 的方程为x 24+y 2=1.18.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线的一个交点为P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程.解:依题意,设抛物线的方程为y 2=2px (p >0),因为点P ⎝ ⎛⎭⎪⎫32,6在抛物线上,所以6=2p ×32,所以p =2,所以所求抛物线的方程为y 2=4x .因为双曲线的左焦点在抛物线的准线x =-1上, 所以c =1,即a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上,所以94a 2-6b 2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1得⎩⎪⎨⎪⎧a 2=14,b 2=34或⎩⎪⎨⎪⎧a 2=9,b 2=-8.(舍去) 所以所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分12分)已知点P (3,4)是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.解:(1)令F 1(-c ,0),F 2(c ,0), 则b 2=a 2-c 2.因为PF 1⊥PF 2,所以k PF 1·k PF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去. 故所求椭圆的方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65,① 又|PF 1|2+|PF 2|2=|F 1F 2|2=100,② ①2-②,得2|PF 1|·|PF 2|=80, 所以S △PF 1F 2=12|PF 1|·|PF 2|=20.20.(本小题满分12分)如图,O 为坐标原点,过点P (2,0)且斜率为k 的直线l 交抛物线y 2=2x 于M (x 1,y 1),N (x 2,y 2)两点.(1)求x 1x 2与y 1y 2的值; (2)求证:OM ⊥ON .解:(1)设直线l 的方程为y =k (x -2)(k ≠0).① 由①及y 2=2x 消去y 可得k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1,x 2是方程②的两个根, 由根与系数的关系得x 1x 2=4k2k 2=4,由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16,又y 1y 2<0, 所以y 1y 2=-4.(2)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2,k 1k 2=y 1y 2x 1x 2=-44=-1, 所以OM ⊥ON .21.(本小题满分12分)设A (x 1,y 1),B (x 2,y 2)两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (2)当直线l 的斜率为2时,求l 在y 轴上的截距的取值X 围.解:(1)点F 在直线l 上⇒|FA |=|FB |⇒A ,B 两点到抛物线的准线的距离相等,因为抛物线的准线与x 轴平行,所以上述条件等价于y 1=y 2⇒x 21=x 22⇒(x 1+x 2)·(x 1-x 2)=0,因为x 1≠x 2,所以当且仅当x 1+x 2=0时,直线l 经过抛物线的焦点F .(2)设l 在y 轴上的截距为b ,依题意,得l 的方程为y =2x +b .则过点A ,B 的直线方程可设为y =-12x +m ,由⎩⎪⎨⎪⎧y =2x 2y =-12x +m ,化简得2x 2+12x -m =0, 所以x 1+x 2=-14.因为A ,B 为抛物线上不同的两点,所以上述方程的判别式Δ=14+8m >0,即m >-132.设AB 的中点N 的坐标为(x 0,y 0),则x 0=-18,y 0=-12x 0+m =116+m .又点N 在直线l上,所以116+m =-14+b ,于是b =516+m >516-132=932,所以l 在y 轴上的截距的取值X 围为⎝ ⎛⎭⎪⎫932,+∞.22.(本小题满分12分)如图,抛物线C 1:y 2=4x 的准线与x 轴交于点F 1,焦点为F 2.以F 1,F 2为焦点,离心率为12的椭圆记作C 2.(1)求椭圆的标准方程;(2)直线l 经过椭圆C 2的右焦点F 2,与抛物线C 1交于A 1,A 2两点,与椭圆C 2交于B 1,B 2两点,当以B 1B 2为直径的圆经过F 1时,求A 1A 2的长.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),依据题意得c =1,c a =12,则a =2,b 2=a 2-c 2=3, 故椭圆的标准方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时,B 1⎝ ⎛⎭⎪⎫1,-32,B 2⎝ ⎛⎭⎪⎫1,32, 又F 1(-1,0), 此时B 1F 1→·B 2F 1→≠0,所以以B 1B 2为直径的圆不经过F 1,不满足条件.当直线l 不与x 轴垂直时,设l :y =k (x -1),由⎩⎪⎨⎪⎧y =k (x -1)x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 因为焦点在椭圆内部,所以直线l 与椭圆恒有两个交点. 设B 1(x 1,y 1),B 2(x 2,y 2), 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为以B 1B 2为直径的圆经过F 1, 所以B 1F 1→·B 2F 1→=0, 又F 1(-1,0),所以(-1-x 1)(-1-x 2)+y 1y 2=0,即(1+k 2)x 1x 2+(1-k 2)(x 1+x 2)+1+k 2=0, 解得k 2=97.由⎩⎪⎨⎪⎧y 2=4x y =k (x -1), 得k 2x 2-(2k 2+4)x +k 2=0. 设A 1(x 3,y 3),A 2(x 4,y 4), 则x 3+x 4=2k 2+4k 2=2+4k2,x 3x 4=1,所以|A 1A 2|=x 3+x 4+2=2+4k 2+2=649.。

高中数学选修一第二章 直线和圆的方程 章末测试(解析版)

高中数学选修一第二章 直线和圆的方程 章末测试(解析版)

第二章 直线和圆的方程章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1C .0D .1【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1C .-1D .1或-1【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( )A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=,故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B. 4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.(2020·黑龙江高一期末)若曲线y y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( )A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =,由图可知, ()3401422k -<≤=--,故选:A 6.(2020·浙江柯城。

高中数学必修一第二章章末检测B

高中数学必修一第二章章末检测B

章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于( )A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为( )A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( )A .1B .2C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是( )A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为( )A.23B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg ab =lg a -lg b ;③12lg(ab )2=lg ab ;④lg(ab )=1log ab 10.其中正确命题的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点() A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )=⎩⎪⎨⎪⎧(12)x , x ≥4f (x +1), x <4,则f (2+log 23)的值为______. 14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)若t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12, 得f (x )=log 23x +12,f (1)=log 22=12.] 4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D [∵13.11.5=1.5-3.1=(11.5)3.1, 13.12=2-3.1=(12)3.1, 又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2, ∴(12)3.1<(11.5)3.1<23.1,故选D.] 7.A [∵log 89=log 232log 223=23log 23, ∴原式=23.] 8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1, 即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a |-4+1|=a 3, f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析 ∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23) =23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124. 14.-3解析 ∵3-x 3+x>0,∴-3<x <3 ∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ), ∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析 函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32, 所以(-∞,1)为函数y 的递增区间.16.52 12解析 y =124x --3·2x +5=12(2x )2-3·2x +5. 令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4. 当t =3时,y min =12; 当t =1时,y max =12×(1-3)2+12=52. 17.解 (1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1,则⎩⎨⎧ x >02-3x >0x ≤2-3x,解得0<x ≤12, 若0<a <1,则⎩⎨⎧ x >02-3x >0x ≥2-3x ,解得12≤x <23, 综上所述,a >1时,不等式解集为(0,12]; 0<a <1时,不等式解集为[12,23). 18.解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1], 故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1], 故值域为[-98,0]. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解. 记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0, 过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0, 过点(0,-1),必有一个根为正,符合要求. 故a 的取值范围为(0,+∞).19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0; 当x >43时,34x >1,∴log x 34x >0. 即当1<x <43时,f (x )<g (x ); 当x >43时,f (x )>g (x ). 20.解 (1)∵t =log 2x ,14≤x ≤4, ∴log 214≤t ≤log 24, 即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322-时, f (x )min =-14. 当t =2即x =4时,f (x )max =12.21.解 (1)由对数函数的定义知1+x 1-x>0, 故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ), ∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,① 而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0. 故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,② 而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解 (1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x2+2x +1. (2)由(1)知f (x )=1-2x2+2x +1=-12+12x +1, 设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++. 因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x>0.又(12x +1)( 22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k<0⇒k<-13.。

人教版高中数学选择性必修第一册-第2章-直线和圆的方程-章末测试卷(含解析)

人教版高中数学选择性必修第一册-第2章-直线和圆的方程-章末测试卷(含解析)

第二章直线和圆的方程章末测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180C.63D.652.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=13.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=04.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=05.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A.(-22,22) B.(-2,2)C.(-24,24)D.(-18,18)6.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M在直线mx+ny=2上,则m2+n2的最小值为( )A.15B.55C.255D.457.已知P,Q分别为圆M:(x-6)2+(y-3)2=4与圆N:(x+4)2+(y-2)2=1上的动点,A 为x轴上的动点,则|AP|+|AQ|的最小值为( )A.55-3 B.101-3C.75-3 D.53-38.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x2+y2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A.x+(2-1)y-2=0 B.(1-2)x-y+2=0C.x-(2+1)y+2=0 D.(2-1)x-y+2=0二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( ) A.x-y+1=0 B.x+y-3=0C.2x-y=0 D.x-y-1=010.已知点M(3,1),圆C:(x-1)2+(y-2)2=4,过点M的圆C的切线方程可能为( ) A.x-3=0 B.x-2=0C.3x-4y-5=0 D.3x+4y-5=011.已知圆C1:x2+y2=r2(r>0),圆C2:(x-a)2+(y-b)2=r2交于不同的A(x1,y1),B(x2,y2)两点,则下列结论正确的是( )A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=a D.y1+y2=2b12.(2021·新高考Ⅰ卷)已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则( ) A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=32D.当∠PBA最大时,|PB|=32三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a+1)x+2y+1=0与直线(a2-1)x-ay-1=0平行,则a的值为________.14.已知圆C:(x+5)2+y2=r2(r>0)和直线l:3x+y+5=0.若圆C与直线l没有公共点,则r的取值范围是__________.15.已知直线l:y=k(x+4)与圆(x+2)2+y2=4相交于A,B两点,M是线段AB的中点,则点M的轨迹方程为________;点M到直线3x+4y-6=0的距离的最小值为________.(本题第一空2分,第二空3分)16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q(0,-3)是圆Q的圆心,圆Q过坐标原点O,点L,S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l经过直线2x+y-5=0与x-2y=0的交点.(1)若点A(5,0)到直线l的距离为3,求直线l的方程;(2)求点A(5,0)到直线l的距离的最大值.18.(12分)已知①经过直线l1:x-2y=0与直线l2:2x+y-1=0的交点;②圆心在直线2x -y=0上;③被y轴截得弦长|CD|=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q,使得点A(-2,-1),B(1,-1)均在圆上?19.(12分)求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.20.(12分)已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .272.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2 =93.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=04.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.625.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5)B .(-5,0)C .(0,13)D .(0,5)6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3B .1+22C .1+33D .2-227.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =28.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1B .x 2+y 2=37C .x 2+y 2=4D .x 2+y 2=1659.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.第二章直线和圆的方程章末测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知过点M(-2,a),N(a,4)的直线的斜率为-12,则|MN|=( )A.10 B.180 C.63D.65答案 D解析 k MN=a-4-2-a=-12,解得a=10,即M(-2,10),N(10,4),所以|MN|=(-2-10)2+(10-4)2=65.故选D.2.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.(x-2)2+(y-3)2=1答案 A解析 方法一(直接法):设圆心坐标为(0,b),则由题意知(0-1)2+(b-2)2=1,解得b=2,故圆的方程为x2+(y-2)2=1.故选A.方法二(数形结合法):根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为x2+(y-2)2=1.故选A.方法三(验证法):将点(1,2)代入四个选项中,可排除B、D,又圆心在y轴上,所以排除C.故选A.3.过点P(2,3),且与x轴的正半轴、y轴的正半轴围成的三角形的面积等于12的直线的方程是( )A.3x-2y+12=0 B.3x+2y-12=0C.2x+3y-13=0 D.2x-3y+13=0答案 B解析 本题主要考查直线的截距式方程及三角形面积的计算.依题意,设直线方程为xa+yb=1(a>0,b>0),所以{12ab=12,2a+3b=1,所以{a=4,b=6,于是所求直线的方程为x4+y6=1,即3x+2y-12=0.故选B.4.若点P(3,-1)为圆(x-2)2+y2=25的弦AB的中点,则直线AB的方程是( )A.x+y-2=0 B.2x-y-7=0C.2x+y-5=0 D.x-y-4=0答案 D解析 设圆心为C(2,0),所以k PC=0+12-3=-1,所以k AB=1,所以l AB:x-y-4=0.故选D.5.已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )A .(-22,22)B .(-2,2)C.(-24,24)D.(-18,18)答案 C解析 易知圆心坐标是(1,0),半径是1,直线l 的斜率存在.设直线l 的方程为y =k (x +2),即kx -y +2k =0,由点到直线的距离公式,得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.6.已知圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0的公共弦所在的直线恒过定点M ,且点M 在直线mx +ny =2上,则m 2+n 2的最小值为( )A.15 B.55C.255 D.45答案 C解析 由圆C 1:x 2+y 2-kx -y =0和圆C 2:x 2+y 2-2ky -1=0,可得圆C 1和C 2的公共弦所在的直线方程为k (x -2y )+(y -1)=0,联立{x -2y =0,y -1=0,解得{x =2,y =1.即点M (2,1),又因为点M 在直线mx +ny =2上,即2m +n =2,又由原点到直线2x +y =2的距离为d =222+12=255,即m 2+n 2的最小值为255.7.已知P ,Q 分别为圆M :(x -6)2+(y -3)2=4与圆N :(x +4)2+(y -2)2=1上的动点,A 为x 轴上的动点,则|AP |+|AQ |的最小值为( )A .55-3 B.101-3C .75-3D .53-3答案 A解析 圆N :(x +4)2+(y -2)2=1关于x 轴对称的圆N ′:(x +4)2+(y +2)2=1,则|AP |+|AQ |的最小值为|MN ′|-1-2=102+52-3=55-3.故选A.8.我国魏晋时期的数学家刘徽创立的“割圆术”,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆x 2+y 2=2的一个内接正八边形,使该八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为( )A .x +(2-1)y -2=0 B .(1-2)x -y +2=0C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 本题在数学文化背景下考查直线方程.如图所示,可知A (2,0),B (1,1),C (0,2),D (-1,1),E (-2,0),所以AB ,BC ,CD ,DE 所在直线的方程分别为y =1-01-2(x -2),y =(1-2)x +2,y =(2-1)x +2,y =12-1(x +2),整理为一般式即x +(2-1)y -2=0,(1-2)x -y +2=0,(2-1)x -y +2=0,x -(2-1)y +2=0.故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.若直线过点(1,2),且在两坐标轴上截距的绝对值相等,则直线的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0答案 ABC解析 当直线过原点时,设直线的方程为y =kx ,把点(1,2)代入,得k =2,所以此时直线的方程为2x -y =0;当直线斜率k =1时,设直线的方程为y =x +b ,把点(1,2)代入,得b =1,所以此时直线的方程为x -y +1=0;当直线斜率k =-1时,设直线的方程为y =-x +b ,把点(1,2)代入,得b =3,所以此时直线的方程为x +y -3=0.10.已知点M (3,1),圆C :(x -1)2+(y -2)2=4,过点M 的圆C 的切线方程可能为( )A .x -3=0B .x -2=0C .3x -4y -5=0D .3x +4y -5=0答案 AC解析 由题意得圆心为C (1,2),半径r =2.∵(3-1)2+(1-2)2=5>4,∴点M 在圆C 外部.当过点M 的直线的斜率不存在时,直线方程为x =3,即x -3=0.又点C (1,2)到直线x -3=0的距离d =3-1=2=r ,∴直线x -3=0是圆C 的切线;当过点M 的圆C 的切线的斜率存在时,设切线方程为y -1=k (x -3),即kx -y +1-3k =0,则圆心C 到切线的距离d =|k -2+1-3k |k 2+12=2,解得k =34,∴切线方程为y -1=34(x -3),即3x -4y -5=0.综上可得,过点M 的圆C 的切线方程为x -3=0或3x -4y -5=0.故选AC.11.已知圆C 1:x 2+y 2=r 2(r >0),圆C 2:(x -a )2+(y -b )2=r 2交于不同的A (x 1,y 1),B (x 2,y 2)两点,则下列结论正确的是( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD .y 1+y 2=2b答案 ABC解析 因为圆C 1:x 2+y 2=r 2①,圆C 2:(x -a )2+(y -b )2=r 2②,交于不同的A (x 1,y 1),B (x 2,y 2)两点,所以①-②得到直线AB 的方程为2ax +2by =a 2+b 2,分别把A (x 1,y 1),B (x 2,y 2)两点代入直线AB 的方程可得2ax 1+2by 1=a 2+b 2③,2ax 2+2by 2=a 2+b 2④,故B 正确;③-④得到2a (x 1-x 2)+2b (y 1-y 2)=0,即a (x 1-x 2)+b (y 1-y 2)=0,故A 正确;由圆的性质可知,线段AB 与线段C 1C 2互相平分,所以x 1+x 22=0+a 2,y 1+y 22=0+b2,即x 1+x 2=a ,y 1+y 2=b ,故C 正确,D 错误.故选ABC.12.(2021·新高考Ⅰ卷)已知点P 在圆(x -5)2+(y -5)2=16上,点A (4,0),B (0,2),则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当∠PBA 最小时,|PB |=32D .当∠PBA 最大时,|PB |=32答案 ACD解析 设圆(x -5)2+(y -5)2=16的圆心为M (5,5),由题易知直线AB 的方程为x 4+y2=1,即x +2y -4=0,则圆心M 到直线AB 的距离d =|5+2×5-4|5=115>4,所以直线AB 与圆M 相离,所以点P 到直线AB 的距离的最大值为4+d =4+115,而4+115<5+1255=10,故A 正确.易知点P 到直线AB 的距离的最小值为d -4=115-4,而115-4<1255-4=1,故B 不正确.过点B 作圆M 的两条切线,切点分别为N ,Q ,如图所示,连接MB ,MN ,MQ ,则当∠PBA 最小时,点P 与N 重合,此时|PB |=|MB |2-|MN |2=52+(5-2)2-42=32,当∠PBA 最大时,点P 与Q 重合,此时|PB |=32,故C 、D 都正确.综上,选ACD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(a +1)x +2y +1=0与直线(a 2-1)x -ay -1=0平行,则a 的值为________.答案 23或-1解析 本题主要考查两直线的平行关系.当a =-1时,两直线方程分别为2y +1=0,y -1=0,显然两直线平行;当a ≠-1时,由a 2-1a +1=-a 2≠-11,得a =23.故a 的值为23或-1.14.已知圆C :(x +5)2+y 2=r 2(r >0)和直线l :3x +y +5=0.若圆C 与直线l 没有公共点,则r 的取值范围是__________.答案 0<r <10解析 因为圆心C (-5,0)到直线l :3x +y +5=0的距离为|-15+5|32+12=1010=10,所以要使圆C 与直线l 没有公共点,则r 的取值范围是0<r <10.15.已知直线l :y =k (x +4)与圆(x +2)2+y 2=4相交于A ,B 两点,M 是线段AB 的中点,则点M 的轨迹方程为________;点M 到直线3x +4y -6=0的距离的最小值为________.(本题第一空2分,第二空3分)答案 (x +3)2+y 2=1(x ≠-4) 2解析 直线l :y =k (x +4)过定点(-4,0),且点(-4,0)在圆(x +2)2+y 2=4上,不妨设A (-4,0),M (x ,y )(x ≠-4),B (x 1,y 1),则{x 1=2x +4,y 1=2y ,将(2x +4,2y )代入(x +2)2+y 2=4,得(x +3)2+y 2=1(x ≠-4),所以点M 的轨迹是以(-3,0)为圆心,以1为半径的圆(除去点A (-4,0)),则点M 到直线3x +4y -6=0的距离的最小值为|-3×3-6|5-1=2.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图,Q (0,-3)是圆Q 的圆心,圆Q 过坐标原点O ,点L ,S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =________.答案 125解析 由题意圆L 与圆S 关于原点对称,设S (a ,0),a >0,则a 2+32=2+3,解得a =4,即S (4,0),所以L (-4,0).由题意知直线l 的斜率存在,设直线l 的方程为y =kx (k ≠0),则三个圆心到该直线的距离分别为:d 1=|-4k |1+k 2,d 2=|4k |1+k 2,d 3=|3|1+k2,则d 2=4(4-d 12)=4(4-d 22)=4(9-d 32),即有4-(-4k 1+k 2)2 =4-(4k 1+k 2)2 =9-(31+k 2)2,解得k 2=421.则d 2=4(4-16×4211+421)=14425,即d =125.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点.(1)若点A (5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A (5,0)到直线l 的距离的最大值.解析 (1)由{2x +y -5=0,x -2y =0得{x =2,y =1,所以交点坐标为(2,1).当直线l 的斜率存在时,设l 的方程为y -1=k (x -2),即kx -y +1-2k =0,则点A 到直线l 的距离为|5k +1-2k |k 2+1=3,解得k =43,所以l 的方程为4x -3y -5=0;当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.故直线l 的方程为4x -3y -5=0或x =2.(2)设直线2x +y -5=0与x -2y =0的交点为P ,由(1)可知P (2,1),过点P 任意作直线l (如图所示),设d 为点A 到直线l 的距离,则d ≤|PA |(当l ⊥PA 时,等号成立),由两点间的距离公式可知|PA |=10.即所求的距离的最大值为10.18.(12分)已知①经过直线l 1:x -2y =0与直线l 2:2x +y -1=0的交点;②圆心在直线2x-y =0上;③被y 轴截得弦长|CD |=22.从上面这三个条件中任选一个,补充在下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问:是否存在满足条件的圆Q ,使得点A (-2,-1),B (1,-1)均在圆上?思路分析 由点A (-2,-1),B (1,-1)均在圆上,可知圆心在线段AB 的垂直平分线x =-12上,设圆心坐标为(-12,b ),半径为r ,若选①,求出直线l 1和l 2的交点为(25,15),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选②,由已知圆心(-12,-1),再利用两点之间的距离公式求出半径,即可求得圆的方程;若选③,由弦长|CD |=22,可得半径及圆心,即可求出圆的方程.解析 因为点A (-2,-1),B (1,-1)均在圆上,所以圆心在线段AB 的垂直平分线上,又线段AB 的垂直平分线所在直线方程为x =-2+12=-12,则可设圆心坐标为(-12,b ),圆的半径为r ,若选①,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由{x -2y =0,2x +y -1=0,解得{x =25,y =15.即直线l 1和l 2的交点为(25,15),则圆Q 过点(25,15),所以r 2=(-12-25)2 +(b -15)2=(-12-1)2+(b +1)2,解得b =-1,则r 2=94.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选②,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.由圆心在直线2x -y =0上可得2×(-12)-b =0,则b =-1,所以r 2=(-12-1)2 +(-1+1)2=94,即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.若选③,存在圆Q ,使得点A (-2,-1),B (1,-1)均在圆上.若圆被y 轴截得弦长|CD |=22,根据圆的性质可得,r 2=(12)2+(|CD |2)2 =94,由r 2=(-12-1)2 +(b +1)2=94,解得b =-1.即存在圆Q ,且圆Q 的方程为(x +12)2+(y +1)2=94.19.(12分)求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆的方程.解析 因为圆C 1可化为(x -6)2+(y -1)2=50,所以C 1的坐标为(6,1),半径r 1=52,同理可得C 2的坐标为(-6,-8),半径r 2=55.所以C 1,C 2所在的直线方程为3x -4y -14=0.又因为公共弦所在直线的方程为4x +3y -2=0,由{3x -4y -14=0,4x +3y -2=0,得{x =2,y =-2,即所求圆的圆心为C (2,-2),半径r =(52)2-|C 1C |2=5.所以圆的方程为(x -2)2+(y +2)2=25.20.(12分)已知圆心为C 的圆经过点A (0,2)和B (1,1),且圆心C 在直线l :x +y +5=0上.(1)求圆C 的标准方程;(2)若P (x ,y )是圆C 上的动点,求3x -4y 的最大值与最小值.解析 (1)线段AB 的中点为(12,32),又k AB =-1,所以线段AB 的垂直平分线方程为y -32=1×(x -12),即x -y +1=0.由{x -y +1=0,x +y +5=0解得{x =-3,y =-2,所以圆心C (-3,-2).圆C 的半径r =|AC |=(0+3)2+(2+2)2=5,故圆C 的标准方程为(x +3)2+(y +2)2=25.(2)令z =3x -4y ,即3x -4y -z =0.当直线3x -4y -z =0与圆C 相切于点P 时,z 取得最值,圆心C (-3,-2)到直线3x -4y -z =0的距离d =|-9+8-z |32+(-4)2=5,解得z =-26或z =24.故3x -4y 的最大值为24,最小值为-26.21.(12分)为更好地了解鲸的生活习性,某动物保护组织在某头鲸身上安装了电子监测设备,从海岸线放归点O 处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点O 的正东方向有一观测站C ,可以对鲸的生活习性进行详细观测.已知OC =15 km ,观测站C 的观测半径为5 km.现以点O 为坐标原点,以由西向东的海岸线所在直线为x 轴建立平面直角坐标系,如图所示,测得鲸的行进路线近似满足曲线y =k x (k >0).(1)若测得鲸的行进路线上一点A (1,1),求k 的值;(2)在(1)问的条件下,则:①当鲸运动到何处时,开始进入观测站C 的观测区域内?(计算结果精确到0.1)②当鲸运动到何处时,离观测站C 最近(观测最便利)?(计算结果精确到0.1)(参考数据:41≈6.4,11.3≈3.4,58≈7.6)解析 (1)将A (1,1)代入y =k x ,可得k =1.(2)①以C 为圆心,5为半径的圆的方程为(x -15)2+y 2=25,由{y =x ,(x -15)2+y 2=25,得x 2-29x +200=0,∴x =29±412,∴x 1≈11.3,x 2≈17.7,∴当鲸运动到点(11.3,11.3)即(11.3,3.4)处时,开始进入观测站C 的观测区域内.②鲸与点C 的距离为:d =(x -15)2+y 2=(x -15)2+x=x 2-29x +225=(x -292)2+225-(292)2,∴当x =292时d 最小.故当鲸运动到点(292,582)即(14.5,3.8)处时,鲸离观测站C 最近.22.(12分)已知圆C :x 2+(y -4)2=4,直线l :(3m +1)x +(1-m )y -4=0.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时m 的值及最短弦长;(3)如图,已知点M (-3,4),在直线MC 上(C 为圆心),存在一定点N (异于点M ),满足对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及该常数.解析 (1)依题意,得m (3x -y )+(x +y -4)=0,令{3x -y =0,x +y -4=0,解得{x =1,y =3,∴直线l 过定点A (1,3).(2)当AC ⊥l 时,所截得的弦长最短.由题知C (0,4),圆C 的半径r =2,∴k AC =4-30-1=-1,∴k l =1,∴3m +1m -1=1,∴m =-1.∵圆心C 到直线l 的距离为d =|AC |=2,∴最短弦长为2r 2-d 2=22.(3)由题意知直线MC 的方程为y =4.设定点N (t ,4)(t ≠-3),P (x ,y ),|PM ||PN |=λ(λ>0),则|PM |2=λ2|PN |2,∴(x +3)2+(y -4)2=λ2(x -t )2+λ2(y -4)2,∴(x +3)2+4-x 2=λ2(x -t )2+λ2(4-x 2),整理得(6+2tλ2)x -(λ2t 2+4λ2-13)=0,此式对任意的x ∈[-2,2]恒成立,∴{6+2t λ2=0,λ2t 2+4λ2-13=0,∴{t=-43,λ=32或{t =-43,λ=-32(舍去)或{t =-3,λ=±1(舍去).综上,满足条件的点N 的坐标为(-43,4),且|PM ||PN |为常数32.1.已知A (-2,1),B (1,2),点C 为直线x -3y =0上的动点,则|AC |+|BC |的最小值为( )A .22B .23C .25D .27答案 C解析 设点A (-2,1)关于直线x -3y =0的对称点为D (a ,b ),则{b -1a +2=-3,a -22-3×b +12=0,解得{a =-1,b =-2,所以D (-1,-2),所以|AC |+|BC |=|DC |+|BC |,当B ,D ,C 共线时,|AC |+|BC |取最小值,最小值为|DB |=(1+1)2+(2+2)2=25.2.圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -3)2+(y -3)2=9B .(x -3)2+(y -1)2=(165)2C .(x -1)2+(y -3)2=(185)2D .(x -2)2+(y -32)2=9答案 D解析 设圆心为(a ,b ),半径为r ,则满足条件的圆面积最小即r 最小,r =|3a +4b +3|32+42=|3a +4b +3|5≥23a ×4b +35,因为圆心(a ,b )在y =3x (x >0)上,所以b =3a ,即ab =3,所以r min =212×3+35=3,当且仅当3a =4b ,即a =2,b =32时取等号,所以此时圆的方程为(x-2)2+(y -32)2=9.3.已知直线l 经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线l 的一个方向向量ν=(-3,2),则直线l 的方程为( )A .-3x +2y +1=0 B .3x -2y +1=0C .2x +3y -5=0 D .2x -3y +1=0答案 C解析 方法一:由{x +y =2,2x -y =1,得{x =1,y =1,由题意,知直线l 的斜率k =-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.故选C.方法二:由题意设直线l :x +y -2+λ(2x -y -1)=0(λ∈R ),即(1+2λ)x +(1-λ)y -2-λ=0,又直线l 的一个方向向量ν=(-3,2),所以3(1+2λ)=2(1-λ),解得λ=-18,所以直线l的方程为2x +3y -5=0.故选C.4.已知圆C 1:(x +a )2+(y -2)2=1与圆C 2:(x -b )2+(y -2)2=4外切,a ,b 为正实数,则ab 的最大值为( )A .23 B.94C.32D.62答案 B解析 因为圆C 1:(x +a )2+(y -2)2=1的圆心为C 1(-a ,2),半径r 1=1,圆C 2:(x -b )2+(y -2)2=4的圆心为C 2(b ,2),半径r 2=2,所以|C 1C 2|=(-a -b )2+(2-2)2=|a +b |=1+2,所以a 2+b 2+2ab =9,所以(a -b )2+4ab =9,所以ab =94-(a -b )24≤94,即当a =b 时,ab 取得最大值,最大值为94.5.若过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,则实数k 的取值范围是( )A .(0,5) B .(-5,0)C .(0,13) D .(0,5)答案 A解析 圆C 的方程x 2+4x +y 2-5=0可化为(x +2)2+y 2=9,则圆C 与x 轴正半轴交于点A (1,0),与y 轴正半轴交于点B (0,5),如图所示,因为过定点M (-1,0)且斜率为k 的直线与圆C :x 2+4x +y 2-5=0在第一象限内的部分有交点,所以k MA <k <k MB ,所以0<k <5.6.已知在平面直角坐标系中,△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线x =a 将△ABC 分割成面积相等的两部分,则实数a 的值是( )A.3 B .1+22C .1+33D .2-22答案 A解析 如图所示,易知直线AB 的方程是y =3,直线AC 的方程是x2+y3=1,即3x +2y -6=0,且直线x =a 只与边AB ,AC 相交.设直线x =a 与AB 交于点D ,与AC 交于点E ,则点D ,E 的坐标分别为(a ,3),(a ,6-3a2),从而|DE |=3-6-3a 2=32a ,S △ADE =12|AD ||DE |=12a ×32a =34a 2①.又S △ABC =12×3×3=92,所以S △ADE =12S △ABC=94②,由①②得34a 2=94,解得a =3或a =-3(舍去).故选A.7.【多选题】已知两圆方程为x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0),则下列说法正确的是( )A .若两圆外切,则r =1B .若两圆公共弦所在的直线方程为8x -6y -37=0,则r =2C .若两圆在交点处的切线互相垂直,则r =3D .若两圆有三条公切线,则r =2答案 ABC解析 由圆的方程可知,两圆圆心分别为(0,0),(4,-3),半径分别为4,r ,所以圆心距为5,若两圆外切,则4+r =5,即r =1,故A 正确;此时两圆有三条公切线,故D 错误;当两圆相交时,两圆公共弦所在的直线方程可由两圆方程相减得到,所以公共弦所在的直线方程为8x -6y -41+r 2=0,所以-41+r 2=-37,解得r =2,故B 正确;因为两圆在交点处的切线互相垂直,则一个圆的切线必过另一个圆的圆心,所以两圆圆心距与两圆半径必构成一个直角三角形,故52=42+r 2,解得r =3,故C 正确.8.【多选题】已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为( )A .x 2+y 2=1 B .x 2+y 2=37C .x 2+y 2=4 D .x 2+y 2=165答案 AB解析 过点A ,C 的直线方程为y +13+1=x -6-2-6,化为一般式为x +2y -4=0,过点A ,B 的直线方程为x =-2,过点B ,C 的直线方程为y =-1,所以原点O 到直线x +2y -4=0的距离d AC =455,原点O 到直线x =-2的距离d AB =2,原点O 到直线y =-1的距离d BC =1,所以d AB >d AC >d BC ,又|OA |=(-2)2+32=13,|OB |=(-2)2+(-1)2=5,且|OC |=62+(-1)2=37.结合图形可知,若以原点为圆心的圆与△ABC 有唯一公共点,则公共点为(0,-1)或(6,-1),所以圆的半径为1或37.故选AB.9.已知过点P (4,1)的直线l 与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,当△AOB 的面积最小时,直线l 的方程为________.答案 x +4y -8=0解析 设直线l :x a +y b =1(a >0,b >0),因为直线l 过点P (4,1),所以4a +1b =1≥24a ×1b =4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立.所以当a =8,b =2时,△AOB 的面积S =12ab 取得最小值,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.10.曲线y =1+9-x 2与直线y =k (x -3)+5有两个交点,则实数k 的取值范围是________.答案 (724,23]解析 由题可知,y =1+9-x 2,即x 2+(y -1)2=9(y ≥1),其图象如图所示:又直线y =k (x -3)+5即kx -y -3k +5=0过定点A (3,5).当直线与半圆相切时,则|-1-3k +5|k 2+1=3,解得k =724.当直线过点B (-3,1)时,k =5-13-(-3)=23.所以k ∈(724,23].11.在平面直角坐标系Oxy 中,已知点A (-1,0),B (5,0).若圆M :(x -4)2+(y -m )2=4上存在唯一的点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.答案 ±21解析 根据题意,设点P 的坐标为(a ,b ),则直线PA 的方程为y =b a +1(x +1),其在y 轴上的截距为b a +1,直线PB 的方程为y =b a -5(x -5),其在y 轴上的截距为-5ba -5.若点P 满足使直线PA ,PB 在y 轴上的截距之积为5,则有ba +1×(-5ba -5)=5,变形可得b 2+(a -2)2=9,则点P 在圆(x -2)2+y 2=9上.若圆M :(x -4)2+(y -m )2=4上存在唯一的点P 满足题意,则圆M 与圆(x -2)2+y 2=9有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为(4-2)2+m 2≥2,所以两圆外切,所以4+m 2=25,解得m =±21.12.已知圆C 的圆心在直线l :x +y +1=0上且经过点A (-1,2),B (1,0).(1)求圆C 的方程;(2)若过点D (0,3)的直线l 1被圆C 截得的弦长为23,求直线l 1的方程.解析 (1)由题意得,圆心C 一定在线段AB 的垂直平分线上,k AB =0-21-(-1)=-1,线段AB 中点为(0,1),所以直线AB 的垂直平分线为x -y +1=0.所以直线l :x +y +1=0与x -y +1=0的交点即为圆心C ,即C 的坐标为(-1,0),半径r =|CA |=2.所以圆C 的方程为(x +1)2+y 2=4.(2)当直线l 1斜率不存在时,方程为x =0,此时圆心到l 1距离为1,截得的弦长为23,满足题意;当直线l 1斜率存在时,设为k ,则l 1:kx -y +3=0,圆心(-1,0)到l 1的距离d =|-k +3|k 2+1=4-(232)2=1,所以k =43,则直线l 1的方程为4x -3y +9=0.综上,直线l 1的方程为x =0或4x -3y +9=0.13.如图,在平面直角坐标系Oxy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1)若|AB |=372,求CD 的长;(2)若线段CD 的中点为E ,求△ABE 面积的取值范围.解析 (1)直线AB 的斜率显然存在,设为k ,则直线AB 的方程为y =kx +1.因为(|AB |2)2 +(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,由24k 2+3k 2+1=372,得k 2=15,因为直线CD 的方程为y =-1kx +1,所以(|CD |2)2=1-(-2k+1-11+(-1k)2)2,所以|CD |=21-4k 2+1=21-415+1=3.(2)当直线AB 的斜率不存在时,△ABE 的面积S =12×4×2=4;当直线AB 的斜率存在时,设其斜率为k ,则直线AB 的方程为y =kx +1,显然k ≠0,则直线CD 的方程为y =-1kx +1,由|-1k·2-1+1|(-1k )2+1<1,得k 2>3,因为(|AB |2)2+(1k 2+1)2=4,所以|AB |=24k 2+3k 2+1,易知E 到直线AB 的距离即M 到AB 的距离,设为d ,则d =|2k -1+1|k 2+1=|2k |k 2+1,所以△ABE 的面积S =12|AB |·d =2(4k 2+3)k 2(k 2+1)2,令k 2+1=t >4,则S =2(4t -1)(t -1)t 2=21t 2-5t +4=2(1t -52)2-94,易知1t ∈(0,14),所以S∈(352,4).综上,△ABE面积的取值范围为(352,4].14.已知圆C:x2+y2+2x-4y+m=0与y轴相切,O为坐标原点,动点P在圆外,过P作圆C的切线,切点为M.(1)求圆C的圆心坐标及半径;(2)求满足|PM|=2|PO|的点P的轨迹方程.解析 (1)圆C:x2+y2+2x-4y+m=0可化为(x+1)2+(y-2)2=5-m,所以圆C的圆心坐标为(-1,2).又圆C与y轴相切,所以5-m=1,即m=4,故圆C的半径为1.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-1,|PO|2=x2+y2.由于|PM|=2|PO|,则(x+1)2+(y-2)2-1=4(x2+y2),整理得点P的轨迹方程为(x-13)2+(y+23)2=179.15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点分别为A,B.(1)当切线PA的长度为23时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若过定点,求出所有定点的坐标;若不过定点,请说明理由.(3)求线段AB长度的最小值.解析 由题意知,圆M的半径r=2,M(0,4),设P(2b,b).(1)∵PA是圆M的一条切线,∴∠MAP=90°,∴|MP|=(0-2b)2+(4-b)2=|AM|2+|AP|2=22+(23)2=4,解得b=0或8 5,∴点P的坐标为(0,0)或(165,85).(2)圆N过定点(0,4),(85,45).理由如下:∵∠MAP=90°,∴经过A,P,M三点的圆N 以MP为直径,其方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即(2x+y-4)b-(x2+y2-4y)=0.由{2x+y-4=0,x2+y2-4y=0,解得{x=0,y=4或{x=85,y=45.∴圆N过定点(0,4),(85,45).(3)由(2)得圆N的方程为(x-b)2+(y-b+42)2=4b2+(b-4)24,即x2+y2-2bx-(b+4)y+4b=0,①又圆M:x2+(y-4)2=4,即x2+y2-8y+12=0,②②-①,得圆M与圆N的相交弦AB所在直线的方程为2bx+(b-4)y+12-4b=0,∴点M到直线AB的距离d=45b2-8b+16,∴|AB|=24-d2=41-45b2-8b+16=41-45(b-45)2+645,∴当b=45时,|AB|有最小值,为11.。

高中数学(人教B版 选修2-2)第2章 推理与证明 章末综合测评 Word版含答案

高中数学(人教B版 选修2-2)第2章 推理与证明 章末综合测评 Word版含答案

章末综合测评(二)推理与证明(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).下面四个推理不是合情推理的是( ).由圆的性质类比推出球的有关性质.由直角三角形、等腰三角形、等边三角形的内角和都是°,归纳出所有三角形的内角和都是°.某次考试张军的成绩是分,由此推出全班同学的成绩都是分.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,项属于类比推理,项和项属于归纳推理,而项中各个学生的成绩不能类比,不是合情推理.【答案】.根据偶函数定义可推得“函数()=在上是偶函数”的推理过程是( ) .归纳推理.类比推理.演绎推理.非以上答案【解析】根据演绎推理的定义知,推理过程是演绎推理,故选.【答案】.下列推理是归纳推理的是( ).,为定点,动点满足+=>,得的轨迹为椭圆.由=,=-,求出,,,猜想出数列的前项和的表达式.由圆+=的面积π,猜出椭圆+=的面积=π.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选.【答案】.“凡是自然数都是整数,是自然数,所以是整数.”以上三段论推理().完全正确.推理形式不正确.不正确,两个“自然数”概念不一致.不正确,两个“整数”概念不一致【解析】大前提“凡是自然数都是整数”正确.小前提“是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】.用数学归纳法证明“-能被整除”的第二步中,当=+时,为了使用假设,应将+-+变形为( ).(-)+×-.(-)+×.(-)(-).(-)-×【解析】+-+=·-·=·-·+·-·=(-)+·.【答案】.已知为正偶数,用数学归纳法证明-+-+…-=时,若已假设=(≥且为偶数)时等式成立,则还需要用归纳假设再证=时等式成立.( ).+.+.+.(+)【解析】根据数学归纳法的步骤可知,=(≥且为偶数)的下一个偶数为=+,故选.【答案】.观察下列各式:+=,+=,+=,+=,+=,…,则+=( )....【解析】利用归纳法,+=,+=,+==+,+=+=,+=+=,+=+=,+=+=,+=+=,+=+=,+=+=,规律为从第三组开始,其结果为前两组结果的和.【答案】。

2022新教材高中数学第二章函数章末检测含解析北师大版必修第一册

2022新教材高中数学第二章函数章末检测含解析北师大版必修第一册

函数(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x +1)=ex -1,则f (2)=( )A .1B .0C .eD .e 2解析:选A ∵f (x +1)=e x -1,∴f (2)=f (1+1)=e1-1=1.2.已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝ ⎛⎭⎪⎫12,2,则k +α等于( )A.12 B .1 C.32D .2解析:选A ∵幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝ ⎛⎭⎪⎫12,2,∴k =1,⎝ ⎛⎭⎪⎫12α=2,∴α=-12,∴k +α=1-12=12.3.函数f (x )=3-x2x 2-9x +4的定义域是( )A .(-∞,3]B .⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫12,3C.⎝⎛⎭⎪⎫-∞,12∪⎝ ⎛⎦⎥⎤12,3 D .(3,4)∪(4,+∞)解析:选C 要使函数f (x )有意义,则⎩⎪⎨⎪⎧3-x ≥0,2x 2-9x +4≠0,解得⎩⎪⎨⎪⎧x ≤3,x ≠12且x ≠4,即x <12或12<x ≤3.故选C.4.已知函数f (x )=x k(k ∈Q),在下列函数图象中,不是函数y =f (x )的图象的是( )解析:选C 函数f (x )=x k(k ∈Q)为幂函数,图象不过第四象限,所以C 中函数图象不是函数y =f (x )的图象.故选C.5.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地前往B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,把汽车离开A 地的距离x (千米)表示为时间t (时)的函数表达式是( )A .x =60tB .x =60t +50C .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5,150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5,150,2.5<t ≤3.5,150-50(t -3.5),3.5<t ≤6.5解析:选D 由于在B 地停留1小时期间,距离x 不变,始终为150千米,故选D. 6.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0],当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0的x 的范围是( ) A.⎝ ⎛⎭⎪⎫13,23 B .⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析:选A 由题意,f (x )在(-∞,0]上是增函数,又f (x )是定义域为R 的偶函数,故f (x )在[0,+∞)上是减函数.由f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0可得f (1-2x )>f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13,即f (|1-2x |)>f ⎝ ⎛⎭⎪⎫13,所以|1-2x |<13,解得13<x <23.7.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,那么a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:选D ∵函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,∴x ≤1时,f (x )单调递减,即a -3<0,①x >1时,f (x )单调递减,即a >0,②且(a -3)×1+5≥2a1,③联立①②③解得0<a ≤2,故选D.8.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.已知函数f (x )=(1⊕x )x -2(2⊕x )(x ∈[-2,2]),则满足f (m +1)≤f (3m )的实数的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B .⎣⎢⎡⎦⎥⎤12,2 C.⎣⎢⎡⎦⎥⎤12,23 D.⎣⎢⎡⎦⎥⎤-1,23 解析:选C 当-2≤x ≤1时,f (x )=1·x -2×2=x -4; 当1<x ≤2时,f (x )=x 2·x -2×2=x 3-4.所以f (x )=⎩⎪⎨⎪⎧x -4,-2≤x ≤1,x 3-4,1<x ≤2.易知,f (x )=x -4在区间[-2,1]上单调递增,f (x )=x 3-4在区间(1,2]上单调递增,且-2≤x ≤1时,f (x )max =-3,1<x ≤2时,f (x )min =-3,则f (x )在区间[-2,2]上单调递增,所以由f (m +1)≤f (3m )得⎩⎪⎨⎪⎧-2≤m +1≤2,-2≤3m ≤2,m +1≤3m ,解得12≤m ≤23,故选C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知定义在区间[-7,7]上的一个偶函数,它在[0,7]上的图象如图,则下列说法正确的有( )A .这个函数有两个单调递增区间B .这个函数有三个单调递减区间C .这个函数在其定义域内有最大值7D .这个函数在其定义域内有最小值-7解析:选BC 根据偶函数在[0,7]上的图象及其对称性,作出其在[-7,7]上的图象,如图所示.由图象可知这个函数有三个单调递增区间,有三个单调递减区间,在其定义域内有最大值7,最小值不是-7,故选B 、C.10.若函数y =ax +1在区间[1,2]上的最大值与最小值的差为2,则实数a 的值可以是( )A .2B .-2C .1D .0解析:选AB 显然a ≠0,当a >0时,y =ax +1在x =2取得最大值,在x =1取得最小值,所以2a +1-(a +1)=2,即a =2;当a <0时,y =ax +1在x =1取得最大值,在x =2取得最小值,所以a +1-(2a +1)=2,即a =-2.11.已知函数f (x )=⎩⎪⎨⎪⎧x +2.x ≤-1,x 2,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域为RB .f (x )的值域为(-∞,4)C .若f (x )=3,则x 的值是 3D .f (x )<1的解集为(-1,1)解析:选BC 由题意知函数f (x )的定义域为(-∞,2),故A 错误;当x ≤-1时,f (x )的取值范围是(-∞,1],当-1<x <2时,f (x )的取值范围是[0,4),因此f (x )的值域为(-∞,4).故B 正确;当x ≤-1时,x +2=3,解得x =1(舍去).当-1<x <2时,x 2=3,解得x =3或x =-3(舍去).故C 正确;当x ≤-1时,x +2<1,解得x <-1,当-1<x <2时,x 2<1,解得-1<x <1,因此f (x )<1的解集为(-∞,-1)∪(-1,1),故D 错误,故选B 、C.12.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数中满足“倒负”变换的函数是( )A .f (x )=x -1xB .f (x )=x +1xC .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,1x ,x >1解析:选AC 对于A ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-⎝⎛⎭⎪⎫x -1x=-f (x ),满足“倒负”变换.对于B ,f ⎝ ⎛⎭⎪⎫1x =1x +x =x +1x =f (x )≠-f (x ),不满足“倒负”变换.对于C ,当0<x <1时,1x >1,f ⎝ ⎛⎭⎪⎫1x =-11x=-x =-f (x );当x =1时,1x =1,f ⎝ ⎛⎭⎪⎫1x =0=-f (x );当x >1时,0<1x <1,f ⎝ ⎛⎭⎪⎫1x =1x=-⎝ ⎛⎭⎪⎫-1x =-f (x ),满足“倒负”变换.对于D ,当0<x <1时,1x >1,f ⎝ ⎛⎭⎪⎫1x =11x=x ≠-f (x ),不满足“倒负”变换.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f (x )=⎩⎪⎨⎪⎧2x 2+7x -4,x >0,g (x ),x <0为奇函数,则f (g (-1))=________.解析:当x <0时,-x >0.因为f (x )是奇函数,所以f (-x )=-f (x )=2(-x )2-7x -4=2x 2-7x -4, 所以f (x )=-2x 2+7x +4.即g (x )=-2x 2+7x +4, 因此,f (g (-1))=f (-5)=-50-35+4=-81. 答案:-8114.已知函数f (x )是奇函数,当x >0时,f (x )=x (1-x ),则当x <0时,f (x )=________. 解析:因为x <0,所以-x >0,所以f (-x )=(-x )(1+x ),又函数f (x )是奇函数,所以f (x )=-f (-x )=-(-x )(1+x )=x (1+x ),所以当x <0时,f (x )=x (1+x ).答案:x (1+x )15.已知二次函数f (x )=2x 2-4x ,则f (x )在⎣⎢⎡⎦⎥⎤-1,32上的最大值为________.解析:二次函数f (x )=2x 2-4x 图象的对称轴为直线x =1,因此函数f (x )在区间[-1,1]上单调递减,在⎝ ⎛⎦⎥⎤1,32上单调递增.因为f (-1)=6,f ⎝ ⎛⎭⎪⎫32=-32,所以f (-1)>f ⎝ ⎛⎭⎪⎫32,故函数f (x )在区间⎣⎢⎡⎦⎥⎤-1,32上的最大值为f (-1)=6.答案:616.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________.若f (x )在[3,+∞)为增函数,则a 的范围为________.解析:由题得函数f (x )在⎝ ⎛⎦⎥⎤-∞,-a 2上单调递减,在⎣⎢⎡⎭⎪⎫-a2,+∞上单调递增,则-a2=3,即a =-6.由f (x )在[3,+∞)为增函数,故-a2≤3,∴a ≥-6.答案:-6 [-6,+∞)四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x >0,2,x =0,1-2x ,x <0.(1)画出函数f (x )的图象;(2)求f (a 2+1)(a ∈R),f [f (3)]的值; (3)当f (x )≥2时,求x 的取值范围. 解:(1)图象如图所示:(2)f (a 2+1)=3-(a 2+1)2=-a 4-2a 2+2,f [f (3)]=f (-6)=13. (3)当x >0时,3-x 2≥2,解得0<x ≤1; 当x =0时,满足f (x )=2; 当x <0时,1-2x ≥2,解得x ≤-12.综上,当f (x )≥2时,x 的取值范围为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12或0≤x ≤1.18.(本小题满分12分)已知函数f (x )的定义域为(-1,1),且满足下列条件:①f (x )为奇函数;②f (x )在定义域上是减函数;③f (1-a )+f (1-a 2)<0.求实数a 的取值范围.解:∵f (x )为奇函数,∴f (1-a 2)=-f (a 2-1),∴f (1-a )+f (1-a 2)<0⇒f (1-a )<-f (1-a 2)⇒f (1-a )<f (a 2-1). ∵f (x )在定义域(-1,1)上是减函数, ∴⎩⎪⎨⎪⎧1-a >a 2-1,-1<1-a <1,-1<a 2-1<1,解得0<a <1, 故实数a 的取值范围为(0,1).19.(本小题满分12分)已知定义在R 上的偶函数f (x ),当x ∈(-∞,0]时,f (x )=-x 2+4x -1.(1)求函数f (x )在(0,+∞)上的解析式; (2)求函数f (x )在[-2,3]上的最大值和最小值. 解:(1)设x >0,则-x <0,∴f (-x )=-x 2-4x -1. ∵f (x )为偶函数,∴f (x )=-x 2-4x -1(x ∈(0,+∞)).(2)由(1)得f (x )=⎩⎪⎨⎪⎧-x 2-4x -1,x >0,-x 2+4x -1,x ≤0. ∴f (x )在[-2,0]上单调递增,在[0,3]上单调递减, ∴f (x )max =f (0)=-1,f (x )min =min{f (-2),f (3)}=f (3)=-22.∴函数f (x )在[-2,3]上的最大值是-1,最小值是-22. 20.(本小题满分12分)已知函数f (x )=ax +1x2(x ≠0,a ∈R).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在(2,+∞)上单调递增,求实数a 的取值范围. 解:(1)函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. 当a =0时,f (x )=1x2,对定义域内的任意x ,都有f (-x )=f (x ),所以当a =0时,函数f (x )是偶函数. 当a ≠0时,f (1)=a +1,f (-1)=1-a . 因为a +1≠1-a ,且1-a ≠-(a +1), 所以f (x )既不是奇函数,也不是偶函数. (2)任取x 1>x 2>2,则f (x 1)-f (x 2)=ax 1+1x 21-ax 2-1x 22=a (x 1-x 2)+x 22-x 21x 21x 22=(x 1-x 2)⎝⎛⎭⎪⎫a -x 1+x 2x 21x 22. 因为x 1-x 2>0,f (x )在(2,+∞)上单调递增, 所以a >x 1+x 2x 21x 22恒成立,即a >1x 1x 22+1x 21x 2恒成立. 又x 1>x 2>2, 所以1x 1x22+1x 21x 2<18+18=14,所以a ≥14. 故实数a 的取值范围为⎣⎢⎡⎭⎪⎫14,+∞. 21.(本小题满分12分)已知二次函数f (x )满足f (x +1)-f (x )=-2x +1,且f (2)=15.(1)求函数f (x )的解析式; (2)令g (x )=(1-2m )x -f (x ).①若函数g (x )在区间[0,2]上不是单调函数,求实数m 的取值范围; ②求函数g (x )在区间[0,2]上的最小值.解:(1)设f (x )=ax 2+bx +c (a ≠0),则f (x +1)-f (x )=2ax +b +a =-2x +1,∴2a =-2,a +b =1,∴a =-1,b =2.又f (2)=15,∴c =15,∴f (x )=-x 2+2x +15.(2)g (x )=(1-2m )x -f (x )=x 2-(2m +1)x -15,其图象的对称轴为直线x =m +12.①∵g (x )在[0,2]上不单调,∴0<m +12<2,∴m ∈⎝ ⎛⎭⎪⎫-12,32. ②当m +12≤0,即m ≤-12时,g (x )min =g (0)=-15;当0<m +12<2,即-12<m <32时,g (x )min=g ⎝ ⎛⎭⎪⎫m +12=-m 2-m -614;当m +12≥2,即m ≥32时,g (x )min =g (2)=-4m -13.综上,g (x )min=⎩⎪⎨⎪⎧-15,m ≤-12,-m 2-m -614,-12<m <32,-4m -13,m ≥32.22.(本小题满分12分)已知f (x )是定义在非零实数集上的函数,且对任意非零实数x ,y 满足f (xy )=f (x )+f (y ).(1)求f (1),f (-1)的值; (2)证明:f (x )为偶函数;(3)若f (x )在(0,+∞)上单调递增,求不等式f (3-x )≤f (2)+f (3)的解集. 解:(1)在f (xy )=f (x )+f (y )中,令x =y =1,得f (1)=f (1)+f (1),得f (1)=0; 再令x =y =-1,得f (1)=f (-1)+f (-1), 得f (-1)=0.(2)证明:在f (xy )=f (x )+f (y )中, 令y =-1,得f (-x )=f (x )+f (-1), 即f (-x )=f (x ),所以f (x )为偶函数.(3)f (2)+f (3)=f (6),不等式f (3-x )≤f (2)+f (3), 即f (3-x )≤f (6).当3-x >0时,根据函数的单调性和不等式f (3-x )≤f (6),得3-x ≤6,解得-3≤x <3; 当3-x <0时,f (3-x )=f (x -3)≤f (6),由函数单调性,得x -3≤6,解得3<x ≤9.综上,不等式f (3-x )≤f (2)+f (3)的解集为[-3,3)∪(3,9].。

高中数学选修2-3 第二章 随机变量及其分布 章末检测题

高中数学选修2-3 第二章 随机变量及其分布 章末检测题

高中数学选修2-3第二章 随机变量及其分布 章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表格可以作为ξ的分布列的是( )【解析】根据分布列的性质各概率之和等于1,易知D 正确. 【答案】D2.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为( )A.49B.29C.427D.227【解析】213124339P C ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭.【答案】A3.某射手射击所得的环数X 的分布列如下:如果命中8~10环为优秀,则该射手射击一次为优秀的概率是( ) A .0.3 B .0.4 C .0.5D .0.6【解析】从分布列中不难看出该射手命中环数不小于8环的概率是0.3+0.25+0.05=0.6.【答案】D4.某镇互不认识的甲、乙两个体老板准备在同一天在同一车站乘车进城进货,甲乘座第一班车的概率为0.7,乙乘座第一班车的概率为0.8,则其中至少有一人乘座第一班车的概率为( )A .0.06B .0.15C .0.56D .0.94【解析】P =1-0.3×0.2=0.94. 【答案】D5.已知随机变量ξ的分布列为:又变量η=4ξ+3,则η的期望是( ) A.72 B.52 C .-1D .1【解析】E (ξ)=-1×12+0×18+1×38=-18E (η)=4E (ξ)+3=4×18⎛⎫- ⎪⎝⎭+3=52.【答案】B6.设X 是随机变量,且D (10X )=90,则D (X )等于( ) A .0.9 B .9 C .90D .900 【解析】D (10X )=100D (X ),∴90=100D (X ),则D (X )=0.9. 【答案】A7.若随机变量ξ的分布列为,其中m ∈(0,1),则下列结果中正确的是( ) A .E (ξ)=m ,D (ξ)=n 3 B .E (ξ)=n ,D (ξ)=n 2 C .E (ξ)=1-m ,D (ξ)=m -m 2 D .E (ξ)=1-m ,D (ξ)=m 2 【解析】∵m +n =1,∴E (ξ)=n =1-m ,D (ξ)=m (0-n )2+n (1-n )2=m -m 2. 【答案】C8.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]【解析】∵X ~N (110,52), ∴μ=110,σ=5,∴5760=0.95≈P (μ-2σ<X <μ+2σ)=P (100<X ≤120). 【答案】C9.已知离散型随机变量X 等可能取值1,2,3,…,n ,若P (1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .15 【解析】由已知X 的分布列为P (X =k )=1n ,k =1,2,3,…,n ,∴P (1≤X ≤3)=P (X =1)+P (X =2)+P (X =3)=3n =15,∴n =15.【答案】D10.已知某产品的次品率为0.04,现要抽取这种产品进行检验,则要使检查到次品的概率达到95%以上,至少要选的产品个数为( )A .24B .25C .74D .75【解析】由题意得1-(1-0.04)n ≥0.95,解得n ≥74. 【答案】C11.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210216⎛⎫⎪⎝⎭×856⎛⎫⎪⎝⎭B .C 11016⎛⎫⎪⎝⎭×956⎛⎫ ⎪⎝⎭+1056⎛⎫ ⎪⎝⎭C .C 11016⎛⎫⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫⎪⎝⎭×856⎛⎫ ⎪⎝⎭D .以上都不对【解析】P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010016⎛⎫ ⎪⎝⎭×1056⎛⎫ ⎪⎝⎭+C 11016⎛⎫ ⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫ ⎪⎝⎭×856⎛⎫ ⎪⎝⎭. 【答案】D12.有10件产品,其中2件次品,其余都是合格品,现不放回的从中依次抽2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( )A.145B.110C.19D.25【解析】记“第一次抽到次品”为事件A ,第二次抽到次品为事件B .P (A )=C 12C 19C 110C 19=15,P (AB )=C 12C 11C 110C 19=145 ,∴P (B |A )=P (AB )P (A )=19.【答案】C二、填空题(本大题共4小题,每小题4分,共16分.请把正确的答案填在题中的横线上)13.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p ,若此人未能通过的科目数ξ的均值是2,则p =________.【解析】因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p , 易知ξ~B (6,1-p ),所以E (ξ)=6(1-p )=2.解得p =23.【答案】2314.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.【解析】P (B |A )=P (AB )P (A ) ,∴P (A )=P (AB )P (B |A )=31012=35.【答案】3515.中国乒乓球队可谓高手如云,在某届世乒乓赛中,有3名世界排名前10位的运动员,据专家分析每位运动员进入前四名的概率为45,那么这三名运动员恰有2名进入前4名的概率是________.【解析】P =C 23245⎛⎫⋅⎪⎝⎭15=48125. 【答案】4812516.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.【解析】由题意得:p =12,P (X =0)=13×(1-p )2=112,P (X =1)=13×12×12×2+23×12×12=13,P (X =2)=13×12×12+23×12×12×2=512,P (X =3)=23×12×12=16,∴ E (X )=13×1+512×2+16×3=53.【答案】53三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.【解析】记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4) =0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48, P (B 2)=0.42=0.16,P (A 2)=0.62=0.36. C =A 1·B 2+A 2·B 1+A 2·B 2 P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.18.(本小题满分12分)设X 是一个离散型随机变量,其分布列如下表,试求随机变量X 的期望E (X )与方差D (X ).【解析】由0.5+2a +3a =1,得a =0.1, 故X 的分布列为:∴E (X )=-1×0.5+0×0.2+1×0.3=-0.2.D (X )=(-1+0.2)2×0.5+(0+0.2)2×0.2+(1+0.2)2×0.3=0.76.19.(本小题满分12分)袋中装有5个乒乓球,其中2个旧球,现在无放回地每次取一球检验.(1)若直到取到新球为止,求抽取次数X 的概率分布列及其均值;(2)若将题设中的“无放回”改为“有放回”,求检验5次取到新球个数X 的均值. 【解析】(1)X 的可能取值为1、2、3,P (X =1)=35,P (X =2)=2×35×4=310,P (X =3)=2×1×35×4×3=110,故抽取次数X 的分布列为:E (X )=1×35+2×310+3×110=32.(2)每次检验取到新球的概率均为35,故X ~B 35,5⎛⎫⎪⎝⎭,∴E (X )=5×35=3.20.(本小题满分12分)已知随机变量X 的正态曲线如下图所示,(1)求E (2X -1),D 14X ⎛⎫⎪⎝⎭;(2)试求随机变量X 在(110,130]范围内取值的概率.【解析】由正态曲线知,随机变量X 的均值为120,标准差为5,即μ=120,σ=5. 因此E (2X -1)=2E (X )-1=239, D 14X ⎛⎫ ⎪⎝⎭=116D (X )=2516.(2)由于μ=120,σ=5,μ-2σ=110,μ+2σ=130,且随机变量在(μ-2σ,μ+2σ)内取值的概率是0.954 4,所以随机变量X 在(110,130]范围内取值的概率是0.954 4.21.(本小题满分13分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)【解析】(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P (X =1)=15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110.X 的分布列为:X 的数学期望为:E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”, X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1). 由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1) =320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 22.(本小题满分13分)某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 【解析】(1)X 的所有可能取值为0,1,2,依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35 ,P (X =2)=C 14C 22C 36=15.∴X 的分布列为:(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=15;∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (B |A )=P (AB )P (A )=C 14C 36C 25C 36=25.。

【高中】高中数学第二章数列章末检测A新人教A版必修5

【高中】高中数学第二章数列章末检测A新人教A版必修5

【关键字】高中第二章数列章末检测(A)一、选择题(本大题共12小题,每小题5分,共60分)1.{an}是首项为1,公差为3的等差数列,如果an=2 011,则序号n等于( ) A.667 B..669 D.671答案 D解析由2 011=1+3(n-1)解得n=671.2.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )A.15 B..31 D.64答案 A解析在等差数列{an}中,a7+a9=a4+a12,∴a12=16-1=15.3.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为( )A.81 B..168 D.192答案 B解析由a5=a2q3得q=3.∴a1==3,S4===120.4.等差数列{an}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( )A.160 B..200 D.220答案 B解析∵(a1+a2+a3)+(a18+a19+a20)=(a1+a20)+(a2+a19)+(a3+a18)=3(a1+a20)=-24+78=54,∴a1+a20=18.∴S20==180.5.数列{an}中,an=3n-7 (n∈N+),数列{bn}满足b1=,bn-1=27bn(n≥2且n∈N +),若an+logkbn为常数,则满足条件的k值( )A.唯一存在,且为 B.唯一存在,且为3C.存在且不唯一 D.不一定存在答案 B解析依题意,bn=b1·n-1=·3n-3=3n-2,∴an+logkbn=3n-7+logk3n-2=3n-7+(3n-2)logk=n-7-2logk,∵an+logkbn是常数,∴3+3logk=0,即logk3=1,∴k=3.6.等比数列{an}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( )A.8 B.-.±8 D.以上都不对答案 A解析∵a2+a6=34,a2·a6=64,∴a=64,∵a2>0,a6>0,∴a4=a2q2>0,∴a4=8.7.若{an}是等比数列,其公比是q,且-a5,a4,a6成等差数列,则q等于( ) A.1或2 B.1或-.-1或2 D.-1或-2答案 C解析依题意有4=a6-a5,即4=a4q2-a4q,而a4≠0,∴q2-q-2=0,(q-2)(q+1)=0.∴q =-1或q =2.8.设等比数列{an}的前n 项和为Sn ,若S10∶S5=1∶2,则S15∶S5等于( )A .3∶4B .2∶.1∶2 D .1∶3答案 A解析 显然等比数列{an}的公比q ≠1,则由==1+q5=⇒q5=-, 故S 15S 5=1-q 151-q 5=1-q 531-q 5=1-⎝ ⎛⎭⎪⎫-1231-⎝ ⎛⎭⎪⎫-12=34. 9.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( ) A.1514 B.1213 C.1316 D.1516答案 C解析 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316. 10.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18答案 B解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d ,∴99-105=3d .∴d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39. ∴S n =na 1+n n -12d =-n 2+40n =-(n -20)2+400. ∴当n =20时,S n 有最大值.11.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )答案 D解析 由题意知S n =X ,S 2n =Y ,S 3n =Z .又∵{a n }是等比数列,∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列,即X ,Y -X ,Z -Y 为等比数列,∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY ,∴Y 2-XY =ZX -X 2,即Y (Y -X )=X (Z -X ).12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项C .第50项D .第51项答案 C解析 将数列分为第1组一个,第2组二个,…,第n 组n 个,即⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1n ,2n -1,…,n 1, 则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50. 二、填空题(本大题共4小题,每小题4分,共16分) 13.2-1与2+1的等比中项是________.答案 ±114.已知在等差数列{a n }中,首项为23,公差是整数,从第七项开始为负项,则公差为______.答案 -4解析 由⎩⎪⎨⎪⎧ a 6=23+5d ≥0a 7=23+6d <0,解得-235≤d <-236, ∵d ∈Z ,∴d =-4.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是________秒.答案 15解析 设每一秒钟通过的路程依次为a 1,a 2,a 3,…,a n ,则数列{a n }是首项a 1=2,公差d =2的等差数列,由求和公式得na 1+n n -1d 2=240,即2n +n (n -1)=240,解得n =15.16.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)答案 ①②④解析 ①中,⎩⎪⎨⎪⎧ a 99-1a 100-1<0a 99a 100>1a 1>1⇒⎩⎪⎨⎪⎧ a 99>10<a 100<1 ⇒q =a 100a 99∈(0,1),∴①正确. ②中,⎩⎪⎨⎪⎧ a 99a 101=a 21000<a 100<1⇒a 99a 101<1,∴②正确. ③中,⎩⎪⎨⎪⎧ T 100=T 99a 1000<a 100<1⇒T 100<T 99,∴③错误.④中,T 198=a 1a 2…a 198=(a 1a 198)(a 2a 197)…(a 99a 100)=(a 99a 100)99>1,T 199=a 1a 2…a 198a 199=(a 1a 199)…(a 99a 101)·a 100=a 199100<1,∴④正确.三、解答题(本大题共6小题,共74分)17.(12分)已知{a n }为等差数列,且a 3=-6,a 6=0.(1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式.解 (1)设等差数列{a n }的公差为d .因为a 3=-6,a 6=0,所以⎩⎪⎨⎪⎧ a 1+2d =-6,a 1+5d =0.解得a 1=-10,d =2.所以a =-10+(n -1)×2=2n -12.(2)设等比数列{b n }的公比为q .因为b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,q =3.所以数列{b n }的前n 项和公式为S n =b 11-q n1-q=4(1-3n ). 18.(12分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2,或⎩⎪⎨⎪⎧ a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).19.(12分)已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12-12n ×121-12=1-12n <1. 20.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和.(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n .∴a n =n ·2n -1. ∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n -1-n ·2n =(1-n )2n -1,∴S =(n -1)·2n +1.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列{1b n b n +1}的前n 项和T n =n 1+n. (1)解 由已知⎩⎪⎨⎪⎧ a n +1=12S n ,a n =12S n -1(n ≥2), 得a n +1=32a n (n ≥2). ∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12, ∴a n =a 2×(32)n -2(n ≥2). ∴a n =⎩⎪⎨⎪⎧ 1, n =1,12×32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32[32×(32)n -1]=n . ∴1b n b n +1=1n 1+n =1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=(11-12)+(12-13)+(13-14)+…+(1n -11+n) =1-11+n =n 1+n. 22.(14分)已知数列{a n }的各项均为正数,对任意n ∈N *,它的前n 项和S n 满足S n =16(a n +1)(a n +2),并且a 2,a 4,a 9成等比数列.(1)求数列{a n }的通项公式;(2)设b n =(-1)n +1a n a n +1,T n 为数列{b n }的前n 项和,求T 2n .解 (1)∵对任意n ∈N *,有S n =16(a n +1)(a n +2), ① ∴当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或2.当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2). ② ①-②并整理得(a n +a n -1)(a n -a n -1-3)=0.而数列{a n }的各项均为正数,∴a n -a n -1=3.当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立;当a 1=2时,a n =2+3(n -1)=3n -1,此时a 2=a a 不成立,舍去.∴a n =3n -2,n ∈N *.(2)T 2n =b 1+b 2+…+b 2n=a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1=a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-6a 2-6a 4-…-6a 2n=-6(a 2+a 4+…+a 2n )=-6×n 4+6n -22=-18n 2-6n .此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

高中数学第二章推理与证明章末综合检测新人教A版选修22

高中数学第二章推理与证明章末综合检测新人教A版选修22

【优化方案】 高中数学 第二章 推理与证明章末综合检测 新人教A版选修2-2(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合标题问题要求的)1.①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形,上述推理中的小前提是( )A .①B .②C .③D .①和②解析:选B.①是大前提,②是小前提,③是结论.2.若f(n)=1+12+13+…+12n +1(n ∈N*),则当n =2时,f(n)是( ) A .1+12 B.15C .1+12+13+14+15D .非以上答案解析:选C .∵f(n)=1+12+13+…+12n +1,分子是1,分母为1,2,3,…,2n +1,故当n =2时,f(2)=1+12+…+12×2+1=1+12+13+14+15. 3.在△ABC 中,sin Asin C >cos Acos C ,则△ABC 必然是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选D .由sin Asin C >cos Acos C ,可得cos(A +C)<0,即cos B >0,所以B 为锐角,但并不能判断A ,C 的度数,故选D .4.设p ,q 均为实数,则“q <0”是“方程x2+px +q =0有一个正实根和一个负实根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C .∵q <0,∴Δ=p2-4q >0,∴“方程x2+px +q =0有一个正实根和一个负实根”成立;∵“方程x2+px +q =0有一个正实根和一个负实根”成立,则有x1x2=q <0.5.要证明“sin4θ-cos4θ=2sin2θ-1”,过程为:“sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=sin2θ-cos2θ=sin2θ-(1-sin2θ)=2sin2θ-1”,用的证明方式是( )A .分析法B .反证法C .综合法D .间接证明法解析:选C .因为证明是由已知逐步推导得出结论的,所以运用的是综合法,故选C .6.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”,则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除解析:选B.用反证法只否认结论即可,而“至少有一个”的背面是“一个也没有”,故B 正确.7.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则( )A .△A1B1C1和△A2B2C2都是锐角三角形B .△A1B1C1和△A2B2C2都是锐角三角形C .△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D .△A1B1C1是锐角三角形,△A2B2C2是钝角三角形解析:选D .因为三角形内角的正弦值是正值,所以△A1B1C1的三个内角的余弦值均大于0.因此△A1B1C1是锐角三角形.假设△A2B2C2也是锐角三角形,并设cos A1=sin A2,则cos A1=cos (90°-∠A2), 所以∠A1=90°-∠A2.同理设cos B1=sin B2,cos C1=sin C2,则有∠B1=90°-∠B2,∠C1=90°-∠C2.又∠A1+∠B1+∠C1=180°,∴(90°-∠A2)+(90°-∠B2)+(90°-∠C2)=180°,即∠A2+∠B2+∠C2=90°.这与三角形内角和等于180°矛盾,所以原假设不成立.故选D .8.如果命题P(n)对n =k 成立,则它对n =k +2也成立,若P(n)对n =2也成立,则下列结论正确的是( )A .P(n)对所有正整数n 都成立B .P(n)对所有正偶数n 都成立C .P(n)对所有正奇数n 都成立D .P(n)对所有自然数n 都成立解析:选B.由题意n =k 时成立,则n =k +2时也成立,又n =2时成立,可获得P(n)对所有正偶数都成立.故选B.9.已知a +b +c =0,则ab +bc +ca 的值( )A .大于0B .小于0C .不小于0D .不大于0解析:选D .∵(a +b +c)2=a2+b2+c2+2(ab +bc +ac)=0,又∵a2+b2+c2≥0,∴2(ab +bc +ac)≤0.10.已知f(x +y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于( )A .f(1)+2f(1)+…+nf(1)B .f(n n +12) C .n(n +1)D .n n +12f(1) 解析:选C .f(x +y)=f(x)+f(y),令x =y =1,∴f(2)=2f(1),令x =1,y =2,f(3)=f(1)+f(2)=3f(1)⋮f(n)=nf(1),∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1) =n n +12f(1). ∴A 、D 正确;又f(1)+f(2)+…+f(n)=f(1+2+…+n)=f(n n +12), ∴B 也正确,故选C .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.对大于或等于2的自然数m 的n 次方幂有如下分化方式:22=1+3,32=1+3+5,42=1+3+5+7,…;23=3+5,33=7+9+11,43=13+15+17+19,….按照上述分化规律,则52=1+3+5+7+9,若m3(m ∈N*)的分化中最小的数是73,则m 的值为________.解析:m3的分化中最小数是3,5,7,9,…中的第m m -12个, ∴73=2·m m -12+1. ∴m(m -1)=72,又m>0,∴m =9.答案:912.若f(n)=12+22+32+…+(2n)2,则f(k +1)与f(k)的递推关系式是________. 解析:∵f(k)=12+22+…+(2k)2,f(k +1)=12+22+…+(2k)2+(2k +1)2+(2k +2)2,∴f(k +1)-f(k)=(2k +1)2+(2k +2)2,即f(k +1)=f(k)+(2k +1)2+(2k +2)2.答案:f(k +1)=f(k)+(2k +1)2+(2k +2)213.在△ABC 中,D 为BC 的中点,则AD →=12(AB →+AC →),将命题类比到三棱锥中去获得一个类比的命题为______________.答案:在三棱锥A-BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.观察下图:12 3 43 4 5 6 74 5 6 7 8 9 10…则第________行的各数之和等于2 0152.解析:观察知,图中的第n 行的各数构成一个首项为n ,公差为1,共(2n -1)项的等差数列,其各项和为:Sn =(2n -1)n +2n -12n -22=(2n -1)n +(2n -1)(n -1)=(2n -1)2.令(2n -1)2=2 0152,得2n -1=2 015,∴n =1 008.答案:1 008三、解答题(本大题共6小题,每小题10分,共60分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知a ,b ,c ,d ∈(0,+∞),求证ac +bd≤a2+b2c2+d2.证明:法一:(分析法) 欲证ac +bd≤a2+b2c2+d2,只需证(ac +bd)2≤(a2+b2)(c2+d2),即证a2c2+2abcd +b 2d2≤a2c2+b2d2+a2d2+b2c2,即证2abcd≤a2d2+b2c2,即证0≤(bc -ad)2,而a ,b ,c ,d ∈(0,+∞),0≤(bc -ad)2显然成立,故原不等式成立.法二:(综合法)(a2+b2)(c2+d2)=a2c2+b2d2+a2d2+b2c2≥a2c2+b2d2+2abcd=(ac +bd)2,所以a2+b2c2+d2≥ac +bD .16.已知数列{an}的通项公式an =42n -12,数列{bn}的通项满足bn =(1-a1)(1-a2)…(1-an),试证明:bn =2n +11-2n. 证明:(1)当n =1时,a1=4,b1=1-4=-3,b1=2×1+11-2×1=-3,等式成立. (2)假设当n =k(k ∈N*)时等式成立,即bk =2k +11-2k, 那么当n =k +1时,有bk +1=(1-a1)(1-a2)…(1-ak)(1-ak +1)=bk(1-ak +1)=2k +11-2k ⎣⎡⎦⎤1-42k +12=2k +1+11-2k +1. 所以n =k +1时,等式也成立.由(1)(2)可知,等式对任何正整数n 都成立.17. 如图,正三棱柱ABC-A1B1C1的棱长均为a ,D 、E 分别为C1C 与AB 的中点,A1B 交AB1于点G.(1)求证:A1B ⊥AD ;(2)求证:CE ∥平面AB1D .证明:(1)保持A1D ,BD ,DG.如图.∵三棱柱ABC-A1B1C1是棱长均为a 的正三棱柱,∴四边形A1ABB1为正方形,∴A1B ⊥AB1.∵D 是C1C 的中点,∴△A1C1D ≌△BCD ,∴A1D =BD .∵G 是A1B 的中点,∴A1B ⊥DG ,又∵DG∩AB1=G ,∴A1B ⊥平面AB1D ,又∵AD ⊂平面AB1D ,∴A1B ⊥AD .(2)保持GE ,易知EG ∥A1A ,∴GE ⊥平面ABC .∵DC ⊥平面ABC ,∴GE ∥DC .∵GE =DC =12a , ∴四边形GECD 为平行四边形,∴EC ∥GD .又∵EC ⊄平面AB1D ,DG ⊂平面AB1D ,∴EC ∥平面AB1D .18.数列{an}满足a1=16,前n 项和Sn =n n +12an. (1)写出a2,a3,a4;(2)猜出an 的表达式,并用数学归纳法证明.解:(1)令n =2,∵a1=16,∴S2=2×2+12a2,即a1+a2=3a2. ∴a2=112.令n =3,得S3=3×3+12a3, 即a1+a2+a3=6a3,∴a3=120.令n =4,得S4=4×4+12a4,即a1+a2+a3+a4=10a4,∴a4=130. (2)猜想an =1n +1n +2,下面用数学归纳法给出证明. ①当n =1时,a1=16=11+11+2, 结论成立.②假设当n =k 时,结论成立,即ak =1k +1k +2,则当n =k +1时, Sk =k k +12ak =k k +12·1k +1k +2=k 2k +2, Sk +1=k +1k +22ak +1, 即Sk +ak +1=k +1k +22ak +1. ∴k 2k +2+ak +1=k +1k +22ak +1. ∴ak +1=k2k +2k +1k +22-1=k k k +3k +2 =1k +2k +3. 当n =k +1时结论也成立.由①②可知,对一切n ∈N*都有an =1n +1n +2.19.已知数列{an}和{bn}的通项公式分别为an =3n +6,bn =2n +7(n ∈N*).将集合{x|x =an ,n ∈N*}∪{x|x =bn ,n ∈N*}中的元素从小到大依次分列,构成数列c1,c2,c3,…,cn ,….(1)写出c1,c2,c3,c4;(2)求证:在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n ,….解:(1)它们是9,11,12,13.(2)证明:∵数列{cn}由{an},{bn}的项构成,∴只需讨论数列{an}的项是否为数列{bn}的项.∵对于任意n ∈N*,a2n -1=3(2n -1)+6=6n +3=2(3n -2)+7=b3n -2,∴a2n -1是{bn}的项.下面用反证法证明:a2n 不是{bn}的项.假设a2n 是数列{bn}的项,设a2n =bm ,则3·2n +6=2m +7,m =3n -12,与m ∈N*矛盾.∴结论得证.20.若a1>0、a1≠1,an +1=2an 1+an(n =1,2,…).(1)求证:an +1≠an ;(2)令a1=12,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an ;(3)证明:存在不等于零的常数p ,使⎩⎨⎧⎭⎬⎫an +p an 是等比数列,并求出公比q 的值. 解:(1)证明:(采用反证法).假设an +1=an , 即2an 1+an=an , 解得an =0,1. 从而an =an -1=…=a1=0,1,与题设a1>0,a1≠1相矛盾,∴假设错误.故an +1≠an 成立.(2)a1=12、a2=23、a3=45、a4=89、a5=1617,an =2n -12n -1+1. (3)因为an +1+p an +1=2+p an +p 2an ,又an +1+p an +1=an +p an ·q ,所以(2+p -2q)an +p(1-2q)=0, 因为上式是关于变量an 的恒等式.故可解得q =12、p =-1.。

高中数学第二章推理与证明章末综合检测二含解析新人教A版选修

高中数学第二章推理与证明章末综合检测二含解析新人教A版选修

高中数学第二章推理与证明章末综合检测二含解析新人教A版选修章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是()A.归纳推理B.类比推理C.演绎推理D.非以上答案解析:选C.根据演绎推理的定义知,推理过程是演绎推理.2.余弦函数是偶函数,f(x)=cos(x+1)是余弦函数,因此f(x)=cos(x+1)是偶函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:选C.f(x)=cos(x+1)不是余弦函数,所以小前提错误.3.如图所示,黑、白两种颜色的正六边形地板砖按图中所示的规律拼成若干个图案,则第n个图案中白色地板砖的块数是()A.4n+2B.4n-2C.2n+4D.3n+3解析:选A.由题图可知,当n=1时,a1=6;当n=2时,a2=10;当n=3时,a3=14.由此推测,第n个图案中白色地板砖的块数是a n=4n+2.4.设a,b,c,d都是非零实数,则四个数:-ab,ac,bd,cd()A.都是正数B.都是负数C.两正两负D.一正三负或一负三正解析:选D.因为a,b,c,d都是非零实数,所以a,b,c,d中一定有2个符号相同或3个符号相同或4个符号相同,再根据同号为正,异号得负,可以判断:-ab,ac,bd,cd一定是一正三负或一负三正.5.若a >0,b >0,则有( )A.b 2a >2b -a B.b 2a <2b -a C.b 2a≥2b -a D.b 2a≤2b -a 解析:选C.因为b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,所以b 2a≥2b -a .6.已知f (x +1)=2f (x )f (x )+2,f (1)=1(x ∈N *),猜想f (x )的表达式为( )A.f (x )=42x+2B.f (x )=2x +1C.f (x )=1x +1D.f (x )=22x +1解析:选B.f (2)=22+1,f (3)=23+1,f (4)=24+1,猜想f (x )=2x +1.7.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A.28B.76C.123D.199解析:选C.利用归纳法:a +b =1,a 2+b 2=3,a 3+b 3=3+1=4,a 4+b 4=4+3=7,a 5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123.规律为从第三组开始,其结果为前两组结果的和.8.在平面直角坐标系内,方程x a +yb=1表示在x 轴,y 轴上的截距分别为a ,b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为m ,n ,c (mnc ≠0)的平面方程为( )A.x m +y n +z c=1 B.x mn +y nc +zmc=1 C.xy mn +yz nc +zxcm=1 D.mx +ny +cz =1解析:选A.类比到空间应选A.另外也可将点(m ,0,0)代入验证. 9.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形 解析:选C.因为sin A a =cos B b =cos Cc,由正弦定理得, sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°, 所以△ABC 是等腰直角三角形.10.已知点A (x 1,x 21),B (x 2,x 22)是函数y =x 2图象上任意不同的两点,依据图象知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论x 21+x 222>⎝⎛⎭⎪⎫x 1+x 222成立,运用类比方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))图象上不同的两点,则类似地有结论( )A.sin x 1+sin x 22>sin x 1+x 22B.sin x 1+sin x 22<sin x 1+x 22C.sin x 1+sin x 22≥sin x 1+x 22D.sin x 1+sin x 22≤sin x 1+x 22解析:选 B.画出y =x 2的图象,由已知得AB 的中点⎝ ⎛⎭⎪⎫x 1+x 22,x 21+x 222恒在点⎝ ⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫x 1+x 222的上方,画出y =sin x ,x ∈(0,π)的图象可得A ,B 的中点⎝ ⎛⎭⎪⎫x 1+x 22,sin x 1+sin x 22恒在点⎝ ⎛⎭⎪⎫x 1+x 22,sin x 1+x 22的下方,故B 正确.11.△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2),所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.12.如图是网络工作者经常用来解释网络动作的蛇形模型;数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;…,以此类推,则按网络运作顺序第n 行第1个数(如第2行第1个数为2,第3行第1个数为4,…)是( )A.n 2-n +12 B.n 2+n +12 C.n 2+n +22D.n 2-n +22解析:选D.由题意分析可知,第n 行总共有n 个数字,n ∈N *,所以第n 行中最小的数字为1+(1+2+…+n -1)=1+n (n -1)2=n 2-n +22,最大的数字为n 2-n +22+n -1=n 2+n2,而第n 行中第一个出现的数字是行中最小的,即n 2-n +22.二、填空题:本题共4小题,每小题5分.13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为 W.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,则第100项为 W. 解析:设n ∈N *,则数字n 共有n 个, 所以n (n +1)2≤100,即n (n +1)≤200.又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:1415.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一张,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.在正三角形中,设它的内切圆的半径为r ,容易求得正三角形的周长C (r )=63r ,面积S (r )=33r 2,发现S ′(r )=C (r ).这是平面几何中的一个重要发现,请用类比推理的方法猜测对空间正四面体存在的类似结论为 .解析:设正四面体的棱长为a ,内切球的半径为r ,利用等积变形易求得正四面体的高h =4r .由棱长a ,高h 和底面三角形外接圆的半径构成直角三角形,得a 2=(4r )2+⎝ ⎛⎭⎪⎫33a 2,解得a =26r .于是正四面体的表面积S (r )=4×12×(26r )2×sin 60°=243r 2,体积V (r )=13×12×(26r )2×sin 60°×4r =83r 3,所以V ′(r )=243r 2=S (r ).答案:V ′(r )=S (r ),S (r )为正四面体的表面积,V (r )为体积 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角, 所以0°<A +B <180°. 所以A +B =45°.18.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab , 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<()c 2-ab 2,只需证a 2-2ac +c 2<c 2-ab , 即证2ac >a 2+ab , 因为a >0,所以只需证2c >a +b . 因为2c >a +b 成立. 所以原不等式成立.19.(本小题满分12分)已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 构成等差数列, 则有2b =a +c , 即4b 2=a 2+c 2+2ac ,又a 2,b 2,c 2成公比不为1的等比数列, 且a ,b ,c 为正数,所以b 4=a 2c 2且a ,b ,c 互不相等, 即b 2=ac ,因此4ac =a 2+c 2+2ac , 所以(a -c )2=0,从而a =c =b ,这与a ,b ,c 互不相等矛盾.故a ,b ,c 不成等差数列.20.(本小题满分12分)已知在四棱锥 P ­ABCD 中,底面ABCD 是矩形,且AD =2,AB =1,PA ⊥平面ABCD ,E ,F 分别是线段AB ,BC 的中点.(1)证明:PF ⊥DF ;(2)判断并说明PA 上是否存在点G ,使得EG ∥平面PFD . 解: (1)证明:连接AF , 则AF =2,DF =2, 又AD =2,所以DF 2+AF 2=AD 2, 所以DF ⊥AF , 又PA ⊥平面ABCD , 所以DF ⊥PA , 又PA ∩AF =A , 所以⎭⎪⎬⎪⎫DF ⊥平面PAF PF ⊂平面PAF ⇒DF ⊥PF .(2)过点E 作EH ∥FD ,交AD 于点H ,则EH ∥平面PFD ,且有AH =14AD ,再过点H 作HG ∥DP 交PA 于点G ,则HG ∥平面PFD 且AG =14AP .所以平面EHG ∥平面PFD , 所以EG ∥平面PFD .从而线段AP 上满足AG =14AP 的点G 即为所求.21.(本小题满分12分)已知椭圆x 2a 2+y 2b2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点对称的两个点,点P 为椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM ·k PN 是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1(a >0,b >0)写出类似的性质,并加以证明.解:类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM ·k PN 是与点P 的位置无关的定值.证明如下:设M (m ,n ),则N (-m ,-n ),且m 2a 2-n 2b 2=1(a >0,b >0).又设点P (x ,y ),则k PM =y -n x -m ,k PN =y +nx +m, 所以k PM ·k PN =y 2-n 2x 2-m 2.①将y 2=b 2⎝ ⎛⎭⎪⎫x 2a 2-1代入①, 可得k PM ·k PN =b 2⎝ ⎛⎭⎪⎫x 2a 2-n 2b 2-1x 2-m 2=b 2⎝ ⎛⎭⎪⎫x 2a 2-m 2a 2x 2-m 2=b2a2(定值).22.(本小题满分12分)已知f (x )=bx +1(ax +1)2(x ≠-1a ,a >0),且f (1)=log 162,f (-2)=1.(1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =(1-f (1))(1-f (2))…·(1-f (n )),试求x 1,x 2,x 3,x 4.解:(1)把f (1)=log 162=14,f (-2)=1,代入函数表达式得 ⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,即⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1, 解得⎩⎪⎨⎪⎧a =1,b =0.(舍去a =-13<0),所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=(1-f (1))(1-f (2))=34×⎝ ⎛⎭⎪⎫1-19=23, x 3=23(1-f (3))=23×⎝ ⎛⎭⎪⎫1-116=58, x 4=58×⎝⎛⎭⎪⎫1-125=35.。

高中数学:第二章章末测试

高中数学:第二章章末测试

第二章章末测试时间:90分钟分值:100分一、选择题:本大题共10小题,每小题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题正确的是( )A.向量错误!与错误!是相等向量B.共线的单位向量是相等向量C.零向量与任一向量共线D.两平行向量所在直线平行答案:C解析:利用向量的概念进行判定.2.向量a,b反向,下列等式成立的是( )A.|a-b|=|a|-|b|B.|a+b|=|a|+|b|C.|a|+|b|=|a-b|D.|a+b|=|a-b|答案:C解析:当a,b反向时,由向量加法或减法的几何意义可知,|a-b|=|a|+|b|。

3.以a=(-1,2),b=(1,-1)为基底表示c=(3,-2)为() A.c=4a+b B.c=a+4bC.c=4b D.c=a-4b答案:B解析:设c=x a+y b,则(3,-2)=x(-1,2)+y(1,-1)=(-x +y,2x-y),所以-x+y=3且2x-y=-2,解得x=1,y=4。

所以c=a+4b.4.已知平面内三点A(-1,0)、B(5,6)、P(3,4),则AP→·错误!等=错误!,则a与c的夹角为( )A.30°B.60°C.120°D.150°答案:C解析:由条件知|a|=错误!,|b|=2错误!,a+b=(-1,-2),∴|a+b|=错误!,∵(a+b)·c=错误!,∴错误!×错误!·cosθ=错误!,其中θ为a+b与c的夹角,∴θ=60°,∵a+b=-a,∴a+b与a方向相反,∴a与c的夹角为120°。

9.在边长为1的正方形ABCD中,设错误!=a,错误!=b,错误!=c,则|a-b+c|等于()A.1 B。

错误!C.2 D。

错误!答案:C解析:先求模的平方.10。

将一圆的六个等分点分成两组相间的三点,它们所构成的两个正三角形扣除内部六条线段后可以形成一个正六角星,如图所示的正六角星是以原点O为中心,其中错误!,错误!,分别为原点O到两个顶点的向量.若将原点O到正六角星12个顶点的向量,都写成为a错误!+b错误!的形式,则a+b的最大值为( )A.2 B.3C.4 D.5答案:D解析:要求a+b的最大值,只需考虑右图中6个顶点的向量即可,讨论如下:(1)∵错误!=错误!,∴(a,b)=(1,0);(2)∵错误!=错误!+错误!=错误!+3错误!,∴(a,b)=(3,1);(3)∵错误!=错误!+错误!=错误!+2错误!,∴(a,b)=(1,2);(4)∵错误!=错误!+错误!+错误!=错误!+错误!+错误!=错误!+错误!+(错误!+2错误!)=2错误!+3错误!,∴(a,b)=(3,2);(5)∵错误!=错误!+错误!=错误!+错误!,∴(a,b)=(1,1);(6)∵错误!=错误!,∴(a,b)=(0,1).∴a+b的最大值为3+2=5.二、填空题:本大题共3小题,每小题4分,共12分.把答案填入题中横线上.11.已知向量a,b满足|a|=2011,|b|=4,且a·b=4022,则a与b的夹角为________.答案:错误!解析:设a与b的夹角为θ,由夹角余弦公式cosθ=错误!=错误!=错误!,解得θ=错误!.12.已知向量a=(1,t),b=(-1,t)。

高中数学第二章概率章末检测北师大版选修2_3

高中数学第二章概率章末检测北师大版选修2_3

章末检测(二) 概 率时间:120分钟 满分:150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某人射击的命中率为p (0<p <1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是( )A .1,2,3,…,nB .1,2,3,…,n ,…C .0,1,2,…,nD .0,1,2,…,n ,…解析:射击次数至少1次,由于命中率p <1,所以,这个人可能永远不会击中目标. 答案:B2.若随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)=( )A.19B.16C.14D.13解析:由分布列的性质12a +22a +32a =1,解得a =3,则P (X =2)=22a =13.答案:D3.将一枚硬币连掷4次,出现“2个正面,2个反面”的概率是( ) A.12 B.38 C.25D .1解析:掷一枚硬币一次看作一次试验,出现正面事件为A ,则P (A )=12,而连掷4次可看成4次独立试验,由题意,硬币出现正面的次数X ~B (4,12),故可得P (X =2)=C 24·(12)2·(12)2=38. 答案:B4.已知X ~B (n ,p ),EX =2,DX =1.6,则n ,p 的值分别为( ) A .100,0.8 B .20,0.4 C .10,0.2D .10,0.8解析:由题意可得⎩⎪⎨⎪⎧np =2,np (1-p )=1.6,解得p =0.2,n =10.答案:C5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么下列事件中发生的概率为710的是( )A .都不是一等品B .恰有1件一等品C .至少有1件一等品D .至多有1件一等品解析:P (都不是一等品)=C 22C 25=110,P (恰有1件一等品)=C 13C 12C 25=35,P (至少有1件一等品)=C 13C 12+C 23C 25=910, P (至多有1件一等品)=C 22+C 13C 12C 25=710. 答案:D6.随机变量X 的分布密度函数f (x )=12πe22x - (x ∈R),X 在(-2,-1)与(1,2)内取值的概率分别为P 1和P 2,则P 1和P 2的大小关系是( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .不能确定解析:由f (x )=12πe22x -可知随机变量X ~N (0,1),由于f (x )的图像关于直线x =0对称,且区间(-2,-1)与(1,2)为两个对称区间,故P 1=P 2.答案:C7.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是P 1,乙能解决这个问题的概率是P 2,那么其中至少有一人能解决这个问题的概率是( )A .P 1+P 2B .P 1·P 2C .1-P 1·P 2D .1-(1-P 1)·(1-P 2)解析:至少有1人能解决这个问题的对立事件是两人都不能解决,两人解决问题是相互独立的,故所求概率为1-(1-P 1)·(1-P 2).答案:D8.设ξ为离散型随机变量,则E (E ξ-ξ)=( ) A .0 B .1 C .2D .不确定解析:∵E ξ是常数,∴E (E ξ-ξ)=E ξ-E ξ=0. 答案:A9.已知X 的分布列为:设Y =2X +1,则Y 的数学期望EY 的值是( ) A .-16B.23 C .1D.2936解析:EY =2EX +1,由已知得a =13,∴EX =-12+13=-16,∴EY =23.答案:B10.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生三项均合格的概率为(假设三项标准互不影响)( )A.49 B.190C.45D.59解析:该生三项均合格的概率为13×16×15=190.答案:B11.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]解析:∵X ~N (110,52), ∴μ=110,σ=5,5760=0.95≈P (μ-2σ<X <μ+2σ) =P (100<X ≤120). 答案:C12.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.116 B.18 C.316D.14解析:满足xy =4的所有可能如下:x =1,y =4;x =2,y =2;x =4,y =1.所以所求事件的概率P =P (x =1,y =4)+P (x =2,y =2)+P (x =4,y =1)=14×14+14×14+14×14=316. 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 13.设随机变量X ~B (4,13),则P (X ≥3)=________.解析:P (X ≥3)=P (X =3)+P (X =4) =C 34(13)3×23+C 44(13)4=881+181=981=19. 答案:1914.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员投中3分的概率是________.解析:由题中条件,知2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16. 答案:1615.两台车床加工同一种机械零件质量情况如下表:从这100个零件中任取一个零件,取得的零件是甲机床加工的产品,则是合格品的概率是________.解析:记“在100个零件中任取一件是甲机床加工的零件”为事件A ,记“从100个零件中任取一件取得合格品”为事件B .则P (B |A )=n (AB )n (A )=3540=0.875. 答案:0.87516.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望EX =________.解析:由题意知P (X =0)=13(1-p )2=112,∴p =12.随机变量X 的概率分布为:EX =0×112+1×13+2×512+3×16=53.答案:53三、解答题(本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)某年级的一次信息技术测验成绩近似服从正态分布N (70,102),如果规定低于60分为不及格,求:(1)成绩不及格的人数占多少? (2)成绩在80~90间的学生占多少?解析:(1)设学生的得分情况为随机变量X ,X ~N (70,102),则μ=70,σ=10. 分析成绩在60~80之间的学生的占比为:P (70-10<X ≤70+10)=0.683,所以成绩不及格的学生的占比为: 12(1-0.683)=0.158 5, 即成绩不及格的学生占15.85%.(2)成绩在80~90之间的学生的占比为:12[P (70-2×10<X ≤70+2×10)-P (70-10<x ≤70+10)]=12(0.954-0.683)=0.135 5,即成绩在80~90之间的学生占13.55%.18.某食品企业一个月内被消费者投诉的次数用X 表示.据统计,随机变量X 的概率分布如下表所示.(1)求a 的值和X 的数学期望;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.解析:(1)由概率分布的性质有0.1+0.3+2a +a =1, 解得a =0.2. ∴X 的概率分布为:∴EX =0×0.1+1×0.3+2×0.4+3×0.2=1.7.(2)设事件A 表示“两个月内共被投诉2次”;事件A 1表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件A 2表示“两个月内每个月均被投诉1次”.则由事件的独立性,得P (A 1)=C 12P (X =2)·P (X =0)=2×0.4×0.1=0.08,P (A 2)=[P (X =1)]2=0.32=0.09,∴P (A )=P (A 1)+P (A 2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.19.(12分)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列,期望和方差;(2)若η=a ξ+b ,E η=1,D η=11,试求a ,b 的值.解析:(1)由题意,得ξ的所有可能取值为0,1,2,3,4,所以P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为:以E ξ=0×12+1×120+2×110+3×320+4×15=1.5,D ξ=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (a ξ+b )=a 2D ξ=11,E (a ξ+b )=aE ξ+b =1,及E ξ=1.5,D ξ=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.20.(12分)把一副扑克(除去大小王)的52张随机均分给赵、钱、孙、李四家,A ={赵家得到6张草花(梅花)},B ={孙家得到3张草花}.(1)计算P (B |A ); (2)计算P (A ∩B ).解析:(1)四家各有13张牌,已知A 发生后,A 的13张牌已固定,余下的39张牌中恰有7张草花,在另三家中的分派是等可能的.问题已经转变成:39张牌中有7张草花,将这39张牌随机分给钱、孙、李三家,求孙家得到3张草花的概率 .于是P (B |A )=C 37C 1039-7C 1339≈0.278.(2)在52张牌中任选13张牌有C 1352种不同的等可能的结果.于是Ω中的元素为C 1352,A 中的元素数为C 613C 739,利用条件概率公式得到P (A ∩B )=P (A )P (B |A )=C 613C 739C 1352×0.278≈0.012.21.(12分)某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.解析:(1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310. (2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为故X 的数学期望为EX =2×14+3×34=114.22.(14分)从10位同学(其中6女,4男)中随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学通过测验的概率均为35,求:(1)选出的3位同学中,至少有一位男同学的概率;(2)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.解析:(1)设“选出的3位同学中,至少有一位男同学”为事件A ,则事件A 为“选出的3位同学中没有男同学”,而P (A )=C 36C 310=16,所以P (A )=1-16=56.即选出的3位同学中,至少有一位男同学的概率为56.(2)设“女同学甲和男同学乙被选中”为事件A ,“女同学甲通过测验”为事件B ,“男同学乙通过测验”为事件C ,则“甲、乙同学被选中且通过测验”为事件A ∩B ∩C ,由条件知A 、B 、C 三个事件为相互独立事件,所以P (A ∩B ∩C )=P (A )×P (B )×P (C ).而P (A )=C 18C 310=115,P (B )=45,P (C )=35,所以P (A ∩B ∩C )=115×45×35=4125.即甲、乙同学被选中且通过测验的概率为4125.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法正确的是( )A .方向相同或相反的向量是平行向量B .零向量是0C .长度相等的向量叫作相等向量D .共线向量是在一条直线上的向量解析:对A ,方向相同或相反的非零向量是平行向量,错误;对B ,零向量是0,正确;对C ,方向相同且长度相等的向量叫作相等向量,错误;对D ,共线向量所在直线可能平行,也可能重合,错误.故选B. ★答案★:B2.在同一平面内,把平行于某一直线的一切向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A .一条线段 B .一条直线C .圆上一群孤立的点D .一个半径为1的圆解析:由于向量的始点确定,而向量平行于同一直线,所以随向量模的变化,向量的终点构成一条直线. ★答案★:B3.已知A 、B 、D 三点共线,存在点C ,满足CD →=43CA →+λCB →,则λ=( )A . 23B. 13C .-13D .-23解析:∵A ,B ,D 三点共线,∴存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →),即CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →,∴⎩⎪⎨⎪⎧1-t =43,t =λ,即λ=-13.★答案★:C4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,( a +λb )∥c 则λ=( ) A.14 B.12 C . 1D .2解析:可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,∴λ=12.★答案★:B5.已知点O ,N 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,则点O ,N 依次是△ABC 的( ) A .重心 外心 B .重心 内心 C .外心 重心D .外心 内心解析:由|OA →|=|OB →|=|OC →|知,O 为△ABC 的外心;由NA →+NB →+NC →=0,得AN →=NB →+NC →,取BC 边的中的点D ,则AN →=NB →+NC →=2ND →,知A 、N 、D 三点共线,且AN =2ND ,故点N 是△ABC 的重心. ★答案★:C6.已知向量a =(cos θ,sin θ),其中θ∈(π2,π),b =(0,-1),则a 与b 的夹角等于( )A .θ-π2B.π2+θC.3π2-θ D .θ解析:设a 与b 的夹角为α,a·b =cos θ×0+sin θ×(-1)=-sin θ,|a |=1,|b |=1,∴cos α=a·b|a ||b |=-sin θ=cos ⎝⎛⎭⎫3π2-θ,∵θ∈⎝⎛⎭⎫π2,π,α∈[π2,π], ∴y =cos x 在[0,π]上单调递减,∴α=3π2-θ,故选C.★答案★:C7.等边三角形ABC 的边长为1,BC →=a ,CA →=b ,AB →=c ,那么a·b +b·c +c·a 等于( ) A .3 B .-3 C.32D .-32解析:由平面向量的数量积的定义知, a·b +b·c +c·a =|a |·|b |cos(π-C )+ |b |·|c |cos(π-A )+|c |·|a |cos(π-B ) =cos(π-C )+cos(π-A )+cos(π-B ) =-cos C -cos A -cos B =-3cos 60°=-32.故应选D. ★答案★:D8.已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为( )A.π2B.π3C.π6D .π解析:∵|2a +b |2=4|a |2+4a·b +|b |2=7,|a |=1,|b |=3,∴4+4a·b +3=7,a·b =0,∴a ⊥b.如图所示,a 与a +b 的夹角为∠COA ,∵tan ∠COA =|CA ||OA |=3,∴∠COA =π3,即a 与a +b 的夹角为π3.★答案★:B9.在△ABC 中,若(CA →+CB →)·(CA →-CB →)=0,则△ABC 为( ) A .正三角形 B .直角三角形 C .等腰三角形D .形状无法确定解析:∵(CA →+CB →)·(CA →-CB →)=0,∴CA 2→-CB 2→=0,CA 2→=CB 2→,∴CA =CB ,△ABC 为等腰三角形. ★答案★:C10.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则AE →·AF →=( ) A.53 B.54 C.109D.158解析:依题意,不妨设BE →=12EC →,BF →=2FC →,则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13AC →;AF →-AB →=2(AC →-AF →),即AF →=13AB →+23AC →.所以AE →·AF →=⎝⎛⎭⎫23AB →+13AC →·⎝⎛⎭⎫13AB →+23AC →=19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →)=19(2×22+2×12+5×2×1×cos 60°)=53,选A. ★答案★:A11.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为60°,且|b |=|a |=1,则向量a 与c 的夹角为( ) A .60° B .30° C .120°D .150°解析:∵a +b +c =0,∴c =-(a +b ),∴|c |2=(a +b )2=a 2+b 2+2a·b =2+2cos 60°=3,∴|c |= 3.又c·a =-(a +b )·a =-a 2-a·b =-1-cos 60°=-32,设向量c 与a 的夹角为θ,则cos θ=a·c|a ||c |=-323×1=-32,∵0°≤θ≤180°,∴θ=150°.★答案★:D12.在△ABC 中,AC =6,BC =7,cos A =15,O 是△ABC 的内心,若OP →=xOA →+yOB →,其中0≤x ≤1,0≤y ≤1,动点P 的轨迹所覆盖的面积为( ) A.103 6 B.53 6 C.103D.203解析:如图,∵OP →=xOA →+yOB →,其中0≤x ≤1,0≤y ≤1, ∴动点P 的轨迹所覆盖的区域是以OA ,OB 为邻边的平行 四边形OAMP ,则动点P 的轨迹所覆盖的面积S =AB ×r , r 为△ABC 的内切圆的半径.在△ABC 中,由向量的减法法则得BC →=AC →-AB →,∴BC 2→=(AC →-AB →)2, 即|BC →|2=|AC →|2+|AB →|2-2|AC →||AB →|cos A , 由已知得72=62+|AB →|2-2×6·|AB →|×15,∴5|AB →|2-12|AB →|-65=0,∴|AB →|=5.∴S △ABC =12×6×5×sin A =66,又O 为△ABC 的内心,故O 到△ABC 各边的距离均为r ,此时△ABC 的面积可以分割为三个小三角形的面积的和, ∴S △ABC =12(6+5+7)×r ,即12(6+5+7)×r =66,∴r =263,所求的面积S =AB ×r =5×236=103 6.★答案★:A二、填空题(本大题共4小题,每小题4分,共16分,把★答案★填在题中的横线上) 13.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为________. 解析:m a +4b =(2m -4,3m +8),a -2b =(4,-1),因为m a +4b 与a -2b 共线,∴-1(2m -4)=4(3m +8),解得m =-2. ★答案★:-214.如图,在四边形ABCD 中,AC 和BD 相交于点O , 设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________(用向量a 和b 表示).解析:∵AO →=μAC →=μ(AD →+DC →)=μ⎝⎛⎭⎫a +12b =μa +μ2b ∵μ+μ2=1,解得μ=23.∴AO →=23a +13b.★答案★:23a +13b15.已知两点A (-1,0),B (-1,3).O 为坐标原点,点C 在第一象限,且∠AOC =120°,设OC →=-3OA →+λOB →(λ∈R ),则λ=________.解析:由题意,得OC →=-3(-1,0)+λ(-1,3)=(3-λ,3λ),∵∠AOC =120°,∴OA →·OC →|OA →||OC →|=-12, 即3-λ(3-λ)2+3λ2=12,解得λ=32.★答案★:3216. 若将向量a =(1,2)绕原点按逆时针方向旋转π4得到向量b ,则b 的坐标是________.解析:如图,设b =(x ,y ),则|b |=|a |=5, a·b =|a ||b |·cos π4=5×5×22=522,即x 2+y 2=5,又a·b =x +2y ,得x +2y =522,解得x =-22,y =322(舍去x =322,y =22). 故b =⎝⎛⎭⎫-22,322. ★答案★:⎝⎛⎭⎫-22,322 三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)如图所示,D ,E 分别是△ABC 中边AB , AC 的中点,M ,N 分别是DE ,BC 的中点, 已知BC →=a ,BD →=b ,试用a ,b 分别表示 DE →,CE →,MN →.解析:由三角形中位线定理,知DE 綊12BC ,故DE →=12BC →,即DE →=12a .CE →=CB →+BD →+DE →=-a +b +12a =-12a +b.MN →=MD →+DB →+BN →=12ED →+DB →+12BC →=-14a -b +12a =14a -b.18.(12分)已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →. 证明:设E ,F 的坐标分别为(x 1,y 1),(x 2,y 2), 依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). 因为AE →=13AC →,所以(x 1+1,y 1)=13(2,2),所以点E 的坐标为⎝⎛⎭⎫-13,23, 同理点F 的坐标为⎝⎛⎭⎫73,0,所以EF →=⎝⎛⎭⎫83,-23, 又因为83×(-1)-4×⎝⎛⎭⎫-23=0,所以EF →∥AB →. 19.(12分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 解析:(1)由a =(1,2),得|a |=12+22=5, 又|c |=25,所以|c |=2|a |.又因为c ∥a ,所以c =±2a ,所以c =(2,4)或c =(-2,-4). (2)因为a +2b 与2a -b 垂直,所以(a +2b )·(2a -b )=0, 即2|a |2+3a·b -2|b |2=0,将|a |=5,|b |=52代入,得a·b =-52. 所以cos θ=a·b|a ||b |=-1.又由θ∈[0,π],得θ=π,即a 与b 的夹角为π.20.(12分)已知向量OP 1→、OP 2→、OP 3→满足条件OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1. 求证:△P 1P 2P 3是正三角形.证明:∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=-OP 3→,∴ (OP 1→+OP 2→)2=(-OP 3→)2,∴|OP 1→|2+|OP 2→|2+2OP 1→·OP 2→=|OP 3→|2. ∴OP 1→·OP 2→=-12,cos ∠P 1OP 2=OP 1→·OP 2→|OP 1→|·|OP 2→|=-12,∴∠P 1OP 2=120°.∴|P 1P 2→|=|OP 2→-OP 1→|=(OP 2→-OP 1→)2=OP 1→2+OP 2→2-2OP 1→·OP 2→= 3.同理可得|P 2P 3→|=|P 3P 1→|= 3. 故△P 1P 2P 3是正三角形.21.(13分)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.解析:(1)证明:由|a -b |=2,即(cos α-cos β)2+(sin α-sin β)2=2, 整理得cos αcos β+sin αsin β=0,即a·b =0,因此a ⊥b.(2)由已知条件⎩⎪⎨⎪⎧cos α+cos β=0,①sin α+sin β=1,②又0<β<α<π,由①,有cos β=-cos α=cos(π-α),则β=π-α, 代入②,得sin α+sin(π-α)=1, 所以sin α=12,得α=π6,或α=5π6.当α=π6时,β=5π6(舍去),当α=5π6时,β=π6.综上,α=5π6,β=π6为所求.22.(13分)(1)如图,设点P ,Q 是线段AB 的三等分点, 若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →并判断 OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是 AB 的n (n ≥3)等分点,你能得到什么结论? 请证明你的结论.解析:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13(OB →-OA →)=23OA →+13OB →=23a +13b.同理OQ →=13a +23b.OP →+OQ →=a +b =OA →+OB →.(2)结论:OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n (OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1nb ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,……因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.。

相关文档
最新文档