心理统计学常用公式总结
心理统计学公式总结

心理统计学公式总结一、集中量 1.算术平均数:X??X X??fXNNNi ?n1)2fmd?2.中位数:Md?Lmd?(3.众数:M??3Md?2X4.加权算术平均数:XW?5.几何平均数:Xg?6.调和平均数:XH?二、差异量 1.四分差:QD?N?WX ?W X1X2?XN N1?XQ3?Q1 2 2X?X?2.平均差:MD?N3.标准差:?X?? N24.方差:?2X? ?N5.差异系数:CV??XX100% 6.百分等级分数:PR??Fb???f(X?Lb)?100?N i?7.标准分数:Z? X?X?X 三、相关量1.积差相关系数:r??XY?nXY n?x?y6?D2n(n2?1) 2.斯皮尔曼等级相关系数:rR?1?2?23.肯德尔和谐系数:rW? 式中:SSR??R? 123nK(n?n)12SSR4.点二列相关系数:rpb?Xp?Xq?tpq 5.二列相关系数:rb?Xp?Xqpq ?tY6.多系列相关系数:rs??[(Y?Y)X] (Y?Y)??pLH2LHt7.四分相关系数:rt?cos(180?bc1?ad) 8.Φ相关系数:r??ad?bc(a?b)(a?c)(b?d)(c?d) 9.列联相关系数:c? 四、推断统计?2 N??2XXn?X1.二项分布概率:P?Cpq n2.二项分布平均数:??np 3.二项分布标准差:??npq Ne12??(X??)22?24.正态分布曲线:Y??2? 5.标准正态分布曲线:Y?e?Z22 6.平均数抽样分布标准误:?X??n??Xn?1 五、总体平均数的显著性检验 1.?已知:Z?X??? nX??2.?未知但n>30:Z??X n?1 3.?未知但n≤30:t?X???Xn?1 六、平均数差异的显著性检验 1.相关大样本:Z?X1?X2?2X1??2X2 ?2r?X1?X2n?1 df?n?1 2.相关小样本:t?X1?X2?2X1??2X2?2r?X1?X2n?13.独立大样本:Z?X1?X2?2X1n14.独立小样本:t???2X2n2X1?X22X2n1??n2?n1?n2?22X1?n1?n2 n1n2 df?n1?n2?2 七、方差齐性检验2n1?X11.两个独立样本:F?(n1?1)(n2?1)2X2n2?2X2df1?n1?1 df2?n2?1 2.两个相关样本:t?22?X??1X24??(1?r)n?22X12df?n?2 八、方差分析 1.完全随机设计:F?MSbSSbSSw组间方差:MSb?组内方差:MSw? MSwdfbdfwSSt?SSb?SSw总平方和:???(X?X)(??X)???X??n2t2总自度:dft?dfb?dfw 2SSb?n?(Xj?Xt)组间平方和:22(??X)2 组间自度:dfb?K?1 ???n?nSSw???(X?Xj)2组内平方和:???X??22组内自度:df??n?K bn2.随机区组设计:处理水平差异显著性检验:F?MSbSSbSSe 组间方差:MSb? 误差方差:MSe? MSedfbdfe区组差异显著性检验:F?SSeMSrSSr区组方差:MSr? 误差方差:MSe? MSedfrdfeSSt?SSb?SSr?SSe总平方和:???X?2(??X)2总自度:dft?nK?1 nK组间平方和:SSb??2n(?R)2K?(??X)2nK(??R)2nK 组间自度:dfb?K?1 区组平方和:SSr??? 区组自度:dfr?n?1 误差平方和:SSe?SSt?SSb?SSr 误差自度:dfe?dft?dfb?dfr 3.在F检验拒绝H0后:完全随机设计:q?X1?X2MSw11(?)2n1n2X1?X2MSe11(? )2n1n2 随机区组设计:q?九、总体比率的假设检验?p?p? p?q?n 2.两个独立样本比率差异的显著性检验:Z?p1?p2(n1p1?n2p2)(n1q1?n2q2)n1n2(n1 ?n2)b?cb?c 3.两个相关样本比率差异的显著性检验:Z?十、?2检验21.单项表的?检验:??? 自度:df?K?1 ft b、c为不和谐频数22 2f022.双项表的?检验:????N(??1) 自度:df?(r?1)(c?1) ftnrnc22 2N3.独立样本四格表的?检验:?? 自度:df?1 (a?b)(a?c)(b?d)(c?d)22(b?c)24.相关样本四格表的?检验:?? 自度:df?1 b?c22十一、相关系数的显著性检验 1.积差相关系数的检验:??0且n≥50:Z?rn?1 21?r 自度:df?n?2 ??0且n<50:t?rn?21?r2???0:Z?n?3 Zr1?Zr211?n1?3n2?3 两个相关系数差异的显著性检验:Z?2.斯皮尔曼等级相关系数的检验:t?rRn?21?r2R 自度:df?n?2 3.肯德尔和谐系数的检验:?2?K(n?1)rw 自度:df?n?1 4.点二列相关系数的检验:t?rpbn?21?rrb2pb 自度:df?n?2 5.二列相关系数的检验:Z?1Ypqn 6.多系列相关系数的检验:t?rs?n?21?rs?2 rs??rs(YL?YH)2?[p] 自度:df?n?2 7.四分相关系数的检验:Z?rt1Y1Y2p1q1p2q2N 228.Φ相关系数的检验:??Nr? 自度:df?(r?1)(c?1) f029.列联相关系数的检验:??N(??1) 自度:df?(r?1)(c?1) nrnc2十一、相关系数的显著性检验 1.积差相关系数的检验:??0且n≥50:Z?rn?1 21?r 自度:df?n?2 ??0且n<50:t?rn?21?r2???0:Z?n?3 Zr1?Zr211?n1?3n2?3 两个相关系数差异的显著性检验:Z?2.斯皮尔曼等级相关系数的检验:t?rRn?21?r2R 自度:df?n?2 3.肯德尔和谐系数的检验:?2?K(n?1)rw 自度:df?n?1 4.点二列相关系数的检验:t?rpbn?21?rrb2pb 自度:df?n?2 5.二列相关系数的检验:Z?1Ypqn 6.多系列相关系数的检验:t?rs?n?21?rs?2 rs??rs(YL?YH)2?[p] 自度:df?n?2 7.四分相关系数的检验:Z?rt1Y1Y2p1q1p2q2N 228.Φ相关系数的检验:??Nr? 自度:df?(r?1)(c?1) f029.列联相关系数的检验:??N(??1) 自度:df?(r?1)(c?1) nrnc2。
psy计算公式

psy计算公式Psy计算公式是指心理学研究中常用的一些计算公式,主要涉及到统计分析、实验设计、测量等方面。
在心理学研究中,这些公式往往被用来进行数据分析、结果验证和推断性统计等方面的工作。
一、统计分析在心理学研究中,统计分析是必不可少的一部分。
通过对样本数据的分析,我们可以对整个总体的情况进行推断和预测。
在统计分析中,常用的一些公式包括均值、标准差、t检验等等。
1.均值公式均值是指一组数据的平均值,通常用符号“μ”表示。
计算均值的公式为:μ = Σx / n其中“Σ”表示对所有数据求和,而“n”表示数据的总数。
例如,有5个人的身高分别是170cm、175cm、168cm、162cm、180cm,那么这五个人的平均身高就为:(170+175+168+162+180) / 5 = 171.0cm2.标准差公式标准差是指一组数据离均值的距离的平均值,通常用符号“σ”表示。
计算标准差的公式为:σ = √[(Σ(x-μ)) / n]其中“x”表示某一组数据,而“μ”则表示这组数据的均值。
“n”与上述均值公式中的“n”含义相同。
例如,有5个人的成绩分别是80分、85分、90分、75分、95分,那么这五个人的成绩标准差为:√[((80-85.0)+(85-85.0)+(90-85.0)+(75-85.0)+(95-85.0)) / 5] ≈ 7.073.t检验公式t检验是一种用来比较两组数据差异的方法,通常用于实验设计中。
t检验的公式为:t = (x - x) / [s×√(1/n + 1/n)]其中“x”和“x”分别表示两组数据的均值,而“s”则表示两组数据的方差和。
“n”和“n”分别表示两组数据的样本大小。
通过计算出t值,我们可以判断两组数据的差异是否显著。
二、实验设计心理学研究中的实验设计也需要采用一些科学的计算公式。
这些公式主要用于确定实验设计的可行性、样本数量、实验过程控制等方面。
1.样本量公式在实验设计中,样本量是一个非常重要的因素。
心理统计学常用公式总结

心理统计常用公式总结
1、加权平均数
,其中W i 为权数
,其中为各小组的平均数,n i 为各小组人数
2、方差与标准差
,
其中
3、变异系数
,其中S 为标准差,M 为平均数
4、标准分数
,其中X 为原始数据,为平均数,S 为标准差
5、全距
R=最大数-最小数
6、四分差
,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,
和为该四分点所在组的次数,i 为组距,N 为数据个数
7、积差相关
基本公式:,其中
N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差
变形:
用估计平均数计算:
8、斯皮尔曼等级相关
,其中D 为各对偶等级之差
有相同等级时:
9、点二列相关
,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差
10、总体为正态,σ 2 已知:
总体为正态,σ 2 未知:。
心理统计公式汇总情况

心理统计公式汇总心理学考研分为:心理学学硕和心理学专硕(又称“应用心理硕士”、“心理专硕”)。
心理学学硕和心理学专硕考试科目不同,但是都会考察到心理学统计,(部分自主命题院校不考察心理学统计,考生需要提前了解院校信息。
)无论是对本专业还是跨专业心理学考研的同学而言,心理学统计始终是比较难懂的一块。
博仁教育老师为考生分章节整理出心理学统计公式,方便考生进行复习与记忆。
第三章集中量数1、几个集中量数的公式计算一览表平均数(M)算术平均数(M)未分组:1=niiXXn=∑分组数据:i ciif XMf∙=∑∑加权平均数(单位权重不相等的情况)iiiW XMwW∙=∑∑几何平均数(解决增长率的问题)lglg iXMgN=∑;11NNXMgX-=;1,,NNMg X X=调和平均数(解决速度的问题)倒数的算术平均数的倒数:1HiNMX=∑;中数(Md)未分组:无重复值N=奇数:中数即12N+位置的数;N=偶数:中数即中间两个数的平均数;有重复值若重复值没有位于中间,则求法与无重复值时一致;若重复值位于中间,则(P62):图示:思路:①连续性数字,不是一个点,是一个区间;②有几个重复的,则将组距除以几;分组d()2b bMdN iM L Ff=+-∙众数(Mo )1、直接观察法。
2、公式法。
(皮尔逊经验法&金式插补法)①皮尔逊经验法:o 32M Md M =-; ②金式插补法:ab a bf Mo L i f f =+⨯+ ;【组中值的计算】第四章 差异量数百分位数(点) 100bp bPN F P L i f⨯-=+⨯; 百分等级未分组:(10050)100R R P N-=-分组:()100[]b R b f X L P F N i-=⨯+ 四分位差31=2Q Q Q -; (Q3与Q1即P25与P75) 平均差未分组:..iiXA D nnX x-==∑∑分组:..fxA D n=∑;(IxI 为各组中点值对平均数离差的绝对值)方差与 标准差未分组:①222()sX X NNx-==∑∑;②原始数据代入:222222()()sN NXX X XNN-=-=∑∑∑∑分组:222()c f X X fNNxs-==∑∑22s ()f i Nfd d N=-⨯∑∑总方差与总标准差:222;()i i i iT i T iiN s N ds d X XN+==-∑∑∑标准差的应用差异系数100%sCVX=⨯标准分数X X xZs s-==第五章相关关系相关系数适用资料公式积差相关(皮尔逊)①成对的数据(≥30对);②连续变量;③正态双变量;④线性关系;rx yxyN s s=∑(N为成对数,x、y为离均差);原始值代入:2222()()X YXYNrN NX YX Y-=-∙-∑∑∑∑∑∑∑等级相关斯皮尔曼等级相关(两列)两列具有线性关系的等级或顺序变量;1、等级差数法:226=1(1)r RNDN--∑(D为对偶等级之差)2、等级序数法:43=(1)1(1)r X YRNN N NR R⎡⎤∙-+⎢⎥-+⎣⎦∑3、出现相同等级时:222222r RCyx Dyx+-=∙∙∑∑∑∑∑其中,32-N=12XNx C-∑∑;2(1)12Xn nC-=∑∑(N为成对数据数目,n为各列变量相同等级数)肯德尔等级相关(多列)肯德尔W系数(和谐系数):①K个评分人评N个对象,分析K个评分人的一致性程度;②同一个人先后K次评价N个对象,分析其前后一致性;1、基本公式:23s1()12WK N N=-;(K为评价者数,N为被评对象数)2i22123(1)(1)1NWK N N NR+=---∑; (iR为评价对象获得的K个评价者给的等级之和,222()()i ii iR Rs R RN N=-=-∑∑∑∑);2、相同等级时:23s=1()12WK N N K T--∑;其中,s的意义同上,T如下:312n nT-=∑∑;(n为相同等级数)肯德尔U系数(一致性系数):对偶比较法:将N个事物两两配对,可配成N(N-1)/N对,然后对每一对进行比较,择优选择,优者记1,非优者记0;2ij8=1(1)(1)ijr K rUN N K K-+-∙-∑∑();N为被评价对象数目(即等级数),K为评价者数目,ijr为对偶比较表中i>j(或i<j)格中的择优分数。
单考单招心理学公式大全

单考单招心理学公式大全引言本文档旨在为单考单招考生提供心理学公式大全,帮助他们更好地准备心理学考试。
以下是一些常用的心理学公式和相关知识点。
1. 认知心理学公式- 认知负荷理论:Cognitive Load Theory- 工作记忆容量公式:Working Memory Capacity Formula- 形象记忆公式:Episodic Memory Formula2. 心理测量学公式- 测量信度公式:Reliability Formula- 测量效度公式:Validity Formula- 信度和效度相关系数公式:Correlation Coefficient Formula3. 心理统计学公式- 平均数公式:Mean Formula- 标准差公式:Standard Deviation Formula- 相关系数公式:Coefficient of Correlation Formula- t检验公式:t-test Formula- 方差分析公式:Analysis of Variance Formula4. 社会心理学公式- 亲社会行为公式:Prosocial Behavior Formula- 权威性公式:Authority Formula- 群体效应公式:Group Effect Formula5. 发展心理学公式- 认知发展理论公式:Cognitive Development Theory Formula - 社会情境理论公式:Sociocultural Theory Formula- 幼儿期发展公式:Development in Early Childhood Formula6. 心理治疗学公式- 认知行为疗法公式:Cognitive Behavioral Therapy Formula - 系统性咨询公式:Systematic Counseling Formula- 社交技巧培训公式:Social Skills Training Formula结论以上是一些常用的单考单招心理学公式,考生们可以根据自己的需求深入研究这些公式和相关知识点,并在考试中灵活应用。
心理统计学常用公式总结

心理统计学常用公式总结心理统计学是心理学中的一个重要分支,它通过应用统计方法和概率理论来研究心理现象,分析和解释心理数据。
在心理统计学中,有许多常用的公式和方程式,用于计算和分析心理测量数据。
下面是一些常用的心理统计学公式总结。
1. 平均数(Mean)平均数是一组数值的总和除以数量的结果。
它是一组数据的集中趋势的一种度量。
平均数计算公式如下:平均数=总和/数量2. 中位数(Median)中位数是一组有序数据的中间值,将数据分为两个等长的部分。
对于一个有奇数个数据的数据集,中位数就是中间的值;对于有偶数个数据的数据集,中位数是中间两个值的平均数。
3. 众数(Mode)众数是一组数据中出现频率最高的值。
一个数据集可以有一个以上的众数,也可以没有众数。
4. 方差(Variance)方差是一组数据离其平均数的距离的平方的平均值。
方差用于衡量数据的离散程度。
方差计算公式如下:方差=Σ(数据-平均数)²/数量5. 标准差(Standard Deviation)标准差是方差的平方根,它是一组数据离其平均数的距离的平均值。
标准差也用于衡量数据的离散程度。
标准差计算公式如下:标准差=√方差6. 相关系数(Correlation Coefficient)相关系数衡量两个变量之间的关系强度和方向。
它是一个介于-1和1之间的值,越接近-1或1表示关系越强,越接近0表示关系越弱。
相关系数计算公式如下:相关系数=协方差/(标准差1*标准差2)7. 正态分布(Normal Distribution)正态分布是在统计学中经常出现的一种分布模式。
它呈钟形曲线,对称分布在平均数周围。
正态分布可以由均值和标准差来完全描述。
8. 标准分数(Standard Scores)标准分数是将原始分数转化为以标准差为单位的分数。
它表示一个分数距离平均数的几个标准差。
标准分数=(原始分数-平均数)/标准差9. 置信区间(Confidence Interval)置信区间是对总体参数的估计范围,常用来估计平均值或比例的范围。
心理统计常用公式总结

心理统计常用公式总结1 、组数K (总体分布为正态)厂7 广:「〜八’(N为数据个数,K取近似整数)未分组时已分组时,其中皿为估计平均数,i为组距,d=(Xc-O)/i组差数,比组中值3 、中数全不—样!奇(冊1)住个数'偶M2和N/2+1M个数的均数如有-样的数已分组b严"叫,其中Ft为中数所在区间的次数和,险为中数所在区间的次数Lid4为中数所在区间精确下限,1为组距,N为数据个数出现次数最多的数,分组时次数最多那一组区间的组中值3M1-2M (皮尔逊经验法儿其中阳为中数,M为平均数AX=J fLb+二礙全氏插补法),其中h为含众数这一区间的精确下限.刍为髙于介数所在组一个组距那fa + fbfb为低于介数所在组一个组距那1分组区间的次数,i为组距4 、众数2 、算术平均数5 、加权平均数126 、几何平均数-・一」一二・,其中n 为数据个数, X i 为数据的值7 、调和平均数宅我弹工盅-{工舒丫用(用原始分数直接计算)未分组叭其中X 减r 己分组晒其中©=(花-酗)”也曲估计半均数,證为组口值,f 为各组区间的次数,励8 、方差与标准差常珂腐—皿翳)+ (恥哥十恋石+…+ M 曙川何十埜+…+虬)其中」1 -: J J '■_-': ' -.■ x ■i -2--7-: *■'cr =—xioo%9 、变异系数」'匚,其中S 为标准差,M 为平均数X-X10、标准分数 ,其中 X 为原始数据,n i 为各小组人数•为各小组的平均数,--为平均数,S为标准差3411、全距R =最大数—最小数12、平均差已分组时,^ = X C -X13、四分差,其中Lb 为该四分点所在组的精确下限,Fb 为该四分点所在组以下的累加次数,14、积差相关基本公式: 需:,其中:'■ - ' / -变形:差法公式:3N—幺=2分组后Q7十2匕小“44.二和为该四分点所在组的次数, i 为组距, N 为数据个数AD工HN耒分组时,N 为成对数据的数目,S x 、 S y 分别为X 和Y 的标准差工05_N ^X Y-^X '^Y '一叔工疋-(工盘产迦云—0亍 用估计平均数计算:用相关表计算:工“厂①触迄侶)15、斯皮尔曼等级相关",其中D 为各对偶等级之差有相同等级时:减差法工宀17-工(“y 尸其中:葺 禺分别为乩 咻标准差贅、梦为离均差,滋题十碓)方差吐-啲方差直接用等级序数计算:-(N + 1)],其中R X 、 RY 分别为二变量各等级数其中疋=X 「AM X r Y' =Y- AM^, AM X .卫皿丫为估计卫6其中工宀耳尹-三壬=工咛^ 5>a =气尹-1?,送G =工哙2梯成对数据数目,九为相同等级数目K 个等级之和,H 为被评价事物的件数即等级数,K 为评价彳16、肯德尔等级相关有相同等级:;7系数〔一致性系数)二也二斥_迁头 其中M 为被评价事物的数目即等级数,疋为评价者白NK (N~ 1)(疋 _ 1)衍为对偶比较记录中心〔或i ① 的格中的择优分] 其中工害垃为相同等级的数目—J 二f 二"册系数(和谐系数) n —-——,其中一工風・-工附-学厂鸟为每一件被评价:r si「九-血■后 K F17、点二列相关匸,其中亠 旷是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率,p+q=1 , S t 是连续变量的标准差dr”,其中ST与…:是连续变量的标准差与平均数, y为P的正态曲线的高度19、多系列相关工【仙-片)百],其中P i为每系列的次数比率,y 1为每一名义变量下限的正态曲线高度,yh为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t为连续变量的标准差返■站crZ7-—”更~・卡2■邑工20、总体为正态,b 2已知:,L二' 1 -21、总体为正态,122、亠工(Xp尸后©T)尽J23247。
312心理学计算公式

312心理学计算公式
心理学中的计算公式种类繁多,以下列举几个常见的心理学计算公式:
1. 正态分布概率计算公式(Z分数):
标准正态分布表是用来计算和查找给定z分数对应的累积概率值。
2. 平均数计算公式:
平均数可通过对样本中的各个数值求和,然后除以数值的数量得出。
3. 方差和标准差计算公式:
方差是用来衡量数据分散程度的统计量。
标准差是方差的平方根。
4. 相关系数计算公式:
相关系数常用于衡量两个变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼相关系数。
5. 回归分析计算公式:
回归分析通过建立数学模型来描述两个或多个变量之间的关系,最常见的是线性回归模型。
6. t检验和方差分析计算公式:
t检验用于比较两个样本均值之间的差异,方差分析用于比较三个或更多个样本均值之间的差异。
以上只是一些常见的心理学计算公式,根据具体研究问题和方法选择相应的公式进行计算分析。
SPSS公式总结

心理统计常用公式总结1 、组数 K (总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距 R =最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中, , N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度, y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
心理统计学公式汇总

心理统计学公式汇总在心理统计学的领域中,各种公式犹如工具,帮助我们理解、分析和解释数据。
下面就为大家汇总一些常见且重要的心理统计学公式。
一、集中趋势的测量1、算术平均数算术平均数是最常用的集中趋势测量指标,其公式为:\\bar{X} =\frac{\sum_{i=1}^{n} X_{i}}{n}\其中,\(\bar{X}\)表示算术平均数,\(X_{i}\)表示第\(i\)个观测值,\(n\)表示观测值的数量。
2、中位数当数据呈现偏态分布时,中位数比平均数更能代表数据的集中趋势。
对于未排序的数据,首先将其从小到大排序。
如果数据个数\(n\)为奇数,中位数就是位于中间位置的那个数;如果\(n\)为偶数,中位数则是中间两个数的平均值。
3、众数众数是数据中出现次数最多的数值。
二、离散程度的测量1、极差极差是一组数据中最大值与最小值之差,公式为:\(R =X_{max} X_{min}\)。
2、方差方差反映了数据相对于平均数的离散程度,其公式为:\S^2 =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}\3、标准差标准差是方差的平方根,公式为:\(S =\sqrt{\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}}\)。
三、正态分布相关公式1、正态分布的概率密度函数\f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,\(\sigma\)是标准差。
2、标准正态分布若\(X\)服从正态分布\(N(\mu, \sigma^2)\),则\(Z =\frac{X \mu}{\sigma}\)服从标准正态分布\(N(0, 1)\)。
四、相关分析1、皮尔逊积差相关系数用于测量两个连续变量之间的线性关系,公式为:\r =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})(Y_{i} \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} \bar{X})^2 \sum_{i=1}^{n} (Y_{i} \bar{Y})^2}}\2、斯皮尔曼等级相关系数适用于测量两个顺序变量之间的相关性,公式为:\r_s = 1 \frac{6 \sum_{i=1}^{n} d_{i}^2}{n(n^2 1)}\其中,\(d_{i}\)是两个变量的等级差。
心理统计学公式一览

心理统计学公式一览.doc心理统计学公式一览,涵盖了几种核心的心理统计学模型,这些模型可以帮助研究者从心理数据中提取更多有用的信息。
在本文中,将详细介绍心理统计学公式一览中的模型,并且将它们与心理学研究相关的应用结合起来。
首先,“卡方检验”是一种常用的统计分析方法,可以检验两个变量之间的相关性,或者说检验一组数据是否遵循某种特定的分布。
例如,当研究者想要检验一组结果是否符合正态分布时,就可以使用卡方检验。
卡方检验也可以用来检验数据之间的独立性,以及不同类别数据是否服从同一分布。
此外,卡方检验还可以用来检验数据之间的差异性,以及两组数据是否服从同一分布。
第二,“线性回归分析”是一种常用的统计分析方法,用于确定两个或多个变量之间的线性关系。
线性回归分析可以用来确定自变量对因变量的影响大小,以及两个变量之间是否存在显著的线性关系。
线性回归分析的另一个应用是预测,它可以用来预测一个变量的值,并且可以估计预测结果的可信度。
第三,“多元回归分析”是一种常用的统计分析方法,用于确定多个变量之间的线性关系。
多元回归分析可以用来确定多个自变量对因变量的影响大小,以及多个变量之间是否存在显著的线性关系。
此外,多元回归分析还可以用来预测一个变量的值,并且可以估计预测结果的可信度。
第四,“logistic回归分析”是一种常用的统计分析方法,用于确定二元变量之间的关系。
Logistic回归分析可以用来确定自变量对因变量的影响大小,以及两个变量之间是否存在显著的关系。
此外,logistic回归分析还可以用来预测一个变量的值,并且可以估计预测结果的可信度。
第五,“校正后的卡方检验”是一种常用的统计分析方法,用于检验两个变量之间的相关性。
校正后的卡方检验与普通的卡方检验相比,考虑到了自变量之间的相互作用。
校正后的卡方检验可以用来检验数据之间的独立性,以及不同类别数据是否服从同一分布。
最后,“对数似然比检验”是一种常用的统计分析方法,用于检验两个或多个变量之间的相关性。
心理统计学常用公式总结

心理统计常用公式总结1 、组数K(总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限,F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
统考心理学 心理统计的公式整理

心理统计常用公式总结1 、组数K (总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R =最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中, ,N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
高等心理学常用公式汇总

高等心理学常用公式汇总
1. 标准差的计算公式:
标准差是用来衡量一个数据集合的离散程度的一个常用指标。
标准差的计算公式如下:
标准差 = √( Σ(xi - x)² / n )
其中,xi为数据集合中的每个数据点,x为数据集合的均值,n 为数据集合的大小。
2. 相关系数的计算公式:
相关系数用来衡量两个变量之间的线性相关程度,常用的计算
公式有两种:皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数的计算公式如下:
r = Σ((xi - x) * (yi - ȳ)) / √(Σ(xi - x)² * Σ(yi - ȳ)²)
其中,xi和yi为两个变量的数据点,x和ȳ为两个变量的均值。
3. 回归方程的计算公式:
回归分析用来研究自变量和因变量之间的关系,其中回归方程
用来描述这种关系。
简单线性回归方程的计算公式如下:y = a + bx
其中,y为因变量,x为自变量,a为截距,b为斜率。
4. 方差分析的计算公式:
方差分析用来比较两个或多个样本之间的均值差异是否显著。
方差分析的计算公式如下:
F = (SSB / (k - 1)) / (SSW / (n - k))
其中,SSB为组间平方和,SSW为组内平方和,k为样本组数,n为总样本数。
以上是高等心理学中常用的公式汇总,这些公式在数据分析和
统计分析中起到重要的作用。
心理统计学常用公式总结

心理统计常用公式总结1 、组数K(总体分布为正态)(N 为数据个数,K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数6 、几何平均数,其中n 为数据个数,X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中S 为标准差,M 为平均数10 、标准分数,其中X 为原始数据,为平均数,S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i 为组距,N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数,p 、q 是二分变量各自所占的比率,p+q=1 ,S t 是连续变量的标准差18 、二列相关,其中S T 与是连续变量的标准差与平均数,y 为P 的正态曲线的高度19 、多系列相关,其中P i 为每系列的次数比率,y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数,S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
心理统计测量学常用公式及例题总结完整版

心理统计常用公式总结1、中数常见题型:例题3-5。
2 、众数常见题型:以3Md-2M=Mo公式为基础的考察3、加权平均数,其中W i 为权数,其中为各小组的平均数,n i 为各小组人数几何平均数,其中n 为数据个数,X i 为数据的值调和平均数此种类型的题目极少出现4 、方差与标准差,其中考察方式和高中数学无二,送分题。
有时会和其他题型结合,例如通过标准差计算一些其他的值,例如和信度或标准误结合。
见下文。
5 、变异系数,其中S 为标准差,M 为平均数重点☆,变异系数是考察两不同样本变异大小区别的标准,容易在选择题中出现。
也称为差异系数。
要理解什么类型的样本才需要使用变异系数来比较,什么类型的用方差或标准差就够了。
两样本差异过大这个说法比较模糊,但考试中不会给你一个模糊的例子。
例题4-56 、标准分数,其中X 为原始数据,为平均数,S 为标准差总分题,常见的变式有通过标准分数估计概率、比例、区间等。
7 、全距R=最大数-最小数8、积差相关基本公式:,其中N 为成对数据的数目,S x 、S y 分别为X 和Y 的标准差变形:差法公式:用估计平均数计算:(不常用)用相关表计算:(不常用)积差相关出题一般为简答,也可以嵌套在实验设计题当中。
需要掌握前四个公式。
例题5-19 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中R X 、R Y 分别为二变量各等级数公式1较为常用。
如出现公式2,将会列出详细数据。
参考例题5-310、肯德尔等级相关有相同等级时:(不重要)肯德尔W 系数和U 系数,相比运用,更重要的是区分。
区别在于,W 系数使用时,评分者可以任意评分,例如有十个物体,可以评分1-10,但注意,不重复;U 系数是对单一维度的二元评分。
肯德尔等级相关目的在于分析评价者的一致性。
由于公式繁简问题,W 系数更有可能被考察计算,要求掌握如何把现成的数据套入公式计算。
参考例题5-6 11 、点二列相关,其中 是两个二分变量对偶的连续变量的平均数,p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差二列相关,其中 S T 与 是连续变量的标准差与平均数, y 为 P 的正态曲线的高度点二列相关和二列相关的区别是考察重点(也是人为二分变量和真正的二分变量的考察) 计算主要考察点二列相关。
心理统计公式

2
N 1
,用 sn 1 表示。总体方差未知时,用样本统计量取估计它,
2
也就是求 sn 1 而不是 s 。
显著性水平:估计总体参数落在某一区间时,可能犯错误的概率,用 表示。还指拒绝虚无假设时可能出 现的犯错误的概率水平。 置信度或置信水平: 1
例:0.95 置信区间是指总体参数落在该区间之内,估计正确的概率为 95%,而出现错误的 概率为 5% 0.05 ,可知: 0.95 置信区间=0.05 显著性水平的置信区间 0.99 置信区间=0.01 显著性水平的置信区间
12
F df1
22
df 2
如果令 1 2 ,有
2 2
n1 1 sn2 1 12 n1 1 F n2 1 sn2 1 2 2 n2 1
1 2
2 sn 1 1
12
2 2
2 sn 2 1
参数估计 无偏性:
2
x 的无偏估计量是
心理统计公式
算数平均数:
未分组:
X
X
N
i
, X :平均数;
X
i
:所有数据之和; N :数据个数
分组: X
f X
N
c
, X c :各区间组中值; f :各区间次数; N :数据总次数(=
f )
利用估计平均数的计算方法:
未分组:
X AM
X , X= X
N
N
i
AM ;AM:估计平均数
准差的分布,渐趋于正态分布,这时,其分布的平均数与标准差与母总体的 和 的关系如下:
2
X S , X S 2 2 , S
心理统计学公式范文

心理统计学公式范文
1.平均数公式:
平均数是数据集中数值的总和除以观测数,用于描述数据的中心位置。
公式:均值(μ)=总和(ΣX)/观测数(N)
2.方差公式:
方差是衡量数据的离散程度,它表示每个值与平均值之间的差异。
公式:方差(σ^2)=Σ((X-μ)^2)/N
3.标准差公式:
标准差是方差的平方根,它度量了数据的离散程度,并且具有与原始
数据相同的度量单位。
公式:标准差(σ)=√方差
4.t检验公式:
t检验是一种常用的统计方法,用于比较两个样本平均值是否存在显
著差异。
公式:t值(t)=(样本平均值差异)/(标准误差)
5.相关系数公式:
相关系数用于度量两个变量之间的关联关系,它可以是正相关、负相
关或无相关。
公式:相关系数(r)=Σ((X-μ_x)*(Y-μ_y))/
(N*σ_x*σ_y)
6.回归方程公式:
回归方程用于描述自变量和因变量之间的关系,并可以预测未知观测值的因变量。
公式:Y=a+bX
其中,Y表示因变量,X表示自变量,a表示截距,b表示斜率。
7.方差分析公式:
方差分析用于比较多组之间的均值是否存在差异,例如比较不同组别的实验条件下的平均值是否有显著差异。
公式:F值(F)=(组间方差/组内方差)
8.卡方检验公式:
卡方检验用于比较观测频数与期望频数之间的差异,从而判断观测值是否符合一些理论分布。
公式:X^2值(X^2)=Σ((观测频数-期望频数)^2/期望频数)
以上是心理统计学中常用的一些公式,它们在心理学研究中起到了重要的作用,用于分析和解释心理数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心理统计常用公式总结
1、组数K(总体分布为正态)(N为数据个数,K取近似整数)
2、算术平均数
3、中数
4、众数
5、加权平均数
,其中W i为权数
,其中为各小组的平均数,n i为各小组人数
6、几何平均数
,其中n为数据个数,X i为数据的值
7、调和平均数
8、方差与标准差
,其中
9、变异系数
,其中S为标准差,M为平均数
10、标准分数
,其中X为原始数据,为平均数,S为标准差
11、全距
R=最大数-最小数
12、平均差
13、四分差
,其中L b为该四分点所在组的精确下限,F b为该四分点所在组以下的累加次数,和为该四分点所在组的次数,i为组距,N为数据个数
14、积差相关
基本公式:,其中
N为成对数据的数目,S x、S y分别为X和Y的标准差
变形:
差法公式:
用估计平均数计算:
用相关表计算:
15、斯皮尔曼等级相关
,其中D为各对偶等级之差
直接用等级序数计算:,其中R X、R Y分别为二变量各等级数有相同等级时:
16、肯德尔等级相关
有相同等级:
17、点二列相关
,其中是两个二分变量对偶的连续变量的平均数,p、q是二分变量各自所占的比率,p+q=1,S t是连续变量的标准差
18、二列相关
,其中S T与是连续变量的标准差与平均数,y为P的正态曲线的高度19、多系列相关
,其中P i为每系列的次数比率,y1为每一名义变量下限的正态曲线高度,y h为每一名义变量上线的正态曲线高度,
为每一名义变量对偶的连续变量的平均数,S t为连续变量的标准差
20、总体为正态,σ2已知:
21、总体为正态,σ2未知:
22、
23、
24、。