夫兰克-赫兹实验
弗兰克赫兹实验报告结论
一、实验概述弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的。
该实验旨在研究电子与气体原子之间的碰撞,通过测量电子与原子碰撞后的能量变化,证实了原子能级的存在,为量子力学的发展奠定了基础。
二、实验原理根据量子理论,原子只能处在一系列不连续的能量状态,称为定态。
相应的定态能量称为能级。
原子的能量要发生变化,必须在两个定态之间以跃迁的方式进行。
当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。
弗兰克-赫兹实验的原理可由以下公式表示:E1 = E0 + eV1其中,E1为第一激发态能量,E0为基态能量,e为电子电荷,V1为电子的能量。
三、实验方法1. 实验装置:实验采用了一个真空管,其中充满了低压气体(如氩气或汞气)。
管中设有阴极、栅极和阳极,通过调节电压使电子在电场作用下加速,并与气体原子发生碰撞。
2. 实验步骤:(1)调整阴极和栅极之间的电压,使电子在电场作用下获得足够的能量;(2)调整栅极和阳极之间的电压,观察输出电流的变化;(3)记录不同电压下输出电流的变化,分析电子与气体原子碰撞后的能量变化。
四、实验结果与分析1. 实验结果表明,当电子能量达到一定值时,输出电流出现明显的峰值。
这表明,电子与气体原子发生了有效的碰撞,使原子从基态跃迁到第一激发态。
2. 通过对实验数据的分析,我们可以得到氩原子和汞原子的第一激发电位。
实验结果显示,氩原子的第一激发电位约为4.9V,汞原子的第一激发电位约为13.6V。
3. 实验结果与波尔理论预测的能级结构相吻合,进一步证实了原子能级的存在。
五、结论1. 弗兰克-赫兹实验证实了原子能级的存在,为量子力学的发展奠定了基础。
2. 实验结果与波尔理论预测的能级结构相吻合,进一步证实了量子理论在原子物理领域的正确性。
3. 弗兰克-赫兹实验对于理解原子结构、电子与原子相互作用以及量子力学的发展具有重要的意义。
4. 该实验方法为后续的原子物理和量子力学实验提供了借鉴和参考。
弗兰克赫兹实验报告模板
一、实验名称弗兰克-赫兹实验二、实验目的1. 通过实验测量氩原子的第一激发电势,验证原子能级的存在。
2. 加深对量子化概念的理解。
3. 掌握电子与原子碰撞的微观过程与宏观物理量相结合的实验设计方法。
三、实验原理1. 根据量子理论,原子只能处于一系列不连续的能量状态,即定态。
2. 当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。
3. 电子在加速电压U的作用下获得能量,当其能量等于或大于第一激发态能量E1时,即可实现跃迁。
四、实验器材1. 弗兰克-赫兹实验仪2. 氩气瓶3. 数字电压表4. 数字电流表5. 计时器6. 连接线和导线五、实验步骤1. 检查实验仪器的完整性,确保实验仪正常工作。
2. 打开氩气瓶,调节气体压力至实验要求。
3. 调节加速电压和减速电压,使电子在电场中加速和减速。
4. 逐渐增加加速电压,观察输出电流的变化。
5. 记录输出电流与加速电压的关系曲线。
6. 根据曲线确定氩原子的第一激发电势。
六、实验数据与分析1. 记录实验过程中输出电流与加速电压的关系曲线。
2. 分析曲线,确定氩原子的第一激发电势。
3. 计算实验误差,分析误差来源。
七、实验结果1. 氩原子的第一激发电势为:XXX eV。
2. 实验误差为:XXX %。
八、实验讨论1. 分析实验结果与理论值的差异,探讨误差来源。
2. 讨论实验过程中可能出现的异常现象,分析原因。
3. 总结实验过程中学到的知识,对实验原理进行深入理解。
九、结论1. 通过实验测量,验证了原子能级的存在,加深了对量子化概念的理解。
2. 掌握了电子与原子碰撞的微观过程与宏观物理量相结合的实验设计方法。
十、参考文献1. 王家骐,张洪涛. 基础物理实验[M]. 北京:高等教育出版社,2010.2. 张志敏,刘志勇,陈国良. 基础物理实验教程[M]. 北京:科学出版社,2008.3. 弗兰克-赫兹实验原理及装置介绍[EB/OL]. /frank-hertz.html,2022-10-01.十一、附录1. 实验数据记录表2. 实验曲线图3. 误差分析报告(注:以上模板仅供参考,具体实验内容可根据实际情况进行调整。
弗兰克赫兹实验报告文库
一、实验背景弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的,该实验旨在研究电子在电场作用下的运动规律,并证明原子能级的存在。
实验通过测量电子与原子碰撞时的能量交换,揭示了原子内部结构的量子化特性。
二、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在;2. 加深对量子化概念的认识;3. 学习电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。
三、实验原理1. 原子能级理论:根据玻尔理论,原子只能长时间地处于一些稳定的状态,称为定态。
原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。
原子的能量只能从一个定态跃迁到另一个定态。
2. 电子与原子碰撞:当电子在电场作用下加速时,会获得动能。
当具有一定能量的电子与原子碰撞时,会发生能量交换。
若电子传递给原子的能量恰好等于原子从一个定态跃迁到另一个定态所需的能量,则原子会被激发。
3. 激发电势:原子从一个定态跃迁到另一个定态所需的能量称为激发电势。
在本实验中,测量氩原子的第一激发电势,即从基态跃迁到第一激发态所需的能量。
四、实验装置1. 夫兰克-赫兹管:由阴极、阳极、栅极和充有氩气的真空管组成。
阴极发射电子,阳极接收电子,栅极控制电子流。
2. 加速电压:通过调节加速电压,使电子在电场作用下获得不同动能。
3. 电流计:测量电子流过夫兰克-赫兹管时的电流。
4. 数据采集系统:用于记录电流与加速电压的关系。
五、实验步骤1. 将夫兰克-赫兹管接入实验电路,调整加速电压,使电子获得不同动能。
2. 测量电子流过夫兰克-赫兹管时的电流,记录数据。
3. 改变加速电压,重复步骤2,得到一系列电流与加速电压的关系曲线。
4. 分析数据,确定氩原子的第一激发电势。
六、实验结果与分析1. 实验结果显示,电流与加速电压的关系曲线呈阶梯状。
当加速电压低于第一激发电势时,电流几乎为零;当加速电压等于第一激发电势时,电流出现突变;当加速电压高于第一激发电势时,电流逐渐增大。
弗兰克赫兹实验报告结果
一、实验背景弗兰克赫兹实验是由德国物理学家夫兰克和赫兹于1914年进行的实验,该实验旨在通过观察电子与气体原子碰撞后电子能量变化,验证原子能级的存在。
实验结果对于原子物理和量子力学的发展具有重要的意义。
二、实验目的1. 验证原子能级的存在;2. 研究电子与气体原子碰撞的能量交换;3. 深入了解原子内部结构的量子化特性。
三、实验原理根据波尔原子模型理论,原子中电子在特定轨道上运动时,具有确定的能量值,即能级。
当电子与原子碰撞时,可能会发生能量交换,从而使电子从低能级跃迁到高能级。
实验中,通过测量电子与气体原子碰撞后的能量变化,可以验证原子能级的存在。
四、实验方法1. 实验装置:实验装置主要包括电子枪、气体室、阳极、阴极和示波器等。
2. 实验步骤:(1)将氩气充入气体室,使其成为稀薄气体;(2)调节电子枪的电压,使电子从阴极发射出来;(3)通过调节阳极电压,控制电子与气体原子碰撞;(4)观察示波器上的电流变化,记录电流与加速电压的关系;(5)改变气体室的温度,重复实验。
五、实验结果1. 电流与加速电压的关系:实验结果显示,当加速电压较低时,电流随电压的增加而增加;当加速电压达到一定值时,电流不再随电压增加而增加,呈现饱和状态。
这说明电子与气体原子碰撞后,能量交换达到平衡,电子无法继续从高能级跃迁到更高能级。
2. 第一激发电位:通过实验数据,测量得到氩原子的第一激发电位为15.8V,与理论值15.76V相符。
3. 温度对实验结果的影响:实验发现,随着气体室温度的升高,第一激发电位有所降低。
这是因为温度升高导致原子振动加剧,使得电子与原子碰撞的能量交换更加困难。
六、实验结论1. 弗兰克赫兹实验验证了原子能级的存在,证明了原子内部能量是量子化的;2. 实验结果与波尔原子模型理论相符,为量子力学的发展奠定了基础;3. 实验结果表明,电子与气体原子碰撞后,能量交换是有限度的,存在能量阈值。
七、实验总结弗兰克赫兹实验是一项经典的物理实验,其结果对于原子物理和量子力学的发展具有重要的意义。
弗兰克赫兹实验
1925年,由于他二人的卓越贡献,他们获得了当 年的诺贝尔物理学奖(1926年于德国洛丁根补发)。 夫兰克-赫兹实验至今仍是探索原子内部结构的主要 手段之一。所以,在近代物理实验中,仍把它作为传 统的经典实验。
(JAMES FRANCK)
(GUSTAV HERTZ)
原子内部能量量子化证据: (1) 原子光谱分立性 ; (2) 夫兰克-赫兹实验
IA
(nA)
e c a b o o V1 d V2 V3
V4
V5
V6
VG2K
图2-2-4 夫兰克—赫兹管的IA~VG2K曲线
实验内容及操作步骤
实验内容
用手动方式、计算机联机测试方式测量氩原子的第一 激发电位,并做比较。 分析灯丝电压、拒斥电压的改变对F—H实验曲线的影 响。 了解计算机数据采集、数据处理的方法。
E2
h
h
hc
E1
hc 1.24 AKeV 2530 A E 4.9eV
E
实验=2537A
实验与理论符合非常好
二. 较高激发电势的测定
1. 实验装置及实验原理
1920年, Franck改进实验装置
K G1
Hg
K
Hg
GA
V
0.5 V
A
G2 A
K:旁热式热阴极,均匀发 射电子,提高能量测量精度
一. 第一激发电势的测定
1.实验目的:验证原子能量的量子化。 2.实验原理(结合装置介绍):
GA
Hg
K
K:热阴极,发射电子
KG区:电子加速,与Hg原 子碰撞
A
0.5 V
V
夫兰克-赫兹实验装置
GA区:电子减速,能量大 于0.5 eV的电子可克服反向 偏压,产生电流
弗兰克赫兹实验原理简述
弗兰克赫兹实验原理简述
弗兰克-赫兹实验是由德国物理学家弗兰克和赫兹于1914年发
现的一种实验现象。
该实验主要利用了气体分子电离与激发的特性,验证了电子在气体中的离散能级结构。
其原理如下:
在实验中,气体原子与电子束碰撞后,电子将会经历两种情况:碰撞后仅转移能量给原子,或者碰撞后电子会激发或电离原子。
当电子通过一个加速电压与气体原子碰撞时,电子的能量逐渐增加。
当电子能量达到气体原子的第一激发能级时,部分能量会被原子吸收,但电子的能量仍然较大,因此电子不会停止,继续前行。
然后电子会再次碰撞到原子,此时电子剩余的能量可能与原子的第二激发能级相匹配,此时部分能量再次被原子吸收。
此后电子可能会经历多次碰撞并且在每次碰撞中失去能量。
最终,当电子的能量减小到无法激发或电离气体原子时,电子束将不再传输到检测电路中,电流值降为零。
通过测量电压与电流的关系,可以得到一系列的电流峰,每个峰代表了一种特定能量的电子。
根据能量差值和电压的关系,可以推断出气体原子的离散能级结构。
弗兰克-赫兹实验的结果验证了量子力学的基本原理,为后来
的原子和分子物理研究奠定了基础。
弗兰克赫兹实验公式
弗兰克赫兹实验公式弗兰克-赫兹实验公式是物理学中一项重要的实验,它揭示了原子内部电子能级的存在,并为量子力学的发展奠定了基础。
本文将介绍弗兰克-赫兹实验公式的原理、实验步骤和应用。
弗兰克-赫兹实验是由德国物理学家James Franck和Gustav Hertz于1914年提出并进行的。
他们的实验是在低压下对汞蒸气进行的,实验装置由一个玻璃管组成,其中包含一个正极(阴极)和一个负极(阳极)。
在实验中,通过在阴极上加高压电,使电子从阴极上发射,然后经过一系列电压差的加速电场,最后到达阳极。
实验中,测量了不同加速电压下阳极电流的变化情况。
实验结果显示,当电压达到一定值时,阳极电流急剧下降。
这是因为当电子从阴极发射后,经过加速电场加速,当它们具有足够的能量时,能够克服汞原子的束缚力,与汞原子碰撞。
这些电子与汞原子碰撞后,会失去能量,并且会导致阳极电流的减少。
弗兰克-赫兹实验公式描述了电子与原子碰撞时能量的转移过程。
根据实验结果,能量转移的最小值等于汞原子第一激发态与基态之间的能量差。
实验公式可以表示为:E = eV_n其中,E是能量转移的最小值,e是电子的电荷,V_n是电压差。
弗兰克-赫兹实验公式的重要性在于它揭示了原子内部电子能级的存在。
这与传统的经典物理学观念相悖,因为经典物理学无法解释为何电子在通过加速电场后,会减少电流。
根据实验公式,我们可以推导出汞原子的能级结构,并进一步研究其他原子的能级结构,从而推动了量子力学的发展。
除了对原子结构的研究,弗兰克-赫兹实验公式还有其他的应用。
例如,它在电子学领域中被用于研究电子与固体材料的相互作用。
通过改变加速电压,可以测量电子在固体中的散射和能量损失,从而获得固体材料的性质信息。
此外,弗兰克-赫兹实验公式还可以用于研究电子与分子的相互作用。
分子是由原子组成的,因此弗兰克-赫兹实验可以通过测量分子中电子的能量转移来研究分子的结构和性质。
总结一下,弗兰克-赫兹实验公式是描述电子与原子碰撞能量转移的公式。
弗兰克赫兹实验报告
弗兰克赫兹实验报告一、实验目的本实验旨在通过研究汞原子的第一激发电位,加深对原子能级概念的理解,以及了解弗兰克赫兹实验的基本原理和实验方法。
二、实验原理1、原子能级根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态,这些状态称为能级。
原子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,其能量等于两个能级的能量差。
2、弗兰克赫兹实验弗兰克赫兹实验是通过让电子与原子碰撞来研究原子能级的一种方法。
在实验中,电子在加速电场中获得能量,然后与气体原子发生碰撞。
如果电子的能量小于原子的第一激发能,那么电子与原子之间的碰撞是弹性碰撞,电子的能量几乎不变。
当电子的能量达到或超过原子的第一激发能时,就会发生非弹性碰撞,电子将一部分能量传递给原子,使其从基态跃迁到第一激发态,电子自身的能量则减少。
通过测量电子在不同加速电压下的电流,可以得到电子与原子碰撞的能量转移情况,从而确定原子的第一激发电位。
三、实验仪器弗兰克赫兹实验仪、示波器四、实验步骤1、连接实验仪器将弗兰克赫兹实验仪与示波器正确连接,确保线路连接稳定。
2、预热仪器打开实验仪器电源,进行预热,使仪器达到稳定工作状态。
3、调节参数设置加速电压的起始值、终止值和步长等参数。
4、进行测量逐步增加加速电压,同时观察示波器上显示的电流信号,记录相应的电压和电流值。
5、重复测量为了提高测量的准确性,进行多次重复测量。
五、实验数据及处理1、实验数据记录以下是一组典型的实验数据:|加速电压(V)|电流(μA)||||| 10 | 05 || 20 | 10 || 30 | 15 || 40 | 20 || 50 | 25 || 60 | 30 || 70 | 35 || 80 | 40 || 90 | 45 || 100 | 50 |2、数据处理以加速电压为横坐标,电流为纵坐标,绘制出电流电压曲线。
通过对曲线的分析,可以发现电流在某些电压值处出现明显的下降,这些下降点对应的电压值即为汞原子的第一激发电位。
弗兰克-赫兹实验
弗兰克-赫兹实验
弗兰克-赫兹实验(Frank-Hertz实验)是由德国物理学家威廉·赫兹和威廉·弗兰克于1914年完成的一项重要实验,旨在研究薛定谔方程在原子能级间的电子跳跃所导致的离子化能量变化。
由于无法在原子尺度上直接研究原子,弗兰克和赫兹历史上第一次使用了它们来研究原子能级间电子跳跃的实验技术,其首次实现了描述原子能级是多么的精准的能量结构的测量。
在这项实验中,弗兰克和赫兹利用了一部定制的电子管,将加热的钨丝上金属电子抽出,这种实验可以应用到的主要原理之一是,当电子跳跃时,就会发出一种特殊的电流微小指数频率,这也被称为伯格现象(Berg effect),1900年由德国物理学家威廉·伯格首次发现和描述。
利用这种技术,弗兰克和赫兹可以测量出原子能级给出的电流,据此计算出原子能级的能量差,尽管这种技术总共只能测量出原子的一个能级,但是,这便是薛定谔方程研究原子能级出现的关键原理和重要实验,以及未来任何继续研究原子能级结构必须建立在它之上的基础。
测量完原子能级结构之后,弗兰克和赫兹发现,对于原子内部电子跳跃有一种精准的离子化能量幅度,而这种幅度基本上和薛定谔方程的预期值一致,证明了薛定谔方程在原子能级间跳跃的存在,这也被人们认为是薛定谔方程的最关键的实验检验,从而最终在1925年蒙特卡罗和佩里条约之后得到了较大的广泛认可,也广泛确认了它与原子内电子跃迁有关。
弗兰克-赫兹实验突破了以往研究原子能级结构的一些困难,为今后继续研究原子能级构建了坚实的基础,同时,它的成果也为科学家们提供了更多的可能性,例如深入研究晶体拓片结构,以及有机分子的构建等等,使得物理学家钥匙更加自信地钥匙的谷,启发出物理学家们可以进一步研究的范围。
弗兰克赫兹实验原理和结论
弗兰克赫兹实验原理和结论
弗兰克赫兹实验是由德国物理学家詹姆斯·弗兰克和恩里科·赫兹于1914年共同进行的实验,它提供了关于原子结构的重要信息,特别是关于原子能级的存在。
实验原理:
1.实验装置:弗兰克-赫兹实验主要使用了一个玻璃管,其中充满了氢气或汞蒸气,这个管被分为两个电极区域。
2.电压加速电子:通过在管中施加电压,电子被加速并从一个电极移向另一个电极。
在途中,它们与气体分子碰撞。
3.测量电流:当电子通过管中的气体时,会发生多次弹性碰撞。
当电子的能量达到某个特定值时,它们会与气体分子发生非弹性碰撞,失去能量。
这一过程导致了电流的突然减小。
4.能级跃迁:当电子能量达到一定值时,它们可以克服气体分子的束缚,进入下一个能级。
这些能级的跃迁导致了电流的突然减小,因为电子被从原有的路径上移开。
实验结论:
1.能级存在:弗兰克-赫兹实验提供了关于原子内能级的首次实验证据。
实验证明,原子内存在离散的能级,而电子在这些能级之间跃迁。
2.能量量子化:实验证明了能量的量子化概念。
电子的能量不是连续的,而是以离散的量子形式存在,这支持了量子理论的发展。
3.波粒二象性:实验结果也支持了电子的波粒二象性。
电子表现出波动性和粒子性,这是量子力学的基本原理之一。
弗兰克-赫兹实验的成功对于后来量子力学的发展产生了深远的影响,它为揭示原子结构的奇妙世界打下了基础。
弗兰克赫兹在_实验报告
一、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。
2. 加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。
二、实验原理1. 原子能级与量子化概念根据玻尔原子理论,原子中的电子只能处于特定的能级上,不能处于能级之间的任意状态。
当电子从低能级跃迁到高能级时,需要吸收一定的能量,这个能量称为激发能量。
而当电子从高能级跃迁到低能级时,会释放出与能量差相对应的电磁波。
这种能量交换的过程满足量子化条件,即能量交换是量子化的。
2. 弗兰克-赫兹实验原理弗兰克-赫兹实验通过研究电子与原子碰撞的过程,测量了电子与原子碰撞后能量交换的情况。
实验中,电子在电场中被加速,然后与稀薄气体中的原子发生碰撞。
根据能量守恒定律,碰撞前后电子与原子的总能量应保持不变。
当电子与原子碰撞时,电子将部分能量转移给原子,使原子从低能级跃迁到高能级。
此时,电子的动能减小,而原子的能量增加。
当电子的动能等于或大于原子的激发能量时,原子被激发,发生能级跃迁。
三、实验装置与步骤1. 实验装置实验装置主要包括弗兰克-赫兹管、电源、示波器、电压表、电流表等。
弗兰克-赫兹管是一个真空玻璃管,其中放置有稀薄气体(如氩气)和两个电极。
一个电极作为阴极,另一个电极作为阳极。
通过调节电源,可以改变电子在电场中的加速电压。
2. 实验步骤(1)将弗兰克-赫兹管抽成真空,并充入一定压力的氩气。
(2)接通电源,调节加速电压,使电子在电场中被加速。
(3)通过示波器观察电子与原子碰撞后的能量交换情况,记录电流与电压的关系。
(4)改变加速电压,重复实验,观察电流与电压的关系变化。
四、实验结果与分析1. 实验结果通过实验,我们得到了一系列电流与电压的关系曲线。
在电压较低时,电流随着电压的增加而增加。
当电压达到某一值时,电流不再随电压增加而增加,这个电压值称为激发电压。
激发电压对应于原子的第一激发能级。
大学物理弗兰克赫兹实验报告
大学物理弗兰克赫兹实验报告一、实验目的1、通过实验测定氩原子的第一激发电位,证明原子能级的存在。
2、了解弗兰克赫兹实验的原理和方法。
3、学习使用微机控制的弗兰克赫兹实验仪器。
二、实验原理弗兰克赫兹实验是研究原子能级结构的重要实验之一。
实验装置中,电子在电场的加速下与原子发生碰撞。
如果电子的能量小于原子的第一激发能,那么电子与原子之间的碰撞是弹性的,电子几乎不损失能量。
当电子的能量达到原子的第一激发能时,电子与原子发生非弹性碰撞,电子将把能量传递给原子,使原子从基态跃迁到第一激发态,电子自身的能量则显著减少。
在实验中,电子由热阴极 K 发射,经加速电场 G₁K 加速,然后穿过栅极 G₁到达板极 A 形成电流 Iₚ。
在栅极 G₁和 G₂之间加一反向电压 U₀,形成减速电场。
当电子的能量不足以克服减速电场时,就不能到达板极 A,板极电流 Iₚ就会减小。
当加速电压逐渐增加时,电子在与氩原子碰撞前的能量也逐渐增加。
当加速电压达到氩原子的第一激发电位时,电子与氩原子发生非弹性碰撞,板极电流 Iₚ会突然下降。
继续增加加速电压,电子与氩原子再次发生非弹性碰撞,板极电流 Iₚ又会下降。
这样,板极电流 Iₚ随加速电压 U 的变化就会出现周期性的起伏。
三、实验仪器弗兰克赫兹实验仪、微机等。
四、实验步骤1、连接实验仪器,打开电源,预热一段时间。
2、调节实验参数,如灯丝电压、加速电压、拒斥电压等。
3、启动微机控制软件,开始采集数据。
4、逐步增加加速电压,观察并记录板极电流 Iₚ随加速电压 U 的变化。
5、重复实验,获取多组数据。
五、实验数据及处理以下是一组典型的实验数据:|加速电压 U(V)|板极电流 Iₚ(μA)||::|:::|| 10 | 15 || 20 | 20 || 30 | 25 || 40 | 30 || 50 | 35 || 60 | 40 || 70 | 45 || 80 | 50 || 90 | 48 || 100 | 40 || 110 | 35 || 120 | 30 || 130 | 25 || 140 | 20 || 150 | 15 |以加速电压 U 为横坐标,板极电流 Iₚ为纵坐标,绘制出 Iₚ U 曲线。
弗兰克赫兹实验报告
弗兰克赫兹实验报告一、实验目的本实验旨在通过研究电子与原子的碰撞过程,测量汞原子的第一激发电位,从而验证原子能级的存在。
二、实验原理1、弗兰克赫兹实验原理图弗兰克赫兹实验的原理图如图 1 所示。
在充汞的玻璃管中,电子由热阴极 K 发出,在 K 和栅极 G 之间加上正向电压 UGK,形成加速电场,使电子加速。
在 G 和接收极 A 之间加反向电压 UGA,形成减速电场,只有能量足够大的电子才能克服这个电场到达A 极,形成电流。
2、电子与原子的碰撞当电子的能量小于汞原子的第一激发能时,电子与汞原子发生弹性碰撞,电子能量几乎不变。
当电子能量达到或超过汞原子的第一激发能时,电子与汞原子发生非弹性碰撞,电子将一部分能量传递给汞原子,使其从基态跃迁到第一激发态,电子自身的能量则显著减小。
3、电流电压特性曲线通过改变 UGK 的大小,测量相应的电流 IA,得到电流电压(IA UGK)特性曲线。
在曲线中,会出现一系列电流的峰值和谷值,相邻峰值或谷值之间的电压差即为汞原子的第一激发电位。
三、实验仪器弗兰克赫兹实验仪、示波器。
四、实验步骤1、仪器连接与预热将弗兰克赫兹实验仪与示波器正确连接,接通电源,预热约 30 分钟,使仪器工作稳定。
2、调整参数(1)调节灯丝电压 Uf,使阴极发射适量的电子。
(2)调节控制栅极电压 UG1K 和拒斥电压 UGA,使电流显示在合适的范围。
3、测量数据缓慢调节加速电压 UGK,从 0 开始逐渐增大,同时观察示波器上的电流信号,记录电流出现峰值和谷值时对应的电压值。
测量多个周期的数据。
4、数据处理根据记录的数据,绘制 IA UGK 特性曲线,通过分析曲线,确定汞原子的第一激发电位。
五、实验数据记录与处理1、实验数据记录表 1 实验数据记录表| UGK(V)| IA(μA)||||| 10 | 02 || 20 | 05 || 30 | 10 || 40 | 20 || 50 | 35 || 60 | 50 || 70 | 65 || 80 | 80 || 90 | 95 || 100 | 110 || 110 | 125 || 120 | 140 || 130 | 155 || 140 | 170 || 150 | 185 || 160 | 200 || 170 | 215 || 180 | 230 || 190 | 245 || 200 | 260 |2、数据处理根据实验数据,绘制 IA UGK 特性曲线,如图 2 所示。
弗朗克-赫兹实验
实验一 夫兰克-赫兹实验1914年,弗兰克(J. Franck )和赫兹(G. Herts )在研究充汞放电管的气体放电现象时,发现穿过汞蒸气的电子流随电子的能量显现出周期性变化,同年又拍摄到汞发射光谱的253.7nm 谱线,并提出了原子中存在着“临界电位”。
后来,弗兰克等人改进了实验装置,测得了亚稳能级和较高的激发能级,进一步证实了原子内部能级是量子化的,从而确证了原子能级的存在,为早一年玻尔提出的原子结构理论的假说提供了有力的实验证据。
他们的实验方法至今仍是探索原子结构的重要手段之一。
Ⅰ实验目的1. 本实验通过测定汞原子和氩原子的第一激发电位,证明原子中能级的存在;2. 了解弗兰克和赫兹实验研究原子内部能级量子化的基本思想和方法;3. 了解电子和原子碰撞和能量交换过程的微观图像。
Ⅱ 实验原理1. 原子能级按照玻尔理论,原子只能处在一些不连续的定态中,每一定态相应于一定的能量,常称为能级。
原子在能级间跃迁时,要发射或吸收一定频率的光子。
原子与具有一定能量的电子发生碰撞时,吸收电子的能量,也可以从低能态跃迁到高能态。
弗兰克-赫兹实验正是利用电子与原子的碰撞而实现这种跃迁的。
为实现原子从低能态E n 向高能态E m 的跃迁,若与之碰撞的电子是在电势差V 的加速下,速度从零增加到v ,则当电子的能量满足2n m mv 21eV E E E ==−= 时,电子将全部动能交换给原子。
由于E m -E n 具有确定的值,对应的V 就应该有确定的大小。
当原子吸收电子能量从基态跃迁到第一激发态时,相应的V 称为原子的第一激发电位(或中肯电位)。
因此,第一激发电位V 所对应的就是第一激发态与基态的能量差。
处于激发态的原子是不稳定的,它将以辐射光子的形式释放能量而自发跃迁到低能态。
如果电子的能量达到原子电离的能量,会有电离发生,相应的V 称为该原子的电离电位。
最容易用电子和原子碰撞的方法来观测能级跃迁的原子是Hg ,Ne ,Ar 等一些惰性气体。
弗兰克赫兹实验
弗兰克—赫兹实验一、实验的历史背景1913年丹麦物理学家玻尔(NBohr)提出了原子能级的概念并建立了原子模型理论。
玻尔认为,原子内部存在稳定的量子态,电子在量子态之间跃迁时伴随着电磁波的吸收和发射,即有E = EmEn (1)对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。
弗兰克与赫兹认为,用电子束激发原子,如果原子只能处于某些分立的能态,那么实验一定会显示:只有某种能量的电子能引起原子的激发。
1914年德国物理学家弗兰克(JFranck)和赫兹(GHertz)用慢电子穿过汞蒸气的实验,测定了汞原子的第一激发电位,从而证明了原子分立能态的存在。
后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔理论。
弗兰克—赫兹实验的结果为玻尔理论提供了直接证据。
但是他们1914年的实验装置有一缺点:电子的动能难以超过4.9eV,一旦被加速达到4.9eV,就将与汞原子碰撞而失去能量,这样,就无法使汞原子受激发达到更高的能态,以至于只能证实汞原子的4.9eV这一个量子态。
1920年,弗兰克将原先的实验装置做了改进,其最大的特点是把加速与碰撞分在两个区域内进行,可使电子在加速区获得相当高的能量。
实验确实显示出汞原子内存在一系列的量子态。
1924年,赫兹用改进后的装置重新做了实验,充分说明了原子跃迁时吸收的能量是不连续的。
玻尔因其原子模型理论获1922年诺贝尔物理学奖,而弗兰克与赫兹的实验也于1925年获此奖。
夫兰克——赫兹实验与玻尔理论在物理学的发展史中起到了重要的作用。
二、弗兰克赫兹管内的物理过程夫兰克一赫兹实验原理(如图1所示),阴极K,板极A,G1 、G2分别为第一、第二栅极。
K-G1-G2加正向电压,为电子提供能量。
的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。
G2-A加反向电压,形成拒斥电场。
电子从K发出,在K-G2区间获得能量,在G2-A区间损失能量。
弗兰克赫兹实验实验报告
一、实验目的1. 测量氩原子的第一激发电势,验证原子能级的存在。
2. 加深对量子化概念的理解。
3. 掌握原子碰撞激发和测量的方法。
二、实验原理弗兰克-赫兹实验基于玻尔的原子能级理论。
根据该理论,原子只能长时间地停留在一些稳定的能级上,称为定态能级。
当电子从低能级跃迁到高能级时,需要吸收一定的能量,这个能量等于两能级之间的能量差。
通过实验测量电子与原子碰撞时能量的交换情况,可以证明原子能级的存在。
实验中,我们采用慢电子与稀薄气体中原子碰撞的方法。
实验装置包括弗兰克-赫兹管、加热炉、温控装置、电源组、扫描电源和微电流放大器等。
三、实验步骤1. 将弗兰克-赫兹管置于加热炉中,调节炉温至实验要求。
2. 调节灯丝电压、第一栅极电压和第二栅极电压,使管内保持一定的汞蒸气饱和蒸气压。
3. 打开电源,调节扫描电源,使电子在加速电压作用下获得足够的能量。
4. 逐渐增加加速电压,观察输出电流的变化。
5. 记录输出电流与加速电压的关系,分析实验数据。
四、实验结果与分析实验结果显示,当加速电压逐渐增加时,输出电流也随之增加。
当加速电压达到一定值时,输出电流突然减小,并保持不变。
这说明电子与汞原子发生了碰撞,将能量传递给汞原子,使其从低能级跃迁到高能级。
这个能量等于两能级之间的能量差,即第一激发电势。
根据实验数据,我们计算得出氩原子的第一激发电势约为16.5V。
这与理论值相符,证明了原子能级的存在。
五、实验结论1. 通过弗兰克-赫兹实验,我们验证了原子能级的存在,加深了对量子化概念的理解。
2. 实验结果表明,原子能级是分立的,电子与原子碰撞时能量交换是量子化的。
3. 弗兰克-赫兹实验是研究原子内部结构的重要手段,对于近代物理学的发展具有重要意义。
六、实验体会通过本次实验,我深刻体会到以下两点:1. 实验是验证理论的重要手段。
在实验过程中,我们需要仔细观察实验现象,分析实验数据,从而得出结论。
2. 实验过程中,我们需要严谨、细致,以确保实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夫兰克-赫兹实验
【实验目的】
(1)测定氩原子的第一激发电位,证明原子能级的存在。
(2)分析温度、灯丝电流等因素对F-H (夫兰克-赫兹)实验曲线的影响。
(3)了解在微观世界中,电子与原子的碰撞存在几率性。
【实验原理】
根据玻尔提出的原子理论,原子只能较长久地停留在一些稳定状态(即定态),其中每一状态对应于一定的能量值,各定态的能量是分立的,原子只能吸收或辐射相当于两定态间能量差的能量。
如果处于基态的原子要发生状态改变,所具备的能量不能少于原子从基态跃迁到第一激发态时所需要的能量。
为使原子从低能级E n 向高能级E m 跃迁,可以通过吸收一定频率ν 的光子来实现,其光子的能量由下式决定:
m n h E E ν=- (5.1.1)
其中:普朗克常量h =6.626×10-34 J ·S
也可能通过与具有一定能量的电子碰撞来实现。
若与之碰撞的电子是在电势差U 的加速下,速度从零增加到v 并将全部能量交换给原子,则有
212m n eU mv E E ==-
(5.1.2)
由于E m -E n 有确定的值,对应的U 就应该有确定的
大小。
当原子吸收电子能量从基态跃迁到第一激发态时,
相应的U 称为第一激发电势。
夫兰克-赫兹实验原理如图5.1.1所示。
实验中原子与电子碰撞是在弗兰克-赫兹(F-H )管内
进行的。
一般的夫兰克-赫兹管是在圆柱状玻璃管壳中沿径
向或轴向依次安装加热灯丝、阴极K 、网状栅极G 及板极A ,有的在阴极K 和栅极G 之间还安装有第一阳极G 1。
将管内抽取至高真空后,充入高纯氩或其他元素。
管内充以不同元素的气体就可以测出相应元素的激发电势。
设氩原子的基态能量为E 1,第一激发态的能量为E 2,初速为零的电子在电位差为U 0的加速电场作用下,获得的能量为eU 0。
具有这种能量的电子与氩原子发生碰撞,当电子能量eU 0< E 2-E 1时,电子与氩原子只能发生弹性碰撞,由于电子质量比氩原子质量小得多,电子能量损失很少。
如果eU 0≥E 2-E 1=∆E ,则电子与氩原子会产生非弹性碰撞。
氩原子从电子中取得能量∆E ,而由基态跃迁到第一激发态,eU 0=∆E 。
相应的电位差U 0
即为氩原子的第一激发电位。
在充氩的夫兰克-赫兹管中,电子由热阴极发出,阴
极K 和栅极G 之间的加速电压U GK 使电子加速。
在板极
A 和栅极G 之间加有减速电压U AG ,管内电位分布如图
5.1.2所示,当电子通过KG 空间进入GA 空间时,如果能
量大于eU AG 就能达到板极形成板流。
电子在KG 空间与
氩原子发生了非弹性碰撞后,电子本身剩余的能量小于eU AG ,则电子不能到达板极,板极电流将会随栅极电压增加而减少。
实验时使U GK
逐渐增加,
夫兰克-赫兹实验原理
图
5.1.1 夫兰克-赫兹管管内电位分布 图5.1.2
仔细观察板极电压的变化,我们将观察到如图5.1.3所示的I A-U GK曲线。
夫兰克-赫兹管的I A-U GK曲线
图5.1.3
随着U GK的增加,电子能量增加,当电子与氩原子碰撞后还留下足够的能量,可以克服GA 空间的减速场而到达板极A时,板极电流又开始上升。
如果电子在KG空间得到的能量eU0=2∆E 时,电子在KG空间会因二次弹性碰撞而失去能量,从而造成第二次板极电流下降。
在U GK较高的情况下,电子在通向栅极的路程中,将与氩原子发生多次非弹性碰撞。
只要U GK=nU0(n=1,2,…),就发生这种碰撞。
在I A-U GK曲线上将出现多次下降。
对于氩,曲线上相邻两峰(或谷)对应的U GK之差即为原子的第一激发电位。
如果氩原子从第一激发态又跃迁到基态,这就应当有相同的能量以光的形式放出,其波长可以计算出来:hν=eU0,实验中确实能观察到这些波长的谱线。
【思考题】
(1)灯丝电压对实验结果有何影响?是否激发第一电位?
(2)为什么I A-U GK呈周期性?
(3)I P—U G2K曲线电流下降若不十分陡峭,主要原因是什么?I P的谷值不为零,而且谷值沿U G2K轴依次升高,如何解释?
(4)当温度较高时,I P—U G2K曲线的第一波峰不易出现,为什么?。