化工热力学标准答案(第三版)
化工热力学第三版课后习题答案全
化工热力学第三版课后习题答案第一章比较简单略第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程22.522.560.5268.314190.60.427480.42748 3.2224.610c cR T a Pa m K mol P -⨯===⋅⋅⋅⨯53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT aP V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学第三版(完全版)课后习题问题详解
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学(第三版)课后答案完整版-朱自强
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学答案(第三版).
化工热力学课后答案(第三版)陈钟秀编著 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008(1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aP V b T V V b =--+ =19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.6991.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。
已知实验值为1480.7cm 3/mol 。
解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193(1)理想气体方程V=RT/P=8.314×510/2.5×106=1.696×10-3m 3/mol误差:1.696 1.4807100%14.54%1.4807-⨯=(2)Pitzer 普遍化关系式对比参数:510425.2 1.199r c T T T === 2.53.80.6579r c P P P ===—普维法∴ 01.61.60.4220.4220.0830.0830.23261.199rB T =-=-=-01cc BP B B RT ω=+=-0.2326+0.193×0.05874=-0.2213 11c r c rBP BP PZ RT RT T =+=+=1-0.2213×0.6579/1.199=0.8786 ∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m 3/mol 误差:1.49 1.4807100%0.63%1.4807-⨯=2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。
化工热力学(第三版)答案
化工热力学(第三版)习题解答集朱自强、吴有庭编著第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学第三版(完全版)课后习题答案解析
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学(第三版)课后答案完整版-朱自强
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学第三版答案习题
第3章均相封闭体系热力学原理及其应用—、是否题 1. 体系经过一绝热可逆过程,其熵没有变化。
2. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。
3.热力学基本关系式dH=TdS+VdP 只适用于可逆过程。
4. 象dU=TdS-PdV 等热力学基本方程只能用于气体,而不能用于液体或固相。
5.当压力趋于零时, MT,P M ig T, P 0( M 是摩尔性质)。
P6. S S 0g T,P Rin与参考态的压力P o 无关。
P o7. 理想气体的状态方程是 PV=RT ,若其中的压力P 用逸度f 代替后就成为了真实流体状态方 程。
8.当 P 0时,f 「P 。
P1RTRT9.因为 ln - V—— dP ,当 P 0 时, 1,所以,V ——0。
RT °pP10. 逸度与压力的单位是相同的。
13. 由于偏离函数是在均相体系中引出的概念,故我们不能用偏离函数来计算汽化过程的热力学性质的变化。
纯物质逸度的完整定义是,在等温条件下,dG RTd in f 。
11. 吉氏函数与逸度系数的关系是 GT,P G ig T,P 1 RTin12. 由于偏离函数是两个等温状态的性质之差,变化。
故不可能用偏离函数来计算性质随着温度的14. 由一个优秀的状态方程,就可以计算所有的均相热力学性质随着状态的变化。
二、选择题1. 对于一均匀的物质,其 H 和U 的关系为(B 。
因H =U + PV )A. H UB. H>UC. H=UD.不能确定G ig (T,P) G ig T,P 0 1 RT ln P P 0 RT In P )A. T 和P 下纯理想气体B. T 和零压的纯理想气体C. T 和单位压力的纯理想气体三、填空题1.状态方程P (V b )RT 的偏离焓和偏离熵分别是—_和__________________________________________________________ ;若要计算 HT 2,P 2 H 人,片和ST 2,P 2 ST1F 还需要什么性质? ____;其计算式分别是H T 2,P 2 H T I ,P I _______________________________________________________________SP RV 2b SdVdVdV Rln)V 1V TV 1T V V 1VbV 1bA. RTl n V 2 bB. 0C.Rln V 2bD. RlnV 2V 1 bV 1 bV 13.对于- 一均相体系,TSTS等于( D 。
化工热力学第三版课后习题答案
《化工热力学》(第三版)习题参考答案58页第2章2-1 求温度673.15K 、压力4.053MPa 的甲烷气体摩尔体积。
解:(a )理想气体方程133610381.110053.415.673314.8--⋅⋅⋅=⋅⋅==⇒=molm p RT V RT pV(b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。
()()()133113301103896.110381.1--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b p RT V b V V T a b V RT p i i i i i(c )用PR 方程步骤同(b ),计算结果:1331103893.1--+⋅⋅⋅=molm V i 。
(d )利用维里截断式2.416.101172.0139.0422.0083.0111rrrr rr rr cc T B T BT p B T p B T p RT Bp RT Bp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由13310391.1--⋅⋅⋅==⇒=molm pZRT V RTpV Z2-2 V=0.5 m 3,耐压2.7 MPa 容器。
规定丙烷在T=400.15K 时,p<1.35MPa 。
求可充丙烷多少千克?解:(a )用理想气体方程 136948.815.400314.85.01035.10441.0--⋅⋅=⋅⋅⋅⋅==⇒=⇒=molm RTMpV m RT Mm pV nRT pV (b )用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V 。
()()()13311330110241.210464.2--+--+⋅⋅⋅=⋅⋅⋅⋅⋅⋅=+⋅⋅--+=+⋅⋅--=molm V molm V b V V T b V a b pRT V b V V T a b V RT p i i i i i则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+838.910241.25.00441.031(c )利用维里截断式:2.416.101172.0139.0422.0083.0111rrrr rr rr cc m T B T BT p B T p B T p RT Bp RTBp RTpV Z -=-=⋅⋅+⋅+=⋅+=+==ω查表可计算r p 、r T 、0B 、1B 和Z 由133610257.21035.115.400314.8916.0--⋅⋅⋅=⋅⋅⋅=⇒=molm V RTpV Z m m则可充丙烷质量计算如下:kg M V V M n m i ⋅=⋅⋅=⋅=⋅=-+77.910257.25.00441.0312-4 V=1.213 m 3,乙醇45.40 kg ,T=500.15K ,求压力。
化工热力学(第三版)课后答案完整版_朱自强
(0)
0.911 , Z Z
(0)
(1)
0.004 ,故
Z
(1)
0.911 0.152 0.004
丙烷的分子量为 所以可充进容器的丙烷的质量
0.912
M 为 0.00441 kg 。 m为
44.1,即丙烷的摩尔质量
m
pVt M ZRT 6 1.35 10 0.5 0.0441 0.912 8.314 (127 373.15)
1
3
3mLeabharlann l1,故最后求得甲烷的摩尔体积近
mol
。
( 4 )维里截断式求摩尔体积 根据维里截断式( 2-7)
Z
1
Bp RT
0
1
Bpc
RTc Tr
1
(
pr
)
( E3 )
Bp c RTc
B
B
( E4 )
B B
其中
0
0.083 0.422/ Tr 0.139 0.172/ Tr
1.6
( E5 ) ( E6 )
0.08664 RTc pc
2
2
( E16)
b
( E17)
( 3) PR 方程 由于 PR 方程也属于立方型方程, a、 b 与临界常数间的通用关系式仍然适用, 的值却与方程的形式有关,需要重新推导 PR 方程由下式表达 但
a
、
b
p p V
RT V
=0
a V (V b) b (V b)
b
因(
)T
Tc
8bVc
7
b
8
( E22 ) 再将 Vc
Z c RTc pc
、 ac
a R Tc
化工热力学(第三版)答案与例题--陈新志等
化工热力学课后习题答案第1章 绪言一、是否题1. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 2. 理想气体的焓和热容仅是温度的函数。
(对)3. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆.(对。
状态函数的变化仅决定于初、终态与途径无关.)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 .2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 .C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig PC RigPP P R V P R C ,∆H =1121T P P C ig P C R ig P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4. 1MPa=106Pa=10bar=9。
化工热力学第三版(完全版)课后习题答案
临界参数 Tc=425.4K, Pc=3.797MPa, ω=0.193
修正的 Rackett 方程常数: α=0.2726, β=0.0003
ln P S 6.8146 2151.63 36.24 T
P S 0.504 MPa
由软件计算知 V sl 103.0193cm3mol 1, V sv 4757.469cm3mol 1
化工热力学课后答案
第 1 章 绪言
一、是否题
1. 封闭体系的体积为一常数。 (错)
2. 封闭体系中有两个相 , 。在尚未达到平衡时, , 两个相都是均相敞开体系;
达到平衡时,则 , 两个相都等价于均相封闭体系。 (对)
3. 理想气体的焓和热容仅是温度的函数。 (对)
4. 理想气体的熵和吉氏函数仅是温度的函数。 (错。还与压力或摩尔体积有关。 )
Wrev PdV
C
ig P
R dT
RT dV
V
a bT cT 2 R dT Rd ln V 0
T
T2 a R
T1
T
b cT dT
R ln V2 V1
0,又 V 2 V1
P1 T2 ,故 P2 T1
a ln T2 b T2 T1 T1
c
T
2 2
T12
2
R ln P2 0 P1
3. 一个 0.057m 3气瓶中贮有的 1MPa 和 294 K的高压气体通过一半开的阀门放入一个压力
33
4. 对于三混合物,展开 PR 方程常数 a的表达式, a
yi y j aii a jj (1 k ij ) =
i1 j 1
y12 a1 y 22a 2 y32 a 3 2 y1 y 2 a1 a2 1 k12 2 y2 y3 a2 a 3 1 k 23 2 y3 y1 a3 a1 1 k31 ,其
化工热力学第三版(完全版)课后习题答案
(a)由软件计算可知
(b)
3.试由饱和液体水的性质估算(a)100℃,2.5MPa和(b)100℃,20MPa下水的焓和熵,已知100℃下水的有关性质如下
MPa, Jg-1, J g-1K-1, cm3g-1,
cm3g-1K-1
化工热力学课后答案
第1章 绪言
一、是否题
1.封闭体系的体积为一常数。(错)
2.封闭体系中有两个相 。在尚未达到平衡时, 两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对)
3.理想气体的焓和热容仅是温度的函数。(对)
4.理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。)
2.对于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想气体混合物。
四、计算题
1.试计算液态水从2.5MPa和20℃变化到30MPa和300℃的焓变化和熵变化,既可查水的性质表,也可以用状态方程计算。
解:用PR方程计算。查附录A-1得水的临界参数Tc=647.30K;Pc=22.064MPa;ω=0.344
A.
B.0
C.
D.
3. 等于(D。因为 )
A.
B.
C.
D.
4.吉氏函数变化与P-V-T关系为 ,则 的状态应该为(C。因为 )
A.T和P下纯理想气体
B.T和零压的纯理想气体
C.T和单位压力的纯理想气体
三、填空题
1.状态方程 的偏离焓和偏离熵分别是 和 ;若要计算 和 还需要什么性质? ;其计算式分别是 和 。
四、计算题
1.某一服从P(V-b)=RT状态方程(b是正常数)的气体,在从1000b等温可逆膨胀至2000b,所做的功应是理想气体经过相同过程所做功的多少倍?
化工热力学(第三版)课后答案完整版-朱自强
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学(第三版)答案
化工热力学(第三版)答案化工热力学(第三版)习题解答集朱自强、吴有庭编著1第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa下甲烷气体的摩尔体积。
(1)理想气体方程;(2) RK方程;(3)PR方程;(4)维里截断式(2-7)。
其中B用Pitzer的普遍化关联法计算。
[解] (1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V为idVid?RT8.314?(400?273.15)??1.381?10?3m3?mol?1 6p4.053?10(2)用RK方程求摩尔体积将RK方程稍加变形,可写为V?其中RTa(V?b) ?b?0.5pTpV(V?b) (E1)0.42748R2Tc2.5a?pc0.08664RTcb?pc从附表1查得甲烷的临界温度和压力分别为Tc=190.6K, pc =4.60MPa,将它们代入a, b表达式得0.42748?8.3142?190.62.56-20.5a??3.2217m?Pa?mol?K64.60?10b?0.08664?8.314?190.6?53?1 ?2.9846?10m?mol64.60?10id以理想气体状态方程求得的V为初值,代入式(E1)中迭代求解,第一次迭代得到V1值为V1?8.314?673.15?2.9846?10?5 64.053?103.2217?(1.381?10?3?2.9846?10?5)?0.56?3?3?5673.15?4.053?10?1.381?10?(1.381?10?2.9846?10)?1.381?10?3?2.9846?10?5?2.1246?10?5 ?1.3896?10?3m3?mol?1第二次迭代得V2为23.2217?(1.3896?10?3?2.9846?10?5)V2?1.381?10?2.9846?10?673.150.5?4.053?106?1.38 96?10?3?(1.3896?10?3?2.9846?10?5)?3?5?1.381?10?3?2.9846?10?5?2.1120?10?5?1.389 7?10?3m3?mol?1V1和V2已经相差很小,可终止迭代。
化工热力学(第三版)课后标准答案完整版-朱自强
第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出 400℃、 4.053MPa 下甲烷气体的摩尔体积。
( 1)理想气体方程;( 2) RK 方程;( 3)PR 方程;(4)维里截断式( 2-7)。
其中 B 用 Pitzer 的普遍化关联法计算。
[解 ] ( 1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积V id为V id RT8.314 (400273.15) 1.381 10 3 m3 mol 1p 4.053106(2)用 RK 方程求摩尔体积将 RK 方程稍加变形,可写为V RT a(V b)(E1)bT 0.5 pV (V b)p其中a 0.42748R2T c2.5p cb 0.08664 RT cp c从附表 1 查得甲烷的临界温度和压力分别为T c=190.6K,p c=4.60MPa,将它们代入a, b 表达式得a0.427488.3142190.62.5 3.2217m 6Pa mol -2 K 0.54.60106b0.086648.314190.6 2.984610 5 m3 mol 14.60106以理想气体状态方程求得的V id为初值,代入式(E1)中迭代求解,第一次迭代得到V1值为V18.314673.15 2.984610 54.0531063.2217 (1.381 100.56673.15 4.053 10 1.381 103 2.9846 10 5 )3(1.381 10 3 2.984610 5 )1.381 10 32.9846 10 5 2.1246 10 51.3896 10 3 m3 mol 1第二次迭代得 V2为V 2 1.381 10 32.9846 10 53.2217 (1.3896 10 3 2.9846 10 5)2.9846 10 5)673.15 0.5 4.053 10 6 1.3896 10 3 (1.3896 10 3 1.381 10 3 2.9846 10 5 2.1120 10 51.3897 10 3 m 3 mol1V 1 和 V 2 已经相差很小,可终止迭代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工热力学课后答案(第三版)陈钟秀编著
2-1.使用下述方法计算1k mol 甲烷贮存在体积为0.1246m3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol =124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K Pc=4.600MPa
V c=99 cm 3/mo l ω=0.008
(1) 理想气体方程
P=RT/V=8.314×323.15/124.6×10-6=21.56MPa
(2) R-K方程
2 2.52 2.5
60.5268.314190.60.427480.42748 3.2224.610
c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610
c c RT b m mol P --⨯===⨯⋅⨯ ∴()
0.5RT a P V b T V V b =--+ ()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=
--⨯⨯⨯+⨯ =19.04MPa
(3) 普遍化关系式
323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+
∵ c r ZRT P P P V
=
= ∴ c r PV Z P RT =
65
4.61012.46100.21338.314323.15
c r r r PV Z P P P RT -⨯⨯⨯===⨯ 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z1=0.4623
01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975
此时,P =Pc P r =4.6×4.687=21.56MPa
同理,取Z1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa
2-2.分别使用理想气体方程和P itze r普遍化关系式计算510K 、
2.5MPa 正丁烷的摩尔体积。
已知实验值为1480.7c m3/mol 。
解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MP a V c =99 cm 3/m ol ω=0.193
(1)理想气体方程
V =RT/P=8.314×510/2.5×106=1.696×10-3m 3/mol
误差:1.696 1.4807100%14.54%1.4807
-⨯= (2)Pitze r普遍化关系式 对比参数:
510425.2 1.199r c T T T === 2.53.80.6579r c P P P ===—普维法
∴ 0 1.6 1.60.4220.4220.0830.0830.23261.199r B T =-
=-=- 1 4.2 4.20.1720.1720.1390.1390.058741.199r B T =-=-=-。