高考数学专题复习解析几何
2025年高考数学总复习课件73第八章微专题“设而不求”在解析几何中的应用
第一节 数列的概念与简单表示法
类型一 整体代入 【 例 1 】 已 知 圆 x2 + y2 + x - 6y + m = 0 和 直 线 x + 2y - 3 = 0 交 于 P , Q 两 点 , 且 OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径. 解:设P(x1,y1),Q(x2,y2),
第一节 数列的概念与简单表示法
类型三 适当引参 【例3】已知对任何满足(x-1)2 +y2=1的实数x,y,如果x+y+k≥0恒成立,求 实数k的取值范围.
解:设൝yx==
1+ cos
sin θ
θ
, (θ∈R),
则g(θ)=x+y+k=sin θ+cos θ+1+k=
2sin
θ+
π 4
+1+k≥-
圆的方程为x2+y2+x-6y+3=0,所以该圆的圆心坐标为
-
1 2
,3
,半径为52.
第一节 数列的概念与简单表示法
思维建模 (1)直线与曲线相交于两点,设为P(x1,y1),Q(x2,y2),将直线方程与曲线方程 联立后消元得到一元二次方程,根据根与系数的关系表示出x1+x2,x1x2后整体 代入. (2)在运用“设而不求”的技巧时,要注意将条件坐标化,注意运算的合理性、 目的性,思路要清晰,这样就可以使运算简化,迅速解决问题.
第一节 数列的概念与简单表示法
类型二 转化图形
【例2】已知△ABC内接于椭圆x2+4y2=8,其重心为
1),求直线BC的方程.
解:设B(x1,y1),C(x2,y2),则有x12+4y12=8①,x22+ 4y22=8②,
又C1
2,
2 3
为△ABC的重心,
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
全国高考数学专题汇编:解析几何(含答案)
全国高考数学专题汇编:解析几何一.选择题(共21小题)1.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.42.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.23.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.4.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.325.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD ⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(2019•新课标Ⅰ)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.7.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=18.(2019•新课标Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.89.(2019•新课标Ⅱ)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.10.(2019•新课标Ⅲ)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.12.(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣113.(2018•新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 14.(2018•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.215.(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A 的坐标是(1,3),则△APF的面积为()A.B.C.D.16.(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)17.(2017•新课标Ⅱ)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)18.(2017•新课标Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l 为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.319.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.20.(2016•新课标Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.21.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二.填空题(共4小题)22.(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.23.(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=.24.(2017•新课标Ⅲ)双曲线(a>0)的一条渐近线方程为y=x,则a=.25.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.参考答案一.选择题(共21小题)1.B;2.B;3.B;4.B;5.B;6.D;7.B;8.D;9.A;10.B;11.C;12.D;13.A;14.D;15.D;16.A;17.C;18.C;19.A;20.B;21.A;二.填空题(共4小题)22.(3,);23.2;24.5;25.4π;三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线P A的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x =c代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)代数方法:由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则(法一)=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.法二:∵P(3,1),Q(6,2),∴直线PQ的方程为:x﹣3y=0,∴点A到直线PQ:x﹣3y=0的距离d=,而|PQ|=,∴S△APQ=••=.数形结合方法:如图示:①当P点在y轴左侧时,过P点作PM⊥AB,直线x=6和x轴交于N(6,0)点,易知△PMB≌△BQN,∴NB=PM=1,故y=1时,+=1,解得:x=±3,(x=3舍),故P(﹣3,1),易得BM=8,QN=8,故S△APQ=S△AQN﹣S△APB﹣S△PBQ﹣S△BQN=(11×8﹣10×1﹣(1+65)﹣1×8)=,②当P点在y轴右侧时,同理可得x=3,即P(3,1),BM=2,NQ=2,故S△APQ=,综上,△APQ的面积是.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解答】解:∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.【解答】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故曲线C的离心率e==﹣1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:|y|•2c=16,•=﹣1,+=1,即c|y|=16,①x2+y2=c2,②+=1,③由②③及a2=b2+c2得y2=,又由①知y2=,故b=4,由②③得x2=(c2﹣b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4,当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.【解答】(1)证明:设D(t,﹣),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:2tx1﹣2y1+1=0.设B(x2,y2),同理可得2tx2﹣2y2+1=0.故直线AB的方程为2tx﹣2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2﹣2tx﹣1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2﹣2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=+===0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y =﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|F A|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|F A|+|FB|=4﹣,∴|F A|+|FB|=2|FP|,35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+m sinα﹣2sin2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由•=(﹣1﹣cosα,﹣sinα)•(﹣3,)=3+3cosα﹣3(1+cosα)=0.可得过点P且垂直于OQ的直线l过C的左焦点F.另解:设Q(﹣3,t),P(m,n),由•=1,可得(m,n)•(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,又P在圆x2+y2=2上,可得m2+n2=2,即有nt=3+3m,又椭圆的左焦点F(﹣1,0),•=(﹣1﹣m,﹣n)•(﹣3,t)=3+3m﹣nt=3+3m﹣3﹣3m=0,则⊥,可得过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有•=﹣1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△P AR≌△F AR,∴∠P AR=∠F AR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠P AF=2∠P AR,∴∠FQB=∠P AR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.。
【高考数学复习 解析几何专题】第9讲 巧用同构-解析版
第9讲 巧用同构 知识与方法1.同构式指的是除了变量不同,其余均相同的代数式.如果实数,a b 满足()()0,,,0,f a a b f b ⎧=⎪⎨=⎪⎩是方程()0f x =的两个根.在解析几何中,变量,a b 常以点的坐标或斜率作为同构变量,便于构建坐标或斜率之间的关系,其几何形式是“一点双线”同构模型,“双线”往往是“双切线”或“双割线”,最典型的结构图是“阿基米德三角形”. 2.圆锥曲线的切点弦(1)定义:从圆锥曲线外一点向圆锥曲线引两条切线,那么经过两切点的圆锥曲线的弦叫做切点弦. (2)切点弦方程:(1)设()00,P x y 为圆222x y r +=外一点,则切点弦方程为200x x y y r +=;(2)设()00,P x y 为椭圆22221x y a b +=外一点,则切点弦方程为00221x x y ya b +=;(3)设()00,P x y 为双曲线22221x y a b -=外一点,则切点弦方程为00221x x y ya b -=;(4)设()00,P x y 为抛物线22y px =外一点,则切点弦方程为()00y y p x x =+.典型例题【例1】如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内,A B 两点,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB 恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r 的值.【分析】(1)直线l 过定点4,05P ⎛⎫- ⎪⎝⎭,则可得点,A B 的横、纵坐标的乘积为定值,考虑将12k k +用,A B 的坐标来表示.(2)是“一点双线”的同构模型,可由切线性质d r =得以斜率k 为主元的同构方程.【解析】(1)设4:(0)5l x ty t =->,代人24y x =,得22166440,Δ16055y ty t -+==->,得t >设点221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1212164,5y y t y y +==.()121212124445y y k k t y y y y ++=+==>所以12k k +的取值范围是()25,∞+. (2)由(1)知1212165k k y y ==,设过原点且与圆相切的直线为y kx =,r =,整理得()2221440r k k r --+-=.2122451r k k r -==-,得214r =,所以12r =. 【点睛】本题主要涉及直线与抛物线的位置关系,直线与圆相切的性质运用.在解决抛物线上两点连线的斜率时,用点的坐标差构建斜率是重要方法;对于双切线的同构模型,以斜率为同构变量是本题处理的自然方式.【例2】双曲线C 与椭圆22184x y +=有相同的焦点,直线y =为C 的一条渐近线. (1)求双曲线C 的方程;(2)过点()0,4P 的直线l 交双曲线C 于,A B 两点,交x 轴于点Q (点Q 与双曲线C 的顶点不重合).当12PQ QA QB λλ==,且1283λλ+=-时,求点Q 的坐标.【分析】【例】的核心条件是12PQ QA QB λλ==,变量12,λλ的“地位”是平等的,于是考虑将其坐标化,寻求变量12,λλ的同构方程.此外,从设线的视角,尝试以直线l 的斜率k 为主变元表示12,λλ及点Q 的坐标.【解析】(1)设双曲线方程为22221(0,0)x y a b a b -=>>.由题意得22844,ba b a+=-==,所以1,a b ==双曲线C 的方程为2213y x -=.(2)由题意知直线l 的斜率k 存在且不为零.设直线l 的方程为4y kx =+,则可求点4,0Q k ⎛⎫- ⎪⎝⎭.设点()()1122,,,A x y B x y .因为11144,,4,,PQ QA PQ QA x y k k λ⎛⎫⎛⎫==--=+ ⎪ ⎪⎝⎭⎝⎭,所以111144,4.x kk y λλ⎧⎛⎫-=+⎪ ⎪⎝⎭⎨⎪-=⎩所以1111411,4.x k y λλ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩因为点()11,A x y 在双曲线22:13y C x -=上,所以222116116113k λλ⎛⎫+-= ⎪⎝⎭. 所以()222111616321603k k λλ-++-=. 同理可得()222221616321603k k λλ-++-=. 若2160k -=,则4,k l =±过双曲线的顶点,不合题意, 所以2160k -≠,所以12,λλ是一元二次方程()2221616321603k x x k -++-=的两个根, 因为122328163k λλ+==--,验知Δ0>,所以2k =±. 所以点Q 的坐标是()2,0±.【点睛】“设直联曲”是解决本题的基本方法.从几何形式看,同构形态不明显;从代数视角看,才可以发现以12,λλ为同构变量. 【例3】已知抛物线2y x =和()22:11C x y ++=,过抛物线上的一点()()000,1P x y y ,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 的斜率;(2)求ABP 面积的最小值.【分析】对于(1),可设直线PB 的斜率为k ,运用切线性质求出PB 的斜率.对于(2),以坚线段AB 为底,P x 为高,考虑以两切线在y 轴上的截距12,m m 为同构变量,将ABPS表示为()0f x ,进而求最小值.【解析】(1)抛物线的焦点为1,04F ⎛⎫⎪⎝⎭,设切线PB 的斜率为k .则切线PB 的方程为14y k x ⎛⎫=- ⎪⎝⎭,即104kx y k --=.点C 到切线PB1=,所以43k =±.因为点()()000,1P x y y ,所以43k =. (2)设切线方程为y kx m =+,由点P 在直线上得00y m k x -=(1)圆心到切线的距离21210m km =⇒--=(2)将(1)式代人(2)式得()2000220x m y m x +--=(3)设方程的两个根分别为12,m m . 由韦达定理得001212002,22y xm m m m x x +==-++, 从而12AB m m =-=所以)00112ABPSAB xx ==.记函数()()()22231(2)x x x f x x x +=+,则()()223211180(2)x x x f x x '++=>+,所以ABPS的最小值为23,当01x =时取得等号. 【点睛】本题的关键是以切线截距12,m m 为同构变量,将ABPS 表示为()0f x ,其中双切线是常见的同构模型.【例4】已知点()00,A x y 在抛物线24y x =上,,P Q 是直线2y x =+ 上的两个不同的点,且线段,AP AQ 的中点,M N 都在抛物线上. (1)求0y 的取值范围;(2)若APQ 的面积等于求0y 的值.【分析】对于(1),设点()(),2,,2P a a Q b b ++,线段,AP AQ 的中点都在抛物线上,得到,a b 的同构方程,继而通过对应方程解得0y 的取值范围.对于(2),将APQ 的面积表示为同构变量,a b 的关系式.【解析】(1)设点()(),2,,2P a a Q b b ++.因为点200,4y A y ⎛⎫ ⎪⎝⎭,则AP 的中点20042,82y a y a M ⎛⎫+++ ⎪⎝⎭,代人24y x =,得()2200042440a y a y y ---++=.同理可得()2200042440b y b y y ---++=.所以,a b 是方程()2200042440x y x y y ---++=的两个根, 所以()()22200000Δ424448320y y y y y =---++=->,解得04y >或00y <.(2)点A 到PQ的距离2d ==,由韦达定理可知,200042,44a b y ab y y +=-=-++,则PQ b =-==所以21122APQSPQ d =⋅=⋅=t =,则38240t t +-=,即()()222120t t t -++=,解得2t =,即20440y y --=,解得02y =±【点睛】已知两条线段的中点在曲线上,是得到同构方程的显性条件,利用所得同构方程的判别式得到变量的限制条件,运用韦达定理构建变量之间的关系.此类方法的运用值得关注.【例5】已知点()2,4P 和抛物线2y x =,动圆()()22:11C x y m m +-=> (1)若Q 是圆C 上任意一点,且4PQ 恒成立,求实数m 的取值范围;(2)如图,过点P 作圆C 的切线分别交抛物线于点,A B ,若直线AB 恰与圆C 相切,求实数m 的值.【分析】(1)PQ 的最值当且仅当,,P Q C 三点共线时取到.(2)由于直线AB 恰与圆C 相切,于是考虑以双切线的斜率表示点,A B 的坐标,进而得到直线AB 的方程;也可考虑设点()()22,,,A a a B b b 表示直线方程. 【解析】(1)由题意知,min ||114PQ PC =+=,得4545m -+.又1m >,故m的取值范围是4⎡⎣.(2)方法1设直线,PA PB 的斜率分别为12,k k ,直线PA 的方程为()142y k x -=-,即11240k x y k --+=.直线PB 的方程为()242y k x -=-.由直线PA 与圆22:()1C x y m +-=相切,1=,整理得()22113448150k m k m m +-+-+=.同理可得()22223448150k m k m m +-+-+=.所以12,k k 是方程()223448150k m k m m +-+-+=的两个不同的根, 则()()2121244815,.*33m m m k k k k --++=-=又由点差法知,12,2PA P A A A k x x x x k =+=++=,即12A x k =-, 所以点()()2112,2A k k --. 同理可得点()()2222,2B k k --.直线AB 的方程为()A B A B y x x x x x =+⋅-,即()()()1212422y k k x k k =+----,即()()121212424y k k x k k k k =+--++-.将()*代人上式,整理得()241350m x y m ---+=. 由直线AB 与圆C 相切,1=,化简得3261720m mm +-+=,即()()22810m m m -+-=,解得2m =或4m =-±因为1m >,所以2m =.方法2设点()()22,,,A a a B b b ,则2422APa k a a -==+-.所以()()2:2AP y a a x a -=+-,即()220a x y a +--=. 因为圆C 与AP 相切,所以1d ==,整理得()2234450a m a m +-+-=.同理可得()2234450b m b m +-+-=.所以,a b 为方程()2234450x m x m +-+-=的两个根,则()2445,.*33m m a b ab --+== 从而()()222,:ABa b k a b AB y a a b x a a b-==+-=+--,即()y a b x ab =+-. 将()*代人上式,得2445:33m m AB y x --=+,即()244350m x y m --+-=. 又因为圆C 与AB 相切,所以1d ==,化简得3261720m m m +-+=,即()()22810m m m -+-=, 解得2m =或4m =-因为1m >,所以2m =.【点睛】运用设点法,得到关于,a b 的同构方程,能有效减少运算量.在抛物线中,运用点差法构建直线的斜率,进而表示直线方程,是解决抛物线问题的巧妙方法.【例6】如图,已知抛物线21C x y =:,P 是圆222y 21C x ++=:()上任意一点,过点P 作两直线12,l l ,分别交抛物线1C 于点,,,A C B D ,使得13AB CD =.(1)当M 为CD 的中点时,证明://PM y 轴; (2)求PCD 面积的取值范围.【分析】(1)11//,33PA PB AB CD AB CD PC PD =⇔==,可建立(0P x ,)()()01122,,,,y C x y D x y 三点之间的坐标关系.(2)结合(1),运用PM “铅垂高”与“水平宽”乘积的一半表示PCD 面积. 【解析】(1)证明:设点()()()001122,,,,,P x y C x y D x y .由13AB CD =可得13PA PB PC PD ==,则点010*********,,,3333x x y y x x y y A B ++++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.则211222101000101,232022,33x y x x x y x x x y y ⎧=⎪⇒-+-=⎨++⎛⎫=⎪ ⎪⎝⎭⎩. 同理有22202002320x x x y x -+-=. 则12,x x 是方程220002320x x x y x -+-=的两个根, 则1202x x x +=,即1202x x x +=. 即有//PM y 轴.(2)由(1)得212012002,32x x x x x y x +==-.222121200004422y y x x PM y y x y ++=-=-=-.则12x x -==.[]3322221200000153,3,12PCDSPM x x x y y y y =⋅-=-=++∈--.则PCD S ⎡∈⎢⎣⎦.【点睛】本题的难点在于条件13AB CD =的转译,既从几何角度得到13PA PB PC PD ==,也从坐标化角度寻找同构变量;PCD 的面积采用水平分割转化“底”与“高”,可大大减少计算量.【例7】如图,F 是抛物线24x y =的焦点,过点F 的直线交抛物线于,A B 两点,抛物线在,A B 两点处的切线相交于点M . (1)求证:点M 在抛物线的准线上;(2)过抛物线上的点C 作拋物线的切线,分别交直线,AM BM 于点P ,Q ,求FPQ 面积的最小值.【分析】(1)弦AB 过点F ,可得4,1A B A B x x y y =-=,于是利用(1A x ,)()122,,y B x y 两点求出切线方程,解出交点M 的坐标.(2)将FPQ 面积表示为关于12,x x 的函数,12124,1x x y y =-=,求面积的最小值. 【解析】(1)方法1设点()()1122,,,A x y B x y ,则由2xy '=可知直线AM 的方程:21124x x y x =-.同理可得BM 的方程:22224x x y x =-.联立直线AM 与BM 的方程,解得点1212,24x x x x M +⎛⎫⎪⎝⎭.又2121214AB y y x x k x x -+==-,所以直线1212:44x x x x AB y x +=-过点()0,1F ,可知1214x x=-, 因此点M 在抛物线的准线上.方法2设点()11,A x y ,直线AM 的方程:()2114x y k x x -=-.()222112114,44044,x y x kx kx x y x k x x ⎧=⎪⇒-+-=⎨-=-⎪⎩, 所以()()222111Δ1644020k kx x k x =--=⇒-=,解得12x k =. 代人直线AM 的方程可得21124x x y x =-.设点()22,B x y ,同理可得直线BM 的方程:22224x x y x =-.可得点1212,24x x x x M +⎛⎫⎪⎝⎭.又设直线AB 的方程:221,1.4404,y k x y k x x k x x y =+⎧=+⇒--=⎨='''⎩. 因为12,x x 是上述方程的两个根,所以124x x =-, 可知1214x x =-,即点12,12x x M +⎛⎫- ⎪⎝⎭. 因此点M 在抛物线的准线上.(2)设点()33,C x y ,则直线PQ 的方程:23324x x y x =-,则点F 到直线PQ的距离231x d +==,同(1)中的解法可得点13132323,,,2424x x x x x x x x P Q ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.所以PQ ==, 所以212123112444FPQx x x x x Sd PQ --⎛⎫==+ ⎪⎝⎭,当1232,2,0x x x =-==时取得等号.【点睛】本题的基本结构是“一点两线”所围成的阿基米德三角形,常用方法是选择两个切点坐标或切线斜率作为同构变量,从而将面积表示为坐标或斜率的函数关系,其关键是紧扣,A B 的坐标关系.【例8】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在抛物线C 上. (1)设AB 的中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB 面积的取值范围.【分析】(1)先设点()21002,,,4y P x y A y ⎛⎫⎪⎝⎭,将,PA PB 的中点代入抛物线的方程,得到12,x x 的同构方程,探寻M P y y =.(2)由(1)知,将PAB 面积以PM 为水平线进行分割,即将面积表示为()02112M S x x y y =-⋅-,进而以0x 限制PAB 面积的取值范围.【解析】(1)设点()22120012,,,,,44y y P x y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则AP 的中点为20011,282x y y y ⎛⎫++ ⎪⎝⎭. 由AP 的中点在抛物线上,可得2201014228y y x y ⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,化简得2210100280y y y x y -+-=.显然21y y ≠,且对2y 也有2220200280y y y x y -+-=. 所以12,y y 是二次方程22000280y y y x y -+-=的两个不等实根, 所以1212002,2M P y y y y y y y y ++====,即PM 垂直于x 轴. (2)()()()120121122PABM P M M M Sx x y y y y x x y y =--+-=--, 由(1)可得212012002,8y y y y y x y +==-,()()()()2220000012Δ248840y x y y x y y =--=->≠,此时点()00,P x y 在半椭圆221(0)4y x x +=<上,所以()()()222000000Δ848414321y x x x x x ⎡⎤=-=--=--⎣⎦, 因为010x -<,所以Δ0>,所以12y y a-===,()()()()22222000121212000220042828886443318M P y x y y y y y y y x x x x x xxx x --+-+-=-=-=--=-=--所以()2301200112PABM Sx x y y x x =--=--=,因为t ⎡=⎢⎣⎦,所以3S ⎡=∈⎢⎣⎦,即PAB 面积的取值范围是⎡⎢⎣⎦.【点睛】本题从代数的视角,利用割线段的中点在拋物线上,得到以12,y y 为变量的同构方程.这是同构问题的常用处理方式;通过同构方程建立多点之间的坐标关系,在面积函数的整体消元中起到关键作用,因此,同构法是本题的破题核心.。
2024年高考数学分类汇编七解析几何
2024年高考数学分类汇编七解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b −=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A.4B .3C .2D 3.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .4.(2024·北京)求圆22260x y x y +−+=的圆心到20x y −+=的距离( )A .B .2C .D 5.(2024·天津)双曲线22221()00a x y a bb >−=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x −=B .22184x y −=C .22128x y −=D .22148x y −=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =− B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个 三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 . 9.(2024·北京)已知双曲线2214x y −=,则过()3,0且和双曲线只有一个交点的直线的斜率为 .10.(2024·北京)已知抛物线216y x =,则焦点坐标为 .11.(2024·天津)22(1)25−+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 . 四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D . (1)求椭圆方程和离心率; (2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△ (1)求椭圆方程.(2)过点30,2⎛⎫− ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.答案详解1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解. 【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y , 又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】由题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =−=−=,则28224c e a ===. 故选:C. 3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −=⎧⎨+=⎩得12x y =⎧⎨=−⎩,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ==24AB AP ==.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +−+=,即()()221310x y −++=,则其圆心坐标为()1,3−,则圆心到直线20x y −+==,故选:C. 5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=−,求得112PF k =−,即21tan 2θ=,2sin θ=121212::sin :sin :sin90PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ==, 由1212112822PF F SPF PF m m =⋅=⋅=得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a −==a b === 所以双曲线的方程为22128x y −=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >−4x a −=,04a −=,解得2a =−,故A 正确.对于B24x +=,而2x >−,()24x +=.当0x y ==()2844=−=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =−−+,取32x =,则2641494y =−,而64164525624510494494494−−−=−=>⨯,故此时21y >, 故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =−−≤++,故0004422y x x −≤≤++,故D 正确. 故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理. 7.ABD【分析】A 选项,抛物线准线为=1x −,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =−是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x −,A 的圆心(0,4)到直线=1x −的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ==B 选项正确;C 选项,当2PB =时,1P x =,此时244PP y x ==,故(1,2)P 或(1,2)P −, 当(1,2)P 时,(0,4),(1,2)A B −,42201PA k −==−−,4220(1)AB k −==−−, 不满足1PA AB k k =−;当(1,2)P −时,(0,4),(1,2)A B −,4(2)601PA k −−==−−,4(2)60(1)AB k −−==−−, 不满足1PA AB k k =−;于是PA AB ⊥不成立,C 选项错误; D 选项,方法一:利用抛物线定义转化 根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题, (0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k −=, 于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y −+=, 2164301360∆=−⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确. 方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t −,又(0,4)A ,又PA PB =,214t =+,整理得216300t t −+=,2164301360∆=−⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确. 故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b−=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a −=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y −=,解得y =设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =−, 联立()22143x y y k x ⎧−=⎪⎨⎪=−⎩,化简并整理得:()222214243640k x k x k −+−−=,由题意得2140k −=或()()()2222Δ244364140k k k =++−=,解得12k =±或无解,即12k =±,经检验,符合题意. 故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0. 故答案为:()4,0. 11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25−+=x y 的圆心为()1,0F ,故12p=即2p =, 由()2221254x y y x⎧−+=⎪⎨=⎪⎩可得22240x x +−=,故4x =或6x =−(舍),故()4,4A ±,故直线()4:13AF y x =±−即4340x y −−=或4340x y +−=, 故原点到直线AF 的距离为4455d ==, 故答案为:4512.【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为故答案为: 13.(1)12(2)直线l 的方程为3260x y −−=或20x y −=.【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x −=−,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可. 【解析】(1)由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk −==−−,则直线AP 的方程为132y x =−+,即260x y +−=,AP =,由(1)知22:1129x y C +=, 设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 此时该平行线与椭圆的交点即为点B , 设该平行线的方程为:20x y C ++=,=6C =或18C =−, 当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=−⎩或332x y =−⎧⎪⎨=−⎪⎩,即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,当()0,3B −时,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当33,2B ⎛⎫−− ⎪⎝⎭时,此时12l k =,直线l 的方程为12y x =,即20x y −=,当18C =−时,联立2211292180x y x y ⎧+=⎪⎨⎪+−=⎩得22271170y y −+=,227421172070∆=−⨯⨯=−<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y −−=或20x y −=. 法二:同法一得到直线AP 的方程为260x y +−=, 点B到直线AP 的距离d =设()00,B x y,则22001129x y =⎪+=⎪⎩,解得00332x y =−⎧⎪⎨=−⎪⎩或0003x y =⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π=联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=−⎪⎩或cos 0sin 1θθ=⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B −,16392PABS=⨯⨯=,符合题意,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=, 当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠−,解得0x =或22443kx k −=+,0k ≠,12k ≠−,令22443k x k −=+,则2212943k y k −+=+,则22224129,4343k k B k k ⎛⎫−−+ ⎪++⎝⎭ 同法一得到直线AP 的方程为260x y +−=, 点B 到直线AP的距离d ==32k =,此时33,2B ⎛⎫−− ⎪⎝⎭,则得到此时12l k =,直线l 的方程为12y x =,即20x y −=,综上直线l 的方程为3260x y −−=或20x y −=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠不满足条件.当l 的斜率存在时,设3:(3)2PB y k x −=−,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=−+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +−−+−−=, ()()()2222Δ24124433636270k kk k k =−−+−−>,且AP k k ≠,即12k ≠−,21222122241243,36362743k k x x k PB k k x x k ⎧−+=⎪⎪+⎨−−⎪=⎪+⎩, A 到直线PB距离192PAB d S ===, 12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =−,即3260x y −−=或20x y −=. 法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABPS=⨯⨯=≠不满足条件. 当直线l 斜率存在时,设3:(3)2l y k x =−+, 设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫−+ ⎪⎝⎭,联立223323436y kx k x y ⎧=−+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, ()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, 其中()()22223Δ8343436362702k k k k k ⎛⎫=−−+−−> ⎪⎝⎭,且12k ≠−,则2222363627121293,3434B B k k k k x x k k −−−−==++, 则211312183922234P B k S AQ x x k k +=−=+=+,解的12k =或32k =,经代入判别式验证均满足题意. 则直线l 为12y x =或332y x =−,即3260x y −−=或20x y −=.14.(1)23x =,20y = (2)证明见解析 (3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【解析】(1)由已知有22549m =−=,故C 的方程为229x y −=. 当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y −=联立得到22392x x +⎛⎫−= ⎪⎝⎭.解得3x =−或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q −,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =−+,与229x y −=联立,得到方程()()229n n x k x x y −−+=.展开即得()()()2221290n n n n k x k y kx x y kx −−−−−−=,由于(),n n n P x y 已经是直线()n n y k x x y =−+和229x y −=的公共点,故方程必有一根n x x =. 从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k −−−=−=−−,相应的()2221n n nn n y k y kx y k x x y k +−=−+=−. 所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫−−+− ⎪−−⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x−−−−,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+−+− ⎪−−⎝⎭. 这就得到21221n n nn x k x ky x k ++−=−,21221n n n n y k y kx y k ++−=−. 所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++−+−−=−−− ()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=−=−=−−−−−. 再由22119x y −=,就知道110x y −≠,所以数列{}n n x y −是公比为11k k+−的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =,(),UW c d =,则12UVWSad bc =−.(若,,U V W 在同一条直线上,约定0UVWS =)证明:211sin ,1cos ,22UVWS UV UW UV UW UV UW UV UW =⋅=⋅−()222211122UV UW UV UW UV UW UV UW UV UW ⎛⎫⋅⎪=⋅−=⋅−⋅⎪⋅⎭==12ad bc ==−. 证毕,回到原题.由于上一小问已经得到21221n n nn x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=−−−−,()122121,n n n n n n P P x x y y ++++++=−−, 故利用前面已经证明的结论即得 ()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==−−−+−− ()()()()12112112n n n n n n n n x x y y y y x x ++++++=−−−−− ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=−+−−− 2219119119112211211211k k k k k k k k k k k k ⎛⎫−+−+−+⎛⎫⎛⎫⎛⎫⎛⎫=−+−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+−+−+−⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++−+⎛⎫−=−=− ⎪+−⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫−+⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++−−−=−−−. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++−−+=−−+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++−−=−−.而()333,n n n n n n P P x x y y +++=−−,()122121,n n n n n n P P x x y y ++++++=−−. 所以3n n P P +和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.15.(1)22143x y +=(2)证明见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b ,故椭圆方程为22143x y +=.(2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−−()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k kx x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.16.(1)221,42x y e +==(2)2t =【分析】(1)由题意得b c ==a ,由此即可得解;(2)说明直线AB 斜率存在,设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k −−+==++,而()121112:y y AD y x x y x x −=−++,令0x =,即可得解.【解析】(1)由题意b c ===2a ==, 所以椭圆方程为22142x y +=,离心率为e =(2)显然直线AB 斜率存在,否则,B D 重合,直线BD 斜率不存在与题意不符, 同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++−=, 由题意()()()222222Δ1682128420k t k t k t =−+−=+−>,即,k t 应满足22420k t +−>,所以2121222424,1221kt t x x x x k k −−+==++, 若直线BD 斜率为0,由椭圆的对称性可设()22,D x y −, 所以()121112:y y AD y x x y x x −=−++,在直线AD 方程中令0x =, 得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t−++++++====+==+++−,所以2t =,此时k 应满足222424200k t k k ⎧+−=−>⎨≠⎩,即k应满足k <或k >,综上所述,2t =满足题意,此时k <k >17.(1)221129x y +=(2)存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =−,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤可求t 的范围.【解析】(1)因为椭圆的离心率为12e =,故2a c =,b ,其中c 为半焦距, 所以()()2,0,0,,0,A c B C ⎛− ⎝⎭,故122ABC S c =⨯=△故ca =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =−,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=−⎪⎩可得()223412270k x kx +−−=, 故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==−++ 而()()1122,,,TP x y t TQ x y t =−=−,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+−−=+−−−− ⎪⎪⎝⎭⎝⎭()()22121233122kx x k t x x t ⎛⎫⎛⎫=+−++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯−−+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫−−−−++++ ⎪⎝⎭=+ ()22223321245327234t t k t k ⎛⎫⎡⎤+−−++− ⎪⎣⎦⎝⎭=+, 因为0TP TQ ⋅≤恒成立,故()223212450332702t t t ⎧+−−≤⎪⎨⎛⎫+−≤⎪ ⎪⎝⎭⎩,解得332t −≤≤.若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q −或()()0,3,0,3P Q −,此时需33t −≤≤,两者结合可得332t −≤≤.综上,存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设. 18.(1)b(2)(2,P(3)(303,3⎛ ⎝⎦【分析】(1)根据离心率公式计算即可; (2)分三角形三边分别为底讨论即可;(3)设直线:2l x my =−,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【解析】(1)由题意得21c cea ===,则2c =,b == (2)当b =时,双曲线22Γ:183y x −=,其中()2,0M −,()21,0A , 因为2MA P △为等腰三角形,则①当以2MA 为底时,显然点P 在直线12x =−上,这与点P 在第一象限矛盾,故舍去;②当以2A P 为底时,23MP MA ==,设(),P x y ,则 2222318(2)9y x x y ⎧−=⎪⎨⎪++=⎩,联立解得2311x y ⎧=−⎪⎪⎨⎪=⎪⎩或2311x y ⎧=−⎪⎪⎨⎪=⎪⎩10x y =⎧⎨=⎩, 因为点P 在第一象限,显然以上均不合题意,舍去; (或者由双曲线性质知2MP MA >,矛盾,舍去);③当以MP 为底时,223A P MA ==,设()00,P x y ,其中000,0x y >>,则有()2200220019183x y y x ⎧−+=⎪⎪⎨−=⎪⎪⎩,解得002x y =⎧⎪⎨=⎪⎩(2,P .综上所述:(2,P .(3)由题知()()121,0,1,0A A −,当直线l 的斜率为0时,此时120A R A P ⋅=,不合题意,则0l k ≠, 则设直线:2l x my =−,设点()()1122,,,P x y Q x y ,根据OQ 延长线交双曲线Γ于点R , 根据双曲线对称性知()22,R x y −−,联立有22221x my y x b =−⎧⎪⇒⎨−=⎪⎩()222221430b m y b my b −−+=, 显然二次项系数2210b m −≠, 其中()()22222422Δ44134120mb b m b b m b =−−−=+>,2122241b my y b m +=−①,2122231b y y b m =−②, ()()1222111,,1,A R x y A P x y =−+−=−,则()()122112111A R A P x x y y ⋅=−+−−=,因为()()1122,,,P x y Q x y 在直线l 上, 则112x my =−,222x my =−,即()()2112331my my y y −−−−=,即()()2121213100y y m y y m +−++=,将①②代入有()2222222341310011b b mm m b m b m +⋅−⋅+=−−,即()()2222231341010b m m b m b m +−⋅+−=化简得2223100b m b +−=,所以 22103m b=−, 代入到 2210b m −≠, 得 221031b b =−≠, 所以 23b ≠, 且221030m b =−≥,解得2103b ≤,又因为0b >,则21003b <≤,综上知,()2100,33,3b ⎛⎤∈ ⎥⎝⎦,(303,3b ⎛∴∈ ⎝⎦.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设:2l x my =−,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.。
高考数学复习重难点四种解析几何数学思想(核心考点讲与练)
重难点10四种解析几何数学思想(核心考点讲与练)能力拓展题型一:函数与方程思想一、单选题1.(2022·全国·高三专题练习)抛物线2y x =上的一动点M 到直线:10l x y --=距离的最小值是()A .8B .38C .34D .42.(2022·全国·高三专题练习)点(cos ,sin )P θθ到直线34120x y +-=的距离的取值范围为()A .1217,55⎡⎤⎢⎣⎦B .712,55⎡⎤⎢⎣⎦C .717,55⎡⎤⎢⎥⎣⎦D .1224,55⎡⎤⎢⎥⎣⎦3.(2020·全国·高三专题练习)已知P 是椭圆2212y x +=上任一点,O 是坐标原点,则OP 中点的轨迹方程为()A .22421x y +=B .2221x y +=C .2212y x +=D .22241x y +=二、填空题4.(2020·全国·高二课时练习)在平面直角坐标系xOy 中,已知双曲线C :()222210,0x ya b a b-=>>的左,右焦点分别为1F ,2F ,设过右焦点2F 且与x 轴垂直的直线l 与双曲线C 的两条渐近线分别交于A ,B 两点,若1F AB 是正三角形,则双曲线C 的离心率为__________.5.(2020·江苏·一模)在平面直角坐标系xOy 中,已知双曲线22214x y a -=(a >0)的一条渐近线方程为23y x =,则a =_______.6.(2022·全国·高三专题练习)若过点(1,1)P 且斜率为k 的直线l 与双曲线2214yx -=只有一个公共点,则k =___________.三、解答题7.(2022·全国·高三专题练习)已知直线222111a y x a a =+++与x 轴交于A 点,与y 轴交于B 点(1)若0a <,6OAB π∠=,求a 的值;(2)若0a ≥,求直线l 的倾斜角的取值范围.8.(2022·四川凉山·三模(理))已知椭圆()22122:10x y C a b a b+=>>经过点12⎫⎪⎭,过其焦点且垂直于x 轴的弦长为1.(1)求椭圆1C 的标准方程;(2)已知曲线22:4C x y =,2C 在点P 处的切线l 交1C 于M ,N 两点,且4NM MP = ,求l 的方程.9.(2022·全国·高三专题练习)设函数()e ()x f x ax a a R =-+∈其图象与x 轴交于1(A x ,0),2(B x ,0)两点,且12x x <.(1)求()f x 的单调区间和极值点;(2)证明:0(()f f x ''<是()f x 的导函数);(3)证明:1212x x x x <+.题型二:数形结合思想一、单选题1.(2020·山西临汾·高三阶段练习(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若过点F 且倾斜角为45°的直线与C 的右支有且仅有一个交点,则C 的离心率的取值范围为()A .)+∞B .[2,)+∞C .D .(1,2]2.(2022·河南·开封高中模拟预测(理))若直线():340R l x y a a ++=∈与圆22:9O x y +=交于不同的两点A 、B ,且,则=a ()A .±B .±C .±D .5±3.(2022·全国·模拟预测)已知点A 为圆22:2220C x y x y +---=上一点,点()23,4M m m --,()23,4N n n --,m n ≠,若对任意的点A ,总存在点M ,N ,使得90MAN ∠≥︒,则m n -的取值范围为()A .[)2,+∞B .[]1,2C .2,5⎡⎫+∞⎪⎢⎣⎭D .20,5⎛⎤⎥⎝⎦二、多选题4.(2022·全国·高三专题练习)在同一平面直角坐标系中,表示直线l 1:y =ax +b 与l 2:y =bx ﹣a 的图象可能是()A .B .C .D .5.(2022·福建龙岩·模拟预测)已知直线y x b =+与圆2216x y +=交于A 、B两点,且OA OB OA OB +=-(其中O 为坐标原点),则实数b 的值可以是()A .4-B .-C .D .4三、填空题6.(2022·山西吕梁·三模(文))已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与C 交于,A B两点(点A 在x 轴上方),过,A B 分别作l 的垂线,垂足分别为,M N ,连接,MF NF .若MF =,则直线AB 的斜率为__________.四、解答题7.(2022·山西太原·三模(文))已知抛物线C 开口向右,顶点为坐标原点,且经过点(.A (1)求抛物线C 的方程;(2)过点()3,0B -的直线交抛物线C 于点M ,N ,直线MA ,NA 分别交直线3x =-于点P ,Q ,求PB BQ的值.8.(2022·山西吕梁·三模(理))已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点2,2A ⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)点A 关于原点O 的对称点为点B ,与直线AB 平行的直线l 与C 交于点,M N ,直线AM 与BN 交于点P ,点P 是否在定直线上?若在,求出该直线方程;若不在,请说明理由.题型三:分类与整合思想一、单选题1.(2020·湖南·高三学业考试)已知直线l 过点()4,3P ,圆C :2225x y +=,则直线l 与圆C 的位置关系是()A .相交B .相切C .相离D .相交或相切2.(2020·浙江·高三专题练习)点()1,1M 到抛物线22y ax =准线的距离为2,则a 的值为A .1B .1或3C .18或124-D .14-或1123.(2022·全国·高三专题练习(理))设e 是椭圆2218x yk+=的离心率,且1e ,12⎛⎫∈ ⎪⎝⎭,则实数k 的取值范围是()A .(0,6)B .32(0,6),3⎛⎫+∞ ⎪⎝⎭C .16(0,3),3⎛⎫+∞ ⎪⎝⎭D .(0,2)二、多选题4.(2022·全国·高三专题练习)已知圆锥曲线()22:10C mx y m +=≠,则下列说法可能正确的有()A .圆锥曲线C 的离心率为mB .圆锥曲线CC .圆锥曲线CD .圆锥曲线C 5.(2022·湖北·荆门市龙泉中学二模)已知双曲线22:17x y C t t-=-的一条渐近线方程为430x y -=,过点(5,0)作直线l 交该双曲线于A 和B 两点,则下列结论中正确的有()A .16t =或9-B .该双曲线的离心率为53C .满足323AB =的直线l 有且仅有一条D .若A 和B 分别在双曲线左、右两支上,则直线l 的斜率的取值范围是44(,33-6.(2022·全国·高三专题练习)已知A 、B 两点的坐标分别是(1,0)-,(1,0),直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当1m =-时,点P 的轨迹圆(除去与x 轴的交点)B .当10m -<<时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当01m <<时,点P 的轨迹为焦点在x 轴上的抛物线D .当1m >时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、解答题7.(2020·全国·高三专题练习(理))求满足下列条件的直线方程:(1)经过点(5,2)A -,且在x 轴上的截距等于在y 轴上截距的2倍;(2)经过点(3,4)B ,且与两坐标轴围成一个等腰直角三角形.8.(2022·全国·高三专题练习)已知圆C 经过点()5,0P 和点()1,4Q ,且圆心在直线1x y +=上.(1)求圆C 的标准方程;(2)若过点()1,4-的直线l 与圆C 相交于A ,B 两点,且120ACB ∠=︒,求直线l 的方程.题型四:转化与划归思想一、单选题1.(2020·全国·高三(文))双曲线22221(0,0)x y a b a b-=>>)A .y =B .y =C .2y x=±D .3y x=±2.(2020·云南德宏·高三期末(理))已知点M 是抛物线2:4C y x =上一点,以M 为圆心,r 为半径的圆与抛物线的准线相切,且与x 轴的两个交点的横坐标之和为4,则此圆的半径r 为()AB .2C .3D .4二、多选题3.(2022·全国·高三专题练习)[多选题]已知抛物线212x y =的焦点为F ,()11,M x y ,()22,N x y 是抛物线上两点,则下列结论正确的是()A .点F 的坐标为1,08⎛⎫⎪⎝⎭B .若直线MN 过点F ,则12116x x =-C .若MF NF λ= ,则MN 的最小值为12D .若32MF NF +=,则线段MN 的中点P 到x 轴的距离为58三、填空题4.(2022·全国·高三专题练习)已知点M 是椭圆2212516y x +=上的一动点,点T 的坐标为(0,3)-,点N 满足||1NT =,且90MNT ∠=︒,则||MN 的最大值是__.5.(2022·全国·高三专题练习)圆1C :222410x y x y ++++=与圆2C :224410x y x y +---=的公切线有___________条.四、解答题6.(2021·海南·模拟预测)已知抛物线C 的顶点为坐标原点,焦点为圆F :2220x x y -+=的圆心,y 轴负半轴上有一点P ,直线PF 被C 截得的弦长为5.(1)求点P 的坐标;(2)过点P 作不过原点的直线PA ,PB 分别与抛物线C 和圆F 相切,A ,B 为切点,求直线AB 的方程.巩固提升一、单选题1.(2022·安徽·芜湖一中高三阶段练习(理))已知抛物线2:C y =的焦点为F ,准线为l ,过抛物线上一点P 作准线的垂线,垂足为Q ,若3PFQ π∠=,则PF =()A .B .CD .62.(2022·贵州毕节·三模(文))曲线1y =+()21y k x -=-有两个交点,则实数k 的取值范围为()A .()0,∞+B .10,2⎛⎤⎝⎦C .()1,1,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭D .11,23⎛⎤-- ⎥⎝⎦3.(2022·贵州毕节·三模(理))曲线1y =与直线()()21110k x k y +-++=有两个交点,则实数k 的取值范围为()A .()0,∞+B .10,2⎛⎤⎥⎝⎦C .()1,1,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭D .11,23⎛⎫-- ⎪⎝⎭4.(2022·湖北·模拟预测)已知抛物线24y x =的焦点为F ,准线为l ,过抛物线上一点P 作准线的垂线,垂足为Q ,若3PFQ π∠=,则PF =()A .2B .4C .6D .5.(2022·全国·高三专题练习)如图①,用一个平面去截圆锥得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家Germinaldandelin (17941847-)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面、截面相切,两个球分别与截面相切于,E F ,在截口曲线上任取一点A ,过A 作圆锥的母线,分别与两个球相切于,C B ,由球和圆的几何性质,可以知道,AE AC =,AF AB =,于是AE AF AB AC BC +=+=.由,B C 的产生方法可知,它们之间的距离BC 是定值,由椭圆定义可知,截口曲线是以,E F 为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源P ,则球在桌面上的投影是椭圆,已知12A A 是椭圆的长轴,1PA 垂直于桌面且与球相切,15PA =,则椭圆的焦距为()A .4B .6C .8D .126.(2020·全国·高三专题练习(文))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,若双曲线上存在点P 使21120PF F ∠=︒,则离心率的取值范围是()A .⎛ ⎝⎭B .()1,2C .()2,+∞D .⎫+∞⎪⎪⎝⎭7.(2021·江西南昌·高三开学考试(理))已知函数()22e e ex xf x -=,若()()0f a f b +>,若点(),a b 不可能在曲线C 上,则曲线C 的方程可以是()A .()()22112x y -+-=B .()2212x y -+=C .222x y +=D .()2212x y +-=二、多选题8.(2022·山东泰安·三模)已知实数x ,y 满足方程224240x y x y +--+=,则下列说法正确的是()A .yx 的最大值为43B .yx的最小值为0C .22x y +1D .x y +的最大值为39.(2022·山东·肥城市教学研究中心模拟预测)椭圆C :2214x y +=的左、右焦点分别为12,F F ,点P 在椭圆C 上,点Q 在以(2,4)M -为圆心,C 的长轴长为直径的圆上,则下列说法正确的是()A .椭圆C 的离心率为12B .12PF PF ⋅的最大值为4C .过点M 的直线与椭圆C 只有一个公共点,此时直线方程为1516340x y +-=D .2PQ PF -6三、填空题10.(2022·内蒙古赤峰·模拟预测(文))直线l 过定点()1,2-,过点()1,0P -作l 的垂线,垂足为M ,已知点()2,1N ,则MN 的最大值为______.11.(2022·河南商丘·三模(理))已知F 是抛物线C :22y px =(0p >)的焦点,C 的准线与x 轴交于点A ,过点A 作曲线C 的一条切线AB ,若切点B 在第一象限内,D 为C 上第四象限内的一点,且//DF AB ,则AB DF=______.12.(2022·河北·模拟预测)已知A ,B 是抛物线2x y =上的两个动点,过A ,B 的两条切线交于点P ,若90APB ∠= ,则点P 的纵坐标为___________.13.(2022·浙江·效实中学模拟预测)已知实数x ,y 满足()()22121x y -+-=,则z =的取值范围是___________.14.(2022·重庆市第十一中学校高三阶段练习)参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e =______.15.(2022·北京·首都师范大学附属中学高三开学考试)数学中有许多形状优美的曲线,如星形线,让一个半径为r 的小圆在一个半径为4r 的大圆内部,小圆沿着大圆的圆周滚动,小圆的圆周上任一点形成的轨迹即为星形线.如图,已知1r =,起始位置时大圆与小圆的交点为A (A 点为x 轴正半轴上的点),滚动过程中A 点形成的轨迹记为星形线C .有如下结论:①曲线C 上任意两点间距离的最大值为8;②曲线:4D x y +=的周长大于曲线C 的周长;③曲线C 与圆224x y +=有且仅有4个公共点.其中正确的序号为________________.四、解答题16.(2022·浙江金华·三模)如图,已知点P 在直线l :2x =-上,A ,B 为抛物线C :()220y px p =>上任意两点,PA ,PB 均与抛物线C 相切,直线AB 与直线l 交于点Q ,过抛物线C 的焦点F 作AB 的垂线交直线l 于点K .(1)若点A 到F 的距离比到直线l 的距离小1,求抛物线C 的方程;(2)在(1)的条件下,当KQ 最小时,求ABKQ 的值.17.(2022·全国·高三专题练习)已知抛物线()2:20C x py p =>的焦点为F .且F 与圆()22:41M x y ++=上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求PAB △面积的最大值.18.(2021·全国·高三专题练习)(1)试求函数()f x =(2)设a 、b 都是实数,试求:22()S a b =-+的最小值.高考一轮复习专项。
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)
解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
高考数学真题三年专题平面解析几何
三年专题 平面解析几何(选择题、填空题)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1C .x 23+y 22=1 D .x 22+y 2=12.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .133.【2022年全国乙卷】设F 为抛物线C:y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF |=|BF |,则|AB |=( ) A .2B .2√2C .3D .3√24.【2022年全国乙卷】双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 的两支交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A .√52B .32C .√132D .√1725.【2021年甲卷文科】点()3,0到双曲线221169xy -=的一条渐近线的距离为( )A .95B .85C .65D .456.【2021年乙卷文科】设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则P B的最大值为( )A .52B C D .27.【2021年乙卷理科】设B 是椭圆2222:1(0)x y C a b ab+=>>的上顶点,若C 上的任意一点P 都满足||2P B b ≤,则C 的离心率的取值范围是( )A .12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛⎝⎦D .10,2⎛⎤ ⎥⎝⎦8.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12M F M F ⋅的最大值为( )A .13B .12C .9D .69.【2021年新高考2卷】抛物线22(0)y p x p =>的焦点到直线1y x =+p=( )A .1B .2C .D .410.【2020年新课标1卷理科】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9 11.【2020年新课标1卷理科】已知⊙M :222220xyx y +---=,直线l :220xy ++=,P为l 上的动点,过点P 作⊙M 的切线,P A P B ,切点为,A B ,当||||PM AB ⋅最小时,直线A B的方程为( ) A .210xy --= B .210xy +-=C .210xy -+= D .210xy ++=12.【2020年新课标1卷文科】已知圆2260x yx +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4 13.【2020年新课标1卷文科】设12,F F 是双曲线22:13y Cx-=的两个焦点,O 为坐标原点,点P 在C 上且||2O P =,则12P F F △的面积为( )A .72B .3C .52D .214.【2020年新课标2卷理科】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A 5B 5C 5D 515.【2020年新课标2卷理科】设O 为坐标原点,直线x a=与双曲线2222:1(0,0)x y Ca b ab-=>>的两条渐近线分别交于,D E 两点,若O D E的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .3216.【2020年新课标3卷理科】设O 为坐标原点,直线2x =与抛物线C :22(0)yp x p =>交于D ,E 两点,若O D O E⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)17.【2020年新课标3卷理科】设双曲线C :22221x y ab-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1B .2C .4D .818.【2020年新课标3卷文科】在平面内,A ,B 是两个定点,C 是动点,若=1A CBC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线19.【2020年新课标3卷文科】点(0,﹣1)到直线()1y kx =+距离的最大值为( )A .1BC D .220.【2022年新高考1卷】已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1 B .直线AB 与C 相切 C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|221.【2022年新高考2卷】已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°22.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线A B 的距离大于2C .当P B A ∠最小时,P B = D .当P B A ∠最大时,P B =23.【2021年新高考2卷】已知直线2:0l a x b y r+-=与圆222:Cxyr+=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 24.【2020年新高考1卷(山东卷)】已知曲线22:1C m xn y+=.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =±D .若m =0,n >0,则C 是两条直线25.【2022年全国甲卷】设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为______________. 26.【2022年全国甲卷】记双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值______________. 27.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.28.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.29.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________. 30.【2022年新高考1卷】已知椭圆C:x 2a2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________.31.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 32.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 33.【2021年甲卷文科】已知12,F F 为椭圆C :221164xy +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12P QF F =,则四边形12P F Q F 的面积为________.34.【2021年乙卷文科】双曲线22145xy -=的右焦点到直线280xy +-=的距离为________.35.【2021年乙卷理科】已知双曲线22:1(0)xC y m m-=>0m y +=,则C 的焦距为_________.36.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y p x=(0p>)的焦点为F ,P 为C 上一点,P F 与x 轴垂直,Q 为x 轴上一点,且P Q O P⊥,若6F Q =,则C 的准线方程为______.37.【2021年新高考2卷】若双曲线22221x y ab-=的离心率为2,则此双曲线的渐近线方程___________.38.【2020年新课标1卷理科】已知F 为双曲线2222:1(0,0)x y Ca b ab-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.39.【2020年新课标3卷文科】设双曲线C :22221x y ab-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.40.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C交于A ,B 两点,则A B=________.三年专题 平面解析几何(解答题)1.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程.2.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点. (1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 3.【2022年新高考1卷】已知点A(2,1)在双曲线C:x 2a2−y 2a 2−1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP,AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan∠PAQ =2√2,求△PAQ 的面积. 4.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F 的直线与C A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在AB 上;②PQ ∥AB ;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.5.【2021年甲卷文科】抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C于P ,Q 两点,且O P O Q⊥.已知点()2,0M ,且M与l 相切.(1)求C ,M的方程;(2)设123,,AA A 是C 上的三个点,直线12AA ,13AA 均与M相切.判断直线23AA 与M的位置关系,并说明理由.6.【2021年乙卷文科】已知抛物线2:2(0)C yp x p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9P Q Q F=,求直线O Q 斜率的最大值.7.【2021年乙卷理科】已知抛物线()2:20Cxp yp =>的焦点为F ,且F 与圆22:(4)1M xy ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,P A P B 是C 的两条切线,,A B 是切点,求P A B △面积的最大值.8.【2021年新高考1卷】在平面直角坐标系x O y 中,已知点()1F -、()21202F M F M F -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x=上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且T A T B T P T Q⋅=⋅,求直线A B 的斜率与直线P Q 的斜率之和.9.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b ab+=>>,右焦点为0)F ,且3.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线M N 与曲线222(0)x yb x +=>相切.证明:M ,N ,F 三点共线的充要条件是||M N=10.【2020年新课标1卷理科】已知A 、B 分别为椭圆E :2221x ya+=(a >1)的左、右顶点,G 为E 的上顶点,8A G GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.【2020年新课标2卷理科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程. 12.【2020年新课标2卷文科】已知椭圆C 1:22221x y ab+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.13.【2020年新课标3卷理科】已知椭圆222:1(05)25xy C m m+=<<4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x=上,且||||B PB Q =,B PB Q⊥,求A P Q的面积.14.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b ab+=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且A M A N⊥,A DM N⊥,D 为垂足.证明:存在定点Q ,使得D Q为定值.15.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b ab+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.。
高考数学 解析几何 专题练习及答案解析版
高考数学解析几何专题练习解析版82页【1】1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A.19422=+y x B.14922=+y x C.113422=+y x D.141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A .54B .45 C .254D .425 9. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B.13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .3 12.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π)C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32C .32-D .23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61B .⎪⎭⎫ ⎝⎛-61,21C .⎪⎭⎫ ⎝⎛61,21.D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4B. 3C. 2D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
高考数学解析几何知识点归纳
高考数学解析几何知识点归纳解析几何是高考数学中的一个重要板块,它将代数与几何巧妙地结合在一起,具有较强的综合性和逻辑性。
以下是对高考数学中解析几何知识点的详细归纳。
一、直线1、直线的倾斜角与斜率倾斜角:直线与 x 轴正方向所成的角,范围是0, π)。
斜率:当倾斜角不是 90°时,斜率 k =tanα(α 为倾斜角)。
过两点 P(x₁, y₁),Q(x₂, y₂)的直线斜率 k =(y₂ y₁) /(x₂ x₁)(x₁≠ x₂)。
2、直线的方程点斜式:y y₁= k(x x₁),适用于已知斜率和一点的情况。
斜截式:y = kx + b,其中 k 为斜率,b 为截距。
两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁),适用于已知两点的情况。
截距式:x / a + y / b = 1,其中 a、b 分别为 x 轴和 y 轴上的截距(a ≠ 0,b ≠ 0)。
一般式:Ax + By + C = 0(A、B 不同时为 0)。
3、两直线的位置关系平行:斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂(斜截式);A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 (一般式)。
垂直:斜率之积为-1,即 k₁k₂=-1 (斜率都存在);A₁A₂+ B₁B₂= 0 (一般式)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程标准方程:(x a)²+(y b)²= r²,圆心为(a, b),半径为 r。
一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。
高考解析几何复习专题 ppt课件
交点法探究:
①判别式;②根与系数关系:两根和、两根积(横坐标关系与纵坐标关系转换); ③数量关系转换(长度、角度、斜率、面积、向量关系或不等关系等转换); ④位置关系转换(平行或垂直或相交等)
x1 x2 x1x2
y1 y2 y1 y2
问 题
繁 与 简
关于交点法:交点法中的曲线与方程
一、求曲线或轨迹方程问题--方程(组)思想应用 (1)点与曲线-方程思想;(2)向量关系-特征转化; (3)特征量或特征量关系;(4)位置特征关系转化
二、求特征量问题 三、圆锥曲线定义应用问题-椭圆、双曲线或抛物线定义应用 四、定点或定值问题--函数或方程思想,待定系数法思想 五、位置特征问题--化归转化,数形转换,平面几何图形特征性质应用问题 六、直线与圆锥曲线关系问题:弦长、中点、面积、对称、平行、垂直、夹角等 七、探索性问题:含参数问题、最值问题、存在性问题等
l 直线 与二次曲线C 相交于弦 PQ 设 P(x1, y1)、Q(x2 , y2 )
则:P、Q两点坐标满足二元二次方程组 l : 一次直线方程 C : 二次曲线方程
设直线 l 的方程:
l : y kx s
x1 x2 x1x2
或
y1 kx1 s
→ ←
x1 my1 t
l : x my t
特征量: a,b,c,e; 焦准距、通径、焦半径、焦点弦
关系:①平方、比值等 ②拓展性结论
特征图形:对称特征,直角三角形、平行四边形等特征图 形 关联特征:平行、垂直、对称、共圆、面积、
特殊三角形、夹角相等、等距、向量关系等
五、圆锥曲线:特征图形
★六、椭圆与抛物线
椭圆:第二定义 | PFi | e, (i 1、2,0 e 1)
专题09 解析几何专题(数学文化)(原卷版)2023年新高考数学创新题型微专题
A.
1 59
B.
1 2
C. 29 56
D.
1 57
7.(2022 秋·福建·高二校联考期中)几何学史上有一个著名的米勒问题:“设点 M , N 是锐角 AQB 的一边 QA
上的两点,试在 QB 边上找一点 P ,使得 MPN 最大.”如图,其结论是:点 P 为过 M , N 两点且和射线 QB
相切的圆与射线 QB 的切点.根据以上结论解决以下问题:在平面直角坐标系 xOy 中,给定两点
我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率 与椭圆的长半轴长与短半轴长的乘
积,已知椭圆 C :
x2 a2
y2 b2
1(a
b
0)
的面积为 6
2 ,两个焦点分别为 F1, F2 ,点 P 为椭圆 C 的上顶点.直
线 y kx 与椭圆 C 交于 A,B 两点,若 PA, PB 的斜率之积为 8 ,则椭圆 C 的长轴长为( ) 9
R 的纵坐标为( )
A. 3
B.2
C. 2 3
D.4
6.(2022 秋·新疆乌鲁木齐·高二乌市八中校考期中)德国天文学家开普勒发现天体运行轨道是椭圆,已知地
球运行的轨道是一个椭圆,太阳在它的一个焦点上,若轨道近日点到太阳中心的距离和远日点到太阳中心
的距离之比为 28 : 29 ,那么地球运行轨道所在椭圆的离心率是( )
A.3
B.6
C. 2 2
D. 4 2
12.(2022 秋·北京·高二北京工业大学附属中学校考期中)著名数学家华罗庚曾说过:“数无形时少直觉,形
少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,如: x a2 y b2 可以转化为
2023年新高考数学大一轮复习专题六解析几何第1讲直线与圆(含答案)
新高考数学大一轮复习专题:第1讲 直线与圆[考情分析] 1.和导数、圆锥曲线相结合,求直线的方程,考查点到直线的距离公式,多以选择题、填空题形式出现,中低难度.2.和圆锥曲线相结合,求圆的方程或弦长、面积等,中高难度.考点一 直线的方程 核心提炼1.已知直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为零),直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为零),则l 1∥l 2⇔A 1B 2-A 2B 1=0,且A 1C 2-A 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 2.点P (x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为零)的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(A ,B 不同时为零)间的距离d =|C 1-C 2|A 2+B 2.例1 (1)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823C.3D.833答案 B解析 由l 1∥l 2得(a -2)a =1×3,且a ×2a ≠3×6, 解得a =-1,∴l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪6-2312+-12=823. (2)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( )A .2x +3y -12=0B .2x +3y +12=0C .2x -3y +12=0D .2x -3y -12=0答案 B解析 由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去). ∴所求直线方程为2x +3y +12=0. 易错提醒 解决直线方程问题的三个注意点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意直线方程每种形式的局限性,点斜式、两点式、斜截式要求直线不能与x 轴垂直,而截距式方程即不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (3)讨论两直线的位置关系时,要注意直线的斜率是否存在.跟踪演练1 (1)已知直线l 经过直线l 1:x +y =2与l 2:2x -y =1的交点,且直线l 的斜率为-23,则直线l 的方程是( )A .-3x +2y +1=0B .3x -2y +1=0C .2x +3y -5=0D .2x -3y +1=0答案 C解析 解方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1,所以两直线的交点为(1,1). 因为直线l 的斜率为-23,所以直线l 的方程为y -1=-23(x -1),即2x +3y -5=0.(2)已知直线l 1:kx -y +4=0与直线l 2:x +ky -3=0(k ≠0)分别过定点A ,B ,又l 1,l 2相交于点M ,则|MA |·|MB |的最大值为________. 答案252解析 由题意可知,直线l 1:kx -y +4=0经过定点A (0,4),直线l 2:x +ky -3=0经过定点B (3,0).易知直线l 1:kx -y +4=0和直线l 2:x +ky -3=0始终垂直,又M 是两条直线的交点,所以MA ⊥MB ,所以|MA |2+|MB |2=|AB |2=25,故|MA |·|MB |≤252⎝ ⎛⎭⎪⎫当且仅当|MA |=|MB |=522时取“=”.考点二 圆的方程 核心提炼 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________. 答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0.解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.则圆C 的标准方程为________________________. 答案 (x -1)2+(y -2)2=2 解析 设圆心C (a ,b ),半径为r , ∵圆C 与x 轴相切于点T (1,0), ∴a =1,r =|b |.又圆C 与y 轴正半轴交于两点, ∴b >0,则b =r ,∵|AB |=2,∴2=2r 2-1, ∴r =2,故圆C 的标准方程为(x -1)2+(y -2)2=2. 规律方法 解决圆的方程问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2020·全国Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55B.255 C.355 D.455答案 B解析 由题意可知圆心在第一象限,设为(a ,b ). ∵圆与两坐标轴都相切, ∴a =b ,且半径r =a ,∴圆的标准方程为(x -a )2+(y -a )2=a 2. ∵点(2,1)在圆上,∴(2-a )2+(1-a )2=a 2, ∴a 2-6a +5=0,解得a =1或a =5. 当a =1时,圆心坐标为(1,1), 此时圆心到直线2x -y -3=0的距离为d =|2×1-1-3|22+-12=255; 当a =5时,圆心坐标为(5,5), 此时圆心到直线2x -y -3=0的距离为d =|2×5-5-3|22+-12=255. 综上,圆心到直线2x -y -3=0的距离为255.(2)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为________________. 答案 x 2+(y -3)2=10解析 ∵P (3,4)为C 上一点,∴9m -162=1,解得m =1,则B (1,0),∴k PB =42=2,PB 的中点坐标为(2,2),PB 的中垂线方程为y =-12(x -2)+2,令x =0,则y =3, 设外接圆圆心为M (0,t ),则M (0,3),r =|MB |=1+32=10, ∴△PAB 外接圆的标准方程为x 2+(y -3)2=10. 考点三 直线、圆的位置关系 核心提炼1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r 2,消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.例3 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2B .42C .6D .210 答案 C解析 由题意,得圆C 的标准方程为(x -2)2+(y -1)2=4,知圆C 的圆心为C (2,1),半径为2.方法一 因为直线l 为圆C 的对称轴,所以圆心在直线l 上,则2+a -1=0,解得a =-1, 所以|AB |2=|AC |2-|BC |2=[(-4-2)2+(-1-1)2]-4=36,所以|AB |=6.方法二 由题意知,圆心在直线l 上,即2+a -1=0,解得a =-1,再由图知,|AB |=6.(2)(2020·全国Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0答案 D解析 ⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形PAMB =12|PM |·|AB |=|PA |·|AM |=2|PA |, ∴|PM |·|AB |=4|PA | =4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l . 故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0).又∵直线x =-1,即PA 与⊙M 相切, ∴PA ⊥x 轴,PA ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0(m ≠2), 将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 规律方法 直线与圆相切问题的解题策略直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.跟踪演练3 (1)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10B .43C .8D .215答案 D解析 设圆心M ⎝ ⎛⎭⎪⎫a 22,a , 而r 2=⎝ ⎛⎭⎪⎫a 222+⎝ ⎛⎭⎪⎫822=a44+16,∵圆M 与x 轴交于A ,B 两点, ∴|AB |=2r 2-a 2=2a 44+16-a 2=a 4-4a 2+64=a 2-22+60≥60=215.(2)若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22,解得a 2=52, 因为a >0,所以a =102. 专题强化练一、单项选择题1.过点A (1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或y -x =1答案 D解析 当直线过原点时,可得斜率为2-01-0=2,故直线方程为y =2x ,即2x -y =0,当直线不过原点时,设方程为x a +y-a=1, 代入点(1,2)可得1a -2a=1,解得a =-1,方程为x -y +1=0,故所求直线方程为2x -y =0或y -x =1.2.若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A .1B .-2C .1或-2D .-32答案 A解析 由两直线平行的条件可得-2+m +m 2=0, ∴m =-2(舍)或m =1.3.已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( ) A .-1B .1C .±1D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1. 则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称, ∴直线y =x 经过圆心, ∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不合题意, ∴k =-1.4.(2020·厦门模拟)已知圆C :x 2+y 2-4x =0与直线l 相切于点P (3,3),则直线l 的方程为( ) A .3x -3y -6=0 B .x -3y -6=0 C .x +3y -4=0 D .x +3y -6=0 答案 D解析 圆C :x 2+y 2-4x =0可化为(x -2)2+y 2=4,则圆心C (2,0), 直线PC 的斜率为k PC =0-32-3=3,∵l ⊥PC ,则直线l 的斜率为k =-1k PC =-33,∴直线l 的点斜式方程为y -3=-33(x -3),化为一般式得x +3y -6=0. 5.(2020·长沙模拟)已知直线l 过点A (a,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( ) A .3 2 B .±3 2 C .±2 D .± 2答案 D解析 直线l 的方程为y =x -a ,即x -y -a =0.圆上恰有三个点到直线l 的距离为1,可知圆心到直线的距离等于半径的一半,即|a |2=1,a =± 2.6.已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|PA →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4 D .226+2 答案 C解析 取AB 的中点D (2,-3), 则PA →+PB →=2PD →,|PA →+PB →|=|2PD →|,又由题意知,圆C 的圆心C 的坐标为(1,2),半径为2, |PD →|的最大值为圆心C (1,2)到D (2,-3)的距离d 再加半径r , 又d =1+25=26,∴d +r =26+2, ∴|2PD →|的最大值为226+4, 即|PA →+PB →|的最大值为226+4.7.(2020·北京市陈经纶中学月考)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A ,B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆,若两定点A ,B 的距离为3,动点M 满足|MA |=2|MB |,则M 点的轨迹围成区域的面积为( )A .πB.2πC.3πD.4π 答案 D解析 以A 为原点,直线AB 为x 轴建立平面直角坐标系(图略),则B (3,0).设M (x ,y ),依题意有,x 2+y 2x -32+y2=2,化简整理得,x 2+y 2-8x +12=0,即(x -4)2+y 2=4,则M 点的轨迹围成区域的面积为4π.8.(2020·辽宁省大连一中模拟)已知圆C :x 2+y 2=4,直线l :x -y +6=0,在直线l 上任取一点P 向圆C 作切线,切点为A ,B ,连接AB ,则直线AB 一定过定点( )A.⎝ ⎛⎭⎪⎫-23,23 B .(1,2)C .(-2,3) D.⎝ ⎛⎭⎪⎫-43,43 答案 A解析 设点P (x 0,y 0),则x 0-y 0+6=0.过点P 向圆C 作切线,切点为A ,B ,连接AB ,以CP 为直径的圆的方程为x (x -x 0)+y (y -y 0)=0,又圆C :x 2+y 2=4,作差可得直线AB 的方程为xx 0+yy 0=4,将y 0=x 0+6,代入可得(x +y )x 0+6y -4=0,满足⎩⎪⎨⎪⎧x +y =0,6y -4=0⇒⎩⎪⎨⎪⎧x =-23,y =23,故直线AB 过定点⎝ ⎛⎭⎪⎫-23,23.二、多项选择题9.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是( ) A .3B .5C .7D .9 答案 AC解析 圆x 2+y 2=4的圆心是O (0,0),半径为R =2,圆(x -3)2+(y -4)2=r 2的圆心是C (3,4),半径为r ,|OC |=5,当2+r =5,r =3时,两圆外切,当|r -2|=5,r =7时,两圆内切,它们都只有一个公共点,即集合A ∩B 中只有一个元素. 10.下列说法正确的是( )A .直线x -y -2=0与两坐标轴围成的三角形的面积是2B .点P (0,2)关于直线y =x +1的对称点为P ′(1,1)C .过P 1(x 1,y 1),P 2(x 2,y 2)两点的直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1D .经过点(1,1)且在x 轴和y 轴上截距都相等的直线方程为x +y -2=0 答案 AB解析 选项A 中直线x -y -2=0在两坐标轴上的截距分别为2,-2,所以围成的三角形的面积是2,所以A 正确;选项B 中PP ′的中点⎝⎛⎭⎪⎫0+12,2+12在直线y =x +1上,且P (0,2),P ′(1,1)两点连线的斜率为-1,所以B 正确;选项C 中需要条件y 2≠y 1,x 2≠x 1,所以C 错误;选项D 中还有一条截距都为0的直线y =x ,所以D 错误.11.已知圆C 1:(x +6)2+(y -5)2=4,圆C 2:(x -2)2+(y -1)2=1,M ,N 分别为圆C 1和C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的值可以是( ) A .6B .7C .10D .15 答案 BCD解析 圆C 2关于x 轴的对称圆C 3为(x -2)2+(y +1)2=1,圆心C 3(2,-1),r 3=1,点N 关于x 轴的对称点N ′在圆C 3上,又圆C 1的圆心C 1(-6,5),r 1=2,∴|PM |+|PN |=|PM |+|PN ′|≥|PC 1|-r 1+|PC 3|-r 3=|PC 1|+|PC 3|-3≥|C 1C 3|-3=2+62+-1-52-3=7,∴|PM |+|PN |的取值范围是[7,+∞).12.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( ) A .(0,2) B .(1,2-1) C .(2,0) D .(2-1,1)答案 AC 解析如图所示,坐标原点O 到直线l :x +y -2=0的距离d =212+12=1,则直线l 与圆x 2+y2=1相切,由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值,连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ为正方形,所以|OA |=2|OP |= 2.设A (t ,2-t ),由两点间的距离公式得|OA |=t 2+2-t2=2,整理得t 2-2t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0). 三、填空题13.若直线l :x a +y b=1(a >0,b >0)经过点(1,2),则直线l 在x 轴、y 轴上的截距之和的最小值是________. 答案 3+2 2解析 因为直线l :x a +y b=1(a >0,b >0)经过点(1,2),所以1a +2b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+22,当且仅当a =2+1,b =2+2时等号成立.所以直线在x 轴、y 轴上的截距之和的最小值是3+2 2.14.已知⊙O :x 2+y 2=1.若直线y =kx +2上总存在点P ,使得过点P 的⊙O 的两条切线互相垂直,则实数k 的取值范围是______________________. 答案 (-∞,-1]∪[1,+∞)解析 ∵⊙O 的圆心为(0,0),半径r =1, 设两个切点分别为A ,B ,则由题意可得四边形PAOB 为正方形, 故有|PO |=2r =2,∴圆心O 到直线y =kx +2的距离d ≤2, 即|2|1+k2≤2,即1+k 2≥2,解得k ≥1或k ≤-1.15.(2020·石家庄长安区期末)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,当△AOB 的面积达到最大时,k =________. 答案 ±1解析 由圆O :x 2+y 2=1,得到圆心坐标为O (0,0),半径r =1,把直线l 的方程y =kx +1(k ≠0),整理为一般式方程得l :kx -y +1=0,圆心O (0,0)到直线AB 的距离d =1k 2+1,弦AB 的长度|AB |=2r 2-d 2=2k 2k 2+1,S △AOB =12×2k 2k 2+1×1k 2+1=|k |k 2+1=1|k |+1|k |,又因为|k |+1|k |≥2|k |·1|k |=2,S △AOB ≤12,当且仅当|k |=1|k |,即k =±1时取等号,S △AOB 取得最大值,最大值为12,此时k =±1.16.已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的两点A (x 1,y 1),B (x 2,y 2),给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确的结论是________.(填序号)答案 ①②③解析 公共弦所在直线的方程为2ax +2by -a 2-b 2=0, 所以有2ax 1+2by 1-a 2-b 2=0,②正确; 又2ax 2+2by 2-a 2-b 2=0,所以a (x 1-x 2)+b (y 1-y 2)=0,①正确;AB 的中点为直线AB 与直线C 1C 2的交点,又AB :2ax +2by -a 2-b 2=0,C 1C 2:bx -ay =0.由⎩⎪⎨⎪⎧2ax +2by -a 2-b 2=0,bx -ay =0得⎩⎪⎨⎪⎧x =a2,y =b2.。
【知识梳理】解析几何的20个微专题(附高考数学真题讲析)
【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。
高考数学-平面解析几何(含22年真题讲解)
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习解析几何Document number【980KGB-6898YT-769T8CB-246UT-18GG08】专题复习讲座(四)--------解析几何俗话说:“知己知彼,才能百战百胜”,这一策略,同样可以用于高考复习之中。
我们不仅要不断研究教学大纲、考试说明和教材,而且还必须研究历年高考试题,从中寻找规律,这样才有可能以不变应万变,才有可能在高考中取得优异成绩。
纵观近几年的高考解析几何试题,可以发现有这样的规律:小题灵活,大题稳定。
一、解决解析几何问题的几条原则1.重视“数形结合”的数学思想 2.注重平面几何的知识的应用 3.突出圆锥曲线定义的作用二、解析几何中的一类重要问题直线有圆锥曲线的位置关系问题是解析几何中的一类重要问题,它是我们解决解析几何其他问题的基础。
我们必须熟悉直线与三种圆锥曲线的位置关系,熟练掌握直线和圆锥曲线相交所所产生的有关弦长、弦的中点以及垂直等基本问题的基本解法。
特别要重视判别式的作用,力争准确地解决问题。
弦长问题:|AB|=]4))[(k 1(212212x x x x -++。
弦的中点问题:中点坐标公式-----注意应用判别式。
三、高考解析几何解答题的类型与解决策略Ⅰ.求曲线的方程 1.曲线的形状已知 这类问题一般可用待定系数法解决。
例1 :已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
分析:曲线的形状已知,可以用待定系数法。
设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0).设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:A /(12,11222+-+-k k k k ),B /(1)1(8,116222+-+k k k k )。
因为A /、B /均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552.所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x.例2:在面积为1的△PMN 中,tanM=21,tanN=-2,建立适当的坐标系,求出以M 、N 为焦点且过点P 的椭圆方程。
分析:此题虽然与例1一样都是求形状已知的曲线方程问题,但不同的是例1是在给定的坐标系下求曲线的标准方程,而此题需要自己建立坐标系。
为使方程简单,应以MN 所在直线为x 轴,以MN 的垂直平分线为y 轴。
这样就可设出椭圆的标准方程,其中有两个未知数。
1315422=+y x 2.曲线的形状未知-----求轨迹方程例3 :已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。
分析:如图,设MN 切圆C 于点N ,则动点M 组成的集合是:P={M||MN|=λ|MQ|},由平面几何知识可知:|MN|2=|MO|2-|ON|2=|MO|2-1,将M 点坐标代入,可得:(λ2-1)(x 2+y 2)-4λ2x+(1+4λ2)=0. 当λ=1时它表示一条直线;当λ≠1时,它表示圆。
这种方法叫做直接法。
例4 :给出定点A (a,0)(a>0)和直线L :x=-1,B 是直线L 上的动点,∠BOA的角平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系。
分析:设C (x,y ),B(-1,b).则直线OB 的方程为:y=-bx.由题意:点C到OA 、OB 的距离相等,且点C 在线段AB 上,所以⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤---=++=a x a x a x b y b bx y y 0)(1||||2⇒y 2[(1-a)x 2-2ax+(1+a)y 2]=0 若,y ≠0,则(1-a)x 2-2ax+(1+a)y 2=0(0<x<a);若y=0,则b=0,∠AOB=180o,点C 的坐标为(0,0),也满足上式。
所以,点C 的轨迹方程为(1-a)x 2-2ax+(1+a)y 2=0(0≤x<a)。
当a=1时,方程表示抛物线弧;当0<a<1时,方程表示椭圆弧;当a>1时,方程表示双曲线一支的弧。
一般地,如果选择了m 个参数,则需要列出m+1个方程。
例5 :已知椭圆1162422=+y x 和直线L:1812=+y x ,P 是直线L 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上,且满足|OQ| |OP|=|OR|2,当点P 在L 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线。
分析:设Q(x,y),P(x P ,y P ),R(x R ,y R ), 则⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=+=⇒⎪⎪⎭⎪⎪⎬⎫==++=+=⇒⎪⎪⎭⎪⎪⎬⎫==+22222222223248,3248116243224,32241812y x y y y x x x xy x y y x y x y y y x x x xy x y y x R R R R R R PP P P P P ,代入 222222R R P P y x y x y x +=+⋅+,得:52(x-1)2+53(y-1)2=1.注意:若将点P 、Q 、R 分别投影到x 轴上,则式子222222R R P P y x y x y x +=+⋅+可用|x| |x P |=|x R 2|代替,这样就简单多了。
Ⅱ.研究圆锥曲线有关的问题 1.有关最值问题 例6 :设椭圆中心为坐标原点,长轴在x 上,离心率e=23,已知点P (0,23)到这个椭圆上的点的最远距离是7,求这个椭圆方程,并求椭圆上到点P 的距离等于7的点的坐标。
分析:最值问题,函数思想。
关键是将点P 到椭圆上点的距离表示为某一变量是函数,然后利用函数的知识求其最大值。
设椭圆方程为12222=+by a x ,则由e=23得:a 2=4b 2,所以x 2=4b 2-4y 2.设Q(x,y)是椭圆上任意一点,则:|PQ|=22)23(-+y x =49433)23(4422222++--=-+-b y y y y b (-b ≤y ≤b).若b<21,则-21<-b,当y=-b 时|PQ|max =749349433222=+-=++--b b b b b .解得:b=7-23>21与b<21矛盾;若b ≥21,则当y=-21时|PQ|max =7342=+b ,解得:b=1,a=2. 2.有关范围问题例7 (2001春季高考题)已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B ,|AB|≤2p 。
(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。
或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
解:(1)直线L 的方程为:y=x-a,将y=x-a 代入抛物线方程y 2=2px,得:设直线L 与抛物线两交点的坐标分别为A (x 1,y 1),B(x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+221212)(204)(4ax x p a x x a p a ,又y 1=x 1-a,y 2=x 2-a, ,2)2(80,0)2(8,2||0)2(8]4)[(2)()(||21221221221p a p p a p p p AB a p p x x x x y y x x AB ≤+<∴>+≤<+=-+=-+-=∴解得:.42p a p -≤<-(2)设AB 的垂直平分线交AB 与点Q ,令其坐标为(x 3,y 3),则由中点坐标公式得:p a x x x +=+=2213,.2)()(221213p a x a x y y y =-+-=+=所以|QM|2=(a+p-a)2+(p-0)2=2p 2.又△MNQ 为等腰直角三角形,所以|QM|=|QN|=P 2,所以S △NAB =22222||22||||21p p p AB p QN AB =⋅≤⋅=⋅,即△NAB 面积的最大值为P 22。
例8 :已知椭圆)0(12222>>=+b a b y a x ,A,B 是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点P(x 0,0),证明:ab a x a b a 22022-<<--. 分析:欲证x 0满足关于参数a 、b 的不等式,须从题中找出不等关系,由椭圆的性质可知,椭圆上的点的坐标满足如下条件:-a ≤x ≤a,因此问题转化为寻求x 0与x 的关系。
由题设知,点P 在线段AB 的垂直平分线上,所以|AP|=|BP|,若设A (x 1,y 1),B(x 2,y 2),则有:(x 1-x 0)2-y 12=(x 2-x 0)2-y 22,因为点A 、B 在椭圆上,所以,22222222122221,x ab b y x a b b y -=-=,从而由-a ≤x 1≤a,-a ≤x 2≤a,可得:ab a x a b a 22022-<<--例9 (2000年高考题)已知梯形ABCD 中,|AB|=2|CD|,点E 满足→→=EC AE λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332≤≤λ时,求双曲线离心率e 的取值范围。
分析:显然,我们只要找到e 与λ的关系,然后利用解不等式或求函数的值域即可求出e 的范围。
解:如图建立坐标系,这时CD ⊥y 轴, 因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称。
依题意,记A(-C,0),C(,2Ch),E(x 0,y 0),其中c=||21AB 为双曲线的半焦距,h 是梯形的高。
由→→=EC AE λ,即(x 0+c,y 0)= λ(2c-x 0,h-y 0)得:x 0=λλλλ+=⋅+-1)1(2)2(0h y c .设双曲线的方程为12222=-by a x ,则离心率e=a c。
由点C 、E 在双曲线上,将点C 、E 的坐标和e=ac代入双曲线的方程得⎪⎪⎩⎪⎪⎨⎧----------=+-+--------------------=-)2(1)1()12(4)1(1422222222bh e bh e λλλλ 将(1)式代入(2)式,整理得42e (4-4λ)=1+2λ,故λ=1232+-e .依题设4332≤≤λ得432e 3- 1322≤+≤,解得107≤≤e .所以双曲线的离心率的取值范围是107≤≤e .例10 已知抛物线y 2=2px (p ≠0)上存在关于直线x+y=1对称的相异两点,求p 的取值范围。