高中物理竞赛讲座10(热学2word)

合集下载

高中物理竞赛十年预赛真题热学纯手打word版含答案

高中物理竞赛十年预赛真题热学纯手打word版含答案

十年真题-热学(预赛)1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为A .T 1=C 2C 1(T -T 2)-TB .T 1=C 1C 2(T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1(T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A .αB .α1/3C .α3D .3α3.(29届预赛1)下列说法中正确的是A .水在0℃时密度最大B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T4.(28届预赛2)下面列出的一些说法中正确的是A .在温度为20ºC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最后冰全部融化成0℃的水.在这过程中A .无水溢出杯口,但最后水面下降了B .有水溢出杯口,但最后水面仍在杯口处C .无水溢出杯口,水面始终在杯口处D .有水溢出杯口,但最后水面低于杯口6.(27届预赛3)如图所示,a和b是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部分,两部分中都封有等量的理想气体.a是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则A.甲、乙中气体的温度有可能不变B.甲、乙中气体的压强都增加了C.甲、乙中气体的内能的增加量相等D.电炉丝放出的总热量等于甲、乙中气体增加内能的总和7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌面上,冰的上方也有“白色气”.A.前者主要是由杯中水变来的“水的气态物质”B.前者主要是由杯中水变来的“水的液态物质”C.后者主要是由冰变来的“水的气态物质”D.后者主要是由冰变来的“水的液态物质”8.(26届预赛3)一根内径均匀、两端开中的细长玻璃管,竖直插在水中,管的一部分在水面上.现用手指封住管的上端,把一定量的空气密封在玻璃管中,以V0表示其体积;然后把玻璃管沿竖直方向提出水面,设此时封在玻璃管中的气体体积为V1;最后把玻璃管在竖直平面内转过900,让玻璃管处于水平位置,设此时封在玻璃管中的气体体积为V2.则有A.V1>V0≥V2B.V1>V0>V2C.V1=V2>V0D.V1>V0,V2>V09.(25届预赛4)如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中A.a中气体内能将增加,b中气体内能将减少B.a中气体内能将减少,b中气体内能将增加C.a、b中气体内能都将增加D.a、b中气体内能都将减少10.(25届预赛5)图示为由粗细均匀的细玻璃管弯曲成的“双U形管”,a、b、c、d 为其四段竖直的部分,其中a、d上端是开口的,处在大气中.管中的水银把一段气体柱密封在b、c内,达到平衡时,管内水银面的位置如图所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小段高度Δh,则A.b中的水银面也上升ΔhB.b中的水银面也上升,但上升的高度小于ΔhC .气柱中气体压强的减少量等于高为Δh 的水银柱所产生的压强D .气柱中气体压强的减少量等于高为2Δh 的水银柱所产生的压强11.(31届预赛9)图中所示的气缸壁是绝热的.缸内隔板A 是导热的,它固定在缸壁上.活塞B 是绝热的,它与缸壁的接触是光滑的,但不漏气.B 的上方为大气.A 与B 之间以及A 与缸底之间都盛有n mol 的同种理想气体.系统在开始时处于平衡状态,现通过电炉丝E 对气体缓慢加热.在加热过程中,A 、B 之间的气体经历_________过程,A 以下气体经历________过程;气体温度每上升1K ,A 、B 之间的气体吸收的热量与A 以下气体净吸收的热量之差等于_____________.已知普适气体常量为R .答案:等压、等容、nR解析:在加热过程中,AB 之间的气体的压强始终等于大气压强与B 活塞的重力产生的压强之和,故进行的是等压变化,由于隔板A 是固定在气缸内的,所以,A 以下的气体进行的是等容变化,当气体温度升高1K 时,AB 之间的气体吸收的热量为Q 1=P ΔV +ΔU ,A以下的气体吸收的热量为Q 2=ΔU ,又根据克拉伯龙方程p ΔV =nR ΔT ,所以Q 1-Q 2=p ΔV=nR .12.(28届预赛6)在大气中,将一容积为0.50m 3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手,平衡时,筒内空气的体积为0.40m 3.设大气的压强与10.0m 高的水柱产生的压强相同,则筒内外水面的高度差为 .答案:2.5m13.(34届预赛13)横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每隔圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中Ⅰ、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一个小孔,与大气相通;1mol 该种气体内能为CT(C 是气体摩尔热容量,T 是气体的绝对温度).当三个气室中气体的温度均为T 1时,“工”字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时Ⅰ室内空气柱长亦为l ,Ⅱ室内空气的摩尔数为32ν.已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦.现通过电热器对Ⅰ、Ⅲ两室中的气体缓慢加热,直至Ⅰ室内气体的温度升为其初始状态温度的2倍,活塞左移距离d .已知理想气体常量为R ,求:(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中ⅠⅢ室密闭气体吸收的总热量.解析:(1)设大气压强为p 0.初态:Ⅰ室内气体压强为p 1;Ⅲ室内气体压强为p 1′,气柱的长度为l ′.末态:Ⅰ室内气体压强为p 2;Ⅲ室内气体压强为p 2′.由初态到末态:活塞左移距离为d .对初态应用气体状态方程,对Ⅰ室气体有:p 1lS =νRT 1 ①对Ⅱ室内气体有:p 0(l 2×S +l 2×2S )=32ν0RT 1②对Ⅲ室内气体有:p1′l′(2S)=(2ν)RT1③由力学平衡条件有:p1′(2S)=p1S+p0(2S-S) ④由题给条件和①②③④式得:l′=ν2ν1+ν0l=2νν+ν0l⑤(2)对末态应用气体状态方程,对Ⅰ室内气体有:p2(l-d)S=νRT2=νR·2T1⑥对Ⅲ室内气体有:p2′(l′+d)(2S)=(2ν)RT2′⑦由力学平衡条件有:p2′(2S)=p2S+p0(2S-S) ⑧联立②⑤⑥⑦⑧和题给条件得:T2′=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫1+ν02νl-dl T1⑨(3)大气对密闭气体系统做的功为W=p0(2S-S)(-d)=-p0Sd=-dlν0RT1⑩已利用②式.系统密闭气体内能增加量为:ΔU=νC(T2-T1)+(2ν)C(T2′-T1)=νC(2T2′-T1) ⑪由⑨⑩式得:ΔU=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1⑫系统吸收的热量为:Q=ΔU-W=2νl+(ν+ν0)d(l-d)(ν+ν0)⎝⎛⎭⎫2ν+l-dlν0CT1-νCT1+dlν0RT1⑬参考评分:第(1)问9分,①②③④式各2分,⑤式1分.第(2)问4分,⑥⑦⑧⑨式各1分.第(3)问7分,⑩⑪式各2分,⑫式1分,⑬式2分.14.(33届预赛16)充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原理,考虑如图所示的连通水管(由三段内径相同的U形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两个有水的U形管两边水面分别等高.此时被封闭的空气柱的长度为L a .已知大气压强P 0、水的密度ρ、重力加速度大小为g ,L 0≡P 0/(ρg).现由左管口添加体积为ΔV =xS 的水,S 为水管的横截面积,在稳定后:(1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱的长度;(2)当x <<L 0、L a<<L 0时,求两个有水的U 形管两边水面的高度的变化(用x 表出)以及空气柱的长度.已知1+z ≈1+12z ,当z <<1. 解析:解法(一)(1)设在左管添加水之前左右两个U 形管两边水面的高度分贝为h 1和h 2,添加水之后左右两个U 形管两边水面的高度分别为h 1L 和h 1R 、h 2L 和h 2R .如图所示,设被封闭的空气的压强为p ,空气柱的长度为L b .水在常温常压下可视为不可被压缩的流体,故:2h 1+x =h 1L +h 1R ①2h 2=h 2L +h 2R ②由力学平衡条件有:p 0+ρgh 1L =p +ρgh 1R ③p 0+ρgh 2R =p +ρgh 2L④由于连通管中间高度不变,有:h 1+h 2+L a =h 1R +h 2L +L b ⑤由玻意耳定律得:p 0L a =pL b ⑥联立①②③④⑤⑥式得p 满足的方程:L 0p 0p 2+⎝⎛⎭⎫L a -L 0-x 2p -p 0L a =0 解得:p =p 02L 0⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑦ 将⑦式带入⑥式得:L b =12⎣⎡⎦⎤L a -L 0-x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑧ 由①②③④⑦式得:Δh 1L ≡h 1L -h 1=x -Δh 1R=x -L 02+14[L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0] ⑨ =5x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 1R ≡h 1R -h 1=L 0+x 2-p 2ρg=L 0+x 2-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑩=3x +2L a +2L 08-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2L ≡h 2L -h 2=L 02-p 2ρg =L 02-14⎣⎡⎦⎤L 0-L a +x 2+⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑪ =2L a +2L 0-x 8-14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 Δh 2R ≡h 2R -h 2=-Δh 2L=x -2L a -2L 08+14⎝⎛⎭⎫L a -L 0-x 22+4L a L 0 ⑫ (2)在x <<L 0和L a <<L 0的情形下,由⑧式得:L b ≈L a ⑬⑦式成为:p ≈p 0(1+x 2L 0) ⑭ 由⑨⑩⑪⑫⑬⑭式得:Δh 1L ≈34x ⑮ Δh 1R ≈-Δh 2L =Δh 2R ≈14x ⑯ 参考评分:第(1)问14分,①②③④⑤⑥⑦⑧式各1分,⑨⑩式各2分,⑪⑫式各1分;第(2)问6分,⑬⑭式各1分,⑮⑯式各2分.解法(二)(1)设U 形管1左侧末态水面比初态上升x 2+y ,右侧末态水面比初态上升x 2-y ,U 形管2左侧末态水面比初态下降y ,右侧末态水面比初态上升y .由玻意耳定律得: L a L 0=L b (L 0+2y ) ①由几何关系有:L a -x 2+2y =L b ②将②式带入①式得:L a L 0=(L a -x 2+2y ) (L 0+2y ) ③解得: y =x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a -x 22+2xL 0 ④ 此即U 形管2左侧末态比初态水面下降值,也是右侧末态比初态水面上升值(负根y=x 8-L 04-L a 4-14⎝⎛⎭⎫L 0+L a -x 22+2xL 0不符合题意,已舍去).U 形管1左侧末态比初态水面上升:x 2+y =5x -2L a -2L 08+14⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑤ 右侧末态比初态水面上升:x 2-y =3x +2L a +2L 08-14⎝⎛⎭⎫L a +L 0-x 2 2+2xL 0 ⑥ 将④式带入②式得:L b =L a -x 2+2y =2L a -2L 0-x 4+12⎝⎛⎭⎫L a +L 0-x 22+2xL 0 ⑦ (2)在x <<L 0和L a <<L 0的情形下,④⑤⑥⑦式中的根号部分⎝⎛⎭⎫L a +L 0-x 22+2xL 0=L a 2+L 02+x 24+2L 0L a -xL 0-xL a +2xL 0 =L 01+L a 2L 02+x 24L 02+2L a L 0-xL a 2L 02+x L 0≈L 0⎣⎡⎦⎤1+12(L a 2L 02+x 24L 02+2L a L 0-xL a L 02+x L 0 =L 0+12⎣⎡⎦⎤L a 2L 0+x 24L 0+2L a -xL a L 0+x ⑧ ≈L 0+12(2L a +x ) =L a +L 0+x 2⑧式在推导过程中用到了1+z ≈1+12z ,当z <<1. 将⑧式带入④⑤⑥⑦式中分别得到:y ≈x 8-L 04-L a 4+14⎝⎛⎭⎫L 0+L a +x 2=x 4⑨ x 2+y ≈x 2+x 4=3x 4⑩ x 2-y ≈x 2-x 4=x 4⑪ L b ≈L a 2-L 02-x 4+12⎝⎛⎭⎫L 0+L a +x 2=L a ⑫参考评分:第(1)问14分,①式4分,②③式各1分,④式3分,⑤式2分,⑥式1分.第(2)问6分,⑨⑩式各2分,⑪⑫式各1分.15.(32届预赛15)如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内,它们的底部由一细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空.当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为h /2.现保持恒温槽温度不变,在两活塞上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2m g (g 为重力加速度)为止,并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为h /2处.求:(1)两个活塞的横截面积之比S A ∶S B .(2)气缸内气体的最后的温度.(3)在加热气体的过程中,气体对活塞所做的总功.解析:(1)平衡时气缸A 、B 内气体的压强相等,故:m A g S A =m B g S B① 由①式和题给条件得: S A ∶S B =2∶1 ②(2)两活塞上各放一质量为2m 的质点前,气体的压强p 1和体积V 1分别为:p 1=2mg S A =mg S B③ V 1=32S B h ④ 两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为之,B 中气体全部进入气缸A .假设此时气缸A 中活塞并未上升到气缸顶部,气体的压强p 2=4mg S A =2mg S B⑤ 设平衡时气体体积为V 2,由于初态末态都是平衡态,由理想气体状态方程有:p 1V 1T 0=p 2V 2T 0⑥ 由③④⑤⑥式得: V 2=34S 0h =38S A h ⑦ 这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,气体等容升压;压强升至3mg S B时,B 中活塞开始上升,气体等压膨胀.设当温度升至T 时,该活塞恰好位于h 2处.此时气体的体积变为V 3=52S B h ⑧ 气体压强 p 3=3mg S B⑨ 设此时气缸内气体的温度为T ,由状态方程有:p 2V 2T 0=p 3V 3T⑩ 由⑤⑦⑧⑨⑩式得: T =5T 0 ⑪(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58h ⑫ 气体对活塞所做的总功为W =4mg ·58h +3mg ·h 2=4mgh ⑬ 参考评分:第(1)问3分,①式2分,②式1分;第(2)问13分,③④⑤⑥式各2分,⑦⑧⑨⑩⑪式各1分;第(3)问4分,⑫⑬式各2分.16.(31届预赛14)1mol 的理想气体经历一循环过程1-2-3-1,如p -T 图示所示,过程1-2是等压过程,过程3-1是通过p -T 图原点的直线上的一段,描述过程2-3的方程为c 1p 2+c 2p =T ,式中c 1和c 2都是待定的常量,p 和T 分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P 1和T 1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T 2以及p 3和T 3.气体常量R 也是已知的.(1)求常量c 1和c 2的值;(2)将过程1-2 -3 -1在p -v 图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.解析:(1)设气体在状态i (i =1、2、3)下的压强、体积和温度分别为p i 、V i 和T i ,由题设条件有:c 1p 22+c 2p 2=T 2 ①c 1p 32+c 2p 3=T 3 ②由此解得:c 1=T 2p 3-T 3p 2p 22p 3-p 32p 2=T 2p 3-T 3p 1p 12p 3-p 32p 1③ c 2=T 2p 32-T 3p 22p 2p 32-p 22p 3=T 2p 32-T 3p 12p 1p 32-p 12p 3④ (2)利用气体状态方程pV =RT 以及V 1=R T 1p 1、V 2=R T 2p 2、V 3=R T 3p 3⑤ 可将过程2—3的方程写为p V 2-V 3p 2-p 3=V +V 2p 3-V 3p 2p 2-p 3⑥ 可见,在p -V 图上过程2-3是以(p 2,V 2)和(p 3,V 3)为状态端点的直线,过程3-1是通过原点直线上的一段,因而描述其过程的方程为:p T =c 3 ⑦ 式中c 3是一常量,利用气体状态方程pV =RT ,可将过程3-1的方程改写为:V =R c 3=V 3=V 1 ⑧ 这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1-2-3-1在p -V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W =-12(p 3-p 1)(V 2-V 1) ⑨ 利用气体状态方程pV =RT 和⑤式,上式即:W =-12R (T 2-T 1)⎝⎛⎭⎫p 3p 1-1 ⑩ 参考评分:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1-2-3-1在p -V 上的图示正确得6分;第(3)问2分,⑩式2分.17.(30届预赛14)如图所示,1摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.解析:令ΔU 表示系统内能的增量,Q 和W 分别表示系统吸收的热量和外界对系统所做的功,由热力学第一定律有:ΔU =Q +W ①令T 1和T 2分别表示状态A 和状态B 的温度,有:ΔU =32R (T 2-T 1) ②令p 1、p 2和V 1、V 2分别表示状态A 、B 的压强和体积,由②式和状态方程可得: ΔU=32(p 2V 2-p 1V 1) ③由状态图可知,做功等于图线下所围面积,即:W =-12(p 1+p 2)(V 2-V 1) ④要系统吸热,即Q >0,由以上格式可得:32(p 2V 2-p 1V 1)+12(p 1+p 2)(V 2-V 1)>0⑤按题意,p 2p 1=12,带入上式,可得:V 2V 1>32 ⑥参考评分:①②③式各3分,④式4分,⑤式3分,⑥式2分.18.(29届预赛14)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J·mol -1·K -1解析:以m 表示碘蒸气的总之,m 1表示蒸气的温度为T 时单原子分子的碘蒸气的质量,μ1、μ2分别表示单原子分子碘蒸气和双原子分子碘蒸气的摩尔质量,p 1、p 2分别表示容器中单原子分子碘蒸气和双原子分子碘蒸气的分压强,则由理想气体的状态方程有:p 1V =m 1μ1RT ① p 2V=m -m 1μ2RT②其中,R 为理想气体常量. 根据道尔顿分压定律,容器中碘蒸气的总压强p 满足:p =p 1+p 2 ③设α=m 1m 为单原子分子碘蒸气的质量与碘蒸气的总质量的比值,注意到μ1=12μ2 ④ 由以上各式解得:α=μ2V mR ·p T-1 ⑤ 带入有关数据可得,当温度为1073K 时,α=0.06 ⑥ 当温度为1473K 时,α=0051 ⑦ 参考评分:①②③⑤式各4分,⑥⑦式各2分.19.(26届预赛15)图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍.M 1把一定质量的气体封闭在气缸为L 1部分,M 1和M 2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的压强p 0是恒定的.K 是加热L 2中气体用的电热丝.初始时,两个活塞和气体都处在平衡状态,分别以V 10和V 20表示L 1和L 2中气体的体积.现通过K 对气体缓慢加热一段时间后停止加热,让气体重新达到平衡太,这时,活塞未被气缸壁挡住.加热后与加热前比,L 1和L 2中气体的压强是增大了、减小还是未变?要求进行定量论证.解析:解法(一)用n 1和n 2分别表示L 1和L 2中气体的摩尔数,p 1、p 2和V 1、V 2分别表示L 1和L 2中气体处在平衡状态时的压强和体积,T 表示气体的温度(因为M 1是导热的,两部分气体的温度相等),由理想气体状态方程有:p 1V 1=n 1RT ①p 2V 2=n 2RT ②式中R 为普适气体常量.若以两个活塞和轻杆构成的系统为研究对象,处在平衡状态时有:p 1S 1-p 2S 1+p 2S 2-p 0S 2=0 ③已知S 2=2S 1 ④有③④式得:p 1+p 2=2p 0 ⑤由①②⑤三式得:p 1=2n 1n 2p 0V 2V 1+n 1n 2V 2 ⑥若⑥式中的V 1、V 2是加热后L 1和L 2中气体的体积,则p 1就是加热后L 1中气体的压强.加热前L 1中气体的压强则为p 10=2n 1n 2p 0V 20V 10+n 1n 2V 2 ⑦ 设加热后L 1中气体体积的增加量为ΔV 1,L 2中气体体积的增加量为ΔV 2,因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:ΔV 1=ΔV 2=ΔV ⑧加热后L 1和L 2中气体的体积都是增大的,即ΔV >0.(若ΔV <0,即加热后活塞是向左移动的,则大气将对封闭在气缸中的气体做功,电热丝又对气体加热,根据热力学第一定律,气体的内能增加,温度将上升,而体积是减小的,故L 1和L 2中气体的压强p 1和p 2都将增大,这违反力学平衡条件⑤式)于是有V 1=V 10+ΔV ⑨V 2=V 20+ΔV ⑩由⑥⑦⑨⑩四式得:p 1-p 10=2n 1n 2p 0(V 10-V 20)ΔV ⎣⎡⎦⎤V 10+ΔV +n 1n 2(V 20+ΔV )⎝⎛⎭⎫V 10+n 1n 2V 20 ⑪由⑪式可知:若加热前V 10=V 20,则p 1=p 10,即加热后p 1不变,由⑤式知p 2亦不变;若加热前V 10<V 20,则p 1<p 10,即加热后p 1必减小,由⑤式知p 2必增大;若加热前V 10>V 20,则p 1>p 10,即加热后p 1必增大,由⑤式知p 2必减小.参考评分:得到⑤式3分,得到⑧式3分,得到⑪式8分,最后结论6分. 解法(二)设加热前L 1和L 2中气体的压强和体积分别为p 10、p 20和V 10、V 20,以p 1、p 2和V 1、V 2分别表示加热后L 1和L 2中气体的压强和体积,由于M 1是导热的,加热前L 1和L 2中气体的温度是相等的,设为T 0,加热后L 1和L 2中气体的温度也相等,设为T .因为加热前、后两个活塞和轻杆构成的系统都处在力学平衡状态,注意到S 2=2S 1,力学平衡条件分别为:p 10+p 20=2p 0 ①p 1+p 2=2p 0 ②由①②两式得:p 1-p 10=-(p 2-p 20) ③根据理想气体状态方程,对L 1中的气体有:p 1V 1p 10V 10=T T 0④ 对L 2中气体有:p 2V 2p 20V 20=T T 0⑤ 由④⑤两式得:p 1V 1p 10V 10=p 2V 2p 20V 20⑥ ⑥式可改写成:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1+p 2-p 20p 20⎝⎛⎭⎫1+V 2-V 20V 20 ⑦ 因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:V 1-V 10=V 2-V 20 ⑧把③⑧式带入⑦式得:⎝⎛⎭⎫1+p 1-p 10p 10⎝⎛⎭⎫1+V 1-V 10V 10=⎝⎛⎭⎫1-p 1-p 10p 20⎝⎛⎭⎫1+V 1-V 10V 20 ⑨ 若V 10=V 20,则由⑨式得p 1=p 10,若加热前L 1中气体的体积等于L 2中气体的体积,则加热后L 1中气体的压强不变,由②式可知加热后L 2中气体的压强亦不变;若V 10<V 20,则由⑨式得p 1<p 10,若加热前L 1中气体的体积小于L 2中气体的体积,则加热后L 1中气体的压强必减小,由②式可知加热后L 2中气体的压强必增大;若V 10>V 20,则由⑨式得p 1>p 10,若加热前L 1中气体的体积大于L 2中气体的体积,则加热后L 1中气体的压强必增大,由②式可知加热后L 2中气体的压强必减小;参考评分:得到①式和②式或得到③式得3分,得到⑧式得3分,得到⑨式得8分,最后结论得6分.。

高中物理奥赛讲义(热学)doc - 热 学

高中物理奥赛讲义(热学)doc - 热 学

热 学热学知识在奥赛中的要求不以深度见长,但知识点却非常地多(考纲中罗列的知识点几乎和整个力学——前五部分——的知识点数目相等)。

而且,由于高考要求对热学的要求逐年降低(本届尤其低得“离谱”,连理想气体状态方程都没有了),这就客观上给奥赛培训增加了负担。

因此,本部分只能采新授课的培训模式,将知识点和例题讲解及时地结合,争取让学员学一点,就领会一点、巩固一点,然后再层叠式地往前推进。

一、分子动理论1、物质是由大量分子组成的(注意分子体积和分子所占据空间的区别)对于分子(单原子分子)间距的计算,气体和液体可直接用3分子占据的空间,对固体,则与分子的空间排列(晶体的点阵)有关。

【例题1】如图6-1所示,食盐(N a Cl )的晶体是由钠离子(图中的白色圆点表示)和氯离子(图中的黑色圆点表示)组成的,离子键两两垂直且键长相等。

已知食盐的摩尔质量为58.5×10-3kg/mol ,密度为2.2×103kg/m 3,阿伏加德罗常数为6.0×1023mol-1,求食盐晶体中两个距离最近的钠离子中心之间的距离。

【解说】题意所求即图中任意一个小立方块的变长(设为a )的2倍,所以求a成为本题的焦点。

由于一摩尔的氯化钠含有N A 个氯化钠分子,事实上也含有2N A 个钠离子(或氯离子),所以每个钠离子占据空间为 v =Am olN 2V 而由图不难看出,一个离子占据的空间就是小立方体的体积a 3, 即 a 3=A m ol N 2V = Am ol N 2/M,最后,邻近钠离子之间的距离l = 2a 【答案】3.97×10-10m 。

〖思考〗本题还有没有其它思路?〖答案〗每个离子都被八个小立方体均分,故一个小立方体含有81×8个离子 = 21分子,所以…(此法普遍适用于空间点阵比较复杂的晶体结构。

) 2、物质内的分子永不停息地作无规则运动固体分子在平衡位置附近做微小振动(振幅数量级为0.1A 0),少数可以脱离平衡位置运动。

高中物理竞赛热学讲义-2

高中物理竞赛热学讲义-2

饱和汽和未饱和汽固体、液体和气体是通常存在的三种物质状态。

在一定条件下,这三种物质状态可以相互转化,即发生物态变化,在初中我们学过一些物态变化的知识,这一章复习这方面的知识,同时学习一些新知识。

一、物态变化熔化和凝固物质从固态变成液态叫做熔化,从液态变成固态叫做凝固。

晶体物质和非晶体物质在熔化和凝固时情况是不同的。

晶体有一定的熔化温度——熔点,非晶体没有一定的熔点。

物质在熔化时要吸收热量,在凝固时要放出热量。

在晶体中,微粒排列成有规则的空间点阵,维持这种规则排列的是微粒之间的相互作用;微粒的热运动不足以克服这种相互作用,微粒一般只能在平衡位置附近做无规则的振动。

给晶体加热时,晶体从外界得到能量,微粒的热运动加剧。

达到一定的温度时,一部分微粒具有了足够的动能,能够克服微粒间的作用力,离开平衡位置。

这时晶体的点阵结构被破坏,晶体开始熔化。

在熔化过程中,外界供给晶体的能量,全部用来破坏晶体的点阵结构,增加分子间的势能,所以温度不发生变化。

凝固时,情况正好相反。

微粒排列成点阵结构时,微粒间的势能减小,因此虽然放出能量,温度却保持不变,直到全部凝固成晶体。

非晶体的微观结构本来就跟液体类似,非晶体在熔化过程中不必为破坏点阵结构而消耗能量,所以温度不停地上升。

汽化和液化物质从液态变成气态叫做汽化,从气态变成液态叫做液化。

汽化有两种方式:蒸发和沸腾。

蒸发是在液体表面进行的汽化现象,沸腾是在液体表面和液体内部同时发生的汽化现象。

增大气体的压强和降低气体的温度,可以使气体液化。

物质在汽化时要吸收热量,液化时要放出热量。

液体中分子热运动的平均动能跟温度有关,但在任何温度下,总有一部分分子的动能比平均动能大。

那些处在液体表面层附近的动能足够大的分子,能够挣脱周围分子的引力,飞出液面,形成蒸气(也常叫做汽),这就是蒸发。

液体温度越高,分子的平均动能就越大,具有足够大的动能因而能够飞出液面的分子也就越多。

所以,温度越高,蒸发得越快。

高中物理竞赛讲座:第六章热学2

高中物理竞赛讲座:第六章热学2

分子速率分布图 N分子总数
N Nv
S
o
表示速率在 数的百分比 . 当
v v v
v
区间的分子数占总
的极限值变成与v有关的连续函数
1、 速率分布函数
f ( v)
dS
1)表示在温度为T 的平衡状态 下,速率在v 附近单位速率区 间 的分子数占总数的比例 .
o
v v dv
v
2)表示气体分子的速率处于v 附近单位速率区间的概率。 ——速率位于 内分 子数占总分子数的比例
归一化条件
单原子分子 ——自由运动质点 刚性双原子分子 ——两个被看作质点的原子被一条几何线连接 刚性多原子分子 ——质心的平动和绕过质心任一轴的转动
自由度 单原子分子 3 转动 0 平动 3
双原子分子
三原子(多原子)分子
5
6
2
3
3
3
单原子分子
双原子分子
多原子分子
2、能量按自由度均分原理:
按照统计假设,在平衡态下理想气体分子无规则运动的 结果使任何一种运动都不会比其他运动占优势,机会是 均等的。平均来说,整个动能由每个自由度均匀承担。
气体动理论的基本观点:
1)宏观物体由大量分子(原子)组成 2)分子在不停地作无规则的运动,其剧烈程度与 物体的温度有关
3)大量粒子的宏观表现遵循统计规律
热平衡
热力学第零定律
设A和C、B和C分别热平衡,则A和B一定热平衡
温标
热力学第三定律
热力学零度不可能达到
一、理想气体状态方程(equation of state)
dA
x
vixdt
分子在对dA的一次碰撞中施于dA的冲量 dt时间内,碰到dA面的第i组分子数

物理竞赛讲座《热学》

物理竞赛讲座《热学》
I E p0 S ( 2 1 ) 4m
2
1熔解和凝固 物质从固态变为液态叫熔解,从液态变为固态叫凝固。 晶体在物质熔解时,固态和液态可以共存的温度叫熔点。同种晶 体在某一压强下的熔点也是其凝固点。
物态变化
晶体在熔解(或凝固)过程中温度保持在熔点(或凝固点)不变。 非晶体无一定的熔点。非晶体在熔解(或凝固)过程中,温度不 停地上升或下降。 晶体的熔点与压强有关。熔解时体积膨胀的晶体,随所受压强增 大,溶点升高;熔解时体积缩小的晶体(如冰、锑),随所受压 强增大,溶点降低。 晶体中渗杂质后,溶点一般降低。
沸腾是在液体表面和内部同时发生的汽化 过程,沸腾发生时,它的饱和汽压必须等于外 界压强,沸腾时液体的温度不变,这个温度称 为该液体的沸点;外部压强增大,液体的沸点 升高;外部压强降低,沸点降低;不同的液体 在相同的压强下沸点不同。 从宏观角度,沸腾不同于蒸发,但从分子 运动论观点,两者并无本质差别。沸腾时,在 气、液分界面上汽化仍以蒸发的方式在进行, 只是在液体内部同时出现大量小气泡上浮起至 液面破裂,大大增加了汽化的速度。
有同学采用这样的解法
(76 20) 60 76 96 300 T2
T2 380K
P PV 1V1 2 2 T1 T2
水银溢出经历了哪几个阶段?
第1阶段为等压膨胀过程,水银上升了16cm
V1 V2 T1 T2
T2 380K
第2阶段,继续加热,水银将外溢,气体 压强将减小,体积V将增大,PV乘积的变 化规律就只能借助于数学工具进行讨论, PV/T=C,当PV最大时,T就是题中要求的 最高温度。
由此得到 b1 b H 时,
注入细管内水银柱的长度有最大值xmax
xmax b H

高中物理竞赛讲座9(热学1word)

高中物理竞赛讲座9(热学1word)

第八章 热 学第一讲 热学基础一、总述热学是研究和温度有关的热现象所符合的规律。

热学分为热力学和统计热学。

分别是研究热学的二个分支,两种方法。

热力学:通过实验得出一系列的规律,从而得出物质的各项物理量随温度的变化描述。

是从宏观角度表述热学规律的。

统计热学:以分子动理论为基础,利用数学统计方法,得出物理规律。

是从微观的角度 表述热学规律的。

二、温标表示温度的一种方法。

常见的几种温标:1、摄氏温标:规定水在一个标准大气压下的冰点为0度,沸点为100度,中间的温度以水银的体积膨胀为准。

单位C 02、华氏温标:水的冰点为32度,水的沸点为212度,单位:F 0两种温标的换算关系:100180)32(00⨯-=F t t C t 3、热力学温标(理想气体温标):根据热力学定律得出的与测温物质无关的温标。

单位K 。

15.273+=t T t T ∆=∆,热力学温度是一个基本物理量。

三、内能定义: 物体所有分子动能和分子势能之和。

有关因素: 微观: 分子数、分子运动的剧烈程度、 分子间距 宏观:温度、体积、摩尔数 内能是一个状态量。

任何物体都有内能。

四、热力学第一定律 U Q W ∆=+做功W :是一个过程量,从相同的初态到相同的未态,经过不同的过程做功是不同的。

通过做功可以实现其它形式的能和内能之间的转化。

热量Q :也是一个和过程有关的物理量,从相同的初态到相同的未态,经历不同的过程,吸收或释放的热量是不同的。

通过热传递可以实现物体间内能的转移。

热传递的方式物体之间或同一物体的各部分间的热量转移过程叫做热传递。

发生热传递的条件是物体之间或同一物体的不同部分存在着温度差。

热传递的方向,热量总是由高温物体自发地传给低温物体,或从物体的高温部分自发地传到低温部分。

热传递方式有三种:对流、传导和辐射。

(1)对流液体和气体中较热部分与较冷部分间,由于密度的差别,形成循环流动,使温度渐趋均匀一致的过程即为对流。

对流是液体和气体中传热的主要形式,气体对流现象比液体明显。

高中物理竞赛十年复赛真题热学纯手打word版含答案

高中物理竞赛十年复赛真题热学纯手打word版含答案

十年真题-热学复赛1.34届复赛7如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程正循环指沿图中箭头所示的循环,其中自A到B为直线过程,自B到A为等温过程.双原子理想气体的定容摩尔热容为R,R为气体常量.1求直线AB过程中的最高温度;2求直线AB过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c;3求整个直线AB过程中所吸收的净热量和一个正循环过程中气体对外所作的净功.解析:1直线AB过程中任一平衡态气体的压强p和体积V满足方程=此即p=p0-V①根据理想气体状态方程有:pV=νRT②由①②式得:T==+③由③式知,当V=V0时,④气体达到直线AB过程中的最高温度为:T max=⑤2由直线AB过程的摩尔热容C m的定义有:dQ=νC m dT⑥由热力学第一定律有:dU=dQ-pdV⑦由理想气体内能公式和题给数据有:dU=νC V dT=νRdT⑧由①⑥⑦⑧式得:C m=C V+=R+⑨由③式两边微分得:=⑩由⑩式带入⑨式得:C m=由⑥⑩ 式得,直线AB过程中,在V从增大到的过程中,C m>0,>0,故>0,吸热在V从增大到的过程中,C m<0,<0,故>0,吸热在V从增大到V0的过程中,C m>0,<0,故<0,放热由式可知,系统从吸热到放热转折点发生在V=V c=处由③式和上式得:T c==3对于直线AB过程,由⑥⑩式得:dQ=νCm dV=pdV=pdV将上式两边对直线过程积分得,整个直线AB过程中所吸收的净热量为:Q直线==p0=p0V0直线AB过程中气体对外所做的功为:W直线==p0V0等温过程中气体对外所做的功为:W等温===-ln2一个正循环过程中气体对外所做的净功为:W=W直线+W等温=p0V0参考评分:第1问10分,①②式各3分,④⑤式各2分;第2问20分,⑥⑦⑧⑨⑩ 式各2分;第3问10分,式各2分.2.33届复赛2秋天清晨,气温为℃,一加水员到实验园区给一内径为、高为的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一内径为的透明圆柱形观察柱,底部与罐相连连接处很短,与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜不溶于水,与罐壁无摩擦,闭了罐顶的加水口.此时加水员通过观察柱上的刻度看到罐内水高为.1从清晨到中午,气温缓慢升至℃,问此时观察柱内水位为多少假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.2从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少求这个过程中罐内空气的热容量.已知罐外气压始终为标准大气压p0=×105pa,水在℃时的密度为ρ0=×103kg·m-3,水在温度变化过程中的平均体积膨胀系数为×10-4K-1,重力加速度大小为g=s2,绝对零度为-℃.解析:1清晨加完水封闭后,罐内空气的状态方程为p0V0=nRT0①至中午时由于气温升高,罐内空气压强增大,设此时罐内空气的压强、体积和温度分别为p、V1、T1,相应的状态方程为:p1V1=nRT1②1此时观察柱和罐内水位之差为:Δh=++③式中右端第三项是由原罐内和观察柱内水的膨胀引起的贡献,l0=为早上加水后观察柱内水面的高度,S1=πm2,S2=4π×10-4m2分别为罐、观察柱的横截面积.由力平衡条件有:p1=p0+ρ1gΔh1④式中ρ1=是水在温度为T1时的密度.⑤联立①②③④⑤式得:ρ1gS′Δh2+p0S1+λρ1gV0-p0V0=0⑥式中S′=,λ=1-κT1-T0⑦解⑥得:Δh==⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V1-V0=S′Δh-κT1-T0S1l0=-由上式和题给数据得,中午观察柱内水位为:l1=Δh-+l0=⑨2先求罐内空气从清晨至中午对外所做的功.解法一早上罐内空气压强p0=×105pa,中午观察柱内水位相对于此时罐内水位升高Δh,罐内空气压强升高了Δp=ρ1gΔh=×103pa⑩因Δp<<p0,认为在准静态升温过程中罐内平均压强=p0+Δp=×105pa罐内空气体积缩小了ΔV=可见<<1,这说明式是合理的.罐内空气对外做功W=ΔV=-×103J解法二缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水温为T时水的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为:p=p0+V1-V0+κT1-T0S1l0=p0+由题设数据和前门计算结果可知,κT-T0<κT1-T0=<=这说式右端分子中与T有关的项不可略去,而右端分母中与T有关的项可略去.于是式:p=p0+V1-V0+κT1-T0S1l0=p0+利用状态方程,上式可改写成p=-从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J解法三缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐内空气都处于热平衡状态,设其体积、温度和压强分别为V、T和p.水在温度为T时的密度为ρ=⑩将②③④式中的V1、T1和p1换为V、T和p,利用⑩式得罐内空气在温度为T时的状态方程为p=p0+V-V0+κT1-T0S1l0=p0+=p0+S1l0+≈p0++V-V0-S1l01-κT-T0=p0++≈p0++V-V0-S1l01+κT0+PV=p0++V-2V01+κT0+PV=p0++V-2V01+κT0+PV式中应用了κT-T0<κT1-T0=,<=式可改写成p==-+从封闭水罐后至中午,罐内空气对外界做的功为W===-=-×103J现计算罐内空气的内能变化.由能量均分定理知,罐内空气中午相对于清晨的内能改变为:ΔU=nRT1-T0=T1-T0=×104J式中5是常温下空气分子的自由度.由热力学第一定律得罐内空气的吸热为:ΔQ=W+ΔU=×104J从封闭水罐后至中午,罐内空气在这个过程中的热容量为:C==×103J/K参考评分:第1问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第2问10分,⑩ 式各1分,式各2分,式1分.3.32届复赛7如图,1mol单原子理想气体构成的系统分别经历循环过程abcda和abc′a.已知理想气体在任一缓慢变化过程中,压强p和体积V满足函数关系p=fV.1试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为Cπ=C V+,式中,C V和R分别为定容摩尔热容和理想气体常数;2计算系统经bc′直线变化过程中的摩尔热容;3分别计算系统经bc′直线过程中升降温的转折点在p-V图中的坐标A和吸放热的转折点在p-V图中的坐标B;4定量比较系统在两种循环过程的循环效率.解析:1根据热力学第一定律有:dU=δQ+δW①这里对于1mol理想气体经历的任一缓慢变化过程中,δQ、δW和dU可分别表示为δQ=CπdT、δW=-pdV、dU=CVdT②将理想气体状态方程pV=RT两边求导得p+V=R③式中利用了=,根据③式有:=④联立①②③④式得:Cπ=C V+⑤2设bc′过程方程为p=α-βV⑥根据Cπ=C V+可得该直线过程的摩尔热容为:Cπ=C V+⑦式中C V=R是单原子理想气体的定容摩尔热容.对bc′过程的初态3p1,V1和终态p1,5V1有:3p1=α-βV1、p1=α-5βV1⑧由⑧式得:α=p1、β=⑨由⑥⑦⑧⑨式得:Cπ=⑩3根据过程热容的定义有:Cπ=式中,ΔQ是气体在此直线过程中,温度升高ΔT时从外界吸收的热量.由⑩ 式得:ΔT=RΔQΔQ=由式可知,bc′过程中的升降温的转折点A在p-V图上的坐标为AV1,p1由⑩式可知,bc′过程中的吸放热的转折点B在p-V图上的坐标为BV1,p14对于abcda循环过程,ab和bc过程吸热,cd和da过程放热Qab=nC V T b-T a=RT b-RT a=3p1V1Qbc=nC p T c-T b=RT c-RT b=15p1V1式中已知n=1mol,单原子理想气体定容摩尔热容C V=R,定压摩尔热容C V=R气体在abcda循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda===对于abc′a循环过程,ab和bB过程吸热,Bc′和c′a过程放热.由热力学第一定律可得bB过程吸热为:Q bc′=ΔU bB-W bB=nC V T B-T b+p B+3p1V B-V1=所以循环过程abc′a的效率为ηabc′a===由式可知,ηabc′a>ηabcda参考评分:第1问5分,①②③④⑤式各1分;第2问5分,⑥⑦⑧⑨⑩式各1分;第3问7分,式1分,式各2分,式各1分;第4问5分,式各1分.4.31届复赛2一种测量理想气体的摩尔热容比γ=C p/C V的方法Clement-Desormes方法如图所示:大瓶G内装满某种理想气体,瓶盖上通有一个灌气放气开关H,另接出一根U形管作为压强计M.瓶内外的压强差通过U形管右、左两管液面的高度差来确定.初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U形管液面的高度差h i.然后打开H,放出少量气体,当瓶内外压强相等时,即刻关闭H.等待瓶内外温度又相等时,记录此时U形管液面的高度差hf.试由这两次记录的实验数据h i和h f,导出瓶内气体的摩尔热容比γ的表达式.提示:放气过程时间很短,可视为无热量交换;且U形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化→解析:解法一瓶内理想气体经历如下两个气体过程:pi,V0,T0,N i p0,V0,T,N f p f,V0,T0,N f其中,p i,V0,T0,N i、p0,V0,T,N f、p f,V0,T0,N f分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV=NkT,考虑到由于气体初、末态的体积和温度相等,有=①另一方面,设V′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p0时的体积,即:p i,V0,T,N i p0,V′,T0,N i此绝热过程满足=②由状态方程有p0V′=N i kT和p0V0=N f kT,所以=③联立①②③式得=④此即γ=⑤由力学平衡条件有p i=p0+ρgh i⑥pf=p0+ρgh f⑦式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由⑤⑥⑦式得γ=⑧利用近似关系式:当x<<1,ln1+x≈x,以及<<1,<<1有γ==⑨参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab,再通过等容升温过程bc达到末态p i,V1,T0p0,V0,Tp f,V0,T0其中,p i,V1,T0、p0,V0,T、和p f,V0,T0分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程ab:p1γ-1Tγ=pγ-1Tγ①bc:=②由①②式得:=③此即γ=④由力学平衡条件有p i=p0+ρgh i⑤pf=p0+ρgh f⑥式中,p0+ρgh0为瓶外的大气压强,ρ是U形管中液体的密度,g是重力加速度的大小.由④⑤⑥式得⑦利用近似关系式:当x <<1,ln1+x ≈x ,以及<<1,<<1有γ==⑧参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分. 5.30届复赛6温度开关用厚度均为的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为×10-5/度和×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.忽略加热时金属片厚度的变化.解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2.对于钢片r -φ=l +Δl 1①Δl 1=lα1T 2-T 1②式中,d =.对于青铜片r +φ=l +Δl 2③Δl 2=lα2T 2-T 1④联立以上各式得r =d =×102mm⑤参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分.6.29届复赛6如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 内装有某种理想气体,温度为T 1;B 内为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的内能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+CR C pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A 中气体的摩尔数为n 1,B 中气体的摩尔数为n 2,则气体总摩尔数为n =n 1+n 2①把两容器中的气体作为整体考虑,设重新关闭阀门后容器A 中气体温度为T 1′,B 中气体温度为T 2,重新关闭阀门之后与打开阀门之前气体内能的变化可表示为ΔU =n 1CT 1′-T 1+n 2CT 2-T 1②由于容器是刚性绝热的,按热力学第一定律有ΔU =0③令V 1表示容器A 的体积,初始时A 中气体的压强为p 1,关闭阀门后A 中气体压强为αp 1,由理想气体状态方程可知n =④ n 1=⑤由以上各式可解得:T 2=由于进入容器B 中的气体与仍留在容器A 中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A 中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V 10压强为p 1时,则有p 1=αp 1⑥ 利用状态方程可得=⑦由①②③④⑤⑥⑦式得,阀门重新关闭后容器B 中气体质量与气体总质量之比=⑧参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.28届复赛6如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P0.用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A室中有一电加热器Ω.已知在ArrayA、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V.现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体的末态体积和A室中气体的末态温度.设A、B两室中气体1摩尔的内能为U=RT,式中R为普适气体常量,T为绝对温度在电加热器对A室中气体加热的过程中,由于隔板N是导热的,B室中气体的温度要升高,活塞M将向右移动.当加热停止时,活塞M有可能刚移到气缸最右端,亦可能尚未移到气缸最右端.当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:1设加热恰好能使活塞M移到气缸的最右端,则B室气体末态的体积V=2V0①B根据题意,活塞M向右移动过程中,B中气体压强不变,用T B表示B室中气体末态的温度,有=②由①②式得T B=2T0③由于隔板N是导热的,故A室中气体末态的温度T A=2T0④下面计算此过程中的热量Q m.在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A=RT A-T0⑤由④⑤两式得Q A=RT0⑥B室中气体经历的是等压过程,在过程中B室气体对外做功为W=p0V B-V0⑦B由①⑦式及理想气体状态方程得W B=RT0⑧内能改变为ΔU B=RT B-T0⑨由④⑨两式得ΔU B=RT0⑩根据热力学第一定律和⑧⑩两式,B室气体吸收的热量为Q B=ΔU B+W B=RT0由⑥ 两式可知电加热器提供的热量为Q m=Q A+Q B=6RT0若Q0=Q m,B室中气体末态体积为2V0,A室中气体的末态温度2T0.2若Q0>Q m,则当加热器供应的热量达到Q m时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q0-Q m是A、B中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A室中气体末态的温度为T A′,有Q-Q m=RT A′-2T0+RT A′-2T0由两式可求得T A′=+T0B中气体的末态的体积V′=2V0B3若Q0<Q m,则隔板尚未移到气缸最右端,加热停止,故B室中气体末态的体积V B″<2V0.设A、B两室中气体末态的温度为T A″,根据热力学第一定律,注意到A室中气体经历的是等容过程,其吸收的热量Q A=RT A″-T0B室中气体经历的是等压过程,吸收热量Q=RT A″-T0+p0V B″-V0B利用理想气体状态方程,上式变为Q B=RT A″-T0由上可知Q0=Q A+Q B=6RT A″-T0T0所以A室中气体的末态温度T A″=+T0B室中气体的末态体积V″=T A″=V0B参考评分:本题20分.得到Q0=Q m的条件下①④式各1分;式6分,得到Q0>Q m的条件下的式4分,式2分;得到Q0<Q m的条件下的式4分,式2分.8.27届复赛7地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射假定不计大气对太阳辐射的吸收一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射红外波段的电磁波.热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J与表面的热力学温度T的四次方成正比,即J=σT4,其中σ是一个常量.已知太阳表面温度T s=×103K,太阳半径R s=×105km,地球到太阳的平均距离d=×108km.假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=.1如果地球表面对太阳辐射的平均反射率α=,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少2如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=,其余部分的反射率处α2=.间冰雪被盖面占总面积多少时地球表面温度为273K.解析:1根据题意,太阳辐射的总功率P S=4πRσT,太阳辐射各向同性的向外传播.设地球半径为r E,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I=σTπr①地球表面反射太阳辐射的总功率为αP I.设地球表面的温度为T E,则地球的热辐射总功率为:P E=4πrσT②考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I+βP E.当达到热平衡时,输入的能量与输出的能量相等,有:P I+βP E=αP I+P E③由以上各式得:T E=T S错误未定义书签;④带入数值有:T E=287K⑤2当地球表面一部分被冰雪覆盖后,以α′表示地球表面对太阳辐射的平均反射率,根据题意这时地区表面的平均温度为T E=273K.利用④式可求得:α′=⑥设冰雪覆盖的地表面积与总面积之比为x,则:α′=α1x+α21-x⑦由⑥⑦两式并带入数据得:x=30%⑧参考评分:本题15分.第1问11分,①式3分,②式1分,③式4分,④式2分,⑤式1分;第2问4分,⑥式2分,⑧式3分.9.26届复赛4火箭通过高速喷射燃气产生推力.设温度T1、压强p1的炽热高压气体在燃烧室内源源不断生成,并通过管道由狭窄的喷气口排入气压p2的环境.假设燃气可视为理想气体,其摩尔质量为μ,每摩尔燃气的内能为u=C V TC V是常量,T为燃气的绝对温度.在快速流动过程中,对管道内任意处的两个非常靠近的横截面间的气体,可以认为它与周围没有热交换,但其内部则达到平衡状态,且有均匀的压强p、温度T和密度ρ,它们的数值随着流动而不断变化,并满足绝热方程p=C恒量,式中R为普适气体常量,求喷气口处气体的温度与相对火箭的喷射速率.解析:于火箭燃烧室出口处与喷气口各取截面A1和A2,它们的面积分别为S1和S2,由题意,S1>>S2,以其管道内的气体为研究对象,如图所示.设经过很短时间Δt,这部分气体流至截面B1与B2之间,A1B1间、A2B2间的微小体积分别为ΔV1、ΔV2,两处气体密度为ρ1、ρ2,流速为v1、v2.气流达到稳定时,内部一切物理量分布只依赖于位置,与时间无关.由此可知,尽管B1A2间气体更换,但总的质量与能量不变.先按绝热近似求喷气口的气体温度T2.质量守恒给出:ρ1ΔV1=ρ2ΔV2①即A2B2气体可视为由A1B1气体绝热移动所得.事实上,因气流稳恒,A1B1气体流出喷口时将再现A 2B2气体状态.对质量Δm=ρ1ΔV1=ρ2ΔV2的气体,利用理想气体的状态方程:pV=RT②和绝热过程方程p1=p2③可得:T2=T1④再通过能量守恒求气体的喷射速率v2.由①式及ΔV=SΔvt可得:ρ1S1V1=ρ2S2V2⑤再利用①③式知,v1=v2=v2,因S2<<S1,p2<<p1,v2<<v1⑥整个系统经Δt时间的总能量包括宏观流动机械能与微观热运动内能增量ΔE为A2B2部分与A1B1部分的能量差.由于重力势能变化可忽略,在理想气体近似下比高考虑到⑥式有:ΔE=Δmv+C V T2-T1⑦体系移动过程中,外界做的总功为W=p1ΔV1-p2ΔV2⑧根据能量守恒定理,绝热过程满足ΔE=W⑨得:v2=⑩其中利用了②④式.参考评分:本题20分.②式1分,③式2分,④式3分,⑥式1分,⑦式6分,⑧式4分,⑨式1分,⑩式2分.10.25届复赛4图示为低温工程中常用的一种气体、蒸气压联合温度计的原理示意图,M为指针压力表,以V M表示其中可以容纳气体的容积;B为测温泡,处在待测温度的环境中,以V B 表示其体积;E为贮气容器,以V E表示其体积;F为阀门.M、E、B由体积可忽略的毛细血管连接.在M、E、B均处在室温T0=300K时充以压强p0=×105Pa的氢气.假设氢的饱和蒸气仍遵从理想气体状态方程.现考察以下各问题:1关闭阀门F,使E与温度计的其他部分隔断,于是M、B构成一简易的气体温度计,用它可测量25K以上的温度,这时B中的氢气始终处在气态,M处在室温中.试导出B处的温度T和压力表显示的压强p的关系.除题中给出的室温T0时B中氢气的压强P0外,理论上至少还需要测量几个已知温度下的压强才能定量确定T与p之间的关系2开启阀门F,使M、E、B连通,构成一用于测量20~25K温度区间的低温的蒸气压温度计,此时压力表M测出的是液态氢的饱和蒸气压.由于饱和蒸气压与温度有灵敏的依赖关系,知道了氢的饱和蒸气压与温度的关系,通过测量氢的饱和蒸气压,就可相当准确地确定这一温区的温度.在设计温度计时,要保证当B处于温度低于T V=25K 时,B中一定要有液态氢存在,而当温度高于T V=25K时,B中无液态氢.要达到这一目的,V M+V E与V B间应满足怎样的关系已知T V=25K时,液态氢的饱和蒸气压p V=×105Pa.3已知室温下压强p1=×105Pa的氢气体积是同质量的液态氢体积的800倍,试论证蒸气压温度计中的液态气不会溢出测温泡B.解析:1当阀门F关闭时,设封闭在M和B中的氢气的摩尔数为n1,当B处的温度为T时,压力表显示的压强为p,由理想气体状态方程,可知B和M中氢气的摩尔数分别为n1B=①n1M=②式中R为普适气体常量.因n1B+n1M=n1③解①②③式得:=-④或T=⑤④式表明,与成线性关系,式中的系数与仪器结构有关.在理论上至少要测得两个已知温度下的压强,作对的图线,就可求出系数.由于题中已给出室温T0时的压强p0,故至少还要测定另一已知温度下的压强,才能定量确定T与p之间的关系式.2若蒸气压温度计测量上限温度T V时有氢气液化,则当B处的温度T≤T V时,B、M和E中气态氢的总摩尔数应小于充入氢气的摩尔数.由理想气体状态方程可知充入氢气的总摩尔数n=⑥2假定液态氢上方的气态氢仍可视为理想气体,则B中气态氢的摩尔数为n2B=⑦在⑦式中,已忽略了B中液态氢所占的微小体积.由于蒸气压温度计的其它部分仍处在室温中,其中氢气的摩尔数为n2M+n2E=⑧根据要求有:n2B+n2M+n2E≤n2⑨解⑥⑦⑧⑨各式得:V M+V E≥V B⑩带入相关数据得:V M+V E≥18V B11.25届复赛7在地面上方垂直于太阳光的入射方向,放置一半径R=、焦距f=的薄凸透镜,在薄透镜下方的焦面上放置一黑色薄圆盘圆盘中心与透镜焦点重合,于是可以在黑色圆盘上形成太阳的像.已知黑色圆盘的半径是太阳像的半径的两倍.圆盘的导热性极好,圆盘与地面之间的距离较大.设太阳向外辐射的能量遵从斯特藩—玻尔兹曼定律:在单位时间内在其单位表面积上向外辐射的能量为W=σT4,式中σ为斯特藩—玻尔兹曼常量,T为辐射体表面的的绝对温度.对太而言,取其温度t s=×103℃.大气对太阳能的吸收率为α=.又设黑色圆盘对射到其上的太阳能全部吸收,同时圆盘也按斯特藩—玻尔兹曼定律向外辐射能量.如果不考虑空气的对流,也不考虑杂散光的影响,试问薄圆盘到达稳定状态时可能达到的最高温度为多少摄氏度解析:按照斯特藩-波尔兹曼定律,在单位时间内太阳表面单位面积向外发射的能量为W=σT①S其中σ为斯特藩-波尔兹曼常量,T S为太阳表面的绝对温度.若太阳的半径为R S,则单位时间内整个太阳表面向外辐射的能量为P S=4πR W S②单位时间内通过以太阳为中心的任意一个球面的能量都是P S.设太阳到地球的距离为r SE,考虑到地球周围大气的吸收,地面附近半径为R的透镜接收到的太阳辐射的能量为P=πR21-α③凸透镜将把这些能量会聚到置于其后焦面上的薄圆盘上并被薄圆盘全部吸收.另一方面,因为薄圆盘也向外辐射能量.设圆盘的半径为R D,温度为T D,注意到薄圆盘有两个表面,故圆盘在单位时间内辐射的能量为P D=2πRσT④显然,当P D=P⑤即圆盘单位时间内接收到的能量与单位时间内辐射的能量相等时,圆盘达到稳定状态,其温度达到最高.由①②③④⑤各式得:T D=T S⑥依题意,薄圆盘半径为太阳的像的半径R的2倍,即R D=R2.由透镜成像公式知:=⑦于是有:R D=2f⑧把⑧式带入⑥式得:T D=T S⑨带入已知数据,注意到T S=+t S K,T D=×103K⑩即有:t D=T D-=×103℃。

物理竞赛辅导——热学初步知识

物理竞赛辅导——热学初步知识

物理竞赛辅导——热学初步知识知识内容1、 温度及温度计:温度的意义、单位;温度计的构造及测温原理;温度计的使用。

2、 熔化与凝固:熔化现象,凝固现象;熔点,凝固点;熔化吸热,凝固放热;晶体和非晶体的熔化。

3、 汽化:汽化现象;蒸发与沸腾的区别与联系;影响蒸发快慢的因素;蒸发吸热,沸腾吸热;沸点,沸点与压强的关系。

4、 液化:液化现象,液化放热。

5、 升华与凝华:升华现象,凝华现象。

6、 分子动理论:扩散现象;分子运动论的内容。

7、 内能:内能的定义;改变物体内能的方法。

8、 热量与比热容:热量的意义;热什;热量的计算;比热容的概念。

9、 热机:热机的工作原理;热机效率;汽油机与柴油机的构造和工作过程区别。

应用举例例1、 在寒冷的冬天,用手去摸室外的铁棍,感觉非常凉,有时不会发生粘手的现象,好像铁棍表面有一层胶。

而在同样环境下,用手去摸木棍却感觉不太凉,也不会发生粘手的现象,这是为什么?例2、为了比较1、2两种材料的保温性能小红在两个同样的烧瓶中灌满水,加热到相同的温度后分别用厚度相同的1、2两种保温材料包好,定时测量烧瓶中水的温度。

实验过程中室温保持不变。

他想用这种方法比较两种材料的保温性能。

表中给出了在时刻t (单位是分)测得的两个烧瓶中的水温T 1、T 2的几组数据。

根据这些数据在下面的方格纸中作出表示水温与时间关系的图象并回答以下问题:1. 哪种材料的保温性能较好? 2. 当时的室温大约是多少?例3冬天手冷时,用嘴向手上“哈气”(即缓缓持吹气),手会感到暖和,而若用劲向手上吹气,手不但不会暖和,反会更冷,这是什么原因?例4冬季的一个星期天,小学生明明坐着着爸爸开的小汽车去郊游。

车开出不久,明明发现汽车前车窗的玻璃慢慢变得不够透明了,影响了观察车前方的情况。

明明用手擦了擦,玻璃变得透明了,可过了一会儿,玻璃又模糊了。

这时明明看见爸爸用手扳动了操作盘上的一个开关,没过多久,玻璃就变和透明了,一路上再也没有出现不透明的情况。

高中物理竞赛讲座:第七章热学2

高中物理竞赛讲座:第七章热学2
A PdV
1
V2
M2
例1 、一系统如图所示,由a沿abc到达c有350J的热量 传入系统,系统对外作功126J。 1)若沿adc时,系统作功42J,系统吸收多少热量? 2)当系统由c沿曲线ca返回a时,外界对系统作功84J, 系统是吸热还是放热? 3)若Ead=40J,试求沿ad及dc过程各吸收热量多少?
Q E Cv (T2 T1 )
i R (T2 T1 ) 2
2 E Cv (T2 T1 )
A Q E
(3)Q=0
A E Cv (T2 T1 )
Q C(T2 T1 )
dQ CdT
dA PdV V i dE RdT m i E E 2 E1 R T2 T1 2
( p2 ,V2 , T2 ) 2
p2
o
V1
V2 V
第二节 热力学第一定律对理想气体的应用
绝热线和等温线:
绝热过程曲线的斜率
p
pA
papT
A C B
T 常量
Q0
pV 常量
pV
1

dp pA ( ) a dV VA
dV V dp 0

等温过程曲线的斜率
o
V A V V B
V
pV 常量
pdV Vdp 0 dp pA ( )T dV VA
绝热线的斜率大于等温 线的斜率.
2、常见过程 等容过程 dV=0 等温过程 dT=0 等温过程 绝热过程 等压过程

等压过程 dP=0 绝热过程 dQ=0 n=1 n=
0
PV C
PV C
P C PV

高中物理竞赛讲义热学ppt课件

高中物理竞赛讲义热学ppt课件

• 应用Dalton Law对所有组分求和:
m n
n
PV PiV
Mi RT
i1
i1 i
2021/5/4
最新版整理pp—t 混合理想气体状态220
其它推论:
若定义混合气体的平均摩尔质量:m M
则可由“混合理想气体状态方程”得到:
M
Mi
mi
PV M RT
m
因此,可以说:混合理想气体好似摩尔质量为 m 的单一化学成分的理想气体。
二、气体的性质
最新版整理ppt
1
1 理想气体状态方程
• 玻意耳—马略特定律 Boyle-Marriot Law (Boyle,
1662; Mariott, 1679) :
“对于一定质量的气体,在温度不变时,其 压强P和体积V的乘积是一常数:PV=C ”
• 跟温度T没有关系
• 实际气体并不严格遵守这一定律,因为不同 T时,C不一样
为k的轻弹簧连接如图所示.最初容器
内封闭了压强为P0,温度为T的气体, 弹簧不伸长,弹簧部分封闭的体积占
全部容器体积的a。为了使它的体积 扩大为两倍,应该对有弹簧部分间 隔加热到温度为多少?容器其余部 分温度不变,摩擦不计。
最新版整理ppt
31
例13
• 容器内充满氦和氧的混合气,把混合气的 温度从T1=300K加热到T2=400K,这样,有 一半氦原子离开容器而剩余气体压强如前 。求此过程混合气体密度变化了多少?氧 的摩尔质量32g/mol,氦的摩尔质量 4g/mol
最新版整理ppt
28
例10
• 据说在克尼菲勋爵档案馆里发现一张有关 理想气体循环过程图,由于年代久远,画 已褪色且p(压强)和V(体积)坐标轴消 失,仅保留两轴交点O。从对画的说明中可 知,在A点气体温度最高,从V轴正方向看 去沿逆时针向p轴正方向转角最小。试作图 重建p和V轴的位置。

高中物理竞赛十年复赛真题-热学(纯手打word版含问题详解)

高中物理竞赛十年复赛真题-热学(纯手打word版含问题详解)

十年真题-热学(复赛)1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程.双原子理想气体的定容摩尔热容为52R ,R 为气体常量.(1)求直线AB 过程中的最高温度;(2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积围是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度T c ;(3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功.解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02-V 0此即 p =32p 0-p 0V 0V ①根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ⎝ ⎛⎭⎪⎫-p 0V 0V 2+32p 0V =-p 0νR ⎝ ⎛⎭⎪⎫V -34V 02+9p 0V 016νR ③ 由③式知,当V =34V 0时, ④气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR ⑤(2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦由理想气体能公式和题给数据有:dU =νC V dT =ν52RdT ⑧由①⑥⑦⑧式得:C m =C V +p ν dV dT =52R +⎝ ⎛⎭⎪⎫32p 0-p 0V 0V 1ν dVdT ⑨由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V )⑩由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R2 ⑪由⑥⑩⑪式得,直线AB 过程中,在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV >0,吸热 ⑫在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQdV >0,吸热 ⑬在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQdV <0,放热 ⑭由⑫⑬⑭式可知,系统从吸热到放热转折点发生在V =V c =21V 024处由③式和上式得:T c =1νR ⎝ ⎛⎭⎪⎫-p 0V 0V 2+32p 0V =35p 0V 064νR ⑮ (3)对于直线AB 过程,由⑥⑩式得: dQ =νC mdT dVdV =21V 0-24V4V 0p 0dV =⎝ ⎛⎭⎪⎫214-6V V 0p 0dV⑯将上式两边对直线过程积分得,整个直线AB 过程中所吸收的净热量为:Q直线=⎠⎜⎛V 0/2V 0⎝⎛⎭⎪⎫214-6V V 0p 0dV =p 0⎝ ⎛⎭⎪⎫21V 4-3V 2V 0⎪⎪⎪V 0V 02=38p 0V 0 ⑰直线AB 过程中气体对外所做的功为:W 直线=12⎝⎛⎭⎪⎫p 0+p 02⎝⎛⎭⎪⎫V 0-V 02=38p 0V 0 ⑱等温过程中气体对外所做的功为:W 等温=⎠⎛V 0V 0/2pdV =⎠⎜⎛V 0V 0/2p 0V 02dV V=-p 0V 02ln2 ⑲一个正循环过程中气体对外所做的净功为:W =W 直线+W 等温=⎝ ⎛⎭⎪⎫38-ln22p 0V 0 ⑳参考评分:第(1)问10分,①②式各3分,④⑤式各2分;第(2)问20分,⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮式各2分;第(3)问10分,⑯⑰⑱⑲⑳式各2分.2.(33届复赛2)秋天清晨,气温为4.0℃,一加水员到实验园区给一径为2.00m 、高为2.00m 的圆柱形不锈钢蒸馏水罐加水.罐体导热良好.罐外有一径为4.00cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),与大气相通,如图所示.加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),闭了罐顶的加水口.此时加水 员通过观察柱上的刻度看到罐水高为1.00m . (1)从清晨到中午,气温缓慢升至24.0℃,问此时观察柱水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略.(2)从密闭水罐后至中午,罐空气对外做的功和吸收的热量分别为多少?求这个过程中罐空气的热容量.已知罐外气压始终为标准大气压p 0=1.01×105pa ,水在4.0℃时的密度为ρ0=1.00×103kg ·m -3,水在温度变化过程中的平均体积膨胀系数为3.03×10-4K -1,重力加速度大小为g =9.80m/s 2,绝对零度为-273.15℃.解析:(1)清晨加完水封闭后,罐空气的状态方程为p 0V 0=nRT 0 ① 至中午时由于气温升高,罐空气压强增大,设此时罐空气的压强、体积和温度分别为p 1、V 1、T 1,相应的状态方程为:p 1V 1=nRT 1 ②此时观察柱和罐水位之差为:Δh =V 1-V 0S 1+V 1-V 0S 2+κ(T 1-T 0)(S 1+S 2)l 0S 2③式中右端第三项是由原罐和观察柱水的膨胀引起的贡献,l 0=1.00m 为早上加水后观察柱水面的高度,S 1=πm 2,S 2=4π×10-4m 2分别为罐、观察柱的横截面积. 由力平衡条件有:p 1=p 0+ρ1g Δh 1 ④ 式中ρ1=ρ01+κ(T 1-T 0)是水在温度为T 1时的密度. ⑤联立①②③④⑤式得:ρ1gS ′(Δh )2+(p 0S 1+λρ1gV 0)-⎝ ⎛⎭⎪⎫T 1T 0-λp 0V 0=0⑥ 式中S ′=S 1S 2S 1+S 2,λ=1-κ(T 1-T 0) ⑦解⑥得:Δh =-(p 0S 1+λρ1gV 0)+(p 0S 1+λρ1gV 0)2+4ρ1gS ′p 0V 0⎝ ⎛⎭⎪⎫T 1T 0-λ2ρ1gS ′=0.812m ⑧另一解不合题意,舍去.由③⑤⑦⑧式和题给数据得:V 1-V 0=S ′Δh -κ(T 1-T 0)S 1l 0=-0.0180m 3 由上式和题给数据得,中午观察柱水位为:l 1=Δh -V 1-V 0S 1+l 0=1.82m ⑨(2)先求罐空气从清晨至中午对外所做的功.解法(一)早上罐空气压强p 0=1.01×105pa ,中午观察柱水位相对于此时罐水位升高Δh ,罐空气压强升高了Δp =ρ1g Δh =7.91×103pa ⑩ 因Δp <<p 0,认为在准静态升温过程中罐平均压强p -=p 0+12Δp =11.05×105pa⑪罐空气体积缩小了ΔV =0.0180m 3 ⑫ 可见ΔVV<<1,这说明⑪式是合理的.罐空气对外做功W =p -ΔV =-1.9×103J ⑬ 解法(二)缓慢升温是一个准静态过程,在封闭水罐后至中午之间的任意时刻,设罐空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水温为T 时水的密度为ρ=ρ01+κ(T -T 0) ⑩将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐空气在温度为T 时的状态方程为:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′V 1-V 0S 1l 0+κ(T 1-T 0)1+κ(T 1-T 0)⑪由题设数据和前门计算结果可知,κ(T -T 0)<κ(T 1-T 0)=0.0060V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057这说⑪式右端分子中与T 有关的项不可略去,而右端分母中与T 有关的项可略去.于是⑪式:p =p 0+ρg S ′[V 1-V 0+κ(T 1-T 0)S 1l 0]=p 0+ρgS 1l 0S ′⎣⎢⎡⎦⎥⎤V 1-V 0S 1l 0+κ(T 1-T 0)利用状态方程,上式可改写成p =p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nRS 1S ′V-nR κS 1l 0⑫从封闭水罐后至中午,罐空气对外界做的功为W =⎠⎛V 0V 1pdV=⎠⎜⎛V 0V 1⎝⎛⎭⎪⎫p 0-ρg S ′(V 0+κT 0S 1l 0)+nRκS 1l 01-κρ0gl 0nR S 1S ′V -nR κS 1l 0dV=-nR κS 1l 0⎩⎨⎧⎭⎬⎫(V 1-V 0)-S ′ρ0g ⎣⎢⎡⎦⎥⎤p 0-ρ0g S ′(V 0+κT 0S 1l 0)+nR κS 1l 0ln 1-κρ0gl 0nR S 1S ′V 11-κρ0gl 0nR S 1S ′V⑬=-1.9×103J解法(三)缓慢升温是一个准静态过程,在封闭水罐后至中午的任意时刻,罐空气都处于热平衡状态,设其体积、温度和压强分别为V 、T 和p .水在温度为T 时的密度为ρ=ρ01+κ(T -T 0) ⑩将②③④式中的V 1、T 1和p 1换为V 、T 和p ,利用⑩式得罐空气在温度为T 时的状态方程为p =p 0+ρg S ′[V -V 0+κ(T 1-T 0)S 1l 0]=p 0+ρ0g S ′V -V 0+κ(T -T 0)S 1l 01+κ(T -T 0)=p 0+ρ0g S ′S 1l 0+ρ0g S ′ V -V 0-S 1l 01+κ(T -T 0)≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)[1-κ(T -T 0)]=p 0+ρ0gS 1l 0S ′+ρ0g S ′⎣⎢⎡⎦⎥⎤(V -V 0-S 1l 0)(1+κT 0)-κnR PV (V -V 0-S 1l 0) ⑪ ≈p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -V 0-S 1l 0)(1+κT 0)+ρ0g S ′κS 1l 0nRPV=p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′ κV 0nRPV =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)+ρ0g S ′κT 0p 0PV 式中应用了κ(T -T 0)<κ(T 1-T 0)=0.0060,V -V 0S 1l 0<V 1-V 0S 1l 0=0.0057⑪式可改写成p =p 0+ρ0gS 1l 0S ′+ρ0g S ′(V -2V 0)(1+κT 0)1-ρ0g S ′κT 0p 0V=-(1+κT 0)p 0κT 0+1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′κT 0p 0V⑫从封闭水罐后至中午,罐空气对外界做的功为W =⎠⎛V 0V 1pdV =⎠⎜⎛V 0V 1⎣⎢⎡⎦⎥⎤-1+2κT 02κT 0p 0-ρ0gV 0S ′(1+2κT 0)1-ρ0g S ′κT 0p 0VdV=-(1+κT 0)p 0κT 0⎣⎢⎡⎦⎥⎤V -V 0+⎝ ⎛⎭⎪⎫S ′p 0ρ0g κT 0-V 0lnS ′p 0-ρ0g κT 0V 1S ′p 0-ρ0g κT 0V 0 ⑬=-1.9×103J现计算罐空气的能变化.由能量均分定理知,罐空气中午相对于清晨的能改变为:ΔU =52nR (T 1-T 0)=52 p 0V 0T 0(T 1-T 0)=5.72×104J ⑭式中5是常温下空气分子的自由度.由热力学第一定律得罐空气的吸热为:ΔQ =W +ΔU =5.54×104J ⑮ 从封闭水罐后至中午,罐空气在这个过程中的热容量为:C =ΔQT 1-T 0=2.77×103J/K ⑯参考评分:第(1)问10分,①②③④⑤⑥⑦⑧式各1分,⑨式2分;第(2)问10分,⑩⑪⑫式各1分,⑬⑭⑮式各2分,⑯式1分.3.(32届复赛7)如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc ′a .已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系p =f (V ).(1)试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为C π=C V +pR p +VdpdV,式中,C V 和R 分别为定容摩尔热容和理想气体常数;(2)计算系统经bc ′直线变化过程中的摩尔热容;(3)分别计算系统经bc ′直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;(4)定量比较系统在两种循环过程的循环效率.解析:(1)根据热力学第一定律有:dU =δQ +δW ① 这里对于1mol 理想气体经历的任一缓慢变化过程中,δQ 、δW 和dU 可分别表示为δQ =CπdT 、δW =-pdV 、dU =C V dT②将理想气体状态方程pV =RT 两边求导得p dV dT+Vdp dVdV dT=R③式中利用了dp dT =dp dVdV dT,根据③式有:dV dT=R p +VdpdV④联立①②③④式得:C π=C V +pR p +VdpdV⑤(2)设bc ′过程方程为p =α-βV ⑥ 根据C π=C V +pR p +VdpdV可得该直线过程的摩尔热容为:C π=C V +α-βVα-2βV)R⑦式中C V =32R 是单原子理想气体的定容摩尔热容.对bc ′过程的初态(3p 1,V 1)和终态(p 1,5V 1)有:3p 1=α-βV 1、p 1=α-5βV 1 ⑧由⑧式得:α=72p 1、β=p 12V 1 ⑨由⑥⑦⑧⑨式得:C π=8V -35V 14V -14V 1R ⑩(3)根据过程热容的定义有:C π=ΔQΔT ⑪式中,ΔQ 是气体在此直线过程中,温度升高ΔT 时从外界吸收的热量.由⑩⑪式得:ΔT =4V -14V 18V -35V 1RΔQ⑫ΔQ =8V -35V 14V -14V 1 ΔTR⑬由⑫式可知,bc ′过程中的升降温的转折点A 在p -V 图上的坐标为A (72V 1,74p 1) ⑭由⑩式可知,bc ′过程中的吸放热的转折点B 在p -V 图上的坐标为B (358V 1,2116p 1)⑮(4)对于abcda 循环过程,ab 和bc 过程吸热,cd 和da 过程放热 Q ab =nC V (T b -T a )=1.5(RT b -RT a )=3p 1V 1 Q bc =nC p (T c -T b )= 2.5(RT c -RT b )=15p 1V 1⑯式中已知n =1mol ,单原子理想气体定容摩尔热容C V =32R ,定压摩尔热容C V =52R气体在abcda 循环过程中的效率可表示为循环过程中对外做的功处以总吸热,即ηabcda=W abcda Q ab +Q bc=4p 1V 118p 1V 1=0.22⑰对于abc ′a 循环过程,ab 和bB 过程吸热,Bc ′和c ′a 过程放热.由热力学第一定律可得bB 过程吸热为:Q bc ′=ΔU bB -W bB =nC V (T B -T b )+12(p B +3p 1)(V B -V 1)=11.39p 1V 1 ⑱所以循环过程abc ′a 的效率为ηabc ′a=W abc ′a Q ab +Q bc ′=4p 1V 114.39p 1V 1=0.278⑲由⑰⑲式可知,ηabc ′a >ηabcda ⑳ 参考评分:第(1)问5分,①②③④⑤式各1分;第(2)问5分,⑥⑦⑧⑨⑩式各1分;第(3)问7分,⑪式1分,⑫⑬式各2分,⑭⑮式各1分;第(4)问5分,⑯⑰⑱⑲⑳式各1分.4.(31届复赛2)一种测量理想气体的摩尔热容比γ=C p /C V 的方法(Clement-Desormes方法)如图所示:大瓶G 装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶外的压强差通过U 形管右、左两管液面的高度差来确定.初始时,瓶外的温度相等,瓶气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差h i .然后打开H ,放出少量气体,当瓶外压强相等时,即刻关闭H .等待瓶外温度又相等时,记录此时U 形管液面的高度差h f .试由这两次记录的实验数据h i 和h f ,导出瓶气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶气体在状态变化前后的体积变化)→解析:解法(一)瓶理想气体经历如下两个气体过程:(p i ,V 0,T 0,N i )——――——→放气(绝热膨胀)(p 0,V 0,T ,N f )—―——→等容升温(p f ,V 0,T 0,N f )其中,(p i ,V 0,T 0,N i )、(p 0,V 0,T ,N f )、(p f ,V 0,T 0,N f )分别是瓶气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV =NkT ,考虑到由于气体初、末态的体积和温度相等,有p f p i =N fN i ①另一方面,设V ′是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即:(p i ,V 0,T ,N i )—―——→绝热膨胀(p 0,V ′,T 0,N i )此绝热过程满足V 0V ′=⎝ ⎛⎭⎪⎫p 0p i 1γ ②由状态方程有p 0V ′=N i kT 和p 0V 0=N f kT ,所以N f N i =V 0V ′ ③ 联立①②③式得p f p i =⎝ ⎛⎭⎪⎫p 0p i 1γ ④此即γ=lnp i p 0lnp i p f ⑤ 由力学平衡条件有p i =p 0+ρgh i ⑥ p f =p 0+ρgh f ⑦ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得γ=ln ⎝ ⎛⎭⎪⎫1+h i h 0ln ⎝ ⎛⎭⎪⎫1+h i h 0-ln ⎝ ⎛⎭⎪⎫1+h f h 0 ⑧ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h fh 0<<1有γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑨参考评分:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法(二)若仅考虑留在容器的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态(p i ,V 1,T 0)绝热膨胀ab ——————→(p 0,V 0,T )等容升温bc —————→(p f ,V 0,T 0) 其中,(p i ,V 1,T 0)、(p 0,V 0,T )、和(p f ,V 0,T 0)分别是留在瓶的气体在初态、中间态和末态的压强、体积与温度.留在瓶的气体先后满足绝热方程和等容过程方程ab :p 1γ-1T 0γ=p 0γ-1T γ ①bc :p 0T =p f T 0② 由①②式得:p f p i =⎝ ⎛⎭⎪⎫p 0p i 1γ ③此即γ=lnp i p 0lnp i p f ④ 由力学平衡条件有p i =p 0+ρgh i ⑤ p f =p 0+ρgh f ⑥ 式中,p 0+ρgh 0为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得ln ⎝ ⎛⎭⎪⎫1+h i h 0ln ⎝ ⎛⎭⎪⎫1+h i h 0-ln ⎝ ⎛⎭⎪⎫1+h f h 0 ⑦ 利用近似关系式:当x <<1,ln(1+x )≈x ,以及h i h 0<<1,h fh 0<<1有γ=h ih 0h i h 0-h f h 0=h i h i -h f ⑧参考评分:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.5.(30届复赛6)温度开关用厚度均为0.20mm 的钢片和青铜片作感温元件;在温度为20℃时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片.若钢和青铜的线膨胀系数分别为1.0×10-5/度和2.0×10-5/度.当温度升高到120℃时,双金属片将自动弯成圆弧形,如图所示.试求双金属片弯曲的曲率半径.(忽略加热时金属片厚度的变化.) 解析:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为α1和α2,钢片和青铜片温度由T 1=20℃升高到T 2=120℃时的伸长量分别为Δl 1和Δl 2. 对于钢片 (r -d 2)φ=l +Δl 1 ① Δl 1=l α1(T 2-T 1) ②式中,d =0.20mm .对于青铜片(r +d 2)φ=l +Δl 2 ③ Δl 2=l α2(T 2-T 1) ④联立以上各式得r =2+(α1+α2)(T 2-T 1)2(α2-α1)(T 2-T 1)d =2.0×102mm ⑤ 参考评分:本题15分.①式3分,②式3分,③式3分,④式3分,⑤式3分. 6.(29届复赛6)如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通.初始时阀门是关闭的,A 装有某种理想气体,温度为T 1;B 为真空.现将阀门打开,气体缓慢通过多孔塞后进入容器B 中.当容器A 中气体的压强降到与初始时A 中气体压强之比为α时,重新关闭阀门.设最后留在容器A 的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比.已知:1mol 理想气体的能为u =CT ,其中C 是已知常量,T 为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强p 与体积V 满足过程方程常量=+C RC pV ,其中R 为普适气体常量.重力影响和连接管体积均忽略不计.解析:设重新关闭阀门后容器A中气体的摩尔数为n1,B中气体的摩尔数为n2,则气体总摩尔数为n=n1+n2①把两容器中的气体作为整体考虑,设重新关闭阀门后容器A中气体温度为T1′,B中气体温度为T2,重新关闭阀门之后与打开阀门之前气体能的变化可表示为ΔU=n1C(T1′-T1)+n2C(T2-T1) ②由于容器是刚性绝热的,按热力学第一定律有ΔU=0 ③令V1表示容器A的体积, 初始时A中气体的压强为p1,关闭阀门后A中气体压强为αp1,由理想气体状态方程可知n=p1V1RT1④n1=(αp1)V1RT1′⑤由以上各式可解得:T2=(1-α)T1T1′T1′-αT1由于进入容器B中的气体与仍留在容器A中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A中的那部分气体经历了一个绝热过程,设这部分气体初始时体积为V10(压强为p1时),则有p1V10C+RC=(αp1)V1C+RC⑥利用状态方程可得p1V10T1=(αp1)V1T1′⑦由①②③④⑤⑥⑦式得,阀门重新关闭后容器B中气体质量与气体总质量之比n2n=2-αRC+R-αCC+R2―α―αRC+R⑧参考评分:本题15分.①式1分,②式3分,③式2分,④⑤式各1分,⑥式3分,⑦式1分,⑧式3分.7.(28届复赛6)如图所示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔与大气相通,大气的压强为P 0.用一热容量可忽略的导热隔板N和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气.气缸的左端A 室中有一电加热器Ω.已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0.现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体的末态体积和A 室中气体的末态温度.(设A 、B 两室中气体1摩尔的能为U =52RT ,式中R 为普适气体常量,T 为绝对温度)在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.解析:(1)设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积V B =2V 0 ① 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用T B 表示B 室中气体末态的温度,有V 0T 0=V BT B ②由①②式得 T B =2T 0 ③ 由于隔板N 是导热的,故A 室中气体末态的温度 T A =2T 0 ④ 下面计算此过程中的热量Q m .在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其能的增加量,即Q A =52R (T A -T 0) ⑤ 由④⑤两式得 Q A =52RT 0 ⑥ B 室中气体经历的是等压过程,在过程中B 室气体对外做功为W B =p 0(V B -V 0) ⑦ 由①⑦式及理想气体状态方程得W B =RT 0 ⑧能改变为ΔU B =52R (T B -T 0) ⑨ 由④⑨两式得ΔU B =52RT 0 ⑩ 根据热力学第一定律和⑧⑩两式, B 室气体吸收的热量为Q B =ΔU B +W B =72RT 0 ⑪ 由⑥⑪两式可知电加热器提供的热量为Q m =Q A +Q B =6RT 0 ⑫ 若Q 0=Q m ,B 室中气体末态体积为2V 0,A 室中气体的末态温度2T 0.(2)若Q 0>Q m ,则当加热器供应的热量达到Q m 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q 0-Q m 是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为T A ′,有Q 0-Q m =52R (T A ′-2T 0)+52R (T A ′-2T 0) ⑬ 由⑫⑬两式可求得T A ′=Q 05R +45T 0 ⑭ B 中气体的末态的体积V B ′=2V 0 ⑮(3)若Q 0<Q m ,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积V B ″<2V 0.设A 、B 两室中气体末态的温度为T A ″,根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量Q A =52R (T A ″-T 0) ⑯ B 室中气体经历的是等压过程,吸收热量Q B =52R (T A ″-T 0)+p 0(V B ″-V 0) ⑰ 利用理想气体状态方程,上式变为Q B =72R (T A ″-T 0) ⑱ 由上可知Q 0=Q A +Q B =6R (T A ″-T 0)T 0 ⑲ 所以A 室中气体的末态温度T A ″=Q 06R +T 0 ⑳ B 室中气体的末态体积V B ″=V 0T 0T A ″=⎝ ⎛⎭⎪⎫Q 06RT 0+1V 0 ○21 参考评分:本题20分.得到Q 0=Q m 的条件下①④式各1分;⑫式6分,得到Q 0>Q m 的条件下的⑭式4分,⑮式2分;得到Q 0<Q m 的条件下的⑳式4分,○21式2分. 8.(27届复赛7)地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射(假定不计大气对太阳辐射的吸收)一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率J 与表面的热力学温度T 的四次方成正比,即J =σT 4,其中σ是一个常量.已知太阳表面温度T s =5.78×103K ,太阳半径R s =6.69×105km ,地球到太阳的平均距离d =1.50×108km .假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=0.38.(1)如果地球表面对太阳辐射的平均反射率α=0.30,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少?(2)如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=0.85,其余部分的反射率处α2=0.25.间冰雪被盖面占总面积多少时地球表面温度为273K .解析:(1)根据题意,太阳辐射的总功率P S =4πR 2S σT 4S ,太阳辐射各向同性的向外传播.设地球半径为r E ,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率为:P I =σT 4S ⎝ ⎛⎭⎪⎫R S d 2πr 2E①地球表面反射太阳辐射的总功率为αP I .设地球表面的温度为T E ,则地球的热辐射总功率为:P E =4πr 2E σT 4E ② 考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为P I +βP E .当达到热平衡时,输入的能量与输出的能量相等,有:P I +βP E =αP I +P E ③由以上各式得:T E =T S22⎝ ⎛⎭⎪⎫1-α1-β14⎝ ⎛⎭⎪⎫R S d 12 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲 物态变化一、熔解和凝固物质从固态变为液态叫熔解。

物质从液态变为固态叫凝固。

晶体在吸收热量时温度持续升高,但达到一个确定的温度后,温度不再升高而开始熔解,这个温度叫熔点(或相反为凝固点)熔点和压强有关。

熔解时体积膨胀的晶体,随所受压强增大,熔点升高;熔解时体积缩小的晶体,随所受压强增大,熔点降低。

晶体中掺杂质后,熔点降低。

单位质量的某种物质,在熔点时,从固态完全熔解成同温度液态时吸收的热量,叫熔解热。

其单位是J/Kg ,用λ表示。

晶体熔解时吸热但温度不升高。

是由于吸收的热量主要用来增大分子势能,分子的平均动能并不发生变化。

二、汽化和液化物质由液态转化为气态叫汽化。

由气变液为液化。

1、汽化的方式有二种:蒸发和沸腾。

液体分子中平均动能较大的分子离开液体成为汽分子,同时汽分子进入液体中。

如果飞出的分子数大于飞入的分子数,液体的质量减小,汽的质量增加,就是蒸发。

由于蒸发中,飞出液面的分子的动能往往比飞入液体内分子的平均动能大,使留在液体内部分子具有的平均动能减小,致使液体的温度降低。

蒸发的速率:①温度 ②液体表面积 ③外界气体中该种液体的气体分子浓度 饱和汽和未饱和汽液体在蒸发过程中,若单位时间内飞离液面的分子数大于返回液体中的分子数,蒸发继续。

液体置于敞口容器时,由于蒸气分子不断向远处扩散,靠近液体表面处的蒸气分子数密度始终不会很大。

进入的分子数总是少于飞出的分子数。

液体分子可以不断地蒸发,直到液体全部变为蒸气。

液体置于密闭容器中,随着蒸发的不断进行,容器中蒸气分子数密度不断增大,一定时间后,飞出和返回液体的分子数相等,达到动态平衡。

此时的蒸气密度不变,压强也不变,称为饱和蒸气。

对应的压强称为饱和蒸气压。

饱和蒸气有如下性质:(1)在同一温度下,不同液体的饱和汽压一般不同。

(2)同种液体的饱和气压随温度升高而增大(3)温度一定时,同种液体的饱和汽压与饱和气的体积无关。

(4)对饱和气,可以运用克拉珀龙方程Pv nRT =,但P 不变,为饱和汽压。

液体汽化时,未达到动态平衡的蒸汽叫未饱和蒸汽。

2、汽化热单位质量的液体转变成同温度的气体时吸收的热量叫作汽化热。

用L 表示,单位J/Kg 。

不同液体温度相同时汽化热不同;同种液体在不同温度时汽化热不同。

温度越高,汽化热越小。

例:水的汽化热在0℃时是2.5×106J/Kg ,在100℃时是2.26×106J/Kg 。

固液气升华 凝 华 汽化 液化熔解凝固液体汽化时要保持温度不变,必须有外界热源不断地供给热量,其中一部分用于增加物质内部的分子势能,从而增加物质内能,另一部分克服恒定的外压强做功,其各部分能量值的变化满足热力学第一定律。

注意:液体气化时吸收的热量,一方面用于改变系统的内能,同时也用来克服外界压强做功。

如图,一直立绝热气缸中由质量为m 的活塞封着100℃的水,水的上方是与水同温度的水蒸气,活塞上方是真空,活塞可在气缸中无摩擦地滑动,用电热器加热水使活塞在水蒸气的作用下匀速上升,一般易误认为电热器供给的热量等于水汽化的吸热与活塞上升的重力势能之和。

事实上,水的汽化热已包括克服外界压强做功所需的能量。

即本问题中为使活塞上升而做的功已包括在汽化热中。

三、临界点和三相点液体和气体共存的最高温度叫临界温度。

所对应的压强叫临界压强,这个状态叫临界点。

在临界点,气态和液态的差别完全消失。

物质饱和汽的密度和液体的密度相同,气液的分界面消失。

这是气、液共存的边缘状态。

该状态下表面张力系数为0,汽化热为零。

在临界温度以下,可以用降温或增大压强,使未饱和汽转化为饱和汽,从而使汽体液化 在临界温度以上,无论怎样增大压强,都不能使气体液化。

例:水的临界温度 647.4K ,临界压强218.3atm ,此时,1mol 水的体积0.056m 3 三相点:物质三态(固、液、气)共存的唯一压强和温度值。

四、升华和凝华物质从固态不经过液态直接变为气态的过程叫升华。

物质从气态直接变为固态的过程叫凝华。

单位质量的固态物质升华时吸收的热量叫升华热。

(相反的过程叫凝华热,二者相同)。

等于熔解热和汽化热之和。

在相同的条件下,不同物质的升华热不同,同一物质在不同条件下的升华热也不同。

任何固体在任何温度下都有升华现象。

在常温常压下升华显著的物质有荼、碘、干冰。

五、道尔顿分压定律温度为T ,体积为V 的容器中有1n mo 的理想气体单独存在,据克拉珀龙方程,压强11/P n RT V =,同样,同情形下若有2n mo 的理想气体单独存在,压强22/P n RT V =。

若同一情形下1n 和2n 共存(不发生化学反应,不会引起气态物质的物质的量的变化 ),压强12P P P =+例题:将一份潮湿空气的体积压缩为原来的四分之一,它的压强增至原来的3倍。

若再把体积压缩二分之一,压强变为最初的5倍。

以上一切过程都在温度不变的情况下进行,空气和水蒸汽视为理想气体。

问在最初条件下相对湿度是多少? 250%pep r p ==pe活塞上方是真空,如图所示。

已知当加热器功率为N 1时,活塞以v 1匀速上升;当加热器功率增加到N 2=2N 1时,活塞上升的速度为v 2=2.5v 1,这时容器内温度不变。

求这个温度是多少?已知在这个温度下汽化热L=2.2×106J/kg ,N 1=100W ,M=40kg ,v 1=0.01m/s 。

且由于容器不绝热,而温度不变,可以认为单位时间散失的热量不变。

286T K =,取t 时间1t L m Q t =+据克拉珀龙方程有mP V RT μ=而1V Sv t =由以上可得 11L Mgv N μ=L N =两室,Ⅰ室中为饱和水蒸汽,Ⅱ室中有质量为m 的氮气,活塞可在容器中无摩擦地滑动。

开始,容器被水平地放置在桌面上,活塞处于平衡时,活塞两边气体的温度均为T 0=373K ,压强同为p 0,如图所示,今将整个容器缓慢地转到图所示的直立位置,两室内的温度仍为T 0,并有少量水蒸汽液化成水。

已知水的汽化热为L ,水蒸气和氮气的摩尔质量分别为1μ和2μ,求在整个过程中,Ⅰ室内的系统与外界交换的热量。

12o m M L gQ m L P S M gμμ==-外界交换的热量就是少量饱和蒸汽液化成水时放出的热量。

只要求出转化成水的质量m ,即可求出该热量。

设容器水平时,Ⅰ、Ⅱ两室的体积分别为12 0301mPV RT -=12m P μμ=12Q mL P μμ==例题:已知冰、水和水蒸气在一密闭容器内(容器内没有其他任何物质),如能三态平衡共存,则系统的温度和压强必定分别为t t =0.01℃和p t =4.58mmHg 。

现有冰、水和水蒸气各1g 处于上述平衡状态。

若保持总体积不变而对此系统缓缓加热,输入的热量Q=0.255kJ ,估算系统再达到平衡后冰、水和水蒸气的质量。

已知在此条件下冰的升华热L 升=2.83kJ/g ,水上一定重量的高压阀,此时可认为锅内空气已全部排出,只有水的饱和蒸汽,继续加热,水温将继续升高,到高压阀被蒸汽顶起时,锅内温度即达到预期温度。

某一高压锅的预期温度为120℃,如果某人在使用此锅时,未按上述程序而在水温被加热到90℃就加上高压阀(可以认为此锅内水汽为饱和气),问当继续加热到高压阀开始被顶起而冒气时,锅内温度为多少。

t 1=114.5℃已知大气压强p 0=1.013×105Pa ,90℃时水的饱和气压p s (90)=7.010×104Pa ,120℃时水的饱和气压p s (120)=1.985×105Pa 。

在90℃和120℃之间水的饱和气压p s 和温度t(℃)的函数关系p s (t)如图所示。

解:由于此人未按正确方法使用,故锅内空气未完全排出,锅内气体压强为蒸汽饱和气压和干空气压强之和,且这个压强均随温度的升高而增大,当这两者之和达到预期温度的饱和气压1.985×105Pa 时,高压阀开始被顶起。

值得注意的是,在高压阀被顶起前,干空气遵循理想气体状态方程,而饱和气由于其质量发生变化,不遵守理想气体状态方程,但克拉珀龙方程仍然能满足。

90℃时锅内干空气压强p 90为0(90)(90) 3.14s P P P =-=×104Pa温度为t ℃时,根据查理定律,有设温度为t 1时,高压阀被顶起,则有p s (t 1)+p(t 1)=1.985×105Pa即: p s (t 1)=1.985×105-p(t 1)令p s (t)=1.985×105-p(t)=(1.986×105-2.35×104-86.0t )=(1.750×105-86.0t)Pa显然,在t=t 1时,p s (t 1)即为顶起高压阀时锅内的饱和气压,从sp '(t)-t 曲线在t=t 1处相交,故由此交点即可即可确定t 1的值。

利用数据t=90℃时,sp '(90)=1.673×105Pa , t=120℃时, sp '(120)=1.647×105Pa , 在本题p s (t)-t 曲线图中画出sp '(t)-t 直线如图所示,由此直线与曲线的交点,得所求温度为 t 1=114.5℃。

如果继续加热,随空气的排出,温度继续升高。

例题:一个初始体积为V 0的汽缸中,盛有2摩尔的空气和少量的水(体积可略),总压强是3.0大气压,第一次等温膨胀,使体积加倍,水刚好全部消失,总压强变为2.0大气压。

第二次等温膨胀,使体积再次加倍。

题中空气和水蒸汽均视为理想气体。

求(已知373K 时,水的饱和气压为atm 1) (1)汽缸中气体温度(2)汽缸中水及水蒸汽的总摩尔数(3)第二次膨胀后,汽缸中气体的总压强373T K = 2n mo = 1P atm =由上得,02P atm =1P atm = 因为温度为373K 时,水的饱和蒸汽压为1atm 。

所以,汽缸中的温度0373T K = (2)设水及蒸汽总的物质的量为n中态水蒸汽 nRT V p =02 初态空气 0002PV RT =解得 2n mo =(3)第二次膨胀过程中,气体总摩尔数不变。

末态和中态比较,温度不变,而体积加倍,则压强减半,31P atm =热学习题1、一容积为4V的抽气机每分钟可完成8次抽气动作,一容积为V 的容器与此抽气机相连通,求抽气机工作多少时间才能使容器内气体的压强由760mmHg 降为1.9mmHg (设抽气30cm 的水银柱。

图示状态时气体温度为-73℃、外界大气压为75cmHg 高,欲使管中水银全部溢出,气体温度应升多至多高?(水银柱由于加热的热胀冷缩均不考虑)T=600.6K0圆桶边缘恰好与水面齐平(如图所示)。

相关文档
最新文档