第三章 粉体的物性与流变学
粉体工程期末考试题及答案
粉体工程期末考试题及答案一、选择题1. 粉体工程是一门研究粉末物料的加工、输送、储存和应用的学科,其研究的范围包括()。
A. 粉末的物性与表征B. 粉末的混合与分离C. 粉末的加工技术D. 粉末的表面改性E. 以上都是答案:E. 以上都是2. 在粉体工程中,粉体的流动性是一个重要的物性指标,通常使用()来进行描述。
A. 容重B. 流动性指数C. 膨松度D. 粒度分布E. 粒形指数答案:B. 流动性指数3. 粉末的分散性是指粉末中颗粒之间的相互作用力离散化的能力,以下哪种方法可以增强粉末的分散性?A. 加大颗粒尺寸B. 增加颗粒的比表面积C. 提高颗粒的摩擦系数D. 减少粉末中的 moisture contentE. 提高粉末的角质量答案:B. 增加颗粒的比表面积4. 粉体的输送方式多种多样,以下不属于粉体输送方式的是()。
A. 斜槽输送B. 螺旋输送C. 气力输送D. 机械输送E. 沉降输送答案:E. 沉降输送二、填空题1. 粉体的密度是指单位体积的粉体的()。
答案:质量2. 在粉体混合过程中,混合均匀度的评价指标之一是()。
答案:变异系数3. 粉体工程中常用的粉体分级方式有()和()。
答案:筛分分级、离心分级三、简答题1. 请简要说明粉体包装的重要性,并列举两种常见的粉体包装形式。
答案:粉体包装的重要性:粉体包装能够保护粉体物料免受外界环境的污染和损害,确保产品的质量和有效期。
同时,粉体包装还能提高产品的市场竞争力,增强产品的品牌形象。
常见的粉体包装形式:a. 瓶装:将粉体物料装入密封的塑料瓶中,通过盖子或封口膜进行密封。
适用于粉末颗粒较小的物料。
b. 袋装:将粉体物料装入塑料或纸质袋子中,通过热封或胶粘剂进行密封。
适用于粉末颗粒较大的物料。
2. 简要描述一下粉体流变学的概念和研究对象。
答案:粉体流变学是研究粉末物料在外力作用下的变形和流动行为的学科。
主要研究粉体物料的流动性、变形性和变形机制等内容。
流变学和粉体学简介
30
4、平均粒径
(1)个数平均径dln=(nd)/n
(2)长度平均径dsl=(nd2)/(nd)
(3)面积平均径dvs=(nd3)/(nd2) (4)平均面积径dsn=[(nd2)/(n)]1/2 (5)平均体积径dvn=[(nd3)/(n)]1/3
31
(二)粒子径的测定方法
15
假塑性流体的结构变化示意图
16
(三)胀性流动(dilatant flow)
胀性流动:没屈伏值;过原点;切应速度很小时,液体流动速度
较大,当切应速度逐渐增加时,液体流动速度逐渐减小,液体对 流动的阻力增加,表观粘度增加,流动曲线向上弯曲。 切变稠化;切变稠化流动(shear thickening flow)。 胀性液体的流动公式:D= Sn /a 或 log D=log 1/a +n log S D为切变速度;S为切应力; a 为表观粘度(随切变速度的不同而 不同);n<1,当n接近1时,流动接近牛顿流动。 在制剂中表现为胀性流动的剂型为含有大量固体微粒的高浓度混
流变学在药剂学中广泛应用,特别是在混悬剂、乳剂、胶体溶液、
软膏剂和栓剂中。 例如:①具有触变性的助悬剂对混悬剂的稳定性十分有利;使用 混合助悬剂时应选择具有塑性和假塑性流动的高分子化合物混合 使用为佳。②乳剂具有触变性有利于乳剂的稳定。 精神(生理)流变学(psychorheology) 血液流变学(haemorheology)
10
四、非牛顿流动
非牛顿液体(nonNewtonian fluid):不符合牛顿定律的液 体,如乳剂、混悬剂、高分子溶液、胶体溶液等。 粘度曲线(viscosty curve)或流动曲线(flow curve):把切变
速度D随切应力S而变化的规律绘制成的曲线。
粉体的流动性PPT课件
休止角
休止角是粉体堆积层的自由斜面在静止的 平衡状态下,与水平面所形成的最大角。
休止角的测定方法有: 注入法、排出法、容器倾斜法等等。
26
休止角的测定
常用的方法是固定圆锥法 (亦称残留圆锥法)。固 定圆锥法将粉体注入到某 一有限直径的圆盘中心上, 直到粉体堆积层斜边的物 料沿圆盘边缘自动流出为 止,停止注入,测定休止 角α。
流态在动有卸性整料。体过物流程料和中,从漏仓料斗内仓流物中两料卸种全部。出处就于是均依匀靠下降这的种运流动动状性态,。这种仓流
状态称为全流式流动或整体流。 若只有料仓的中心部分产生料流,而其他区域的物料停滞不动,流动 的区域呈漏斗状,流动沟道呈圆形截面,其底部截面大致相当于卸料 口面积,这种仓流状态这种仓流状态称为穿流式流动或漏斗流。
流动性的评价方法
瓶或加料斗中的流出 流出速度,壁面摩擦角 重力流动 旋转容器型混合器,充填 休止角,流出界限孔径
振动流动
振动加料,振动筛 充填,流出
休止角,流出速度, 压缩度,表观密度
压缩流动
压缩成形(压片)
压缩度,壁面摩擦角 内部摩擦角
流化层干燥,流化层造粒 流态化流动 颗粒或片剂的空气输送 休止角,最小流化速度
2、将粉体样品加入 槽内,直至加满;
3、调整螺旋升降杆, 使刮刀升起;
4、用量角器量出测 角指针所指的角度。
6 刮铲刀杆 7 刮铲角测定台 8 螺旋升降杆
装粉槽 量角器等
37
综合指数的测定
压缩率的测定
测定装置
1、样品放入上圆筒 中,样品通过筛网落 入下圆筒中;
2、下圆筒加满,取 下;
3、刮刀刮去多余粉 体,称量样品质量。
评价方法
1、信息量大,对粉体的处理有直接的参考作用; 2、只能表示和比较粉体物料的相对流动性。
2粉体工程-粉体流变学
2 空隙率ε:空隙体积占粉体填充体积的比率。
第三章 粉体的润湿性
润湿性 (wetting) 是指固体界面由固-气界面 变为固-液界面现象。
固体的润湿性用接触角θ表示。 液滴在固体
表面上所受的力达平衡时符合Yong’s公式: γsg=
γsl+ γlgcosθ 式中, γsg、 γsl、 γlg分别固-气、固-液、气-
定义流动因数ff= σ1/ 用来描述流动通道或 料斗的流动性。流动函数FF和流动因数ff差异:前 者数值越大,粉体流动性越好;而后者数值越大, 粉体流动性则越差。
流动函数FF 和流动因数ff 的关系
问题: 对料仓中颗粒进行流动分析的用途是什么?
七、整体流料仓的设计
设计要求:料斗必须足够陡峭,使粉体物料能沿 斗壁流动,而且开口也要足够大以防止形成料拱。
粉体工程与设备
烟台大学环境与材料工程学院
学习重点
1、休止角及内摩擦系数 2、 Janssen(詹森)公式 3、流动与不流动的判据
对数正态分布应用示例
(1)可计算出平均粒径
(2)可计算出每千克样品中含有的颗粒个数n
(3)可计算出比表面积Sw
当颗粒为球形时 =6
(4)个数与质量两种基准分布的变换关系
粒度:在临界粒子径以上,随粒子径增加,粉体流 动性增加。
临界粒子径:当粒子径小于100微米,粒子容易发 生聚集,内聚力超过粒子重力,妨碍了粒子的重力 行为,这时的粒子径称为临界粒子径。
粒子形状和表面粗糙性:不规则、粗糙,流动 性差。
吸湿性:吸湿性大,休止角大,流动性差。但当吸 湿量超过一定值后,水分起到润滑作用,流动性增 加。
再慢慢地使其倾斜,当粉体滑动时,板面和水平 面所形成的夹角。
《流变学和粉体学》课件
欢迎大家来到《流变学和粉体学》的世界。本课程将重点讲解流体力学中的 两个分支,以及它们在各个领域中的应用。
研究背景与意义
流变学和粉体学是学习材料的物理特性和处理工艺的重要一环。它们相互依 存,可以帮助工程师们更好地理解和控制处理材料的流动和变形过程。
流变学基础知识
流变学的定义和分类
粉体学基础知识
1
粉体的定义和分类
粉体是微细颗粒,大小在1-100微米之间。常见的粉体包括金属粉末、陶瓷粉末、 药物颗粒等。
2
粉体的生产与加工技术
包括机械法、热处理法、电化学法等。粉体的加工主要是为了改变其粒径、形状、 表面状态等。
3
粉体的物理和化学特性
如粉体的孔隙率、密度、表面能、耐水性等可以帮助工程师更好地了解其物理和 化学特性。
流变学与粉体学的结合应用
1 交叉领域
流变学和粉体学作为相互关联、相互渗透的学科,交叉领域的应用非常广泛,能够实现 理论研究和实际应用的完美结合。
2 新材料研究中的应用
当今材料科学的发展对于流变学和粉体学需求量日益增加。二者在合作创新中可以推动 科学技术的发展。
3 药学领域
药物的生产和研发中,流变学和粉体学的应用日益重要,它们可以帮助科学家掌握药物 的制备和流动行为。
总结与展望
总结
• 流变学是研究物质在外力作用下的变形和流 动特性。
• 粉体学是微细颗粒的研究。 • 二者相互依存,有着广泛的应用。
展望
• 我们可以进一步地拓展流变学和粉体学的合 作领域。
• 在新材料研究中推进科技创新。 • 探索流变学和粉体学在医药领域和环境污染
控制中的应用。
参考文献
• 赵洁、万克林、周玲玲. 粉体学[M]. 化学工业出版社, 2015. • 曾逸天、陈云贤、董栋秋. 流变学及应用[M]. 化学工业出版社, 2018. • 虞怡. 工程材料流变学[M]. 山东科学技术出版社, 2018.
粉体流变学-分析粉体流与不流行为
粉体流变学-分析粉体流与不流行为1).内摩擦角-横坐标和屈服轨迹的切线之间的角。
2).有效内摩擦角--由Jenike 定义的有效屈服轨迹的倾斜角(EYL )。
有效屈服轨迹与横坐标之间的夹角称为有效内摩擦角δ。
它与粉体物料的内摩擦角有关,是衡量处于流动状态粉体流动阻力的一个参数。
当δ增加时,颗粒的流动性就降低。
对于给定的物体粉料,这个值常常随密实应力的降低而增大,但密实应力很低时,甚至可达900。
对于大多数物料, δ值在250到700之间。
流动时,最大主应力和最小主应力之比可以用有效屈服轨迹函数来表示:则 3).莫尔应力圆-图形表示正应力和剪切应力坐标系中的应力状态,即正应力,t-平面。
4).正应力-通常作用于要求平面的应力。
也叫固结应力或压实应力.5).剪切应力T-平行作用于平面表面的应力。
6).屈服轨迹-失效时剪切应力与正应力的关系曲线。
屈服轨迹(YL)有时被称为瞬时屈服轨迹来区分于时间屈服轨迹。
屈服轨迹由粉体的剪切试验确定:一组粉体样品在同样的垂直应力条件下密实,然后在不同的垂直压力下,对每一个粉体样品进行剪切破坏试验。
在这种特殊的密实状态中,得到的粉体破坏包络线称为该粉体的屈服轨迹。
7).有效屈服轨迹(EYL )-直线通过正应力的原点,t-平面,并与稳定状态的莫尔圆相切,符合给定堆积密度的散装固体的稳态流动条件.8).失败(散装固体的)-过度固结的散装固体塑性变形受到剪切,导致膨胀和强度降低。
131sin 1sin σδσδ+=-1313sin σσδσσ-=+9).流、稳态-临界状态时散装固体的连续塑性变形。
10).流动函数FF -特定散装固体的无侧限屈服强度和主要固结应力的关系曲线。
有时也称做开裂函数,是由Jenike 提出的,用来表示松散颗粒粉体的流动性能。
松散颗粒粉体的流动取决于由密实而形成的强度。
当f c =0时,FF=∞,即粉体完全自由流动流动性的标准分级如下:FF <1 不流动,凝结1< FF <2 很粘结,附着性强,流不动2< FF <4 粘结,有附着性4< FF <10 容易流动10< FF 自由流动影响粉体流动性的因素• 粉体加料时的冲击:冲击处的物料应力可以高于流动时产生的应力;• 温度和化学变化:高温时颗粒可能结块或软化,而冷却时可能产生相变,这些都可能影响粉体的流动性;• 湿度:湿料可以影响屈服轨迹和壁摩擦系数,而且还能引起料壁黏附;• 粒度:当颗粒变细时,流动性常常降低,而壁摩擦系数却趋于增加;• 振动:细颗粒的物料在振动时趋于密实,引起流动中断。
第三章 粉体的物性与流变学
设密度ρ1的大颗粒单独填充时空隙率为ε1,将ρ2、 ε2的小颗粒填充到大颗粒的空隙中,则填充体单位 体积大颗粒的质量W1为: W1=(1-ε1) ρ1
小颗粒质量
W2= ε1 (1- ε2 ) ρ2
混合物中大颗粒的质量比率为
f W1
(1 1)1
W1 W2 (1 1)1 2 (1 1)2
36
2.2 影响休止角的因素 (1) 颗粒的形状 (2) 颗粒的大小 (3 )粉体的填充状态
对于不同粉体,空隙率越大,填充越困难,休止角越大 对于同种粉体,空隙率越小,休止角越大(接触点增多)
(4) 振动 (5) 粉料中通入压缩空气时,休止角显著地减小
37
3、 流出速度(flow velocity) 将物料加入漏斗中,测量全部物料流出所需的时
9
(a) 装配图
(b) 流速漏斗 松装密度测定装置一
(c) 量杯
10
(1) 漏斗 (2) 阻尼箱 (3) 阻尼隔板 (4) 量杯 (5) 支架
松装密度测定装置二
11
第二节 粉体的填充与堆积
一、粉体的空隙率 空隙率(porosity)是粉体中空隙所占有的比率。 粒子内空隙率 内=(Vg-Vt ) / Vg =1-g / t 粒子间空隙率 间= ( V-Vg ) / V = 1- b/g 总空隙率 总= ( V -Vt ) / V =1- b/t
粒子间的附着力、凝聚力。
2.粒子形态及表面粗糙度
球形粒子的光滑表面,能减少接触点数,减少摩擦力。
3.含湿量
适当干燥有利于减弱粒子间的作用力。
4.加入助流剂的影响
加入0.5%~2%滑石粉、微粉硅胶等助流剂可大大改善粉
体的流动性。但过多使用反而增加阻力。
粉体学和流变学PPT课件
粉体的充填
松密度与空隙率反映粉体的充填状态, 紧密充填时松密度大,空隙率小; 反之,松散充填时松密度小,空隙率大。
18
(二)影响粉体流动性的因素
1、粒度, 2、粒子形状、表面粗造性, 3、吸湿性 4、加入润滑剂
20
吸湿性
Hale Waihona Puke 吸湿性是指固体表面吸附水分的现象。 粉末吸湿后会导致粉末流动性下降; 但大量吸湿后粉末变成半流体,流动性增强。
21
临界相对湿度(CRH)
药物的吸湿特性可用吸湿平衡曲线来表示。 水溶性药物在相对湿度较低的环境下,几乎不吸
湿,而当相对湿度增大到临界相对湿度(CRH)时, 吸湿量急剧增加。
22
水溶性药物的吸湿平衡曲线
1-尿素 2-枸橼酸 3-酒石酸 4-对氨基水杨酸钠
CRH湿水溶性药物的特征性参数,几种水溶性药物混合后, 其吸湿性有如下特点:混合物CRH约等于各组分的乘积, 即
3
(一)粒子大小
2、比表面积径 3、有效径 4、平均粒径
5
(二)粒子径的测定方法
1、光学显微镜法(中国药典) 2、筛分法 3、库尔特记数法 4、沉降法(Stokes定律) 5、比表面积法
6
Stocks定律: V = 2 r2( 1- 2)g / 9
8
(三)粒度分布
9
三、粉体粒子的比表面积
29
压缩成形性
对于药物粉末来说,压缩性和成形性是紧密联系 在一起的,因此往往把粉体的压缩性和成形性简 称为压缩成形性。
压缩成形性是粉体的重要性质;压缩成形过程是 一个复杂过程,其机制尚未完全清楚。
30
第二节、流变学概述
流变学是研究物体变形和流动的 科学。
粉体的物性
粒的大小、颗粒间的相互作用,以及填充条件的变
化而变化。
二、粉体的堆积密度
(一)粉体密度的概念
• 粉体的密度系指单位体积粉体的质量。 • 由于粉体的颗粒内部和颗粒间存在空隙,
粉体的体积具有不同的含义。 • 粉体的密度根据所指的体积不同分为
真密度、颗粒密度、松密度三种。
• 压缩性(compressibility)表示粉体在压力下 体积减少的能力。 成形性(compactibility) 表示物料紧密结合成一定形状的能力。
• 粉体的压缩性和成形性简称压缩成形性。 • 压缩成形理论以及各种物料的压缩特性,
对于处方筛选与工艺选择具有重要意义。
• 粉体的可压缩性
– 当粉体在松动堆积状态受到压缩作用时,其堆 积体积将减小。颗粒间的空隙亦相应地减小。 粉体的可压缩性跟其堆积状态有关,用以表征 粉体的可压缩性。定义如下:
• 是指粉体质量除以该粉体所占容器的体积VB求 得的密度,亦称堆积密度。
ρB= M / VB
填充粉体时,经一定规律振动或轻敲后测得
的密度称振实密度(tap density)ρBt。
若颗粒致密,无细孔和空洞,则ρt = ρg 一般: ρt ≥ ρg > ρBt ≥ ρB
• 粉体的堆积/容积密度 B
• 正方形排列层 • 单斜方形/六方系排列层
正方形排列层 等边三角形/菱形/六边形排列层
均一球形颗粒的基本排列层
最
最
密
松
dP= 7.56mm,自然投入堆积,实验测量可以与表2-2计算结果 相比较。一致,非常吻合!
随机堆积计算方法(公式)比较(经验关联)。
2.2 粉体的可压缩性
一、粉体的压缩特性体晶格压密过程
《粉体工程(校企)》课程教学大纲
《粉体工程(校企)》课程教学大纲一、课程基本情况课程名称:粉体工程(校企)/ Powder Engineering(School-enterprise Cooperation)课程类别:专业必修课学分:2.5总学时:40理论学时:40实验/实践学时:0适用专业:无机非金属材料工程适用对象:本科先修课程:高等数学、大学物理、物理化学、工程图学、工程力学、材料工程基础等。
教学环境:多媒体教室授课、实习企业和实习基地现场教学二、课程简介1.课程任务与目的《粉体工程》是材料科学与工程专业的一门主干课程,是无机非金属材料工程本科专业的专业必修课程之一,主要研究颗粒和粉状物料的性质及加工、处理技术。
本课程以材料工业生产过程及研究工作中带有普通性及共同性的内容为主。
通过本课程的学习,使学生能够系统地掌握粉体加工技术工程的基本理论和基础知识,以及粉体制备与处理工艺及装备技术,了解和掌握有关粉体加工技术工艺原理及流程、粉体加工设备的原理、特性参数与性能等知识,为今后从事有关粉体工程技术工作打下基础。
通过本课程的学习引领和培养学生树立勇于创新、服务祖国的理想和学习动力。
2.对接培养的岗位能力通过本课程的学习,使学生了解粉体物料的加工技术与设备的基本理论知识和工程应用情况,培养学生具有应用课程理论知识研究、分析与解决工程实际问题的方法和能力,具有技术创新、工艺创新的初步能力,并引领和培养学生具有较强的质量、环境、安全和注重社会可持续发展理念,提高学生为实现中国制造2025发展目标而努力的责任感。
三、课程教学目标学习本课程后,应达到以下课程教学目标,支撑毕业要求3.1、6.2、8.3:教学目标1. 掌握粉体相关基本概念、粉体粒度、粉体堆积填充、粉体流变学、颗粒流体力学等粉体基本特性和粉体工程基础知识,支撑毕业要求3.1、6.2。
教学目标2. 掌握粉体加工处理过程设备的结构、过程原理、工艺参数、性能特点与系统流程等知识,支撑毕业要求3.1。
粉体力学流态化课件
流化干燥技术
流化干燥技术是一种高效、节能的干燥技术,广泛应用于化工、制药、 食品等领域。
流化干燥技术利用流态化原理,将湿物料置于流化床上,通过热空气或 其它热源加热,使物料中的水分蒸发并带走热量,实现物料的干燥。
VS
传质特性
在流态化过程中,固体颗粒的运动和混合 促进了物质传递过程,提高了传质效率。
05
粉体流态化的影响因素
颗粒的物理性质
颗粒形状
颗粒的形状影响其与流体的相 互作用,进而影响流态化行为 。例如,球形颗粒具有最小的 流动阻力,而不规则形状颗粒 可能导致更高的流动阻力。
颗粒大小和粒度分布
颗粒的大小和粒度分布影响流 体的穿透能力和颗粒间的相互 作用,从而影响流态化效果。
流体压力
流体压力影响流体作用于颗粒的 力,从而影响流态化效果。较高 的流体压力可能导致更好的流态 化效果。
操作条件的影响
温度
温度影响流体的粘度和颗粒的物理性质,从而影响流态化 效果。在一定范围内,较高的温度可能导致更好的流态化 效果。
压力
压力影响流体的流动特性和颗粒的物理性质,从而影响流 态化效果。在一定范围内,较高的压力可能导致更好的流 态化效果。
安息角是粉体堆积形成的锥体坡面与水平面之间的夹 角,反映了粉体的松散性和稳定性。
摩擦角和安息角是评价粉体流动性的重要参数,对于 粉体的运输、装填、搅拌等工艺过程具有指导意义。
粉体的屈服值
屈服值是指粉体在受到压力时 开始发生形变所需的力值。
屈服值反映了粉体抵抗形变的 能力,是衡量粉体力学稳定性 的重要参数。
了解粉体的屈服值有助于优化 粉体加工工艺,防止粉体在加 工过程中发生形变或破坏。
粉体力学与工程05粉体的流变学
第三种情况: 摩尔圆与临界曲线相切(圆II),说明该点所代表的
平面上,应力正好等于相应面上的极限强度。因此,该 点处于临界流动的极限应力状态,称为极限平衡状态。 与临界曲线相切的圆II,称为极限应力圆。
内摩擦力产生的原因???
① 内摩擦力主要是由于层中粒子相互啮合产生的内 聚力
② 和其内部粒子间存在摩擦力所导致 ③ 影响因素***
• 内部:粗糙度、附着水份、粒度分布、空隙率 • 外部:静止存放时间、振动、加压 ④ 影响内摩擦角的因素
对同种粉体,内摩擦角一般随空隙率增加,大 致呈线性减少
5.1.2 粉体的安息角
安息角(休止角):
粉体自然堆积时的自由表面在静止平衡状态下与 水平面所形成的最大角度。
用途: 用来衡量评价粉体的流动性 实质:可将安息角看作粉体的“粘度”。实质上安息角是
• 在后面的分析中,假定粉体完全均质(填 充状态,力学性质)并且是连续体 。
5.1 粉体的摩擦角
5.1.1 内摩擦角 粉体层中,压应力和剪应力之间有一个引起破坏的极限。即 在粉体层的任意面上加一定的垂直应力σ,若沿这一面的剪 应力τ逐渐增加,当剪应力达到某一值时,粉体沿此面产生 滑移,而小于这一值的剪应力却不产生这种现象。
粉体沿粉体内某一平面滑移:该平面上的应力满 足库仑定律
粉体内任一平面上的应力,不会发生:
粉体所处流动状态的判断
已知库仑粉体的临界流动条件曲线(抗剪强度曲 线),以及粉体中某点的应力状态,判断该点是否发 生流动!!
如何判断???
将粉体的临界流动曲线与莫尔圆画在同一坐标图 上,如下图所示,它们之间的关系有下列三种情况。
粉体力学与工程05粉体 的流变学
2020/8/21
• 粉体有一系列松装性质,例如力学性质、 热性质、电性质、磁性、光学性、声学性 及表面物理化学性质等。
流变学和粉体学
内时呈牛顿流体状态,超过这一浓度即显示非牛顿 流体的性质
➢ 亲水凝胶的应用:灰黄霉素分散在不同浓度的甲基
纤维素溶液里,显示出假塑性流动性质,改变了原 来的牛顿流动,使得介质粘度有一个先较粘再变稀 的过程,因此明显延缓了吸收而不影响吸收,起到 长效作用
28
➢ 对于绝大多数粒子来说,形状都是不规则的,各
个方向的长度都不一样,很难用一个特征指标来 表示,因此粒子粒径的表示方法有很多种,测定 方法也有很多种
35
⑴ 粒子径的表示方法
➢ 几何学径:在光学显微镜或电子显微镜下观察粒
子几何形状所确定的粒子径
• 长径:粒子最长两点间距离 • 短径:粒子最短两点间距离 • 定向径:定向接线径(Feret径),即一定方向的平行线将
➢ 通针性:与药物粉末粒子大小、屈服值和滞后曲
线的面积有关,较粗的药物粉末或它们的絮凝粒 子易阻塞针头,而过细的粉末的混悬液也会因为 产生很高的屈服值而堵塞针头
27
(五)流变学性质对生物利用度的影响
➢ 药物的扩散系数与粘度成反比,说明药物的溶解速
度随溶媒粘度的增加而减小,这一理论既适合体内 又适合体外
粒子的投影面外接时平行线间的距离;定向等分径 (Martin径),即一定方向的线将粒子的投影面积等份分 割时的长度;定向最大径(Krummbein径),即在一定方 向上分割粒子投影面的最大长度
• 等价径:投影面积圆相当径(Heywood径),即与粒子
的投影面积相同圆的直径;外接圆等价径,即粒子投影外 接圆的直径;体积等价径,也叫球相当径,是与粒子的体 积相同的球体的直径
• 血液流变学就是研究人和动物体内血液流动和细
胞变形,以及血液与血管、心脏之间相互作用的 科学,是生物流变学的一个分支
粉体基础与流变学基础(ppt)
粒子比表面积
❖ 比表面积表示方法: ❖ 1、体积比表面积 ❖ 2、重量比表面积
一、粉体的基本性质
(三)粒径与粒度分布
粒径:粒子的大小,是决定粉体其他性质的最基本 的性质。
粒子径:几何学径(长、短径、定向径、等价径 等)、比表面径、有效径、平均径
❖ 粒子径的测定方法:光学显微镜法、筛分法、库尔 特计数法、沉降法、比表面积法
粉体基础与流变学 基础(ppt)
(优选)粉体基 础与流变学基础
一、粉体的基本性质
(一)定义
❖ 粉体是无数个固体粒子的集合体 在制药行业常用研究范围:1µm~10mm 纳米级别的研究正在深入发展
❖ “第四态”:流动性、压缩性、抗形变
❖ 粉(Powders):≤100µm 粒(Particles):> 100µm
一级粒子:单一粒子——结晶、实体颗粒
二级粒子:单一粒子的聚结物——造粒物
一、粉体的基本性质
(二)形态和比表面积
❖ 形态:球形、立方形、片状、柱状、鳞状、 棒状、针状、块状、纤维状等。
❖ 比表面积:单位重量(或体积)粉体所具有 的表面积
粒子形态
❖ 形状指数: ❖ 1、球形度 ❖ 2、圆形度 ❖ 形状系数 ❖ 1、体积形状系数 ❖ 2、表面积形状系数 ❖ 3、比表面积形状系数
❖ 6、水溶性成分在粒子的接触点析出结晶形成 固体桥。
二、粉体学在药剂中的应用
1.在处方设计中的应用
➢ 保证药物制剂的质量:溶出、崩解、稳定性、外观、活性物 质的均匀性、强度等。
➢ 保证生产过程的顺利进行:流动性、充填性、压缩成形性、 粘冲、退片等。
粒子大小及分布 粒子形态及表面粗糙性 含湿量 加入助流剂、润滑剂
改善流动性的方法
粉体工程考研题库
粉体工程考研题库粉体工程是一门研究固体颗粒材料的加工、处理、应用和特性的学科。
在考研题库中,通常会包含基础理论、工艺技术、设备设计、材料特性分析以及实际应用案例等方面的问题。
以下是一些可能包含在粉体工程考研题库中的问题和解答:1. 粉体的基本概念:- 粉体是指粒径在一定范围内的固体颗粒的集合体。
通常,粒径小于1毫米的颗粒可以被认为是粉体。
2. 粉体的分类:- 根据颗粒大小,粉体可以分为粗粉、细粉和超细粉。
根据颗粒形状,可以分为球形、不规则形等。
3. 粉体的物理特性:- 包括颗粒大小分布、比表面积、孔隙率、颗粒形状、密度等。
4. 粉体的加工技术:- 包括粉碎、筛分、混合、造粒、干燥等。
5. 粉体的表面改性:- 通过物理或化学方法改变粉体颗粒的表面性质,以提高其在特定应用中的性能。
6. 粉体的流变学特性:- 研究粉体在流动过程中的力学行为,如流动性、压缩性、凝聚性等。
7. 粉体的储存与输送:- 涉及粉体在储存和输送过程中的设备选择、防结块、防污染等。
8. 粉体在工业中的应用:- 如在医药、食品、化工、建筑材料等领域的应用。
9. 粉体工程中的环境问题:- 包括粉尘的控制、废气处理、废物回收等。
10. 粉体工程的发展趋势:- 探讨粉体工程在新材料开发、节能减排、智能制造等方面的前景。
实例问题:- 某制药企业需要将一种药物粉末进行粉碎以提高其溶解速率,应选择哪种粉碎方式?- 根据药物粉末的特性,可以选择湿法粉碎或干法粉碎。
湿法粉碎适用于易燃易爆或有毒的粉末,而干法粉碎适用于一般粉末。
结尾:粉体工程是一个多学科交叉的领域,它涉及到材料科学、化学工程、机械工程等多个学科。
掌握粉体工程的基础知识和技能对于从事相关领域的研究和开发至关重要。
希望以上的题库内容能够帮助考研学生更好地准备考试,深入理解粉体工程的各个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35
对于细颗粒,安息角与粉体从容器流出的速度、 容器的提升速度、转筒的旋转速度有关。
安息角不是细颗粒的基本物性
几点讨论:
球形颗粒: =23~28°,流动性好。 规则颗粒: ≈30°, 流动性较好。 不规则颗粒: ≈35°, 流动性一般。 极不规则颗粒: >40°, 流动性差。
单元体:连接相邻的8个球的球心所得到的一个
平行六面体。
15
配位数:粉体填充体现中,平均一个颗粒和相 邻颗粒接触的点数
最
最
松
密
等径球形颗粒群的规则堆积示意图
16
等径球规则填充的结构特性
排列
名称
单元体
顺
序 体积
空隙 体积
接触 填 空隙率 点的 充
数量 组
(a)
立方体填充,立方最 密填充
1
1
0.4764 0.4764 6 正
28
设密度ρ1的大颗粒单独填充时空隙率为ε1,将ρ2、 ε2的小颗粒填充到大颗粒的空隙中,则填充体单位 体积大颗粒的质量W1为: W1=(1-ε1) ρ1
小颗粒质量
W2= ε1 (1- ε2 ) ρ2
混合物中大颗粒的质量比率为
f W1
(1 1)1
W1 W2 (1 1)1 2 (1 1)2
(4)颗粒形状 空隙率随颗粒球形度的降低而增高。
(5)粗糙度系数 空隙率随粗糙度系数的增大而增高。
26
(6)粒度大小 对颗粒群而言,粒度越小,由于粒间团聚作用,
空隙率越大。当粒度为某一定值时,粒度大小对颗粒堆
积率的影响已不复存在,比值为临界值。 随粒径增大,与粒子自重力相比,凝聚力的作用可以
忽略不计。粒径变化对堆积率的影响大大减小。因此,通 常在细粒体系中,粒径大于或小于临界粒径的物料对颗粒 体行为有举足轻重的作用。
间,即为流出速度。 流出速度越大,粉体流动性越好。
38
3.1 流出速度的测定
t M S R t
S0
b
M:流出粉体的总质量 S:粉体比表面积 R:粗糙度系数 S0:小孔面积
39
3.2 粉体流动性的影响因素与改善方法
1.增大粒子大小
对于粘附性的粉状粒子进行造粒,以减少粒子间的接触点数,降低
f ( )
4.4 库伦粉体 若滑移面上的切应力τ与垂直应 力σ成正比
i C (库仑粉体)
破坏包络线方程
43
i C i 内摩擦系数 C: 初抗剪强度
C=0,可忽视粉体颗粒间的附着力,因此流动性好 C≠0,属于粘性粉体。
影响初抗剪强度的因素: 温度、粒度及粒度分布 存放时间、填充程度
44
最
最
松
密
等径球形颗粒群的规则堆积示意图
19
从等径球的六种填充的性质表明: a:等径球规则填充的填充率随着配位数增加而
增加; b:等径球规则填充时最疏松的填充是配位数为6
的填充,其填充率仅为52.36%,最紧密的填充 为配位数12的填充,其填充率为74.06%。
20
3.2 随机或不规则填充 1)随机密填充 :=0.359~0.375 2)随机倾倒填充 : =0.375~0.391 3)随机疏填充 : =0.4~0.41 4)随机极疏填充: =0.46~0.47
36
2.2 影响休止角的因素 (1) 颗粒的形状 (2) 颗粒的大小 (3 )粉体的填充状态
对于不同粉体,空隙率越大,填充越困难,休止角越大 对于同种粉体,空隙率越小,休止角越大(接触点增多)
(4) 振动 (5) 粉料中通入压缩空气时,休止角显著地减小
37
3、 流出速度(flow velocity) 将物料加入漏斗中,测量全部物料流出所需的时
12
二、粉体的填充率
在一定填充状态下,颗粒体积占粉体填充体积的 比率
粉体填充体的颗粒体积
粉体填充体积
M M
g b
b g
13
三、粉体颗粒的填充与堆积 3.1 等径球形颗粒群的规则堆积
排列层:正方形排列层和单斜方形排列层或六 方形排列层。将各个基本排列层汇总起来,可得 到六种排列形式。
立方最密填充
立方体 正斜方体 面心立方体 正斜方体 楔形四面体 六方最密
6 0.707 0.1834
0.2595
12
系
空隙率的推导(立方最密填充) 设单元体的棱长为a,球半径为R
单元体的体积 V0 a3 (2R)3 8R3
球的体积 V 4 R3
3
填充率 V 0.5236
V0 6
空隙率 1 0.4764
相当于把一个半径为 R的球放入到边长为 2R 的立方体中18
9
(a) 装配图
(b) 流速漏斗 松装密度测定装置一
(c) 量杯
10
(1) 漏斗 (2) 阻尼箱 (3) 阻尼隔板 (4) 量杯 (5) 支架
松装密度测定装置二
11
第二节 粉体的填充与堆积
一、粉体的空隙率 空隙率(porosity)是粉体中空隙所占有的比率。 粒子内空隙率 内=(Vg-Vt ) / Vg =1-g / t 粒子间空隙率 间= ( V-Vg ) / V = 1- b/g 总空隙率 总= ( V -Vt ) / V =1- b/t
第三章 粉体物性与流变学
粉体的密度 粉体的填充与堆积特性 粉体的流变学 粉体间的润湿性能
1
第一节 粉体的密度 一、粉体密度的概念
粉体的密度是指单位体积粉体的质量。
粉体的密度根据所指的体积不同分为: 真密度、颗粒密度、松密度、振实密度
2
1、真密度(true density) ρt
材料在绝对密实状态下,单位体积的质量
并让液体介质充分浸透到粉体颗粒的开孔中。 根据阿基米德原理,测出粉体的颗粒体积,进 而计算出单位颗粒体积的质量。
比重瓶法测定基本步骤: (1)比重瓶体积的标定 (2)粉体质量的称量 (3)粉体体积的测定
8
(二)松密度与振实密度的测定 将粉体装入容器中所测得的体积包括粉体真体积、 粒子内空隙、粒子间空隙等。 测量容器的形状、大小、物料的装填速度及装填 方式等均影响粉体体积。 不施加外力时所测得的密度为松密度 施加外力而使粉体处于最紧充填状态下所测得的 密度是振实密度。
21
四、影响颗粒堆积的因素
(1)壁效应
当颗粒填充容器时,在容器壁附近形成特殊的 排列结构,称为壁效应。 (2)局部填充结构
排列结构的局部变化(如空隙率分布、填充数 密度分布和接触点角度分布等)对粉体现象有很 大影响。
23
(3)物料的含水量 形成团聚体,使整个物料堆积率下降。
潮湿物料颗粒表面吸水,颗粒间形成液桥力, 导致粒间附着力增大,形成二次、三次粒子,即 团粒。由于团粒尺寸较一次粒子大,并且团粒内 部保持松散的结构。 颗粒间凝聚力妨碍填充过程中颗粒的运动
4.5 内摩擦角:
N F
N
F
F i N
物体在平面或斜面运动示意图
i (对无附着性粉体) i tan i
i 内摩擦角
粉体层上任意一点的应力关系
45
4.6 内摩擦角的确定 直剪试验
1—砝码 2—上盒 3中盒 4—下盒 图 直剪试验
46
垂直应力 /9.8×104Pa 剪切应力τ/ 9.8×104Pa
若颗粒致密,无细孔和孔洞,则ρt = ρg 一般: ρt ≥ ρg > ρbt ≥ ρb
6
二、粉体密度的测定方法 (一)真密度与颗粒粒度的测定:
常用的方法是用液体或气体将粉体置换的方法。 液浸法:采用加热或减压脱气法测定粉体所排开
的液体体积,即为粉体的真体积。
7
比重瓶法 测量原理:将粉体置于加有液体介质的容器中,
粉体层内任意一点上的正应力,剪应力τ,可用 最大主应力1 、最小主应力3 ,以及 、 τ的作 用面和1的作用面之间的夹角θ来表示。
49
圆心坐标m:(1 3 ,0)
2
圆半径:1 3
2
1 3 1 3 cos 2
2
2
1 3 sin 2
2
50
7、 粉体流动和临界流动的充要条件
莫尔-库仑定律:
τ-σ线为直线a: 处于静止状态
τ-σ线为直线b:
临界流动状态/流 动状态
τ-σ线为直线c:
i C i C i C
不会出现的状态 粉体处于静止
粉体沿该平面滑移
不会发生
8、压缩度( compressibility)
颗粒或片剂的空气输送
31
二、粉体流动性的评价与测定方法
1. 粉体的摩擦角 由于颗粒间的摩擦力和内聚力而形成的角统称 为摩擦角。
类型: 休止角、内摩擦角、壁面摩擦角、滑动角
32
2、休止角(安息角)( angle of repose) 粉体堆积层的自由斜面在静止的平衡状态下,
与水平面所形成的夹角。 用表示, 越小流动性越好 可视为粉体的“粘度”
常用的测定方法: 注入法 排出法 倾斜角法
<
<
33
2.1 休止角的测定方法
将粉体注入到某一有限直径 的圆盘中心上,直到粉体堆 积层斜边的物料沿圆盘边缘 自动流出为止,停止注入, 测定休止角θ。
h
tan=h/r
r 34
崩塌角:测定休止角后,将重物至某定高处自由 落下,使料堆产生振动,此时形成的锥角。
(7)物料堆积的填充速度
对粗颗粒,较高的填充速度会导致物料比较松散,但 对于像面粉那样具有粘聚力的细粉,较高的供料速度可得 到较致密的堆积。
五、非均一球形颗粒的填充结构 粒度不同的两种球形颗粒,小颗粒的粒度越小,
填充率越高, 填充率随大小颗粒混合比而变化, 大颗粒质量比率为70%时,填充率最大。
粒子间的附着力、凝聚力。