甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案

合集下载

2020高考冲刺数学总复习压轴解答:椭圆相关的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:椭圆相关的综合问题(附答案及解析)

专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,2PF =. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值.【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b a b +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.(2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率e =且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率32e =,且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点(22,1).(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b +=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.(2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率e =,且经过点1,2⎛ ⎝⎭.(1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围.5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率; (Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 .6. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值.7.(2020·河南鹤壁高中高三月考)已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为12,F F ,P 是椭圆短轴的一个顶点,并且12PF F ∆是面积为1的等腰直角三角形. (1)求椭圆E 的方程;(2)设直线1:1l x my =+与椭圆E 相交于,M N 两点,过M 作与y 轴垂直的直线2l ,已知点3(,0)2H ,问直线NH 与2l 的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.8.(2020·江西高三)已知椭圆C :22221(0)x y a b a b+=>>过点1)2-.(1)求椭圆C 的方程.(2)若A ,B 是椭圆C 上的两个动点(A ,B 两点不关于x 轴对称),O 为坐标原点,OA ,OB 的斜率分别为1k ,2k ,问是否存在非零常数λ,使当12k k λ=时,AOB ∆的面积S 为定值?若存在,求λ的值;若不存在,请说明理由.9.(2020·甘肃省岷县第一中学期末)已知椭圆C :22221x y a b +=(0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.10.(2020·江苏高三期末)已知椭圆2222:1x y C a b+=(0)a b >>的左右焦点分别为12,F F ,焦距为4,且椭圆过点5(2,)3,过点2F 且不平行于坐标轴的直线l 交椭圆与,P Q 两点,点Q 关于x 轴的对称点为R ,直线PR 交x 轴于点M .(1)求1PFQ 的周长; (2)求1PF M 面积的最大值.11.(2020·河南高三期末)已知椭圆C :()222210x y a b a b+=>>过点31,2⎛⎫ ⎪⎝⎭,过坐标原点O 作两条互相垂直的射线与椭圆C 分别交于M ,N 两点.(1)证明:当229a b +取得最小值时,椭圆C . (2)若椭圆C 的焦距为2,是否存在定圆与直线MN 总相切?若存在,求定圆的方程;若不存在,请说明理由.12.(2020·四川高三月考)已知椭圆()2222:10x y C a b a b+=>>的短轴顶点分别为,A B ,且短轴长为2,T 为椭圆上异于,A B 的任意-一点,直线,TA TB 的斜率之积为13- (1)求椭圆C 的方程;(2)设O 为坐标原点,圆223:4O x y +=的切线l 与椭圆C 相交于,P Q 两点,求POQ △面积的最大值.13.(2020·内蒙古高三)已知椭圆()2222:10x y C a b a b +=>>的离心率为3,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线260x -+=相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线()()20y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.14.(2020·河北高三期末)设椭圆2222:1(0)x y C a b a b+=>>的一个焦点为0),四条直线x a =±,y b =±所围成的区域面积为(1)求C 的方程;(2)设过(0,3)D 的直线l 与C 交于不同的两点,A B ,设弦AB 的中点为M ,且1||||2OM AB =(O 为原点),求直线l 的方程.15.(2020·山东高三期末)已知椭圆C :22221x y a b +=(0a b >>)的短轴长和焦距相等,左、右焦点分别为1F 、2F ,点1,2Q ⎛ ⎝⎭满足:122QF QF a +=.已知直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的标准方程;(2)若直线l 过点2F ,且222AF F B =,求直线l 的方程;(3)若直线l 与曲线ln y x =相切于点(),ln T t t (0t >),且AB 中点的横坐标等于23,证明:符合题意的点T 有两个,并任求出其中一个的坐标.16.(2020·安徽高三)已知椭圆2222:1(0)x y a b a b Γ+=>>过点(1,1)M 离心率为2.(1)求Γ的方程;(2)如图,若菱形ABCD 内接于椭圆Γ,求菱形ABCD 面积的最小值.17.(2020·福建省福州第一中学高三开学考试)已知O 为坐标原点,椭圆E :()222210x y a b a b+=>>的焦距为y x =截圆O :222x y a +=与椭圆E 所得的弦长之比为2,椭圆E 与y 轴正半轴的交点分别为A .(1)求椭圆E 的标准方程;(2)设点()00,B x y (00y ≠且01y ≠±)为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB ,AC分别交x 轴于点M ,N .试判断OM ON ⋅是否为定值?若是求出该定值,若不是定值,请说明理由.18.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,且离心率为12.(1)求椭圆C 的方程;(2)已知点31,2Q ⎛⎫- ⎪⎝⎭是椭圆上的点,,A B 是椭圆上位于直线PQ 两侧的动点,当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?请说明理由.19.(2020·甘肃高三期末)设椭圆2222:1y x C a b +=(0)a b >>的离心率是2,直线1x =被椭圆C 截得的弦长为(1)求椭圆C 的方程;(2)已知点M 的直线l 与椭圆C 交于不同的两点A ,B ,当MAB △的面积最大时,求直线l 的方程.20.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b +=>>,F 为椭圆C 的右焦点,2D ⎛ ⎝⎭为椭圆上一点,C 的离心率2e =(1)求椭圆C 的标准方程;(2)斜率为k 的直线l 过点F 交椭圆C 于,M N 两点,线段MN 的中垂线交x 轴于点P ,试探究||||PF MN 是否为定值,如果是,请求出该定值;如果不是,请说明理由.21.(2020·青海高三期末)已知椭圆22221(0)x y a b a b+=>>的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆M 的方程; (2)若斜率为12的直线l 与椭圆M 交于C 、D 两点,点3(1)2P ,为椭圆M 上一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问:12k k +是否为定值?请证明你的结论22.(2020·四川高三期末)在平面直角坐标系中,已知点(2,0)A -,(2,0)B ,动点(,)P x y 满足直线AP 与BP 的斜率之积为34-.记点P 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)若M ,N 是曲线C 上的动点,且直线MN 过点10,2D ⎛⎫⎪⎝⎭,问在y 轴上是否存在定点Q ,使得MQO NQO ∠=∠若存在,请求出定点Q 的坐标;若不存在,请说明理由.23.(2020·山西高三期末)已知()()122,0,2,0F F -是椭圆()2222:10x y C a b a b+=>>的两个焦点,M 是椭圆C 上一点,当112MF F F ⊥时,有213MF MF =. (1)求椭圆C 的标准方程;(2)设过椭圆右焦点2F 的动直线l 与椭圆交于,A B 两点,试问在x 铀上是否存在与2F 不重合的定点T ,使得22ATF BTF ∠=∠恒成立?若存在,求出定点T 的坐标,若不存在,请说明理由.专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,PF =(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【答案】(1)22182x y +=;(2)2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题知,点,2P c ⎛⎫±⎪ ⎪⎝⎭,b =则有222212c a ⎛⎫⎪⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OMAB ⊥,由OM =AB12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB k x x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦()()()222221682114k t k k -+=++. 设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2. 综上:AOB ∆的面积最大,最大值为2. 【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C 的离心率为2. (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.【答案】(1)2214x y +=;(2)直线m 过定点3,04⎛⎫ ⎪⎝⎭,详见解析.【解析】(1)抛物线2y =的焦点为,则c =椭圆C 的离心率c e a ==2222,1a b a c ==-=. 故椭圆C 的标准方程为2214x y +=.(2)方法一:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,易知0t ≠,设直线l 的方程为(1)y k x t =-+, 代入椭圆方程并化简得22222(14)(88)48440k x kt k x k kt t ++-+-+-=.设11(,)A x y ,22(,)B x y ,则212288214kt k x x k -+=-=+,解得14k t =-. 因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-.令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭.当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方法二:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,设11(,)A x y ,22(,)B x y ,则有221114x y +=,222214x y +=,两式相减得12121212()()()()04x x x x y y y y +-++-=.由线段AB 的中点为(1,)M t ,则12122,2x x y y t +=+=, 故直线l 的斜率121214y y k x x t-==--.因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-. 令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭. 当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫ ⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值. 【答案】(1)2212x y +=;(2)19.【解析】(1)根据条件有22222{13124a b a b=+=,解得222,1a b ==,所以椭圆22:12x C y +=. (2)根据12AM AB =,12CN CD =可知,,M N 分别为,AB DE 的中点, 且直线,AB DE 斜率均存在且不为0,现设点()()1122,,,A x y B x y ,直线AB 的方程为1x my =+,不妨设0m >, 联立椭圆C 有()222210m y my ++-=, 根据韦达定理得:12222m y y m +=-+,()12122422x x m y y m +=++=+, 222,22m M m m -⎛⎫ ⎪++⎝⎭,MF =,同理可得12NF m =⎛⎫-+ ⎪⎝⎭, 所以MNF ∆面积2112142MNFm m S MF NF m m ∆+==⎛⎫++ ⎪⎝⎭,现令12t m m =+≥, 那么21124294MNF t S t t t∆==≤++,所以当2t =,1m =时,MNF ∆的面积取得最大值19. 【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.【答案】(1)2212x y +=;(2)169【解析】(1)依题意画出下图可设2(,)b P c a-,(,0)A a ,(0,)B b ,则有:22221122OPAB POB b b k k ac a S bc b c a∆⎧-===⎪-⎪⎪==⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,Ⅰ椭圆C 的标准方程为2212x y +=;(2)Ⅰ当1l x ⊥,2//l x 时,22122222MSNTb S a b a===; Ⅰ当1l ,2l 斜率存在时,设1l :1x ky =-,2l :11x y k=-,分别联立椭圆方程2212x y +=,联立22112x ky x y =-⎧⎪⎨+=⎪⎩得()222210k y ky +--=, Ⅰ12222k y y k +=+,12212y y k -=+, ⅠMN==)2212k k +=+,同理)22221111122k k ST k k⎫+⎪+⎝⎭==++, Ⅰ12S MN ST =()()()22228112221k k k +=++()()()222241221k k k +=++()2222241221()2k k k +≥+++()22224(1)169914k k +==+,当且仅当22221k k +=+即21k =即1k =±时等号成立, 故四边形MSNT 的面积S 的最小值min 169S =.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.【答案】(1)2212x y +=(2【解析】(1)设()11,M x y ,()22,N x y ,则点1212,22x x y y P ++⎛⎫⎪⎝⎭,由条件知直线MN 的斜率为12121y y x x -=-,直线OP 的斜率为121212y y x x +=-+,而22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得,22221212220x x y y a b --+=, 所以()()()()22212121222212121212y y y y y y b a x x x x x x -+--===---+,即222a b =, 又左焦点为()1,0F -,所以22222221c a b b b b =-=-==,所以椭圆E 的标准方程为2212x y +=.(2)设直线CD 的方程为1x my =-,记C ,D 过标为()11,x y ,()22,x y ,则1121212S AF y y y y =⋅-=-,2121212S BF y y y y =⋅-=-, 所以2112S S y y -=-.联立方程,22221x y x my ⎧+=⎨=-⎩,消去x ,得()222210m y my +--=,所以12222m y y m +=+,12212y y m =-+,12y y -==,令21tm =+,则1t ≥,且()()()2222818882122122m tt mt t+==≤=+++++,当且仅当1t =时等号成立, 所以2112S S y y -=-21S S -.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b ab +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】(1)22142x y+=;(2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题意可得222222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得24a =,22b =,因此,椭圆C 的标准方程为22142x y +=;(2)当直线l 的斜率不存在时,直线MN 的方程为1x =-或1x =.若直线l 的方程为1x =,联立221142x x y =⎧⎪⎨+=⎪⎩,可得1x y =⎧⎪⎨=⎪⎩此时,MN =OMDN的面积为122=同理,当直线l 的方程为1x =-时,可求得四边形OMDN; 当直线l 的斜率存在时,设直线l 方程是y kx m =+,代人到22142x y +=,得()222124240k x kmx m +++-=,122412km x x k -∴+=+,21222412m x x k -=+,()228420k m ∆=+->, ()12122221my y k x x m k∴+=++=+,12MN x x =-==,点O 到直线MN的距离d =,由OM OC OD +=,得122421D km x x x k =+=-+,122212D my y y k =+=+, 点D 在椭圆C 上,所以有222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,由题意知,四边形OMDN 为平行四边形,∴平行四边形OMDN的面积为1222OMDN OMNS S MN d ∆==⨯⨯=()222121k k +====+故四边形OMDN . 【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)2241x y +=;(Ⅰ)(Ⅰ)见解析;(Ⅰ)12S S 的最大值为94,此时点P的坐标为1,)24【解析】(Ⅰ=,解得2a b =. 因为抛物线的焦点为10,2F ⎛⎫ ⎪⎝⎭,所以11,2a b ==,所以椭圆的方程为2241x y +=.(Ⅰ)(1)设2,(0)2m m P m ⎛⎫> ⎪⎝⎭,由22x y =可得y x '=,所以直线l 的斜率为m ,其直线方程为2()2m y m x m -=-,即22my mx =-. 设()()()112200,,,,,A x y B x y D x y ,联立方程组2222m y mx x y ⎧=-⎪⎨⎪=⎩消去y 并整理可得()223441410m x m x m +-+-=,故由其判别式>0∆可得0m <<3122441m x x m +=+, 故312022241x x m x m +==+,代入22m y mx =-可得()202241m y m =-+, 因为0014y x m =-,所以直线OD 的方程为14y x m=-. 联立14y x m x m⎧=-⎪⎨⎪=⎩可得点的纵坐标为14y =-,即点M 在定直线14y =-上. (2)由(1)知直线l 的方程为22m y mx =-,令0x =得22m y =-,所以20,2m G ⎛⎫- ⎪⎝⎭,又()2322212,,,0,,2241241m m m P m F D m m ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 所以()2111||124S GF m m m ==+,()()22202211||2841m m S PM m x m +=⋅-=+, 所以()()()221222241121m m S S m ++=+,令221t m =+,则1222(21)(1)112S t t S t t t -+==-++, 因此当112t =,即2t =时,12S S 最大,其最大值为94,此时2m =满足>0∆,所以点P 的坐标为1,24⎛⎫ ⎪⎪⎝⎭,因此12S S 的最大值为94,此时点P 的坐标为1,24⎛⎫ ⎪ ⎪⎝⎭. (2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率2e =,且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).【答案】(1)2214x y +=;(2)见解析.【解析】(1)解:因为圆221x y +=过椭圆C 的上、下顶点,所以1b =.又离心率2e ==,所以21314a -=,则24a =. 故椭圆C 的方程为2214x y +=.(2)证明:椭圆221:1164x y C +=,当直线l 的斜率不存在时,这时直线l 的方程为2x =±,联立2221164x x y =±⎧⎪⎨+=⎪⎩,得y =||MN =则12||2OMN S MN ∆=⨯⨯= 当直线l 的斜率存在时,设:l y kx m =+,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418410k x kmx m +++-=,由0∆=,可得2241m k =+. 联立221164y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418440k x kmx m +++-=.设()11,,M x y ()22,N x y ,所以1228,41km x x k +=-+()21224441m x x k -=+,则||MN ==.因为原点到直线l的距离d ==1||2OMNS MN d =⋅=. 综上所述,OMN ∆的面积为定值方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率e =且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.【答案】(1)22182x y +=;(2)是,0. 【解析】(1)因为圆222x y +=过椭圆C的上,下顶点,所以b =又离心率2e =3a c =,于是有222b a a bc ⎧=⎪⎪=⎨⎪=+⎪⎩,解得a =b =所以椭圆C 的方程为22182x y +=; (2)由于直线l 的斜率为12,可设直线l 的方程为12y x t =+,代入椭圆C :2248x y +=, 可得222240x tx t ++-=.由于直线l 交椭圆C 于P 、Q 两点,所以()2244240t t ∆=-->, 整理解得22t -<<设点()11,P x y 、()22,Q x y ,由于点P 与点E 关于原点的对称,故点()11,E x y --,于是有122x x t +=-,21224x x t =-.若直线AE 与AQ 的斜率分别为AE k ,AQ k ,由于点()2,1A -,则21211122AE AQ y y k k x x ---+=++-+()()()()()()122121212122x y x y x x ---++=+-, 又Ⅰ1112y x t =+,2212y x t =+. 于是有()()()()12212121x y x y ---++()()2112211224y y x y x y x x =--++--()211212124x x x x tx tx x x =--+++--()12124x x t x x =-+--()()224240t t t =-----=,故直线AE 与AQ 的斜率之和为0,即0AE AQ k k +=.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点.(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【答案】(1)2215y x +=;(2)[)8,+∞. 【解析】(1)由题意可知,设抛物线方程为:22x py =点在抛物线C 上,所以抛物线C 的方程为28x y =,所以椭圆的上焦点为(0,2),所以椭圆的标准方程为2215y x +=;(2)设211,,8x A x ⎛⎫ ⎪⎝⎭222,8x B x ⎛⎫ ⎪⎝⎭,在A 点处的切线的斜率114x k =,在B 点处的切线的斜率224x k =,又1212116x xk k ⋅==-,所以 22212188ABx x k x x -=-218x x +=,4m =212x x m +=,而12|||AB x =-===所以g()m =20m ≥,所以()8g m ≥.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b+=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.【答案】(1)22241x y +=(2)证明见解析【解析】由椭圆C :22221(0)x y a b a b+=>>的长轴长是离心率的两倍得22a e =,即2a c =………..Ⅰ 设1122(,),(,)A x y B x y联立22221x y a b+=和4430x y -+=整理得222222239()0216a b x a x a a b +++-=; 所以2122232ax x a b +=-+, 依题意得:22232=1aa b--+,即222a b =……..Ⅰ· 由ⅠⅠ得依题意得:2211,24a b ==,所以椭圆C 的方程为22241x y +=.(2)设3344(,),(,)M x y N x y ,由223||||4OM ON +=得2222334434x y x y +++= 因为3344(,),(,)M x y N x y 在椭圆C 上,所以22332244241,241,x y x y ⎧+=⇒⎨+=⎩223412x x +=, 22223422342222343411(12)(12)44OM ON x x y y K K x x x x -⋅-⋅===222234342234112()4)1164x x x x x x -++=( (2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【答案】(1)2214x y +=;(2) (0,1).【解析】(1)由已知得222222{2a bc a c a b =⨯==-⇒2{1a b ==ⅠC 方程:2214x y += (2)由题意可设直线l 的方程为:y kx m =+(0,0)k m ≠≠联立2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得:222(14)84(1)0k x kmx m +++-= 则Ⅰ22226416(14)(1)k m k m =-+-2216(41)0k m =-+>,此时设11(,)M x y 、22(,)N x y Ⅰ212122284(1),1414km m x x x x k k-+=-=++ 于是2212121212()()()y y kx m kx m k x x km x x m =++=+++又直线OM 、MN 、ON 的斜率依次成等比数列,Ⅰ2221211121212()y y k x x km x x m k x x x x +++⋅==⇒22228014k m m k-+=+ 由0m ≠得:214k =⇒12k =±.又由Ⅰ0>得:202m << 显然21m ≠(否则:120x x =,则12,x x 中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,矛盾!)设原点O 到直线l 的距离为d ,则1212OMNSMN d x ==-12== 故由m 得取值范围可得ⅠOMN 面积的取值范围为(0,1)【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由. 【答案】(1);(2)存在,M 的坐标为62,22⎛⎫ ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫-- ⎪ ⎪⎝⎭,最大值为.【解析】(Ⅰ)因为e =2223c a =,于是223a b .设椭圆C 上任一点,椭圆方程为,,=Ⅰ当,即时,(此时舍去;Ⅰ当即时,综上椭圆C 的方程为.(Ⅰ)圆心到直线l 的距离为221d m n=+,弦长,所以OAB ∆的面积为点,当时,由得综上所述,椭圆上存在四个点2⎫⎪⎪⎝⎭、⎛⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.【解析】(1)根据题意4a =8,∴a =2. 把y =x 代入椭圆方程x 24+y 2b 2=1得,x 2=4b 24+b 2, 因为直线y =x 被椭圆C 截得的线段长为4√427, 所以2√4b 24+b 2+4b 24+b 2=4√427,解得b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由k 1k 2=−34,得3x 1x 2+4y 1y 2=0,当AB 的斜率不存在时,x 1=x 2,y 1=−y 2,3x 12−4y 12=0,又3x 12+4y 12=12, ∴x 12=2,这时|OP |=√2.当AB 的斜率存在时,设直线AB:y =kx +m ,由得{3x 2+4y 2=12y =kx +m :(3+4k 2)x 2+8kmx +4m 2−12=0, 由Δ>0得m 2<4k 2+3Ⅰx 1+x 2=−8km 3+4k 2,x 1x 2=4m 2−123+4k 2,结合3x 1x 2+4y 1y 2=0得2m 2=4k 2+3≥3Ⅰ 由ⅠⅠ知m ≠0且m 2≥32,x 0=x 1+x 22=−2k m ,y 0=kx 0+m =32m ,∴|OP|2=x 02+y 02=4k 2m 2+94m 2=2m 2−3m 2+94m 2=2−34m 2≥32∴√2>|OP |≥√62综上|OP |的取值范围为[√62,√2]. 3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率2e =,且经过点1,2⎛ ⎝⎭. (1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.【解析】(1)2212x y += (2)PM 的斜率不存在时, MN 的垂直平分线与x 轴重合,没有截距,故PM 的斜率存在. 设PM 的方程为2y kx =+,代入椭圆方程 得: ()2212860k x kx +++=PM 与椭圆有两个不同的交点()()22841260k k ∴∆=-+⨯>,即232k >,即2k >或2k <-设()()1122,,,,M x y N x y MN 的中点()0,0Q x y 则120002242,221212x x k x y kx k k +==-=+=++ MN ∴的垂直平分线的方程为222141212k y x k k k ⎛⎫-=-+ ⎪++⎝⎭∴在x 轴上的截距为222242121212k k kk k k -=-+++ 设()2212xf x x =-+,则()()()22222112x f x x-+'=, 232x ∴>时, ()0f x '>恒成立x ∴>()0;f x x <<<时()0f x <<MN ∴的垂直平分线在x 轴上的截距的范围是⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a 2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围. 【解析】(1)由题可知,椭圆的另一个焦点为(−√3,0),所以点M 到两焦点的距离之和为√(2√3)2+(12)2+12=4.所以a =2.又因为c =√3,所以b =1,则椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,k OA +k OB =0,不符合题意. 故设l 直线的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 联立{y =kx +m x 24+y 2=1,可得(4k 2+1)x 2+8kmx +4(m 2−1)=0.所以{x 1+x 2=−8km4k 2+1,x 1x 2=4(m 2−1)4k 2+1, 而k OA +k OB =y 1x 1+y 2x 2=(kx 1+m )x 2+(kx 2+m )x 1x 1x 2=2k +m (x 1+x 2)x 1x 2=2k +−8km 24(m 2−1)=−2km 2−1,由k OA +k OB =−12,可得m 2=4k +1.所以k ≥−14,又因为16(4k 2−m 2+1)>0,所以4k 2−4k >0.综上,k ∈[−14,0)∪(1,+∞).5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率;(Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 . 【解析】(Ⅰ)因为a 2=4,b 2=2,所以a =2,b =√2,c =√2 所以离心率e =c a=√22(Ⅰ)设P(x 1,y 1),Q(x 2,y 2)若k =12,则直线l 的方程为y =12x +1由{x 24+y 22=1y =12x +1 ,得3x 2+4x −4=0 解得 x 1=−2,x 2=23设A(0,1),则 S ΔPBQ =12|AB|(|x 1|+|x 2|)=12×3×(23+2)=4(Ⅰ)法一: 设点C(x 3,y 3),因为P(x 1,y 1),B(0,−2),所以{x 3=x 12y 3=−2+y 12又点P(x 1,y 1),C(x 3,y 3)都在椭圆上,所以{x 124+y 122=1(x 12)24+(−2+y 12)22=1解得{x 1=√142y 1=−12 或{x 1=−√142y 1=−12 所以 k =−3√1414或k =3√1414法二:设C(x 3,y 3)显然直线PB 有斜率,设直线PB 的方程为y =k 1x −2 由{x 24+y 22=1y =k 1x −2, 得 (2k 12+1)x 2−8k 1x +4=0所以{Δ=16(2k 12−1)>0x 1+x 3=8k12k 12+1x 1x 3=42k 12+1又x 3=12x 1 解得{x 1=−√142k 1=−3√1414 或 {x 1=√142k 1=3√1414所以{x 1=−√142y 1=−12或 {x 1=√142y 1=−12所以k =3√1414或k =−3√14146. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a 2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值. 【解析】(I )由2a =4,Ⅰa =2,e =√32,Ⅰc =√3,b =1所以椭圆方程为x 24+y 2=1(II )设A(x 1,y 1) B(x 2,y 2),把y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2−4=0 x 1+x 2=−8km4k 2+1,x 1x 2=4m 2−44k 2+1,∠AOB =90°,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=0, x 1x 2+(kx 1+m)(kx 2+m)=04k 2+4=5m 2,Δ=16(4k 2+1−m 2)>0 Ⅰ4k 2+1−m 2=4k 2+1−4k 2+45>0 Ⅰ16k 2+1>0,则|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=4√1+k 2√4k 2+1−m 24k 2+1=4√1+k 2√4k 2+1−4k 2+454k 2+1=45√5⋅√16k 4+17k 2+116k 4+8k 2+1。

《高考真题》专题06 函数的奇偶性的应用-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)

《高考真题》专题06 函数的奇偶性的应用-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)

专题06 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -,则当0x <时,0x ->,则()e x f x --=-1()f x =-,得()e 1x f x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.【母题来源二】【2018年高考全国Ⅱ卷文数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【母题来源三】【2017年高考全国Ⅱ卷文数】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =______________.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式;(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 注意:①性质法中的结论是在两个函数的公共定义域内才成立的.②性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程. 2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点(1)偶函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数,其图象关于y 轴对称;(2)奇函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数,其图象关于原点对称.2.判断()f x -与()f x 的关系时,也可以使用如下结论:如果(()0)f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 3.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x xxa a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 4.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 5.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.6.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 7.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 8.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 9.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 10.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 12.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 13.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B 【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -=C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解. 【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【答案】A【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数,当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【答案】B【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26x f x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可.【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】3-【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()23f === ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解.【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1xf x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足,代入函数求值即可.【解析】对一切且恒成立.恒成立,恒成立.,.27.【吉林省长春市实验中学2019届高三期末考试】已知函数是定义在上的周期为的奇函数,当时,,则______________.【答案】【分析】根据是周期为4的奇函数即可得到=f(﹣8)=f()=﹣f(),利用当0<x<2时,=4x,求出,再求出,即可求得答案.【解析】∵是定义在R上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④ ,为非奇非偶函数; 故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断 与 的关系. 29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知 , .若偶函数 满足 (其中 , 为常数),且最小值为1,则 ______________. 【答案】【分析】利用函数是偶函数,确定 ,利用基本不等式求最值,确定 的值,即可得到结论. 【解析】由题意, , , 为偶函数, , , , , , ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________.【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=,可得(4)0f=,则20191(1)(2)(019) )(2if i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f=+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数与都是定义在上的奇函数,当时,,则的值为______________.【答案】2【分析】根据题意,由是定义在R上的奇函数可得,结合函数为奇函数,分析可得,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得的值,相加即可得答案.【解析】根据题意是定义在R上的奇函数,则的图象关于点(﹣1,0)对称,则有,又由是R上的奇函数,则,且,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。

甘肃、青海、宁夏2019届高三3月联考数学(理)试卷(附解析)

甘肃、青海、宁夏2019届高三3月联考数学(理)试卷(附解析)

高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选:B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B. C. D.【答案】C【解析】【分析】先求A,由交集对照选项即可求解【详解】由题,因为,对照选项可知C成立故选:C【点睛】本题考查了集合的交集的运算,准确计算是关键,是基础题.3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下:由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)A. 119.3B. 119.7C. 123.3D. 126.7【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图像,则的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选:B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求【详解】由题2b=16.4,2a=20.5,则则离心率e=故选:B【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题6.若函数有最大值,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解【详解】由题,,故单调递减,故,因为函数存在最大值,所以解故选:B【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以等于.如图,网格纸上的小正方形的边长为,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. B.C. D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设满足约束条件则的最大值与最小值的比值为()A. -1B.C. -2D.【答案】C【解析】【分析】画出可行域,求得目标函数最大最小值则比值可求【详解】由题不等式所表示的平面区域如图阴影所示:化直线l;为y=-x+z,当直线l平移到过A点时,z最大,联立得A(2,5),此时z=7; 当直线l平移到过B点时,z最小,联立得B(, 此时z=-,故最大值与最小值的比值为-2 故选:C【点睛】本题考查线性规划,准确作图与计算是关键,是基础题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选:D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设为等差数列的前项和,若,,则的最小值为()A. -343B. -324C. -320D. -243【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为最小值为f(7)=-343故选:A【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知分别是双曲线:的左、右顶点,为上一点,且在第一象限.记直线,的斜率分别为,,当取得最小值时,的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设P(x,y)证明为定值,运用基本不等式求得取得最小值时P坐标即可求解【详解】设P(x,y),则=则当且仅当取等,此时P(3,4),则重心坐标为,即故选:B【点睛】本题考查双曲线的几何性质,综合问题,明确为定值是关键,注意计算的准确,是中档题.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的展开式的第2项为__________.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形中,,,,则点的坐标为__________.【答案】【解析】【分析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数,则__________.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】【分析】由两切线的斜率互为相反数,设切点,求导列关于t的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.在中,,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线:上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.【答案】(1)详见解析;(2)4.【解析】【分析】(1)先求出p,再由焦半径公式求出,,即可证明;(2)与联立由韦达定理代入,求得,再写出的垂直平分线的方程即可求得截距【详解】(1)证明:∵在抛物线:上,∴,∴.∴,,,∵,∴,,依次成等比数列.(2)与联立,得,则,解得.由韦达定理,得,,则,即.从而,线段的中点坐标为,的垂直平分线的方程为,令,得,故所求截距为4.【点睛】本题考查抛物线的简单几何性质,直线与抛物线的位置关系,准确计算是关键,是中档题.20.如图,在多面体中,四边形为正方形,,,.(1)证明:平面平面.(2)若平面,二面角为,三棱锥的外接球的球心为,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数的导函数满足对恒成立.(1)判断函数在上的单调性,并说明理由;(2)若,求的取值范围.【答案】(1)在上单调递增;(2).【解析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上且圆经过极点,若被圆截得的弦长为1,求圆的半径.【答案】(1)6;(2)13.【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.设函数.(1)求不等式的解集;(2)证明:.【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。

甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案解析-精选

甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案解析-精选

高三数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】由题可知,分别求得集合,,再根据集合的交集的运算,即可求解,得到答案。

【详解】由题可知,集合,,则,故选C。

【点睛】本题主要考查了集合的交集运算问题,其中解答中正确求解集合,再根据集合的交集的运算是解答的关键,着重考查了推理与计算能力,属于基础题。

2.已知,则A. -2B. 0C. 1D. 2【答案】B【解析】【分析】根据复数的运算和复数相等的条件,即可求解得值,进而得到答案。

【详解】由题可得,则,,故,故选B。

【点睛】本题主要考查了复数的运算和复数相等应用,其中解答中熟记复数的四则运算和复数相等的条件是解答本题的关键,着重考查了推理与计算能力,属于基础题。

3.函数的一个单调递增区间为A. B. C. D.【答案】A【解析】【分析】根据三角函数的恒等变换,化简,再根三角函数的性质,即可求解。

【详解】由题可知.由,,解得,,当时,可得,即函数的单调递增区间为,故选A。

【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中根据三角恒等变换的公式正确化简三角函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题。

4.自古以“米以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确...的是A. 2010~2016年全国餐饮收入逐年增加B. 2016年全国餐饮收入比2010年翻了一番以上C. 2010~2016年全国餐饮收入同比增量最多的是2015年D. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个【答案】D【解析】【分析】由题意,根据给定的条形图中的数据,逐项判定,即可得到答案。

2019届宁夏银川一中高三第五次月考数学(理)试题(解析版)

2019届宁夏银川一中高三第五次月考数学(理)试题(解析版)

2019届宁夏银川一中高三第五次月考数学(理)试题一、单选题1.已知集合{}|5213, M x x x R =-≤-≤∈, (){}|80, N x x x x Z =-≤∈,则M N ⋂=( )A .()0,2B .[]0,2C .{}0,2D .{}0,1,2【答案】D【解析】∵集合{|5213,}{|22,M x x x R x xx R =-≤-≤∈=-≤≤∈,集合(){|80,}{|08,}N x x x x Z x x x Z =-≤∈=≤≤∈ ∴{|0,1,2}M N x ⋂=故选D 2.在等比数列的值为A .3B .C . 3D .【答案】A 【解析】利用等比中项的性质可知,a 3a 11=a 72,a 5a 9=a 72,代入题设等式求得a 7,进而利用等比中项的性质求得的值.【详解】 根据等比数列的性质得到a 3a 5a 7a 9a 11=a 75=243∴a 7=3,而根据等比数列的性质得到 ∴=a 7=3故选:A .【点睛】本题主要考查了等比数列的性质.解题过程充分利用等比中项的性质中G 2=ab 的性质.等比中项的性质根据数列的项数有关.3.已知复数和复数,则为A.B.C.D.【答案】C【解析】利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+i sin23°)•(cos37°+i sin37°)=cos60°+i sin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.4.下列命题错误的是A.三棱锥的四个面可以都是直角三角形;B.等差数列{an}的前n项和为Sn(n=1,2,3…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则S16为定值;C.中,sinA>sinB是的充要条件;D.若双曲线的渐近线互相垂直,则这条双曲线是等轴双曲线.【答案】B【解析】A,找到满足题意的特殊图形即可;B,根据等差数列的性质可得到命题正确;C,根据正弦定理得到大边对大角,进而得到结论;D,设出双曲线方程,求出渐近线方程,通过斜率之积为定值-1,得到a,b的关系.【详解】对于A,三棱锥的四个面可以都是直角三角形正确,如三条侧棱两两垂直,底面是直角三角形,A正确;B. 等差数列{a n}的前n项和为S n(n=1,2,3…),若当首项a1和公差d变化时,a5+a8+a11=3,则不一定是一个定值,故B错误;对于C△ABC中,由正弦定理可得,因此sin A>sin B⇔a>b⇔A>B,因此sin A>sin B是A>B 的充要条件,正确;D设双曲线的方程为:,渐近线方程分别为,斜率之积为定值-1,则,故双曲线是等轴双曲线.故答案为:B.【点睛】这个题目考查了命题真假的判断,通常要推翻一个命题,只需要举出反例即可,而要证明一个命题的正确性则需要证明普遍性;此题型涉及的知识点较多,比较广,应多注意积累这些基础的结论》5.在椭圆中,焦点.若、、成等比数列,则椭圆的离心率A .B .C .D .【答案】C【解析】根据题意列出式子:解得即可.【详解】椭圆,焦点,、、成等比数列,故得到两侧除以得到.故答案为:C.【点睛】这个题目考查的是椭圆的离心率的求法;求离心率的常用方法有:定义法,根据椭圆或者双曲线的定义列方程;数形结合的方法,利用图形的几何特点构造方程;利用点在曲线上,将点的坐标代入方程,列式子。

人教版数学高三期末测试精选(含答案)8

人教版数学高三期末测试精选(含答案)8

【答案】C
x 0,
9.设点
P(
x,
y)
在不等式组
2x
y
0,
表示的平面区域上,则 z
x y 3 0
(x 1)2 y2 的
最小值为( )
A.1
B. 5 5
C. 2
D. 2 5 5
【来源】辽宁省沈阳市东北育才学校 2019 届高三第五次模拟数学(文)试题
【答案】D
10.已知各项均为正数的等比数列an 单调递增,且 a1 a3 36,a1 a2 a3 26 ,
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .若 ABC 的面积为
b2 c2 a2 ,则角 A =(
A. ab ac
B. c b a 0
C. cb2 ab2
D. ac a c 0
【来源】2019 年上海市格致中学高三上学期第一次检测数学试题
【答案】C
6.已知 a,b ∈ R,则 a > |b|是 a|a| > b|b|的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
则 Ð B =___________. 【来源】重庆市綦江实验中学校 2017-2018 学年高一下学期半期考试数学(理)试题.
【答案】150
23.已知等差数列an 的公差为 2,若 a1,a3 ,a4 成等比数列,则 a2 ________.
【来源】安徽省阜阳三中 2018-2019 学年高二上学期第一次调研考试数学(文)试题

2019届宁夏银川一中高三第五次月考数学(理科)试卷答案

2019届宁夏银川一中高三第五次月考数学(理科)试卷答案

z yxFEDCBA P银川一中2018届高三第五次月考数学(理科)参考答案一、选择题:(每小题5分,共60分) 题号1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCDCBABAD二、填空题:(每小题5分,共20分) 13. 33y x =±14. 10 15. 4- 16. 3π 三、解答题:17. 解:(1)由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a ………………3分 解得⎩⎨⎧=-=321d a 所以a n =3n -5.…………………6分(Ⅱ)∵15384122--⋅===n n a n nb ∴数列{b n }是首项为41,公比为8的等比数列,---------9分所以;281881)81(41-=--=n n n S ………………………12分18. 解:(Ⅰ) )3sin()3sin()sin )(sin sin (sin B B B A B A -⋅+=-+ππ,∴)sin 21cos 23()sin 21cos 23(sin sin 22B B B B B A -⋅+=-, 即B B B A 2222sin 41cos 43sin sin -=-,∴43sin 2=A . 又ABC ∆是锐角三角形,∴23sin =A ,从而3π=A . …5分 (Ⅱ)由4,3a A π==及余弦定理知,22162cos3b c bc π=+-,即222162cos ()33b c bc b c bc π=+-=+-,22()3163()162b c b c bc ++=+≤+…10分2()64,8b c b c ∴+≤+≤.又,b c a +>8,a b c ∴<+≤28,a a b c a ∴<++≤+∴三角形ABC 周长的取值范围是812.a b c ∴<++≤……..12分.19. 解:(Ⅰ)方法一: 建立如图所示空间直角坐标系.设,,AP AB b BE a ===,则,(0,0,0),(0,,0),(,,0),(0,0,),A B b E a b P b 于是,(,,),(0,,).22b bPE a b b AF -=,则0=⋅AF PE ,所以AF PE ⊥.……6分方法二:,,BC AB BC PA ⊥⊥BC ∴⊥面PAB ,面PBA ⊥面PBC , 又,PA AB AF PB =⊥AF ∴⊥面PBC ,PE ⊂面PBC AF PE ∴⊥(Ⅱ)设2AB =则4,BC =,(4,0,0),(0,2,0),(,2,0),(0,0,2),D B E a P (0,2,0),(,2,2),AB PE a ==-若,则由21717ABPE AB PE=得3,(3,2,0)a E =, 设平面PDE 的法向量为),,(z y x n =, (4,0,2),(3,2,0),PD ED =-=-由 ⎝⎛=⋅=⋅00PE n PD n ,得:420,2022x xx z x y x y z x=⎧⎪-=⎧⎪=⎨⎨-=⎩⎪=⎪⎩,于是(2,1,4),21.n n ==,而,(0,1,1), 2.AF PBC AF AF ⊥==设二面角D-PE-B 为θ,则为钝角所以,542cos .42212nAF n AFθ=-=-=-20.解:(1)由题意,212||22,(,0),F F c A a ==∴ 212AF AF = 2F ∴为1AF 的中点2,322==∴b a 即:椭圆方程为.12322=+y x …………………(5分)(2)方法一:当直线DE 与x 轴垂直时,342||2==a b DE ,此时322||==a MN ,四边形DMEN的面积||||42DE MN S ⋅==.同理当MN 与x 轴垂直时,也有四边形DMEN 的面积||||42DE MN S ⋅==. 当直线DE ,MN 均与x 轴不垂直时,设DE :)1(+=x k y ,代入消去y 得:.0)63(6)32(2222=-+++k x k x k 设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x k k x x y x E y x D 则所以,231344)(||222122121++⋅=-+=-k k x x x x x x , 所以,2221232)1(34||1||k k x x k DE ++=-+=,同理222211)1]3(1)||.1323()2k k MN k k -++==+-+所以四边形的面积222232)11(3432)1(34212||||k k k k MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=k k k k令u u u S k k u 61344613)2(24,122+-=++=+=得因为,2122≥+=k k u 当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为2596.…(12分)21.解:x>0时,ln()1ln ()()ex x f x f x xx+=--==………3分(1)当x>0时,有221(1ln )1ln ()x x x x f x xx⋅-+⋅'==-,()0ln 001f x x x '>⇔<⇔<<;()0ln 01f x x x '<⇔>⇔>所以()f x 在(0,1)上单调递增,在(1,)∞上单调递减,函数()f x 在1x=处取得唯一的极值.由题意0a >,且113a a <<+,解得所求实数a 的取值范围为213a << …6分(2)当1x ≥时,1ln (1)(1ln )()11k x k x x f x k x x x x+++≥⇔≥⇔≤++令(1)(1ln )()(1)x x g x x x++=≥,由题意,()k g x ≤在[)1,+∞上恒成立 ……8分 []22(1)(1ln )(1)(1ln )ln ()x x x x x x x x g x x x ''++⋅-++⋅-'==令()ln (1)h x x x x =-≥,则1()10h x x'=-≥,当且仅当1x =时取等号.所以()ln h x x x =-在[)1,+∞上单调递增,()(1)10h x h ≥=>因此,2()()0h x g x x '=> ()g x 在[)1,+∞上单调递增,min ()(1)2g x g ==.……10分所以2k ≤.所求实数k 的取值范围为(],2-∞ ………12分 22. 解.(I ) 的普通方程为1),1(3C x y -=的普通方程为.122=+y x联立方程组⎪⎩⎪⎨⎧=+-=,1),1(322y x x y 解得 与1C 的交点为)0,1(A ,)23,21(-B , 则1||=AB .(II )2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是 ]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd ,由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-.23.解:由|21|11211,0 1.x x x -<-<-<<<得解得所以{|01}.M x x =<<(I ) 由M b a ∈,,得10,10<<<<b a ,所以(1)()(1)(1)0.ab a b a b +-+=--> 故1.ab a b +>+(II )由}2,,2max 22⎩⎨⎧+=b ab b a ah ,得,2a h ≥ab b a h 22+≥,b h 2≥,所以8)(42222223≥+=⋅+⋅≥ab b a bab b a ah ,故2 h .。

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

专题 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项和n S 满足,且11=a 。

人教版数学高三期末测试精选(含答案)3

人教版数学高三期末测试精选(含答案)3

【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

专题05 等比数列-2019年高考理数母题题源系列全国Ⅲ专版(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,联立等比数列的通项公式和前n 项和公式构成方程组,可以知其三求其二,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷理数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.专题05 等比数列(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】1.熟练掌握等比数列的通项公式、前n 项和公式.2.掌握与等比数列有关的数列求和的常见方法.3.了解等比数列与指数函数的关系.【命题规律】从近三年高考情况来看,本讲是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等比数列通项形如指数函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【方法总结】1.等比数列的判定与证明常用方法如下: (1)定义法.1n n a a +=q (q 为常数且q ≠0)或-1n n aa =q (q 为常数且q ≠0,n ≥2)⇔{a n }为等比数列; (2)等比中项法.21n a +=a n ·a n+2(a n ≠0,n ∈N *)⇔{a n }为等比数列;(3)通项公式法.a n =a 1q n –1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列;(4)前n 项和公式法.若S n 表示数列{a n }的前n 项和,且S n =–aq n +a (a ≠0,q ≠0,q ≠1),则数列{a n }是公比为q 的等比数列.由a n+1=qa n ,q ≠0,并不能断言{a n }为等比数列,还要验证a 1≠0.证明一个数列{a n }不是等比数列,只需要说明前三项满足22a ≠a 1·a 3,或者存在一个正整数m ,使得21m a +≠a m ·a m+2即可.2.等比数列的基本运算方法:(1)通项法:等比数列由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列的相关问题,一般给出两个条件就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题. 例如:①若已知n ,a n ,S n ,先验证q=1是否成立,若q ≠1,可以通过列方程组-111,(1-),1-n n n n a a q a q S q ⎧=⎪⎨=⎪⎩求出关键量a 1和q ,问题可迎刃而解.②若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组-11-11,,n n m ma a q a a q ⎧=⎨=⎩两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n –m 直接求得q ,可减少运算量.(3)对称设元法:一般地,若连续奇数个项成等比数列,则可设该数列为…,xq,x ,xq ,…;若连续偶数个项成等比数列,则可设该数列为…,3x q ,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便. 3.错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求解,一般是在等式的两边同乘以等比数列{b n }的公比,然后作差求解.若{b n }的公比为参数(字母),则应对公比分等于1和不等于1两种情况讨论.1.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若23a =,524a =-,则1a =A .23 B .23- C .32-D .32【答案】C 【解析】因为3528a q a ==-,所以2q =-,从而132a =-.故选C . 【名师点睛】本题考查了等比数列的基本量运算,属于基础题.2.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若22a =,554a =-,则1a = A .23B .23-C .32-D .32【答案】B 【解析】因为35227a q a ==-,所以3q =-,从而2123a a q ==-.故选B . 【名师点睛】本题主要考查了等比数列的基本量运算,属于基础题.3.【四川省成都市外国语学校2019届高三一诊模拟考试数学】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为A .10B .11C .12D .13【答案】C【解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=,∴26q q +=. ∵0q >,解得,2q =或3q =-(舍),∴1132a =,∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n nn -->⨯.整理得,()1152n n n ⎛⎫>-- ⎪⎝⎭,∴112n <≤,经检验12n =满足题意,故选C .【名师点睛】本题主要考查了等比数列的通项公式及求和公式,等比数列的性质等知识的简单综合应用,属于中档试题.4.【四川省巴中市2019届高三零诊考试数学】记n S 为等比数列{a n }的前n 项和,已知S 2=2,S 3=–6.则{a n }的通项公式为A .(2)nn a =- B .2nn a =- C .(3)nn a =-D .3nn a =-【答案】A【解析】根据题意,设等比数列{}n a 的首项为1a ,公比为q ,又由22S =,36S =-,则有()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩,解得12a =-,2q =-,则()2nn a =-,故选A . 【名师点睛】本题考查等比数列中基本量的计算,属于简单题.5.【四川省南充市高三2019届第二次高考适应性考试高三数学】已知等比数列{}n a 中的各项都是正数,且1321,,22a a a 成等差数列,则101189a a a a +=+ A.1+B.1C.3+D.3-【答案】C【解析】因为等比数列{a n }中的各项都是正数,设公比为q ,得q >0, 且1321,,22a a a 成等差数列,可得3122a a a =+,即a 1q 2=a 1+2a 1q , 因为10a ≠,得q 2–2q –1=0,解得q =或q =1(舍),则101189a a a a +=+()28989q a a a a +=+q 2=C . 【名师点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,属于基础题.6.【四川省攀枝花市2019届高三第二次统一考试数学】已知等比数列{}n a 的各项均为正数,且13a ,312a ,22a 成等差数列,则64a a = A .1 B .3 C .6 D .9【答案】D【解析】设各项都是正数的等比数列{a n }的公比为q ,(q >0) 由题意可得2312a ⨯=13a +22a ,即q 2–2q –3=0, 解得q =–1(舍去),或q =3,故64a a =q 2=9.故选D .【名师点睛】本题考查等差中项的应用和等比数列的通项公式,求出公比是解决问题的关键,属于基础题.7.【四川省成都石室中学2019届高三第二次模拟考试数学】设等比数列{}n a 的前n 项和为n S ,公比为q .若639S S =,562S =,则1a =A .3 BC D .2【答案】D【解析】等比数列{a n }中,若S 6=9S 3,则q ≠±1, 若S 6=9S 3,则()()631111911a q a q qq--=⨯--,解可得q 3=8,则q =2,又由S 5=62,则有S 5=()5111a q q--=31a 1=62,解得a 1=2,故选D .【名师点睛】本题考查等比数列的前n 项和公式的应用,属于基础题.8.【四川省宜宾市2019届高三第二次诊断性考试数学】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+【答案】C【解析】()45,a a =a ,()76,a a =b ,且4⋅=a b ,∴47a a +56a a =4, 由等比数列的性质可得:110a a =…=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选C .【名师点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.9.【贵州省贵阳市2019届高三2月适应性考试(一)数学】等比数列{a n }的前n 项和S n =a •2n +1(n ∈N *),其中a 是常数,则a =A .2-B .1-C .1D .2【答案】B【解析】n =1时,a 1=S 1=2a +1.n ≥2时,a n =S n –S n –1=a •2n +1–(a •2n –1+1),化为a n =a •2n –1, 对于上式n =1时也成立, ∴2a +1=a ,解得a =–1.故选B .【名师点睛】本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题. 10.【河南省新乡市2019届高三第三次模拟测试数学】已知等比数列{}n a 的前n 项和为n S ,且55S =,1030S =,则15S =A .90B .125C .155D .180【答案】C【解析】因为等比数列{}n a 的前n 项和为n S , 所以51051510,,S S S S S --成等比数列,因为5105,30S S ==,所以105151025,255125S S S S -=-=⨯=, 故1512530155.S =+=故选C .【名师点睛】本题考查了等比数列的性质,若等比数列{}n a 的前n 项和为n S ,则232,,n n n n nS S S S S --也成等比数列,这是解题的关键,属于较为基础题.11.【甘肃、青海、宁夏2019届高三上学期期末联考数学】设等比数列{}n a 的前n 项和为n S ,若122a a -=,236a a -=,则4S =A .–60B .–40C .20D .40【答案】B【解析】设等比数列的公比为q ,由12232,6a a a a -=-=,可得1121126a a q a q a q -=⎧⎨-=⎩,解得131q a =⎧⎨=-⎩, 故()441134013S -⨯-==--,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 12.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】在等比数列{}n a 中,131a a +=,5791120a a a a +++=,则1a =A .16B .13C .2D .4【答案】B【解析】因为()45713a a a a q +=+=q 4,()891113a a a a q +=+,所以q 8+q 4=20,所以q 4=4或q 4=–5(舍),所以q 2=2,13a a +211a a q =+=13a =1,所以1a 13=. 故选B .【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础.13.【湖南省益阳市桃江县第一中学2019届高三5月模拟考试数学】已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S = A .10 B .7 C .8 D .4【答案】C【解析】由题意得13123321231322111124a a a a a S a a a a a a a +++++=+===,38S ∴=,故选C . 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.14.【江西省临川一中2019届高三年级考前模拟考试数学】已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为A .1B .1或12CD.±【答案】C【解析】因为2474S S =,所以()()()124234344a a S S a a +=-=+, 故234q =,因为{}n a 为正项等比数列,故0q >,所以q =C . 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q m n p q ∈+=+N ,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --为等比数列(0n S ≠)且公比为nq .15.【山东省临沂市2019年普通高考模拟考试(三模)数学】已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为A .1B .12-C .1或12-D .112-或【答案】C【解析】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C .【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题.等比数列基本量的运算是等比11数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知三求二”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.【安徽省江淮十校2019届高三年级5月考前最后一卷数学】已知等比数列{}n a 的公比12q =-,该数列前9项的乘积为1,则1a = A .8 B .16C .32D .64【答案】B 【解析】由已知1291a a a =,又2192837465a a a a a a a a a ====,所以951a =,即51a =,所以41112a ⎛⎫-= ⎪⎝⎭,116a =,故选B . 【点睛】本题主要考查等比数列的性质以及等比数列的基本量计算,熟记等比数列的性质与通项公式即可,属于常考题型.17.【山西省2019届高三高考考前适应性训练(三)数学】已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则8T = A .1024 B .2048 C .4096 D .8192【答案】C【解析】设等比数列{}n a 的公比为q ,由29T T =得761a =,故61a =,即511a q =.又2121512a a a q ==,所以91512q =,故12q =,所以36312832424096a T T a q ⎛⎫===== ⎪⎝⎭.故选C .【点睛】本题考查等比数列的性质、等比数列的通项公式,考查计算化简的能力,属中档题.。

2020届高考数学(理)一轮必刷题 专题47 两直线的位置关系、距离公式(解析版)

2020届高考数学(理)一轮必刷题 专题47 两直线的位置关系、距离公式(解析版)

考点47 两直线的位置关系、距离公式1.(湖南省师范大学附属中学2019届高三下学期模拟三理)长方体1111ABCD A B C D -中,1AB BC ==,1BB ,设点A 关于直线1BD 的对称点为P ,则P 与1C 两点之间的距离为( )A .2BC .1D .12【答案】C 【解析】将长方体中含有1ABD 的平面取出,过点A 作1AM BD ⊥,垂足为M ,延长AM 到AP ,使M P AM =,则P 是A 关于1BD 的对称点,如图所示,过P 作1PE BC ⊥,垂足为E ,连接PB ,1PC ,依题意1AB =,1AD ,12BD =,160ABD ∠=︒,30BAM ∠=︒,30PBE ∠=︒,12PE =,2BE =,所以11PC =. 故选C .2.(四川省宜宾市2019届高三第三次诊断性考试数学理)已知双曲线的左右焦点分别为,以它的一个焦点为圆心,半径为的圆恰好与双曲线的两条渐近线分别切于两点,则四边形的面积为( ) A .3 B .4C .5D .6【答案】D 【解析】 因为双曲线的左右焦点分别为双曲线的渐近线方程为,即其中一条渐近线方程为以它的一个焦点为圆心,半径为的圆恰好与双曲线的两条渐近线分别切于A ,B 两点 根据焦点到渐近线的距离及双曲线中的关系可得所以解得, 进而可求得切点则四边形的面积为故选:D3.(河北省保定市2019年高三第二次模拟考试理)设点P 为直线l :40x y +-=上的动点,点(2,0)A -,()2,0B ,则||||PA PB +的最小值为( )A. BC.D【答案】A 【解析】依据题意作出图像如下:设点()2,0B 关于直线l 的对称点为()1,B a b ,则它们的中点坐标为:2,22a b +⎛⎫⎪⎝⎭,且1PB PB = 由对称性可得:()011224022b a a b -⎧⨯-=-⎪⎪-⎨+⎪+-=⎪⎩,解得:4a =,2b =所以()14,2B因为1||||||||PA PB PA PB +=+,所以当1,,A P B 三点共线时,||||PA PB +最大 此时最大值为1AB ==故选:A4.(贵州省贵阳市2019年高三5月适应性考试二理)双曲线的两条渐近线分别为,,为其一个焦点,若关于的对称点在上,则双曲线的渐近线方程为( ) A .B .C .D .【答案】D 【解析】 不妨取,设其对称点在,由对称性可得:,解得:,点在,则: ,整理可得:,双曲线的渐近线方程为:.故选:D .5.(广东省广州市普通高中毕业班2019届高三综合测试二理)已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为( ) A .(3,4) B .(4,5)C .(4,3)--D .(5,4)--【答案】D 【解析】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.6.(甘肃省2019届高三第一次高考诊断考试理)抛物线28y x =的焦点到双曲线2214y x -=的渐近线的距离是( ) ABC.5D【答案】C 【解析】依题意,抛物线的焦点为()2,0,双曲线的渐近线为2y x =±,其中一条为20x y -=,由点到直线的距离公式得5d ==.故选C. 7.(黑龙江省齐齐哈尔市2019届高三第二次模拟考试数学理)已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 作垂直x 轴的直线交椭圆E 于,A B 两点,点A 在x 轴上方.若3AB =,2ABF ∆的内切圆的面积为916π,则直线2AF 的方程是( ) A .ln()x a <- B .2320x y +-=C .4340x y +-=D .3430x y +-=【答案】D 【解析】设内切圆半径为r ,则2916r ππ=,∴34r =,()1,0F c -,∴内切圆圆心为3,04c ⎛⎫-+ ⎪⎝⎭,由3AB =知3,2A c ⎛⎫- ⎪⎝⎭, 又()2,0F c ,所以2AF 方程为3430x cy +-=, 由内切圆圆心到直线2AF 距离为r ,34=得1c =,所以2AF 方程为3430x y +-=. 故选D 项8.(辽宁省丹东市2019届高三总复习质量测试一理)已知F是椭圆22:196x yC+=的右焦点,直线0x-=与C相交于,M N两点,则MNF∆的面积为()AB.CD.【答案】C【解析】22196x yx⎧+=⎪⎨⎪+=⎩解得223xxy y⎧=⎪⎧=⎪⎪⎨⎨=⎪⎩⎪=-⎪⎩,即)22,,33M N⎛⎫--⎪⎪⎝⎭163MN∴==右焦点)F到直线0x+=11623ABCS∴=⨯=故选C项.9.(广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学理)圆22430x y x+-+=关于直线3y x=对称的圆的方程是()A.(()2211x y+-=B.()2221x y+-=C.()2211x y+-=D.()(2211x y-+-=【答案】D【解析】由题意得,圆22430x y x+-+=方程即为()2221x y-+=,∴圆心坐标为()2,0,半径为1.设圆心()2,0关于直线y x =的对称点的坐标为(),a b ,则1232232b a b a ⎧⋅=-⎪⎪-⎨+⎪=⋅⎪⎩,解得1a b =⎧⎪⎨=⎪⎩∴所求圆的圆心坐标为(, ∴所求圆的方程为()(2211x y -+=.故选D .10.(湖南省三湘名校(五市十校)2019届高三下学期第一次联考数学理)如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C 【解析】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2pxx p⎧=⎨=⎩,解得y =,则A (p),B (p),∵直线BM 的方程为y,直线AM 的方程为y =x ,解得M (﹣p),∴|ME |2=(2p )2+2p 2=6p 2,设过点M 与此抛物线相切的直线为y=k (x +p ),由()2y 2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣+2p 2k =0, ∴△=4p 2﹣4k (﹣+2p 2k )=0,解得k=2, ∴过点M 与此抛物线相切的直线为yp=2(x +p ),由()=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2,故选:C .11.(江西省南昌市2019届高三第一次模拟考试数学理)已知(A,B ,P 为圆221x y +=上的动点,AP PQ =,过点P 作与AP 垂直的直线l 交直线QB 于点M ,则M 的横坐标范围是( ) A .||1x ≥ B .||1x >C .||2x ≥D.||2x ≥【答案】A 【解析】设P (00x ,y ),则Q (20x ,20y ), 当0y ≠0时, kAP =kPM 00x y =-,直线PM :y﹣000x y y +=-x ﹣0x ),①直线QB :y ﹣002y 2x =(x ,② 联立①②消去y 得x =,∴x =,由|0x |<1得x 2>1,得|x|>1,当0y =0时,易求得|x|=1, 故选:A .12.(辽宁省沈阳市东北育才学校2019届高三第五次模拟数学理)若双曲线222:14x y C m-=的焦距为则C 的一个焦点到一条渐近线的距离为 ( ) A .2 B .4CD.【答案】B 【解析】因为双曲线222:14x y C m-=的焦距为所以2420m +=,即216m =;所以其中一个焦点坐标为(),渐近线方程为2y x =,所以焦点到渐近线的距离为d 4==.故选B13.(安徽省黄山市2019届高三第一次质量检测一模数学理)直线与轴的交点为,点把圆的直径分为两段,则较长一段比上较短一段的值等于 ( )A .2B .3C .4D .5 【答案】A 【解析】令代入可得,圆心坐标为,则与圆心的距离为,半径为6,可知较长一段为8,较短一段4,则较长一段比上较短一段的值等于2。

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

2019届高考数学(理)一轮复习讲练测:专题6.2 等差数列及其前n项和(测)(解析版)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a ⋅= ( )A.10B.20C.40D.22log 5+ 【答案】B 【解析】 试题分析:因为10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:因为112124912()6()722a a S a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D. 31 【答案】D【解析】因为)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a nS +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B【解析】依题意,83S S =可知d a d a 2883311+=+,即d a 51-=,由k S S =7得d k k ka d a 2)1(2)17(7711-+=-⨯+,将d a 51-=代入化简得028112=+-k k , 解得4=k 或7-=k (舍去),选B.7.【2019新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础知识,意在考查学生的逻辑思维能力、运算求解能力,以及转化思想的应用. 【答案】A8.【2019新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题. 【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,因为258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A【解析】设该设备第()n n N *∈的营运费用为n a 万元,则数列{}n a 是以2为首项,以2为公差的等差数列,则2n a n =,则该设备到第()n n N *∈年的营运费用总和为12242n a a a n +++=+++=()2222n n n n +=+,设第()n n N *∈的盈利总额为nS 万元,则()22119109n S n n n n n =-+-=-+-()2516n =--+,因此,当5n =时,n S 取最大值16,故选B.10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的展开式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的展开式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2019浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列 C.{}n d 是等差数列 D.2{}n d 是等差数列【答案】A .【解析】设点n A 到对面直线的距离为n h ,则112n n n n+S h B B =. 由题目中条件可知1n n B B +的长度为定值,则1212n n S h B B =.那么我们需要知道n h 的关系式,过点1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了直角梯形,那11tan n n h h A A θ=+⋅,其中θ为两条线的夹角,那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-.所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2019江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 .【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2019北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________.【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 如果一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1)()61n -;(2)8.16.【2019届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】【解析】试题分析:令1(1)n a a n d =+-,则1(1)2n n n S na d -=+, 又2n n a S An Bn C +=++ 所以2211(1)22d da n d na n n An Bn C +-++-=++ 即得2d A =,12dB a =+,1C a d =- 所以11122322d d B C a a d A d d +-=++-+=+因为0A >,所以0d >232d d +≥=232d d =即d =所以1B C A+-的最小值为故答案为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2019届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】18.【2019届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】19.【2019全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和. 【答案】(1)0,1,2;(2)1893. 【解析】20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式. 【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+. 【解析】试题分析:(1) 由21()1+f x px qx=+,得2212(1)(1)1n n px qx a x a x a x +++++++=,可利用展开式含未知量的系数为0,求得2a ;(2)由已知求出数列前两项,再由(3)nx n ≥的系数为0得到数列的递推式,代入12n n n n a b a a ++=后利用裂项相消法求得数列{}n b 的前n 项和为n S ,放大后证得32n S <; (3)由(2)120n n n a pa qa --++=,因数列{}n a 是等差数列,所以1220n n n a a a ---+=,所以12(2+)(1)n n p a q a --=-对一切3n ≥都成立,然后排出数列为常数列的情况,再结合数列的前两项即可得数列{}n a 的通项公式.21.【2019年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2. (Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .(2)n=1时,2011211==b b T , n ≥2时,)321121(21)32)(12(111+-+=++=+n n n n b b n n , 所以 )32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T n n=1仍然适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n ………… (12分) 22.【2019年江西师大附中高三二模】(本小题满分12分)在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是.(Ⅰ)求1a 的值;(Ⅱ)若函数1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I );(II)32-+.【解析】 (Ⅱ)∵点在函数的图像上,∴,又∵,∴ -------------7分 如图,连接MN ,在中,由余弦定理得1a ()11,M a -1sin 4y a x πφ⎛⎫=+ ⎪⎝⎭sin 14πφ⎛⎫-+= ⎪⎝⎭φπ<34φπ=MPN ∆。

专题15 复数的四则运算(解析版)

专题15 复数的四则运算(解析版)

专题15 复数的四则运算一、单选题1.若复数Z 满足()·1 2z i i -=(i 是虚数部位),则下列说法正确的是 A .z 的虚部是-i B .Z 是实数C .z =D .2z z i +=【试题来源】江苏省盐城市滨海中学2020-2021学年高三上学期迎八省联考考前热身 【答案】C【分析】首先根据题意化简得到1z i =-,再依次判断选项即可.【解析】()()()22122211112i i i i iz i i i i ++====---+-. 对选项A ,z 的虚部是1-,故A 错误. 对选项B ,1z i =-为虚数,故B 错误.对选项C ,z ==C 正确.对选项D ,112z z i i +=-++=,故D 错误.故选C 2.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(文) 【答案】D【分析】由复数的运算化简1z,再判断复平面内对应的点所在象限. 【解析】因为()()11111122i i z i i -==-+-,所以1z 在复平面内对应的点11 ,22⎛⎫- ⎪⎝⎭在第四象限.故选D3.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】D 【分析】化简复数1z,利用复数的几何意义可得出结论. 【解析】因为()()11111112i i z i i i --===++-,所以1z在复平面内对应的点的坐标为11,22⎛⎫- ⎪⎝⎭,在第四象限.故选D . 4.设复数z 满足11zi z+=-,则z = A .i B .i - C .1D .1i +【试题来源】山东省威海市2020-2021学年高三上学期期末 【答案】B【分析】利用除法法则求出z ,再求出其共轭复数即可【解析】11zi z+=-得()11z i z +=-,即()()()()111111i i i z i i i i ---===++-,z i =-,故选B. 5.(1)(4)i i -+= A .35i + B .35i - C .53i +D .53i -【试题来源】安徽省皖西南联盟2020-2021学年高三上学期期末(文) 【答案】D【分析】根据复数的乘法公式,计算结果.【解析】2(1)(4)4453i i i i i i -+=-+-=-.故选D 6.设复数z 满足()11z i i -=+,则z 的虚部为. A .1- B .1 C .iD .i -【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(文) 【答案】B【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部.【解析】()11z i i -=+,()()()211111i iz i i i i ++∴===--+, 因此,复数z 的虚部为1.故选B . 7.若复数z 满足21zi i=+,则z = A .22i + B .22i - C .22i --D .22i -+【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(理) 【答案】C【分析】求出()2122z i i i =+=-+,再求解z 即可. 【解析】()2122z i i i =+=-+,故22z i =--,故选C. 8.将下列各式的运算结果在复平面中表示,在第四象限的为A .1ii + B .1ii +- C .1i i-D .1i i--【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(文) 【答案】A【分析】对A 、B 、C 、D 四个选项分别化简,可得. 【解析】由11ii i+=-在第四象限.故选A . 【名师点睛】(1)复数的代数形式的运算主要有加、减、乘、除及求低次方根; (2)复数除法实际上是分母实数化的过程.9.若复数z 满足()z 1i i +=- (其中i 为虚数单位)则复数z 的虚部为A .12-B .12C .12i -D .12i【试题来源】安徽省马鞍山市2020-2021学年高三上学期第一次教学质量监测(文) 【答案】A【分析】先由已知条件利用复数的除法运算求出复数z ,再求其虚部即可. 【解析】由()z 1i i +=-可得()()()111111222i i i z i i i ----===--+-,所以复数z 的虚部为12-,故选A 10.复数z 满足()212()z i i -⋅+=(i 为虚数单位),则复数z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】宁夏吴忠市2021届高三一轮联考(文) 【答案】D【分析】先计算复数221z i i=++,再求其共轭复数,即可求出共轭复数对应的点,进而可得在复平面内对应的点所在的象限. 【解析】由()()212z i i -⋅+=得()()()()21212211112i i z i i i i i ---====-++-, 所以1z i =+,1z i =-.所以复数z 在复平面内对应的点为()1,1-, 位于第四象限,故选D .11.已知复数z 满足(2)z i i -=(i 为虚数单位),则z = A .125i-+ B .125i-- C .125i- D .125i+ 【试题来源】安徽省名校2020-2021学年高三上学期期末联考(文) 【答案】A【分析】由已知可得2iz i=-,再根据复数的除法运算可得答案. 【解析】因为(2)z i i -=,所以()()()2122225i i i i z i i i +-+===--+.故选A . 12.已知复数3iz i-=,则z =A .4 BCD .2【试题来源】江西省吉安市“省重点中学五校协作体”2021届高三第一次联考(文) 【答案】B【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【解析】因为()()()3331131i i i i z i i i i -⋅----====--⋅-,所以z ==B .【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 13.复数z 满足:()11i z i -=+,其中i 为虚数单位,则z 的共轭复数在复平面对应的点的坐标为 A .0,1 B .0,1 C .1,0D .()1,0【试题来源】江西宜春市2021届高三上学期数学(理)期末试题 【答案】A【分析】先由()11i z i -=+求出复数z ,从而可求出其共轭复数,进而可得答案【解析】由()11i z i -=+,得21i (1i)2ii 1i (1i)(1+i)2z ++====--, 所以z i =-,所以其在复平面对应的点为0,1,故选A 14.已知复数312iz i+=-,则z =A .1 BCD .2【试题来源】湖南省岳阳市平江县第一中学2020-2021学年高二上学期1月阶段性检测 【答案】B【分析】利用复数的除法法则化简复数z ,利用复数的模长公式可求得z .【解析】()()()()2312337217121212555i i i i i z i i i i +++++====+--+,因此,z ==B . 15.设复1iz i=+(其中i 为虚数单位),则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江苏省南通市如皋市2020-2021学年高三上学期期末 【答案】A【分析】利用复数的除法化简复数z ,利用复数的几何意义可得出结论. 【解析】()()()1111111222i i i i z i i i i -+====+++-,因此,复数z 在复平面内对应的点位于第一象限.故选A .16.已知(1)35z i i +=-,则z = A .14i - B .14i -- C .14i -+D .14i +【试题来源】江苏省盐城市一中、大丰高级中学等四校2020-2021学年高二上学期期末联考 【答案】B【分析】由复数的除法求解.【解析】由题意235(35)(1)3355141(1)(1)2i i i i i i z i i i i -----+====--++-.故选B 17.复数(2)i i +的实部为 A .1- B .1 C .2-D .2【试题来源】浙江省绍兴市上虞区2020-2021学年高三上学期期末 【答案】A【分析】将(2)i i +化简即可求解.【解析】(2)12i i i +=-+的实部为1-,故选A .18.已知i 是虚数单位,(1)2z i i +=,则复数z 所对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】山东省德州市2019-2020学年高一下学期期末 【答案】D【分析】利用复数的运算法则求解复数z ,再利用共轭复数的性质求z ,进而确定z 所对应的点的位置.【解析】由(1)2z i i +=,得()()()()2121211112i i i i z i i i i -+====+++-, 所以1z i =-,所以复数z 所对应的点为()1,1-,在第四象限,故选D .【名师点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. 19.若复数2iz i=+,其中i 为虚数单位,则z =A B C .25D .15【试题来源】重庆市南开中学2020-2021学年高二上学期期末 【答案】B【分析】先利用复数的除法运算法则化简复数2iz i=+,再利用复数模的公式求解即可. 【解析】因为()()()21212222555i i i i z i i i i -+====+++-,所以z ==,故选B . 20.52i i-= A .152i--B .52i-- C .152i- D .152i+ 【试题来源】江西省吉安市2021届高三上学期期末(文) 【答案】A【分析】根据复数的除法的运算法则,准确运算,即可求解. 【解析】由复数的运算法则,可得()5515222i i i ii i i ----==⨯.故选A .21.设复数z 满足()1z i i R +-∈,则z 的虚部为 A .1 B .-1 C .iD .i -【试题来源】湖北省2020-2021学年高三上学期高考模拟演练 【答案】B【分析】根据复数的运算,化简得到()11(1)z i i a b i +-=+++,根据题意,求得1b =-,即可求得z 的虚部,得到答案.【解析】设复数,(,)z a bi a b R =+∈,则()11(1)z i i a b i +-=+++,因为()1z i i R +-∈,可得10b +=,解得1b =-,所以复数z 的虚部为1-.故选B . 22.若复数151iz i-+=+,其中i 为虚数单位,则z 的虚部是 A .3 B .3- C .2D .2-【试题来源】安徽省淮南市2020-2021学年高三上学期第一次模拟(文) 【答案】A【分析】先利用复数的除法运算,化简复数z ,再利用复数的概念求解.【解析】因为复数()()()()1511523111i i i z i i i i -+--+===+++-, 所以z 的虚部是3,故选A. 23.若m n R ∈、且4334im ni i+=+-(其中i 为虚数单位),则m n -= A .125- B .1- C .1D .0【试题来源】湖北省部分重点中学2020-2021学年高三上学期期末联考 【答案】B【分析】对已知进行化简,根据复数相等可得答案.【解析】因为()()()()433443121225343434916i i i ii m ni i i i +++-+====+--++, 根据复数相等,所以0,1m n ==,所以011m n -=-=-.故选B .24.若复数z满足()36z =-(i 是虚数单位),则复数z =A.32-B.32- C.322+D.322-- 【试题来源】湖北省荆州中学2020-2021学年高二上学期期末 【答案】A【分析】由()36z =-,得z =,利用复数除法运算法则即可得到结果.【解析】复数z满足()36z +=-,6332z --=====-∴+,故选A .25.若复数2i()2i+=∈-R a z a 是纯虚数,则z = A .2i - B .2i C .i -D .i【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】D【分析】由复数的除法运算和复数的分类可得结果. 【解析】因为2i (2i)(2i)22(4)i2i (2i)(2i)5+++-++===-+-a a a a z 是纯虚数, 所以22040a a -=⎧⎨+≠⎩,则1a =,i =z .故选D .26.复数12z i =+,213z i =-,其中i 为虚数单位,则12z z z =⋅在复平面内的对应点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考 【答案】D【分析】根据复数的乘法法则,求得55z i =-,即可求得答案. 【解析】由题意得122(2)(13)25355i i i i i z z z =+-=-==--⋅, 所以12z z z =⋅在复平面内的对应点为(5,-5)位于第四象限,故选D27.复数2()2+∈-R a ia i 的虚部为 A .225+aB .45a - C .225a -D .45a +【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(文) 【答案】D【分析】由得数除法运算化为代数形式后可得. 【解析】因为2i (2i)(2i)22(4)i 2i (2i)(2i)5+++-++==-+-a a a a ,所以其虚部为45a +.故选D . 28.复数z 满足()12z i i ⋅+=,则2z i -=ABCD .2【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(文) 【答案】A【分析】先利用除法化简计算z ,然后代入模长公式计算.【解析】()1i 2i z ⋅+=变形得22222221112-+====++-i i i i z i i i ,所以2121-=+-=-==z i i i i A .29.i 是虚数单位,若()17,2ia bi ab R i-=+∈+,则ab 的值是 A .15- B .3- C .3D .15【试题来源】山东省菏泽市2020-2021学年高三上学期期末 【答案】C【分析】根据复数除法法则化简得数后,由复数相等的定义得出,a b ,即可得结论.【解析】17(17)(2)2147132(2)(2)5i i i i i i i i i ------===--++-, 所以1,3a b =-=-,3ab =.故选C . 30.复数3121iz i -=+的虚部为 A .12i -B .12i C .12-D .12【试题来源】江西省赣州市2021届高三上学期期末考试(理) 【答案】C【分析】由复数的乘除法运算法则化简为代数形式,然后可得虚部.【解析】231212(12)(1)1223111(1)(1)222i i i i i i i z i i i i i ---++--=====-+--+, 虚部为12-.故选C . 31.若复数z 满足(1)2i z i -=,i 是虚数单位,则z z ⋅=AB .2C .12D .2【试题来源】内蒙古赤峰市2021届高三模拟考试(理) 【答案】B【分析】由除法法则求出z ,再由乘法法则计算.【解析】由题意222(1)2()11(1)(1)2i i i i i z i i i i ++====-+--+, 所以(1)(1)2z z i i ⋅=-+--=.故选B . 32.若23z z i +=-,则||z =A .1 BCD .2【试题来源】河南省(天一)大联考2020-2021学年高三上学期期末考试(理) 【答案】B【分析】设(,)z a bi a b R =+∈,代入已知等式求得,a b 后再由得数的模的定义计算. 【解析】设(,)z a bi a b R =+∈,则22()33z z a bi a bi a bi i +=++-=-=-,所以以331a b =⎧⎨-=-⎩,解得11a b =⎧⎨=⎩,所以==z B .33.复数z 满足(2)(1)2z i i -⋅+=(i 为虚数单位),则z = A .1 B .2CD 【试题来源】宁夏吴忠市2021届高三一轮联考(理) 【答案】C【分析】先将复数化成z a bi =+形式,再求模. 【解析】由(2)(1)2z i i -⋅+=得2211z i i i-==-+,所以1z i =+,z ==C .34.已知a R ∈,若()()224ai a i i +-=-(i 为虚数单位),则a = A .-1 B .0 C .1D .2【试题来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测 【答案】B【分析】将()()22ai a i +-展开可得答案.【解析】()()()222444ai a i a a i i +-=+-=-,所以0a =,故选B.35.已知i 为虚数单位,且复数3412ii z+=-,则复数z 的共轭复数为 A .12i -+ B .12i -- C .12i +D .1 2i -【试题来源】湖北省孝感市应城市第一高级中学2020-2021学年高二上学期期末【答案】D【分析】根据复数模的计算公式,以及复数的除法运算,求出z ,即可得出其共轭复数. 【解析】因为3412i i z+=-,所以512z i =-,则()()()512512121212i z i i i i +===+--+, 因此复数z 的共轭复数为1 2i -.故选D . 36.已知复数i()1ia z a +=∈+R 是纯虚数,则z 的值为 A .1 B .2 C .12D .-1【试题来源】江西省赣州市2021届高三上学期期末考试(文) 【答案】A【分析】根据复数除法运算化简z ,根据纯虚数定义求得a ,再求模长. 【解析】()()()()11121122a i i a i a a z i i i i +-++-===+++-是纯虚数,102102a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得1a =-,所以z i ,1z =.故选A . 37.设复数11iz i,那么在复平面内复数31z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理) 【答案】C【分析】利用复数的除法法则化简复数z ,再将复数31z -化为一般形式,即可得出结论.【解析】()()()21121112i ii z i i i i ---====-++-,3113z i ∴-=--, 因此,复数31z -在复平面内对应的点位于第三象限.故选C . 38.已知复数13iz i-=+(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江西省南昌市新建区第一中学2020-2021学年高二上学期期末考试(理) 【答案】D【分析】将复数化简成z a bi =+形式,则在复平面内对应的点的坐标为(),a b ,从而得到答案.【解析】因为1(1)(3)24123(3)(3)1055i i i i z i i i i ----====-++-, 所以z 在复平面内对应的点12(,)55-位于第四象限,故选D.39.若复数2(1)34i z i+=+,则z =A .45 B .35C .25D 【试题来源】成都市蓉城名校联盟2020-2021学年高三上学期(2018级)第二次联考 【答案】C 【分析】先求出8625iz -=,再求出||z 得解. 【解析】由题得()()()()212342863434343425i i i i iz i i i i +-+====+++-,所以102255z ===.故选C. 40.设复数11iz i,那么在复平面内复数1z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(文) 【答案】C【分析】先求出z i =-,11z i -=--,即得解.【解析】由题得21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以11z i -=--,它对应的点的坐标为(1,1)--, 所以在复平面内复数1z -对应的点位于第三象限.故选C. 二、多选题1.已知m ∈R ,若6()64m mi i +=-,则m =A .B .1-CD .1【试题来源】2021年高考一轮数学(理)单元复习一遍过 【答案】AC【分析】将6()m mi +直接展开运算即可.【解析】因为()()66661864m mi m i im i +=+=-=-,所以68m =,所以m =故选AC . 2.设复数z 满足1z i z+=,则下列说法错误的是 A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 【试题来源】2021年新高考数学一轮复习学与练 【答案】AB【分析】先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【解析】由题意得1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误;在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确.故选AB 【名师点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.3.已知复数122z =-,则下列结论正确的有 A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 【试题来源】山东新高考质量测评联盟2020-2021学年高三上学期10月联考 【答案】ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【解析】因为111312244z z ⎛⎫⎛⎫-+=+= ⎪⎪⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫=-⎪⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222zzz z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选ACD .【名师点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易. 4.下面是关于复数21iz =-+的四个命题,其中真命题是A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-【试题来源】福建省龙海市第二中学2019-2020学年高二下学期期末考试 【答案】ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项. 【解析】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选ABCD .【名师点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题. 5.若复数351iz i-=-,则A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 【试题来源】2021年新高考数学一轮复习学与练 【答案】AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出. 【解析】()()()()351358241112i i i iz i i i i -+--====---+,z ∴==,z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确,故选AD .6.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是A .z 的实部为2B .z 的虚部为1C .z i =D .||z =【试题来源】2021年新高考数学一轮复习学与练 【答案】AC【分析】根据复数的运算及复数的概念即可求解.【解析】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =,故AC 错误,BD 正确.故选AC. 7.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 【试题来源】湖北省六校(恩施高中、郧阳中学、沙市中学、十堰一中、随州二中、襄阳三中)2020-2021学年高三上学期11月联考 【答案】BC【分析】分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误.【解析】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确; 对于C 选项,22cos sin 1z θθ=+=,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误.故选BC . 8.已知非零复数1z ,2z 满足12z z R ∈,则下列判断一定正确的是 A .12z z R +∈B .12z z R ∈C .12z R z ∈D .12z R z ∈【试题来源】重庆市南开中学2020-2021学年高二上学期期中 【答案】BD【分析】设12,(,,,)z a bi z c di a b c d R =+=+∈,结合选项逐个计算、判定,即可求解. 【解析】设12,(,,,)z a bi z c di a b c d R =+=+∈,则()()12()()z z a bi c di ac bd ad bc i =++=-++,则0ad bc +=,对于A 中,12()()z z a bi c di a c b d i +=+++=+++,则12z z R +∈不一定成立,所以不正确;对于B 中,12()()ac bd ad bc z R i z =-+∈-一定成立,所以B 正确; 对于C 中,()()()()2122()()a bi c di a bi ac bd ad bc i R c di c di c z di z c d+-++--==∈++-+=不一定成立,所以不正确;对于D 中,()()()()2122()()a bi c di a bi ac bd ad bc iR c di c di c z di z c d ++++++==∈--++=一定成立,所以正确.故选BD .9.已知复数()()()32=-+∈z a i i a R 的实部为1-,则下列说法正确的是 A .复数z 的虚部为5- B .复数z 的共轭复数15=-z i C.z =D .z 在复平面内对应的点位于第三象限【试题来源】辽宁省六校2020-2021学年高三上学期期中联考 【答案】ACD【分析】首先化简复数z ,根据实部为-1,求a ,再根据复数的概念,判断选项. 【解析】()()()()23232323223z a i i a ai i i a a i =-+=+--=++-,因为复数的实部是-1,所以321a +=-,解得1a =-, 所以15z i =--,A .复数z 的虚部是-5,正确;B .复数z 的共轭复数15z i =-+,不正确;C .z ==D .z 在复平面内对应的点是()1,5--,位于第三象限,正确.故选ACD 10.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位),下列说法正确的是() A .复数z 在复平面上对应的点可能落在第二象限 B .cos z θ=C .1z z ⋅=D .1z z+为实数 【试题来源】山东省菏泽市2021届第一学期高三期中考试数学(B )试题 【答案】CD【分析】利用复数对应点,结合三角函数值的范围判断A ;复数的模判断B ;复数的乘法判断C ;复数的解法与除法,判断D . 【解析】复数cos sin ()22z i ππθθθ=+-<<(其中i 为虚数单位),复数z 在复平面上对应的点(cos ,sin )θθ不可能落在第二象限,所以A 不正确;1z ==,所以B 不正确;22·(cos sin )(cos sin )cos sin 1z z i i θθθθθθ=+-=+=.所以C 正确;11cos sin cos sin cos()sin()2cos cos sin z i i i z i θθθθθθθθθ+=++=++-+-=+为实数,所以D 正确;故选CD11.已知i 为虚数单位,下面四个命题中是真命题的是 A .342i i +>+B .24(2)()a a i a R -++∈为纯虚数的充要条件为2a =C .()2(1)12z i i =++的共轭复数对应的点为第三象限内的点D .12i z i +=+的虚部为15i 【试题来源】2020-2021年新高考高中数学一轮复习对点练 【答案】BC【分析】根据复数的相关概念可判断A ,B 是否正确,将()2(1)12z i i =++展开化简可判断C 选项是否正确;利用复数的除法法则化简12iz i+=+,判断D 选项是否正确. 【解析】对于A ,因为虚数不能比较大小,故A 错误;对于B ,若()242a a i ++-为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得2a =,故B 正确;对于C ,()()()211221242z i i i i i =++=+=-+,所以42z i =--对应的点为()4,2--位于第三象限内,故C 正确;对于D ,()()()()12132225i i i i z i i i +-++===++-,虚部为15,故D 错误.故选BC . 12.已知复数(12)5z i i +=,则下列结论正确的是A .|z |B .复数z 在复平面内对应的点在第二象限C .2z i =-+D .234z i =+【试题来源】河北省邯郸市2021届高三上学期期末质量检测【答案】AD【分析】利用复数的四则运算可得2z i =+,再由复数的几何意义以及复数模的运算即可求解.【解析】5512122121212()()()()i i i z i i i i i i -===-=+++-,22,||34z i z z i =-==+ 复数z 在复平面内对应的点在第一象限,故AD 正确.故选AD13.已知i 是虚数单位,复数12i z i -=(z 的共轭复数为z ),则下列说法中正确的是 A .z 的虚部为1B .3z z ⋅=C .z =D .4z z +=【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考【答案】AC 【分析】利用复数的乘法运算求出122i z i i-==--,再根据复数的概念、复数的运算以及复数模的求法即可求解. 【解析】()()()12122i i i z i i i i ---===---,所以2z i =-+, 对于A ,z 的虚部为1,故A 正确;对于B ,()2225z z i ⋅=--=,故B 不正确;对于C ,z =C 正确;对于D ,4z z +=-,故D 不正确.故选AC14.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家得到了一元三次、一元四次方程的解法.此后数学家发现一元n 次方程有n 个复数根(重根按重数计).下列选项中属于方程310z -=的根的是A.12 B.12-+ C.122-- D .1【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【答案】BCD【分析】逐项代入验证是否满足310z -=即可.【解析】对A,当122z =+时, 31z -31122i ⎛⎫+- ⎪ ⎪⎭=⎝21112222⎛⎫⎛⎫+⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21121344i ⎛⎫=++⋅ ⎪⎛⎫+- ⎪ ⎝ ⎭⎭⎪⎪⎝12112⎛⎫=-+⋅⎛⎫+- ⎪ ⎪⎝⎭⎪ ⎪⎝⎭2114⎫=-+-⎪⎪⎝⎭ 13144=--- 2=-,故3120z -=-≠,A 错误; 对B,当12z =-时,31z -3112⎛⎫-+- ⎪ ⎪⎝⎭=211122⎛⎫⎛⎫-⋅-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=2113124242i ⎛⎫=-+⋅ ⎪ ⎪⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1221122⎛⎫-⎛⎫=--⋅ ⎪+ - ⎪ ⎪⎝⎭⎪⎝⎭21142⎛⎫=-- ⎪ ⎪⎝⎭ 13144=+- 0=,故310z -=,B 正确; 对C,当12z =-时,31z-31122⎛⎫--- ⎪ ⎪⎝⎭=21112222⎛⎫⎛⎫--⋅--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21131442i ⎛⎫=++⋅ ⎪ ⎪⎛⎫--- ⎪ ⎪⎝⎭⎝⎭12112⎛⎫-⎛⎫=-+⋅ ⎪- - ⎪ ⎪⎝⎭⎪⎝⎭2114⎫=--⎪⎪⎝⎭13144=+-0=,故310z -=,C 正确; 对D ,显然1z =时,满足31z =,故D 正确.故选BCD .15.已知复数()()122z i i =+-,z 为z 的共轭复数,则下列结论正确的是A .z 的虚部为3iB .5z =C .4z -为纯虚数D .z 在复平面上对应的点在第四象限【试题来源】湖南师范大学附属中学2020-2021学年高二上学期期末【答案】BCD【分析】先根据复数的乘法运算计算出z ,然后进行逐项判断即可.【解析】因为()()12243z i i i =+-=+,则z 的虚部为3,5z z ===,43z i -=为纯虚数,z 对应的点()4,3-在第四象限,故选BCD .三、填空题1.已知复数z 满足(1)1z i i ⋅-=+(i 为虚数单位),则z =_________.【试题来源】上海市松江区2021届高三上学期期末(一模)【答案】1【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解析】由(1)1z i i ⋅-=+,得21(1)1(1)(1)i i z i i i i ++===--+,所以1z =.故答案为1. 2.i 是虚数单位,复数1312i i-+=+_________. 【试题来源】天津市七校2020-2021学年高三上学期期末联考【答案】1i +【分析】分子分母同时乘以分母的共轭复数12i -,再利用乘法运算法则计算即可. 【解析】()()()()22131213156551121212145i i i i i i i i i i i -+--+-+-+====+++--.故答案为1i +. 3.若复数z 满足方程240z +=,则z =_________.【试题来源】上海市复旦大学附属中学2020-2021学年高二上学期期末【答案】2i ±【分析】首先设z a bi =+,再计算2z ,根据实部和虚部的数值,列式求复数..【解析】设z a bi =+,则22224z a b abi =-+=-,则2240a b ab ⎧-=-⎨=⎩,解得02a b =⎧⎨=±⎩,所以2z i =±,故答案为2i ±. 4.复数21i-的虚部为_________. 【试题来源】上海市上海交通大学附属中学2020-2021学年高二上学期期末【答案】1【分析】根据分母实数化,将分子分母同乘以分母的共轭复数1i +,然后即可判断出复数的虚部. 【解析】因为()()()2121111i i i i i +==+--+,所以复数的虚部为1,故答案为1. 5.若复数z 满足(12)1i z i +=-,则复数z 的虚部为_________.【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考 【答案】35【分析】根据复数的除法运算法则,求出z ,即可得出结果.【解析】因为(12)1i z i +=-,所以()()()()112113213121212555i i i i z i i i i -----====--++-, 因此其虚部为35.故答案为35. 6.复数34i i+=_________. 【试题来源】北京市东城区2021届高三上学期期末考试【答案】43i -【分析】分子和分母同乘以分母的共轭复数,整理后得到最简形式即可. 【解析】由复数除法运算法则可得, ()343434431i i i i i i i i +⋅+-===-⋅-,故答案为43i -. 7.已知复数(1)z i i =⋅+,则||z =_________.【试题来源】北京市西城区2020-2021学年高二上学期期末考试【分析】根据复数的运算法则,化简复数为1z i =-+,进而求得复数的模,得到答案.【解析】由题意,复数(1)1z i i i =⋅+=-+,所以z == 8.i 是虚数单位,复数73i i-=+_________. 【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(文)【答案】2i -【分析】根据复数除法运算法则直接计算即可. 【解析】()()()()27372110233310i i i i i i i i i ----+===-++-.故答案为2i -. 9.设复数z 的共轭复数是z ,若复数143i z i -+=,2z t i =+,且12z z ⋅为实数,则实数t 的值为_________.【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(理) 【答案】34【分析】先求出12,z z ,再计算12z z ⋅即得解. 【解析】由题得14334i z i i-+==+,2z t i =-, 所以12(34)()34(43)z z i t i t t i ⋅=+-=++-为实数, 所以3430,4t t -=∴=.故答案为34【名师点睛】复数(,)a bi a b R +∈等价于0b =,不需要限制a .10.函数()n nf x i i -=⋅(n N ∈,i 是虚数单位)的值域可用集合表示为_________. 【试题来源】上海市上海中学2020-2021学年高二上学期期末【答案】{}1【分析】根据复数的运算性质可函数的值域.【解析】()()1111nn n n n n n n f x i i i i i i i i --⎛⎫=⋅⋅⋅⋅= ⎪⎝=⎭==,故答案为{}1. 11.已知()20212i z i +=(i 为虚数单位),则z =_________.【试题来源】河南省豫南九校2021届高三11月联考教学指导卷二(理)【分析】由i n 的周期性,计算出2021i i =,再求出z ,求出z .【解析】因为41i =,所以2021i i =,所以i 12i 2i 55z ==++,所以z z == 【名师点睛】复数的计算常见题型:(1) 复数的四则运算直接利用四则运算法则;(2) 求共轭复数是实部不变,虚部相反;(3) 复数的模的计算直接根据模的定义即可.12.若31z i =-(i 为虚数单位),则z 的虚部为_________. 【试题来源】江西省上饶市2021届高三第一次高考模拟考试(文) 【答案】32-【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部. 【解析】()()()313333111122i z i i i i i +==-=-=-----+,因此,复数z 的虚部为32-. 故答案为32-. 13.设i 为虚数单位,若复数z 满足()21z i -⋅=,则z =_________. 【试题来源】江西省上饶市2020-2021学年高二上学期期末(文)【答案】2i +【分析】利用复数的四则运算可求得z ,利用共轭复数的定义可求得复数z .【解析】()21z i -⋅=,122z i i ∴=+=-,因此,2z i =+.故答案为2i +. 14.已知i 是虚数单位,则11i i+=-_________. 【试题来源】湖北省宜昌市2020-2021学年高三上学期2月联考【答案】1【分析】利用复数的除法法则化简复数11i i +-,利用复数的模长公式可求得结果. 【解析】()()()21121112i i i i i i i ++===--+,因此,111i i i +==-.故答案为1. 15.i 是虚数单位,复数103i i=+____________. 【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考【答案】13i +【分析】根据复数的除法运算算出答案即可.【解析】()()()()10310313333i i i i i i i i i -==-=+++-,故答案为13i +. 16.在复平面内,复数()z i a i =+对应的点在直线0x y +=上,则实数a =_________.【试题来源】北京市丰台区2021届高三上学期期末练习【答案】1【分析】由复数的运算法则和复数的几何意义直接计算即可得解.【解析】2()1z i a i ai i ai =+=+=-+,其在复平面内对应点的坐标为()1,a -, 由题意有:10a -+=,则1a =.故答案为1.17.已知复数z 满足()1234i z i +=+(i 为虚数单位),则复数z 的模为_________.【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【分析】求出z 后可得复数z 的模.【解析】()()3412341121255i i i i z i +-+-===+,5z == 18.复数1i i-(i 是虚数单位)的虚部是_________. 【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】1-【分析】先化简复数得1i 1i i-=--,进而得虚部是1-【解析】因为()()221i i 1i i i 1i i i--==--=--, 所以复数1i i-(i 是虚数单位)的虚部是1-.故答案为1-. 19.已知i 是虚数单位,复数11z i i =+-,则z =_________. 【试题来源】山东省青岛市2020-2021学年高三上学期期末【答案】2【分析】根据复数的除法运算,化简复数为1122z i =-+,再结合复数模的计算公式,即可求解. 【解析】由题意,复数()()111111122i z i i i i i i --=+=+=-+----,所以2z ==.故答案为2. 20.计算12z ==_______. 【试题来源】2021年高考一轮数学(理)单元复习一遍过【答案】-511【分析】利用复数的运算公式,化简求值.【解析】原式1212369100121511()i ==+=-+=--. 【名师点睛】本题考查复数的n次幂的运算,注意31122⎛⎫-+= ⎪ ⎪⎝⎭,()212i i +=, 以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值. 四、双空题1.设32i i 1ia b =++(其中i 为虚数单位,a ,b ∈R ),则a =_________,b =_________. 【试题来源】浙江省绍兴市嵊州市2020-2021学年高三上学期期末【答案】1- 1- 【分析】利用复数的除法运算化简32i 1i 1i=--+,利用复数相等的定义得到a ,b 的值,即得解. 【解析】322(1)2211(1)(1)2i i i i i a bi i i i ----===--=+++-,1,1a b ∴=-=-. 故答案为-1;-1.2.已知k ∈Z , i 为虚数单位,复数z 满足:21k i z i =-,则当k 为奇数时,z =_________;当k ∈Z 时,|z +1+i |=_________.【试题来源】2020-2021学年【补习教材寒假作业】高二数学(苏教版)【答案】1i -+ 2【分析】由复数的运算及模的定义即可得解.【解析】当k 为奇数时,()()2211k k k i i ==-=-, 所以1z i -=-即1z i =-+,122z i i ++==; 当k 为偶数时,()()2211k k k i i ==-=,所以1z i =-,122z i ++==;所以12z i ++=.故答案为1i -+;2.3.若复数()211z m m i =-++为纯虚数,则实数m =_________,11z=+_________. 【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试【答案】1 1255i - 【分析】由题可得21010m m ⎧-=⎨+≠⎩,即可求出m ,再由复数的除法运算即可求出.【解析】复数()211z m m i =-++为纯虚数,21010m m ⎧-=∴⎨+≠⎩,解得1m =,。

专题1.3 以棱柱、棱锥与球的组合体为背景的选择题——新高考数学专项练习题附解析

专题1.3 以棱柱、棱锥与球的组合体为背景的选择题——新高考数学专项练习题附解析

何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补
形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.本
题可以利用补体法,将四棱锥补体为直三棱锥,利用直三棱柱的外接球半径求法确定其外接球半径.
【举一反三】【贵州省贵阳第一中学、云南师大附中、广西南宁三中 2019 届高三“333”高考备考诊断联考数
BC=8,AA1=4,则 V 的最大值是
ቤተ መጻሕፍቲ ባይዱ
A.4π
9
B.
2
C.6π
32
D.
3
12. 【 2018 河 南 漯 河 中 学 三 模 】 已 知 三 棱 锥 S ABC 的 底 面 是 以 AB 为 斜 边 的 等 腰 直 角 三 角 形 ,
AB 4, SA SB SC 4 ,则三棱锥的外接球的球心到平面 ABC 的距离为( )
类型一 四面体的外接球问题 典例 1.【2019·山东师范大学附中高考模拟(文)】已知三棱锥 S ABC 中,SA 平面 ABC ,且 ACB ,
6 AC 2 AB 2 3, SA 1.则该三棱锥的外接球的体积为( )
A. 13 13 8
【答案】D 【解析】
B.13
C. 13 6
D. 13 13 6
C.若 AD=3,则 BD=4;
D.四面体 ABCD 体积的最大值为 4 5 . 3
2.(多选题)【2019·广东高三月考(理)】已知矩形 ABCD , AB 1, BC 3 ,将 ADC 沿对角线 AC
进行翻折,得到三棱锥 D ABC ,则在翻折的过程中,有下列结论, 其中正确的是( ) A.三棱锥 D ABC 的体积最大值为 1 ;

2019届甘肃、青海、宁夏高三上学期期末联考数学(文)试卷 word版

2019届甘肃、青海、宁夏高三上学期期末联考数学(文)试卷 word版

2019届甘肃、青海、宁夏高三上学期期末联考数学(文)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A. B. C. D.【答案】A2.已知集合,,则A. B. C. D.【答案】C3.已知函数,则A. 的最大值为2B. 的最小正周期为C. 的图像关于对称D. 为奇函数【答案】C4.自古以来“米以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确...的是A. 2010~2016年全国餐饮收入逐年增加B. 2016年全国餐饮收入比2010年翻了一番以上C. 2010~2016年全国餐饮收入同比增量最多的是2015年D. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个【答案】D5.若双曲线的离心率为,则斜率为正的渐近线的斜率为A. B. C. D. 2【答案】D6.设,满足约束条件,则的最大值是A. -4B. 0C. 8D. 12【答案】C7.设等比数列的前项和为,若,,则A. -60B. -40C. 20D. 40【答案】B8.某几何体的三视图如图所示,则该几何体的表面积为A. 32B. 34C. 36D. 38【答案】D9.下面的程序框图是为了求出满足的最小偶数,那么在“”和“◇”两个空白框中,可以分别填入A. 和是奇数B. 和是奇数C. 和是偶数D. 和是偶数【答案】C10.如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱上靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为A. 6B. 8C. 12D. 18【答案】C11.已知函数,则满足的的取值范围是A. B. C. D.【答案】B12.已知函数,关于的方程有三个不等的实根,则的取值范围是A. B. C. D.【答案】B二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为,向量,若,则__________.【答案】214.已知为等差数列的前项和,已知,.若,,成等比数列,则__________.【答案】1515.若函数的单调递增区间为,则的最小值为__________.【答案】416.在直角坐标系中,抛物线:与圆:相交于两点,且两点间的距离为,则抛物线的焦点到其准线的距离为__________.【答案】三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在中,内角,,的对边分别为,,,已知.(1)求;(2)已知,的面积为,求的周长.【答案】(1);(2)18.已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出与的函数关系式;(2)按这100天统计的数据,分别求甲、乙两名工人的平均日利润.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据题设条件可得与的函数关系式为,其中,.(2)利用(1)求出各自的总利润后可得各自的平均日利润.【详解】(1)因为甲每天生产的次品数为,所以损失元,则其生产的正品数为,获得的利润为元,因而与的函数关系式为,其中,.(2)这100天中甲工人的总利润为元,因而平均日利润为元.这100天中乙工人的总利润为元.因而平均日利润为元.【点睛】本题考查频数表,属于基础题,注意根据题设条件建立正确的数学模型.19.如图,在三棱柱中,,,,平面.(1)证明:平面;(2)求点到平面的距离.【答案】(1)见解析;(2)【解析】【分析】(1)先根据平面得到,再根据为等腰直角三角形得到,从而平面.(2)利用可得所求距离.【详解】(1)证明:因为平面,平面,所以.因为,,所以,又,所以平面.(2)设点到平面的距离为,因为平面,所以,.则,,又,所以是等边三角形,故.,.所以.【点睛】线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.点到平面的距离的计算可利用面面垂直或线面垂直得到点到平面的距离,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.20.已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.(1)求椭圆的标准方程;(2)若不经过点的直线与椭圆交于,两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.【答案】(1);(2)【解析】【分析】(1)由题可知,求得直线的方程,再由点到直线的距离公式,联立求得的值,即可得到椭圆的标准方程;(2)由直线与圆相切,求得,再把直线方程与圆的方程联立,利用根与系数的关系和弦长公式,分别求得,即计算求得三角形的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档