武汉市中考数学试卷分析

合集下载

2020年湖北省武汉市中考数学试卷和答案解析

2020年湖北省武汉市中考数学试卷和答案解析

2020年湖北省武汉市中考数学试卷和答案解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣解析:由相反数的定义可知:﹣2的相反数是2.参考答案:解:实数﹣2的相反数是2,故选:A.点拨:本题考查相反数的定义;熟练掌握相反数的定义是解题的关键.2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2解析:根据二次根式有意义的条件可得x﹣2≥0,再解即可.参考答案:解:由题意得:x﹣2≥0,解得:x≥2,故选:D.点拨:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6解析:分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.参考答案:解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.点拨:本题考查了随机事件、必然事件、不可能事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.4.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.解析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.参考答案:解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.点拨:此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看上下各一个小正方形.故选:A.点拨:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解析:根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.参考答案:解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k <0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a >1解析:根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.参考答案:解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.点拨:此题主要考查了反比例函数的性质,关键是掌握当k<0时,在图象的每一支上,y随x的增大而增大.8.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38解析:根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.参考答案:解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.点拨:此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.9.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解析:连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF =CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC =DF,从而求得BC=DF=2,利用勾股定理即可求得AC.参考答案:解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.点拨:本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.10.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48解析:对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.参考答案:解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.点拨:此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是3.解析:根据二次根式的性质解答.参考答案:解:==3.故答案为:3.点拨:解答此题利用如下性质:=|a|.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5.解析:根据中位数的定义求解可得.参考答案:解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.点拨:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)计算﹣的结果是.解析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.参考答案:解:原式=﹣===.故答案为:.点拨:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE =BE,∠D=102°,则∠BAC的大小是26°.解析:根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.参考答案:解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.点拨:本题考查了平行四边形的性质,三角形的内角和定理,三角形外角的性质,正确的识别图形是解题的关键.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).解析:根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.参考答案:解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.点拨:本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M 处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解析:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.参考答案:解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.点拨:本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.解析:原式中括号中利用同底数幂的乘法,积的乘方与幂的乘方运算法则计算,合并后利用单项式除以单项式法则计算即可求出值.参考答案:解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.点拨:此题考查了整式的除法,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.解析:根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.参考答案:证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.点拨:本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的性质和平行线的性质.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是6°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?解析:(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.参考答案:解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.解析:(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.参考答案:解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:点拨:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O 交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.解析:(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD =BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.参考答案:(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和解直角三角形.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A 城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B 城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B 两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).解析:(1)利用待定系数法即可求出a,b的值;(2)先根据(1)的结论得出y与x之间的函数关系,从而可得出A,B两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,从而可得关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案.参考答案:解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m >2时,A,B两城总运费的和为(10m+110)万元.点拨:本题考查了待定系数法求二次函数的解析式、二次函数及一次函数在实际问题中的应用,理清题中的数量关系并明确一次函数和二次函数的相关性质是解题的关键.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD ∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.解析:问题背景由题意得出,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC∽△MDA,由相似三角形的性质得出,证明△BDM∽△CDA,得出,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.参考答案:问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.点拨:此题是相似形综合题,考查了直角三角形的性质,勾股定理,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.解析:(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A (a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A 的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.参考答案:解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.点拨:本题是一个二次函数综合题,主要考查了平移的性质,二次函数的性质,等腰直角三角形的性质,全等三角形的性质与判定,待定系数法,求函数图象的交点问题,第(2)小题关键是证明三角形全等,第(3)题关键是求出M、N点的坐标及直线MN的解析式.。

2019年湖北省武汉市黄陂区中考数学调研试卷(4月份)(有答案含解析)

2019年湖北省武汉市黄陂区中考数学调研试卷(4月份)(有答案含解析)

2019年湖北省武汉市黄陂区中考数学调研试卷(4月份)一.选择题(共10小题,满分30分,每小题3分)1.在数轴上点M表示的数为﹣2,与点M距离等于3个单位长度的点表示的数为()A.1B.﹣5C.﹣5或1D.﹣1或52.若分式有意义,则x的取值范围是()A.x≠﹣3B.x≥﹣3C.x≠﹣3且x≠2D.x≠23.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.124.据统计,我市今年十一月份日平均气温的分布情况如下表,其中频数最高的气温(℃)是()A.17B.16C.15D.145.下列计算正确的是()A.b4•b4=2b4B.(x3)3=x6C.70×8﹣2=D.(﹣bc)4÷(﹣bc)2=﹣b2c26.如图,边长均为1个单位的正方形组成的方格纸内有一张笑脸图案,已知左眼的坐标是(﹣1,0),那么右眼关于鼻子所在的水平线对称的点的坐标是()A.(1,﹣2)B.(1,﹣1)C.(﹣1,0)D.(﹣1,﹣2)7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8B.10C.21D.229.某校初一(1)班的同学要从10名候选人中投票选举班干部.如果每个同学必须投票且只能投票选举两候选人,若要保证必有两个及以上的同学投相同的两名候选人的票,那么这个班的同学至少应有()A.10人B.11人C.45人D.46人10.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB,∠COD,且∠AOB与∠COD互补,弦CD=8,则弦AB的长为()A.6B.8C.5D.5二.填空题(共6小题,满分18分,每小题3分)11.计算:×=12.如果≠0,那么代数式•(2m+n)的值是.13.某航班每次约有100名乘客,一次飞行中飞机失事的概率为P=0.00005.一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿40万人民币.平均来说,保险公司为了不亏本,至少应该收取保险费元每人.14.如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=,则AD的长为.15.在平面直角坐标系xOy中,已知点P(﹣2,1)关于y轴的对称点P′,点T(t,0)是x轴上的一个动点,当△P′TO是等腰三角形时,t的值是.16.已知二次函数y=x2﹣2x+m的图象与x轴交于A,B两点,若点A坐标为(﹣1,0),则点B 的坐标为.三.解答题(共8小题,满分72分)17.(8分)解方程组:18.(8分)如图,已知AP∥BC,∠PAB的平分线与∠CBA的平分线相交于点E,CE的连线交AP 于点D,求证:AD+BC=AB.19.(8分)《朗读者》自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写表格;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.20.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(8分)已知,△ABC内接于⊙O,点P是弧AB的中点,连接PA、PB;(1)如图1,若AC=BC,求证:AB⊥PC;(2)如图2,若PA平分∠CPM,求证:AB=AC;(3)在(2)的条件下,若sin∠BPC=,AC=8,求AP的值.22.(10分)如图,在平面直角坐标系中,反比例函数的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求直线AB的函数解析式.23.(10分)如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.24.(12分)如图,B(2m,0)、C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E、A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′;(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为M,过M作MN垂直y轴,垂足为N:①求a、b、m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为5,请你探究a的取值范围.2019年湖北省武汉市黄陂区中考数学调研试卷(4月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为﹣2加减3即可.【解答】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是﹣2+3=1;与点M距离等于3个单位长度的点在M左边时,该点表示的数是﹣2﹣3=﹣5,故选:C.【点评】本题考查数轴的相关知识.运用分类讨论和数形结合思想是解答此类问题的关键.2.【分析】直接利用分式的定义得出x+3≠0,进而得出答案.【解答】解:∵分式有意义,∴x+3≠0,解得:x≠﹣3.故选:A.【点评】此题主要考查了分式有意义的条件,正确掌握分式的定义是解题关键.3.【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.4.【分析】根据频数的定义结合表格中数据进而得出答案.【解答】解:由表格中数据可得:频数最高的气温(℃)是:16℃,出现9次.故选:B.【点评】此题主要考查了频数与频率,正确从表格中获取正确信息是解题关键.5.【分析】分别利用同底数幂的乘法运算法则以及幂的乘方运算和同底数幂的除法运算法则分别分析得出答案.【解答】解:A、b4•b4=b8,故此选项错误;B、(x3)3=x9,故此选项错误;C、70×8﹣2=,正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和同底数幂的除法运算等知识,正确掌握运算法则是解题关键.6.【分析】首先根据左眼的坐标建立平面直角坐标系,再找到B点的关于鼻子所在的水平线的对称点,然后再写出坐标即可.【解答】解:如图所示:右眼关于鼻子所在的水平线AB对称的点是B′,B′的坐标是(1,﹣2),故选:A.【点评】此题主要考查了坐标与图形的变化,关键是正确理解题意,建立平面直角坐标系.7.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.【分析】根据条形统计图得到数据的总个数,然后根据中位数的定义求解.【解答】解:∵共有4+10+8+6+2=30个数据,∴中位数为第15、16个数据的平均数,即中位数为=22,故选:D.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).9.【分析】首先根据组合求出10名任选2名的票数,那么这个班的同学最少人数就是票数+1.【解答】解:∵10名任选2名的组合共有种∵如果有45人参与投票,不能保证必有2人,因为可能恰好产生以上45种投票结果.∵为保障必有2人投同样的票∴至少有45+1=46人,故选:D.【点评】本题考查抽屉原理.解决本题的关键是结合组合知识,求得投票数.10.【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD,在Rt△ABE中利用勾股定理求解可得.【解答】解:解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===6,故选:A.【点评】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.【分析】先化简该分式,再设=k,则m=3k、n=2k,代入化简后的分式计算可得.【解答】解:原式=•(2m+n)=,设=k,则m=3k、n=2k,所以原式===,故答案为:.【点评】本题主要考查分式的乘除法,解题的关键是熟练掌握分式的乘除运算顺序和法则.13.【分析】先求出飞机失事时保险公司应赔偿的金额,再根据飞机失事的概率求出赔偿的钱数即可解答.【解答】解:每次约有100名乘客,如飞机一旦失事,每位乘客赔偿40万人民币,共计4000万元,一次飞行中飞机失事的概率为P=0.00005,故赔偿的钱数为40000000×0.00005=2000元,故至少应该收取保险费每人=20元.【点评】本题考查的是概率在现实生活中的运用,部分数目=总体数目乘以相应概率.14.【分析】由于AD∥BC,可得∠BCA=∠CAD,而∠ADC=∠BAC=90°,那么可证△ADC∽△CAB,于是AB:AC=CD:AD,这样不好计算,可对此式左右进行平方再计算,并把AC2=AD2+CD2代入,即可求出AD.【解答】解:如右图所示,∵AD∥BC,∴∠BCA=∠CAD,又∵∠ADC=∠BAC=90°,∴△ADC∽△CAB,∴AB:AC=CD:AD,∴AB2:AC2=CD2:AD2,又∵AC2=AD2+CD2,∴4:(AD2+3)=3:AD2,解得AD=3或﹣3(负数舍去).故答案是3.【点评】本题考查了平行线的性质、相似三角形的判定和性质、勾股定理.解题的关键是证明△ADC∽△CAB,并会对运用平方进行计算.15.【分析】点P′是已知点P(﹣2,1)关于y轴的对称,则点P′的坐标是(2,1),则OP′=,OP′是等腰三角形的底边或腰,应分几种情况讨论.【解答】解:由题可知,点P′的坐标是(2,1),则OP′==,(1)当OP′是等腰三角形的底边时,点T就是OP′的垂直平分线与x轴的交点,根据三角形相似可得:OT=;(2)当OP′是等腰三角形的腰时,若点O是顶角顶点,则点T就是以点O为圆心,以OP′为半径的圆与x轴的交点,则坐标是(4,0),则t的值是4,若点P′是顶角顶点,则点T就是以点P′为圆心,以OP′为半径的圆与x轴的交点,则坐标是(,0)或(﹣,0),则t的值是或﹣.由(1)(2)可知t的值是或4或或.【点评】解决本题的关键是正确认识到需要讨论,讨论等腰三角形的边应如何分类.16.【分析】根据二次函数y=x2﹣2x+m的图象与x轴交于A,B两点,点A坐标为(﹣1,0),可以求得m的值,从而可以得到该函数的解析式,进而求得点B的坐标.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴交于A,B两点,点A坐标为(﹣1,0),∴0=(﹣1)2﹣2×(﹣1)+m,解得,m=﹣3,∴y=x2﹣2x﹣3,当y=0时,0=x2﹣2x﹣3=(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴点B的坐标为(3,0),故答案为:(3,0).【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共8小题,满分72分)17.【分析】根据代入消元法解方程组即可.【解答】解:,由①可得:y=2x﹣3③,把③代入②可得:,解得:x=2,把x=2代入③得:y=1,所以方程组的解为:.【点评】本题考查了解二元一次方程组,根据代入消元法解方程组是解题关键.18.【分析】先在AB上截取AF=AD,连接EF,由AE平分∠PAB,利用SAS即可证得△DAE≌△FAE,继而可证得∠EFB=∠C,然后利用AAS证得△BEF≌△BEC,即可得BC=BF,继而证得AD+BC=AB.【解答】证明:如图,在AB上截取AF=AD,连接EF,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∵,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE,∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C,∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∵,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.19.【分析】(1)由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;(2)由平均数相等得前提下,中位数高的成绩好解答可得;(3)分别计算两班成绩的方差,由方差小的成绩稳定解答.【解答】解:(1)九(1)班5位同学的成绩为:75、80、85、85、100,∴其中位数为85分;九(2)班5位同学的成绩为:70、100、100、75、80,∴九(2)班的平均数为=85(分),其众数为100分,补全表格如下:(2)九(1)班成绩好些,∵两个班的平均数都相同,而九(1)班的中位数高,∴在平均数相同的情况下,中位数高的九(1)班成绩好些.(3)九(1)班的成绩更稳定,能胜出.∵S九(1)2=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),S九(2)2=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160(分2),∴S九(1)2<S九(2)2,∴九(1)班的成绩更稳定,能胜出.【点评】本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20.【分析】(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,根据购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元,列出方程组,然后求解即可;(2)设购买甲型设备m台,乙型设备(10﹣m)台,根据公司经预算决定购买节省能源的新设备的资金不超过110万元,列出不等式,然后求解即可得出购买方案;(3)根据甲型设备的产量为240吨/月,乙型设备的产量为180吨/月和总产量不低于2040吨,列出不等式,求出m的取值范围,再根据每台的钱数,即可得出最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出方程组和不等式.21.【分析】(1)根据弧、弦以及圆周角的关系得出AP=BP,利用全等三角形的判定和性质解答即可;(2)根据圆周角定理、弧、弦以及圆周角的关系得出∠ABC=∠ACB,利用等腰三角形性质解答即可;(3)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径定理的推论得到点O在AD 上,连结OB,根据圆周角定理和勾股定理解答即可.【解答】解:(1)∵点P是弧AB的中点,如图1,∴AP=BP,在△APC和△BPC中,∴△APC≌△BPC(SSS),∴∠ACP=∠BPC,在△ACE和△BCE中,∴△ACE≌△BCE(SAS),∴∠AEC=∠BEC,∵∠AEC+∠BEC=180°,∴∠AEC=90°,∴AB⊥PC;(2)∵PA平分∠CPM,∴∠MPA=∠APC,∵∠APC+∠BPC+∠ACB=180°,∠MPA+∠APC+∠BPC=180°,∴∠ACB=∠MPA=∠APC,∵∠APC=∠ABC,∴∠ABC=∠ACB,∴AB=AC;(3)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图2,由(2)得出AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC=,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵AC=8,∴AB=40x=8,解得:x=0.2,∴OB=5,BD=4.8,OD=1.4,AD=6.4,∵点P是的中点,∴OP垂直平分AB,∴AE=AB=4,∠AEP=∠AEO=90°,在Rt△AEO中,OE=,∴PE=OP﹣OE=5﹣3=2,在Rt△APE中,AP=.【点评】本题考查了圆的综合题,关键是根据弧、弦以及圆周角的关系,勾股定理、圆周角定理和解直角三角形进行解答.22.【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入得到方程组,求出方程组的解即可.【解答】解:(1)把A(1,2)代入y=得:k=1×2=2,∴反比例函数解析式为:.答:反比例函数解析式为.(2)∵B(m,n)在反比例函数上,∴y==n,=,∵S△ABC∴m=3,∴B的坐标为(3,,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:,∴,答:直线AB的函数解析式是y=﹣x+.【点评】本题主要考查对用待定系数法求一次函数、反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,解二元一次方程组等知识点的理解和掌握,能熟练地运用性质求函数的解析式是解此题的关键.23.【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在【解答】解:(1)若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,即:5﹣t=3t,解得t=1.25;故答案为:1.25;(2)分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=1.4;②若△EBF∽△GCF,则有,即,解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+.∴当t=1.4s或t=(﹣7+)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=3﹣3t,OM=2.5,由勾股定理得:OM2+FM2=OF2,即:2.52+(3﹣3t)2=(3t)2解得:t=;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,由勾股定理得:ON2+EN2=OE2,即:32+(2.5﹣t)2=(5﹣t)2解得:t=.∵≠,∴不存在实数t,使得点B′与点O重合.【点评】本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.24.【分析】(1)由B与C的坐标求出OB与OC的长,根据OC﹣OB表示出BC的长,由题意AB=2BC,表示出AB,得到AB=OB,即三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得:OD′=D′A′=m,即可确定出A′坐标;(2)△D′OE∽△ABC,理由如下:根据题意表示出A与B的坐标,由=,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入整理得到m与n的关系式,利用两边对应成比例且夹角相等的三角形相似即可得证;(3)①当E与原点重合时,把A与E坐标代入y=ax2+bx+c,整理即可得到a,b,m的关系式;②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为5,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+n过点E,A′,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为5,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=5,即m=1,当m=1时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=1,∴a=2,则抛物线与四边形ABCD有公共点时a的范围为≤a≤2.【点评】此题属于二次函数综合题,涉及的知识有:坐标与图形性质,等腰直角三角形的判定与性质,直线与抛物线的交点,以及二次函数的图象与性质,熟练掌握二次函数的性质是解本题的关键.。

2024年湖北省武汉市中考真题数学试卷含答案解析

2024年湖北省武汉市中考真题数学试卷含答案解析

2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。

在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。

试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。

与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。

试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。

例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。

填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。

在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。

因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。

2023年湖北省武汉市青山区中考数学备考训练试卷(一)及答案解析

2023年湖北省武汉市青山区中考数学备考训练试卷(一)及答案解析

2023年湖北省武汉市青山区中考数学备考训练试卷(一)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

1.(3分)实数﹣5的相反数是()A.﹣5B.C.﹣D.52.(3分)下列事件是必然事件的是()A.通常加热到100°C时,水沸腾B.篮球队员在罚球线上投篮一次,投中C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和为360°3.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字可以看成是轴对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x4÷x3=x25.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 6.(3分)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A.B.C.D.7.(3分)反比例函数y=的图象经过点A(﹣1,2),则当x>1时,函数值y的取值范围是()A.y>﹣1B.﹣1<y<0C.y<﹣2D.﹣2<y<0 8.(3分)从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取两张,则这两张卡片上面恰好写着“加”“油”两个字的概率是()A.B.C.D.9.(3分)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.和y2=﹣x﹣1B.和y2=﹣x+1C.和y2=﹣x﹣1D.和y2=﹣x+110.(3分)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卡的指定位置.11.(3分)2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为.12.(3分)五名同学在“爱心捐助”活动中,捐款数额分别为8,10,10,4,6(单位:元),这组数据的中位数是.13.(3分)计算:=.14.(3分)如图,某数学兴趣小组为测量教学楼CD的高,先在A处用高1.5米的测角仪测得教学楼顶端D的仰角∠DEG为30°,再向前走30米到达B处,又测得教学楼顶端D 的仰角∠DFG为60°,A、B、C三点在同一水平线上,则教学楼CD的高为米(结果保留根号).15.(3分)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x =1.有以下结论:①abc<0;②6a+c<0;③a+b≤m(am+b)(m为任意实数);④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确的是.(填写序号)16.(3分)如图,Rt△ABC中,∠ACB=90°,,BC=6.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,则△ACP的面积是.三、解答题(共8小题,共72分)17.(8分)解不等式组请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.18.(8分)如图,在四边形ABCD中,∠A=∠C,AD∥BC,BE平分∠ABC交AD于点E,交CD的延长线于点F.(1)求证:AB∥CD;(2)若∠2=28°,求∠1的度数.19.(8分)某校举行知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图.其中“60≤x<70”这组的数据如下:60,62,64,65,65,68.竞赛成绩分组统计表组别竞赛成绩分组频数1160≤x<708270≤x≤80a380≤x≤90b490≤x≤10010请根据以上信息,解答下列问题:(1)a=;(2)“60≤x<70”这组数据的众数是分;(3)第3组所在扇形的圆心角是°;(4)若学生竞赛成绩达到90分以上(含90分)获奖,请你估计全校1500名学生中获奖的人数.20.(8分)如图,已知AB是⊙O的直径,E为弦CD的中点.(1)求证:∠BOD=2∠BAC;(2)若CD=AC=4,求阴影部分的面积.21.(8分)如图,是由小正方形组成的7×7网格,每个小正方形的顶点叫做格点.△ABC 的三个顶点都是格点.D是AC与网格线的交点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图1中,将线段AB绕点A逆时针旋转90°得到线段AM;在AC上画点N,使.(2)在图2中,在AB上取点E,使得DE∥BC,作点A关于BC的对称点F.22.(10分)小亮创办了一个微店商铺,营销一款小型LED护眼台灯,成本是20元/盏,在“双十一”前20天进行了网上销售后发现,该台灯的日销售量p(盏)与时间x(天)之间满足一次函数关系,且第1天销售了78盏,第2天销售了76盏.护眼台灯的销售价格y(元/盏)与时间x(天)之间符合函数关系式y=x+25(1≤x≤20,且x为整数).(1)求日销售量p(盏)与时间x(天)之间的函数关系式;(2)在这20天中,哪天的日销售利润最大?最大日销售利润是多少?(3)“双十一”当天,小亮采用如下促销方式:销售价格比前20天中最高日销售价格降低a元;日销售量比前20天最高日销售量提高了7a盏;日销售利润比前20天中的最大日销售利润多了30元,求a的值.注:销售利润=售价﹣成本.23.(10分)(1)已知,直线AC与BD交于点O.①如图1,若∠A=∠D,求证:AO•CO=BO•DO;②如图2,若∠A+∠D=180°,求证:;(2)如图3,在△ABC中,∠A=60°,E为BD中点,且∠BEC=120°,DE:CD=1:n.则AB:CE=.24.(12分)已知二次函数y=ax2+6的图象经过点P(4,2),直线AB与抛物线相交于A、B两点.(1)求抛物线的解析式;(2)如图1,若直线AB的解析式为y=kx﹣4k﹣3,且△PAB的面积为35,求k的值;(3)如图2,若∠APB=90°,则直线AB必经过一个定点C,求点C的坐标.2023年湖北省武汉市青山区中考数学备考训练试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。

湖北省武汉市2021年中考数学试题真题(Word版,含答案与解析)

湖北省武汉市2021年中考数学试题真题(Word版,含答案与解析)

湖北省武汉市2021年中考数学试卷一、单选题1.(2019·朝阳)3的相反数是( )A. 3B. -3C. 13 D. −13 【答案】 B【考点】相反数及有理数的相反数【解析】【解答】解:根据相反数的定义知:3的相反数是-3, 故答案为:B.【分析】只有符号不同的两个数叫作互为相反数,根据定义即可直接得出答案. 2.(2021·武汉)下列事件中是必然事件的是( ) A. 抛掷一枚质地均匀的硬币,正面朝上 B. 随意翻到一本书的某页,这一页的页码是偶数 C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级 【答案】 D 【考点】随机事件【解析】【解答】解:A 、掷一枚质地均匀的硬币,正面向上是随机事件; B 、随意翻到一本书的某页,这一页的页码是偶数,是随机事件; C 、打开电视机,正在播放广告,是随机事件;D 、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件. 故答案为:D.【分析】必然事件是指一定会发生或一定不会发生的事件。

随机事件是指可能发生也可能不发生的事件.根据定义并结合各选项即可判断求解.3.(2021·武汉)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.【答案】 A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A 选项中的图形既是轴对称图形又是中心对称图形,故该选项正确; B 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确; C 选项中的图形是中心对称图形,不是轴对称图形,故该选项不正确; D 选项中的图形是轴对称图形,不是中心对称图形,故该选项不正确; 故答案为:A.【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形;根据定义并结合图形即可判断求解.4.(2021·武汉)计算 (−a 2)3 的结果是( )A. −a 6B. a 6C. −a 5D. a 5 【答案】 A 【考点】幂的乘方【解析】【解答】解: (−a 2)3=(−1)3·(a 2)3=−a 6 . 故答案为:A.【分析】根据幂的乘方法则“幂的乘方,底数不变,指数相乘”可求解.5.(2021·武汉)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A.B. C. D.【答案】 C【考点】简单组合体的三视图【解析】【解答】∵ 的主视图是 ,故答案为:C.【分析】 主视图是从物体正面看所得到的图形,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示,结合已知的几何体可求解.6.(2021·武汉)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )A. 13 B. 12 C. 23 D. 34 【答案】 C【考点】列表法与树状图法 【解析】【解答】解:画树状图如图:共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,俗好选出是一男一女两位选手的概率为 812=23 . 故答案为:C.【分析】由题意画出树状图,由树状图的信息可知共有12种等可能的结果,恰好选出是一男一女两位选手的结果有8种,然后根据概率公式可求解.7.(2021·武汉)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有 x 人,物价是 y 钱,则下列方程正确的是( ) A. 8(x −3)=7(x +4) B. 8x +3=7x −4 C. y−38=y+47D.y+38=y−47【答案】 D【考点】一元一次方程的实际应用-古代数学问题 【解析】【解答】解:设共有x 人,则有8x-3=7x+4 设物价是 y 钱,则根据可得:y +38=y −47故答案为:D.【分析】若设共有x 人,根据物价不变可列方程,即8x-3=7x+4;若设物价是y 钱,根据人数不变可列方程.8.(2021·武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A. 53hB. 32hC. 75hD. 43h【答案】 B【考点】一次函数的实际应用【解析】【解答】解:设慢车离甲地的距离 y (单位: km )与慢车行驶时间 t (单位: h )的函数关系为y=kt 过(6, a ), 代入得 a =6k ,解得 k =a6 , ∴慢车解析式为: y =a6x ,设快车从甲地到乙地的解析式 y =k 1x +b 1 ,过(2,0),(4, a )两点,代入解析式的 {2k 1+b 1=04k 1+b 1=a , 解得 {k 1=a2b 1=−a,快车从甲地到乙地的解析式 y =a2x −a , 设快车从乙地到甲地的解析式 y =k 2x +b 2 ,过(4, a ),(6,0)两点,代入解析式的 {6k 2+b 2=04k 2+b 2=a , 解得 {k 2=−a2b 2=3a, 快车从乙地到甲地的解析式 y =−a2x +3a ,快车从甲地到乙地与慢车相遇 {y =a6xy =a2x −a, 解得 {x =3y =a 2,快车从乙地到甲地与慢车相遇 {y =a6xy =−a2x +3a, 解得 {x =92y =3a 4,两车先后两次相遇的间隔时间是 92 -3= 32 h. 故答案为:B.【分析】设慢车离甲地的距离y (单位: km )与慢车行驶时间(单位: h )的函数关系为y=kt 过(6, a ),代入解析式可将k 用含a 的代数式表示,由题意用的待定系数法可求得快车从甲地到乙地的解析式;同理可求得快车从乙地到甲地的解析式;分别把慢车解析式和快车从甲地到乙地的解析式、慢车解析式和快车从乙地到甲地的解析式联立解方程组可求解.9.(2021·武汉)如图, AB 是 ⊙O 的直径, BC 是 ⊙O 的弦,先将 BC ⌢ 沿 BC 翻折交 AB 于点 D .再将 BD⌢ 沿 AB 翻折交 BC 于点 E .若 BE ⌢=DE ⌢ ,设 ∠ABC =α ,则 α 所在的范围是( )A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5° 【答案】 B【考点】圆心角、弧、弦的关系,翻折变换(折叠问题)【解析】【解答】解:将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O与⊙O′为等圆,劣弧AC与劣弧CD所对的角均为∠ABC,∴AC⌢=CD⌢.⌢=CD⌢.同理:DE又∵F是劣弧BD的中点,∴DE⌢=BE⌢.∴AC⌢=DC⌢=DE⌢=EB⌢.∴弧AC的度数=180°÷4=45°.∴∠B= 1×45°=22.5°.2∴α所在的范围是22.3°<α<22.7°;故答案为:B.【分析】如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α即可求解.10.(2021·武汉)已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是()A. -25B. -24C. 35D. 36【答案】 D【考点】一元二次方程的根,一元二次方程的根与系数的关系【解析】【解答】解:∵已知a,b是方程x2−3x−5=0的两根∴a2−3a−5=0,b2−3b=5,a+b=3∴2a3−6a2+b2+7b+1=2a(a2−3a−5)+(b2−3b)+10(a+b)+1=0+5+30+1=36.故答案为:D.【分析】由一元二次方程的根的定义和根与系数的关系可得:a2-3a-5=0,b2-3b-5=0,a+b=3,然后用整体的代换计算即可求解.二、填空题11.(2018八下·兴义期中)计算√(−5)2的结果是________【答案】5【考点】二次根式的性质与化简【解析】【解答】解:原式=|-5|=5故答案为:5【分析】根据二次根式的性质,一个数的平方的算术平方根,等于这个数的绝对值,即可得出答案。

中考数学试卷分析及教学建议

中考数学试卷分析及教学建议
(2)计算题 由以往的4小题变为3小题,分值由以往的18分变为14分;
(3)几何证明题 将以往第23、24题的几何证明题形式变为第23题的几何证
明与求解题形式,并从能力考查方面提高了学生对几何知识的 应用。
(4)生活问题解决 第24都是解决实际问题,分值均为8分;
(5)按值论分 由于解答题总分值不变,而题量变少,因此后三题总分值
1
市中考数学试卷充分体现了四个较好: (1)水平考试与选拔考试的兼顾; (2)课程标准和命题指导思想的遵循; (3)四基(基础知识、基本技能、基本思想、 基 本活动经验)与十个核心概念(数感、符号意识、空 间观念、几何直观、数据分析观念、运算能力、推理 能力、模型思想、应用意识和创新意识)的考查; (4)考试内容的要求(了解A、理解B、掌握C、运 用D)的四个层次的把握。
2.考查内容分布数据统计(从《课标》中的学习内容)
考查内容
题号
分值 百分比
数与代数 1,2, 4, 6, 8 ,9,10,11, 54 45%
13, 15,17 ,19,20,24, 27
图形与几何 3,5 ,7 ,12, 14, 16,18, 50 41.67%
23,25,26, 28
统计与概率
减少了所谓解题套路的灌输。 对比各年的中考试题,我们能够从中找到非常多的共性,不
少题目都能互相从中找到影子,体现为一种知识考查、思想方法 的延续和传承,同时,每年呈现在我们面前的试卷,都有让大家 眼前一亮、变中求新、值得细细品味其中独特的学科韵味的试题 ,不再例举。
34 28.3% 48 40% 38 31.7%
数学学科具有基础性、普及性、发展性,对学生的全面、
和谐、持续发展有重要意义,符合数学学科特点。

武汉市中考数学试卷分析

武汉市中考数学试卷分析
中,∠AFB与∠α 的数量关系是________________;在图5中,∠AFB与∠α 的数量关系是________________.请你任选其中一个结论证明.
D AF
AF
D
D
AF
B
C
图1
EB D
AF
C图2
EB
C 图3
E
D F
B
A
B
C 图4
E
C 图5
E
例7 (试卷第25题)如图1,在平面直角坐标系中, Rt△AOB≌Rt△CDA,且A
城市
平均气温(单位: ℃)
北京 -4.6
武汉 3.8
广州 13.1
哈尔滨 -19.4
其中气温最低的城市是 (A)北京. (B)武汉. (C)广州. (D)哈尔滨
例2 为了弘扬雷锋精神,某中学准备在校
园内建造一座高2m的雷锋人体雕像,向全
体师生征集设计方案.小兵同学查阅了有 关资料,了解到黄金分割数常用于人体雕 像的设计中.如图是小兵同学根据黄金分 割数设计的雷锋人体雕像的方案,其中雷 锋人体雕像下部的设计高度(精确到
40
40
30
29 24
20 10
17
16
12
10
7
0 0~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81~84 分数段 图1
表3:具体等级、位置值、分数区间对应关系如下:
等级 A+1 A+2 A+3 A1
A2
A3
B1
B2
B3
C1
C2
D
位置
1
2
3
4
5

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)及答案解析

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)及答案解析

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)1. −3相反数是( )A. 13B. −3 C. −13D. 32. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球3. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.4. 下列各式中计算结果为x6的是( )A. x2+x4B. x8−x2C. x2⋅x4D. x12÷x25. 如图所示的几何体的左视图是( )A.B.C.D.6. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是( )A. 14B. 13C. 12D. 347. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. {7x +7=y9(x −1)=yB. {7x +7=y9(x +1)=yC. {7x −7=y9(x −1)=yD. {7x −7=y9(x +1)=y8. 为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A. 503B. 18C. 553D. 209. 如图,线段AB =10,点C 、D 在AB 上,AC =BD =1.已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t(秒),两个圆锥的底面面积之和为S ,则S 关于t 的函数图象大致是( )A. B.C. D.10. 已知函数y=x−2与y=2022的图象交于点P(a,b),则代数式a3−a2+b2−2022a−xab的值是( )A. −2018B. 2026C. 6070D. −606211. 计算√9的结果是______.12. 学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级共售书50本,具体情况如下表:售价3元4元5元6元数目14本11本10本15本则在该班级所售图书价格组成的一组数据中,中位数是______.13. 已知反比例函数y=−a2−3(a为常数)图象上有三个点分别为:A(x1,y1),B(x2,y2),xC(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系的是______.(用“<”号连接)14. 如图,要测量楼房BC的高度,在热气球上的观测点A处测得楼顶B的俯角为30°,测得楼底C的俯角为60°,热气球与楼房的水平距离DC为90m,则楼房BC的高度为______m.(√3取1.732,按四舍五入法将结果保留整数位)15. 下列关于抛物线y=mx2−2x+1(m为常数,且m≠0)的四个结论:①若m>0,则抛物线与直线y=−2x−2没有公共点;②若m=1,则当x>1时,y随x的增大而减小;③若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;④当m的值变化时,抛物线的顶点始终在同一条直线上.其中正确的结论是______(填写序号).16. 如图,已知△ABC中,AB=BC=13,AC=10,O为边BC上一点,若⊙O分别与AC,AB相切于D,E,则⊙O的半径为______.17. 解不等式组{2x>x+1①,请按下列步骤完成解答:5x−4≥2x+5②(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为______.18. 已知:如图,D,E,F分别是AB,AC,BC上的点,DE//BC,∠ADE=∠EFC,求证:∠1=∠2.19. 为了解学生寒假阅读情况,某学校进行了问卷调查,对部分学生假期的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t(小时),阅读总时间分为四个类别:A(0<t<12),B(12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成如下两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为______;(2)补全条形统计图;(3)扇形统计图中α的值为______,圆心角β的度数为______;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?20. 如图,已知⊙O经过菱形ABCD的顶点A,C,且与CD相切,直径CF交AB于点E.(1)求证:AD与⊙O相切;(2)若DCCF =34,求AECE的值.21. 在如图的网格中建立平面直角坐标系,其中A(2,0),B(4,0),C(6,3),H(4,4),仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)将△ABC绕点H逆时针旋转90°,画出旋转后的△A1B1C1;(2)画出∠BAC的角平分线AD;(3)在线段AC上画点P,使得AP=AB;(4)若y轴上一点E,满足BE⊥AC,请直接写出点E的坐标:______.22. 北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−112x2+43x+43近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−18x2+bx+c运动.(1)当小张滑到离A处的水平距离为6米时,其滑行高度最大,为172米,直接写出b,c的值;(2)在(1)的条件下,当小张滑出后离A的水平距离为多少米时,他滑行高度与小山坡的竖直距离为43米?(3)小张若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求b,c的值或取值范围.23. 【问题背景】(1)如图1,在△ABC中,∠ABC=90°,BH⊥AC于H,求证:△AHB∽△BHC;【变式迁移】(2)如图2,已知∠ABC=∠D=90°,E为BD上一点,且AE=AB,若ABBC =45,求BECD的值;【拓展创新】(3)如图3,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E为边CD上一点,且AE=AB,BE⊥CD,直接写出DECE的值.24. 平面直角坐标系中,已知抛物线C1:y=−x2+(1+m)x−m(m为常数)与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.(1)若m=4,求点A,B,C的坐标;(2)如图1,在(1)的条件下,D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;(3)如图2,将抛物线C1向左平移n个单位长度(n>0)与直线AC交于M,N(点M在点N右边),CN,求m,n之间的数量关系.若AM=12答案和解析1.【答案】D【解析】【分析】本题主要考查了互为相反数的定义,熟记定义是解题的关键.根据只有符号不同的两个数互为相反数解答.【解答】解:−3相反数是3.故选:D.2.【答案】A【解析】【分析】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据白色的只有2个,不可能摸出3个白球进行解答.【解答】解:A.摸出的是3个白球是不可能事件,故A符合题意;B.摸出的是3个黑球是随机事件,故B不符合题意;C.摸出的是2个白球、1个黑球是随机事件,故C不符合题意;D.摸出的是2个黑球、1个白球是随机事件,故D不符合题意.故选:A.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2⋅x4=x2+4=x6,因此选项C符合题意;x12÷x2=x12−2=x10,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.5.【答案】B【解析】解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.根据左视图即从左边观察所得图形.本题主要考查简单组合体的三视图,解题的关键是掌握三视图的定义.6.【答案】C【解析】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.;所以颜色搭配正确的概率是12故选:C.根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=m n .7.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组;根据题意得出方程组是解决问题的关键.设该店有客房x 间,房客y 人;根据题意“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”得出方程组即可.【解答】解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:A .8.【答案】A【解析】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10−4=10−4=6(米/秒),则t =1006=503, 故选:A .根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t 的值.本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.9.【答案】D【解析】解:∵AB =10,AC =BD =1,∴CD =10−1−1=8,∴AP =t +1,PB =8−t +1=9−t ,设围成的两个圆锥底面圆半径分别为r 和R 则:2πr =60180π⋅(t +1);2πR =60180π⋅(9− t). 解得:r =t+16,R =9− t 6, ∴两个锥的底面面积之和为S =π(t+16)2+π(9−t 6)2 =π36(t 2+2t +1)+π36(t 2−18t +81) =π18(t 2−8t +41),根据函数关系式可以发现该函数图形是一个开口向上的二次函数.故选:D .先用t 的代数式表示出两个扇形的半径,根据扇形的弧长等于底面圆的周长求出两个圆锥底面圆的半径,最后列方出两个底面积之后关t 的函数关系式,根据关系式即可判断出符号题意的函数图形. 本题考查的是动点图象问题,涉及到扇形、圆锥有关知识,解决此类问题关键是:弄清楚题意思列出函数关系式.10.【答案】B【解析】解:∵函数y =x −2与y =2022x的图象交于点P(a,b), ∴b =a −2,ab =2022,∴a(a −2)=2022,整理得a 2=2a +2022,∴a 3−a 2+b 2−2022a −ab=a(2a +2022)−(2a +2022)+b 2−2022a −ab=2a 2+2022a −2a −2022−2022a +b(b −a)=2a 2−2a −2022−2b=2(2a +2022)−2a −2022−2b=4a +4044−2a −2022−2b=2(a −b)+2022=2×2+2022=2026.将P点坐标代入到两个解析式,可以的到ab=2022和b−a=−2,将代数式a3−a2+b2−2022a−ab变形,代入即可解决.本题考查的是反比例与一次函数的交点问题,关键步骤是将代数式进行准确变形,再运用整体思想进行代入,是本题的突破口.11.【答案】3【解析】解:∵32=9,∴√9=3.故填3.由√9表示9的算术平方根,根据算术平方根的定义即可求出结果.本题考查了算术平方根的定义.注意一个正数有两个平方根,它们互为相反数,其中正的平方根又叫做算术平方根.12.【答案】4.5元【解析】解:∵共有50本图书,∴从小到大排列第25本和第26本图书价格的平均值为中位数,即中位数为:4+52=4.5(元).故答案为:4.5元.根据中位数的概念求解.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】y2<y3<y1【解析】解:∵反比例函数y=−a 2−3x(a为常数)中,−a2−3<0,∴函数图象的两个分支分别位于第二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故答案为:y2<y3<y1.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】60√3【解析】解:过C作CE⊥AE于E,∵∠CAE=60°,∴∠CAD=30°,∵CD=90m,∴AC=2DC=180(m),在Rt△ACE中,∠AEC=90°,∠CAE=60°,AC=180m,∴CE=ACsin60°=180×√32=90√3(m),AE=12AC=90(m).在Rt△ABE中,∠AEB=90°,∠BAE=30°,∴BE=AEtan30°=90×√33=30√3(m).∴BC=EC−BE=90√3−30√3=60√3(m).故答案为:60√3.过C作CE⊥AE于E,求这栋楼的高度,即BC的长度,根据BC=CE−BE,在Rt△ACE和Rt△ABE 中分别求出CE,BE就可以.此题主要考查了仰角俯角问题,以及利用三角函数关系解直角三角形,题目难度不大,是中考中常考题型.15.【答案】①③④【解析】解:mx 2−2x +1=−2x −2,整理得mx 2+3=0,∵Δ=02−12m =−12m∴当m >0时,Δ<0,此时抛物线与直线y =−2x −2没有公共点,所以①正确;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,∵抛物线开口向上,∴当x >1时,y 随x 的增大而增大,所以②错误;∵抛物线与x 轴有两个交点,∴Δ=(−2)2−4m >0,解得m <1,∵x =0时,y =1>0;当x =1时,y =m −2+1=m −1<0,∴抛物线与x 轴有一个交点在点(0,0)与(1,0)之间,所以③正确;∵y =mx 2−2x +1=m(x −1m )2+1−1m ,∴抛物线的顶点坐标为(1m ,1−1m ),∴抛物线的顶点在直线y =−x +1上,所以④正确.故答案为:①③④.计算方程mx 2−2x +1=−2x −2的根的判别式得到Δ=−12m ,则当m >0时,Δ<0,于是可对①进行判断;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,则根据二次函数的性质可对②进行判断;根据根的判别式的意义得到Δ=(−2)2−4m >0,解得m <1,由于x =0时,y =1>0;当x =1时,y =m −1<0,从而可对③进行判断;利用配方法得到y =m(x −1m )2+1−1m ,抛物线的顶点坐标为(1m ,1−1m ),利用顶点的横纵坐标的和为1可得到抛物线的顶点在直线y =−x +1上,于是可对④进行判断.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了一次函数的性质和二次函数的性质.16.【答案】12023【解析】解:过点B作BF⊥AC于点F,连接OA,∵AB=BC=13,AC=10,BF⊥AC,∴AF=5,∴BF=√AB2−AF2=√132−52=12,∴S△ABC=12AC⋅BF=12×10×12=60,∵⊙O分别与AC,AB相切于D,E,∴OD⊥AC,OE⊥AB,∵S△ABC=S△AOB+S△AOC=12AB⋅OE+12AC⋅OD=12×13⋅OE+12×10⋅OE=132OE+5OE=232OE,∴232OE=60,∴OE=12023,故答案为:12023.过点B作BF⊥AC于点F,连接OA,根据等腰三角形的性质得到AF=5,根据勾股定理得到BF=12,根据三角形面积公式求解即可.此题考查了切线的性质、等腰三角形的性质,熟记切线的性质定理、等腰三角形的性质并作出合理的辅助线是解题的关键.17.【答案】x>1x≥3x≥3【解析】解:(Ⅰ)解不等式①,得x>1;(Ⅱ)解不等式②,得x≥3;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为x≥3,故答案为:x>1,x≥3,x≥3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】证明:∵DE//BC,∴∠ADE=∠ABC.∵∠ADE=∠EFC,∴∠ABC=∠EFC.∴AB//EF.∴∠1=∠2.【解析】先利用平行线的性质与已知,说明∠ABC与∠EFC的关系,再利用平行线的判定方法说明AB与EF的关系,最后利用平行线的性质得结论.本题考查了平行线的性质和判定,掌握“两直线平行,同位(内错)角相等”“同位角相等,两直线平行”是解决本题的关键.19.【答案】6020144°=60(人),【解析】解:(1)本次抽样的人数610%∴样本容量为60,故答案为:60;(2)C组的人数为40%×60=24(人),补全统计图如下:(3)A组所占的百分比为12×100%=20%,60∴a的值为20,β=40%×360°=144°,故答案为:20,144°;(4)总时间少于24小时的学生的百分比为12+18×100%=50%,60∴估计寒假阅读的总时间少于24小时的学生有2000×50%=1000(名),答:估计寒假阅读的总时间少于24小时的学生有1000名.(1)根据D组的人数和百分比即可求出样本容量;(2)根据C组所占的百分比即可求出C组的人数;(3)根据A组的人数即可求出A组所占的百分比,根据C组所占的百分比即可求出对应的圆心角;(4)先算出低于24小时的学生的百分比,再估算出全校低于24小时的学生的人数.本题主要考查统计图形的应用,能看懂统计图是关键,一般求总量所用的公式是一个已知分量除以它所占的百分比,第一问基本都是求总量,所以要记住,估算的公式是总人数乘以满足要求的人数所占的百分比,这两种问题中考比较爱考,记住公式,平时要多加练习.20.【答案】(1)证明:如图1,连接OA,OD,∵⊙O与CD相切,OC为半径,∴∠DCO=90°,∵⊙O经过菱形ABCD的顶点A,C,∴OA=OC,AD=CD,∵OD=OD,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD=90°,∵OA为半径,∴AD与⊙O相切;(2)解:如图2,连接OA,OD,AC,∵CO=12CF,DCCF=34,∴DC CO =32,∴tan∠CDO=COCD =23,∵DC=DA,OA=OC,∴OD垂直平分AC,∴∠CDO+∠ACE=90°,∵∠OCD=90°,∴∠DCA+∠ACE=90°,∴∠CDO=∠ACE,∴tan∠CDO=tan∠ACE=23,在Rt△CAE中,tan∠ACE=AECE =23.【解析】(1)连接OA,OD,根据⊙O与CD相切,OC为半径,得出∠DCO=90°,通过“SSS”证明△OAD≌△OCD(SSS),得出∠OAD=∠OCD=90°,即可证明AD与⊙O相切;(2)连接OA,OD,AC,由CO=12CF,DCCF=34,得出DCCO=32,进而得出tan∠CDO=COCD=23,由DC=DA,OA =OC ,得出OD 垂直平分AC ,得出∠CDO +∠ACE =90°,由∠OCD =90°,得出∠DCA +∠ACE =90°,得出∠CDO =∠ACE ,进而得出tan∠CDO =tan∠ACE =23,即可得出AE CE =23. 本题考查了菱形的性质,切线的判定与性质,熟练掌握菱形的性质,切线的判定与性质,正切的定义是解决问题的关键.21.【答案】(0,163)【解析】解:(1)如图所示△A 1B 1C 1即为所求;(2)如图所示,射线AD 即为所求;(3)如图所示,点P 即为所求作.(4)如图所示,点E 即为所求作;设点E 的坐标为(0,y),∵y 4=43,∴y =163,∴点E 的坐标为(0,163), 故答案为:(0,163). (1)利用旋转变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)根据角平分线的性质即可得到结论;(3)根据题意在线段AC 上符合条件的点P 即可;(4)根据垂线的性质作出图形即可.本题考查作图−旋转变换,角平分线的性质等知识,解题的关键是掌握旋转变换,正确作出图形,属于中考常考题型.22.【答案】解:(1)由题意可知抛物线C 2:y =−18x 2+bx +c 过点(0,4)和(6,172),将其代入得:{4=c 172=−18×62+6b +4, 解得,{c =4b =32. ∴b =32,c =4.(2)由(1)可得抛物线C2方程为:y=−18x2+32x+4,设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为43米,依题意得:−1 8m2+32m+4−(−112m2+43m+43)=43,(m+4)(m−8)=0,解得:m1=8,m2=−4(舍),故运动员运动的水平距离为8米时,运动员与小山坡的竖直距离为43米.(3)抛物线C1:y=−112x2+43x+43=−112(x−8)2+403,当x=8时,运动员到达坡顶,即−18×82+8b+4>3+403,∴b>6124.【解析】(1)根据题意将点(0,4)和(6,)代入C2求出b、c的值即可;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意列出方程,解出m即可;(3)求出山坡的顶点坐标为(8,403),根据题意即−18×82+8b+4>3+403,再解出b的取值范围即可.本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.23.【答案】解:(1)∵∠ABC=90°,BH⊥AC,∴∠AHB=∠BHC=90°,∠A+∠C=90°,∠A+∠ABH=90°,∴∠ABH=∠C,∴△AHB∽△BHC;(2)如图,过点A作AF⊥BE于点F,则∠AFB=90°,∵AE=AB,AF⊥BE,∴BF=EF=12BE,∵∠ABC=∠D=90°,∠AFB=90°,∴∠AFB=∠D=90°,∠ABF+∠CBD=90°,∠C+∠CBD=90°,∴∠ABF=∠C,∴△ABF∽△BCD,∴BF CD =ABBC,又∵ABBC =45,∴12BECD=45,∴BE CD =85;(3)如图,过点A作AH⊥BE于点H,延长BE,AD相交于点N,∵AE=AB,AH⊥BE,∴BH=EH=12BE,设BH=x(x>0),则EH=x,BE=2x,∵AH⊥BE,∠ABC=90°,BE⊥CD,∴∠AHB=∠BEC=90°,∠ABH+∠CBE=90°,∠C+∠CBE=90°,∴∠ABH=∠C,在△AHB与△BEC中,{∠AHB=∠BEC ∠ABH=∠CAB=BC,∴△AHB≌△BEC(AAS),∴AH=BE=2x,BH=CE=x,∵AH⊥BE,∠DAB=90°,∴∠AHB=∠NHA=90°,∠ABH+∠N=90°,∠N+∠NAH=90°,∴∠ABH=∠NAH,∴△AHB∽△NHA,∴AH NH =BHAH,∴2x NH =x2x,∴NH=4x,∴NE=NH−EH=4x−x=3x,∵∠DAB=∠ABC=90°,∴∠DAB+∠ABC=180°,∴AN//BC,∴∠N=∠CBE,又∵∠NED=∠BEC,∴△NED∽△BEC,∴DE CE =NEBE=3x2x=32.【解析】(1)利用同角的余角相等得∠ABH=∠C,即可证明结论;(2)过点A作AF⊥BE于点F,利用两个角相等证明△ABF∽△BCD,得BFCD =ABBC,从而得出答案;(3)过点A作AH⊥BE于点H,延长BE,AD相交于点N,设BH=x(x>0),则EH=x,BE=2x,首先利用AAS证明△AHB≌△BEC,得AH=BE=2x,BH=CE=x,再根据△AHB∽△NHA,得NH=4x,NE=NH−EH=4x−x=3x,最后根据△NED∽△BEC,进而解决问题.本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,利用前面探索的结论和方法解决新问题是解题的关键.24.【答案】解:(1)当m=4时,抛物线C1为y=−x2+5x−4,令x=0得y=−4,∴C(0,−4),令y=0得−x2+5x−4=0,解得x=1或x=4,∴A(1,0),B(4,0);答:A的坐标为(1,0),B的坐标为(4,0),C的坐标为(0,−4);(2)过D作DF⊥x轴于F,过A作AE⊥BC于E,如图:由(1)知A(1,0),B(4,0),C(0,−4),∴∠ABC=45°,AB=3,BC=4√2,在Rt△ABE中,AE=BE=√22AB=3√22,∴CE=BC−BE=5√22,∴tan∠ACB=AECE =3√225√22=35,∵∠DBA+∠ACB=90°,又∠DBA+∠BDF=90°,∴∠ACB=∠BDF,∴tan∠BDF =35, ∴BF DF =35, 设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,∴4−t−t 2+5t−4=35, 解得t =83或t =4(舍去), ∴D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,如图:∵抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),∴A(1,0),B(m,0),C(0,−m),将其向左平移n 个单位,得到的抛物线的解析式为y =−(x −m +n)(x −1+n),由C(0,−m)设直线AC 的解析式为y =px −m ,将A(1,0)代入得p −m =0,解得p =m ,∴直线AC 的解析式为y =mx −m ,由{y =mx −m y =−(x −m +n)(x −1+n),得x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,则x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,∵∠CNG =∠HMA ,∠H =∠CGN =90°,∴△CNG∽△AMH ,∵AM =12CN ,∴CN AM =NG MH =2,∴NG =2MH ,∴−x 2=2(x 1−1),即x 2=−2x 1+2,∴x 1+x 2=2−x 1,∴−2n +1=2−x 1,∴x 1=2n +1,∴x 2=−2x 1+2=−4n ,∵x 1⋅x 2=n 2−mn −n ,∴(2n +1)⋅(−4n)=n 2−mn −n ,∵n >0,∴整理得m =9n +3.【解析】(1)当m =4时,抛物线C 1为y =−x 2+5x −4,令x =0得y =−4,令y =0得−x 2+5x −4=0,即可解得A 的坐标为(1,0),B 的坐标为(4,0),C 的坐标为(0,−4);(2)过D 作DF ⊥x 轴于F ,过A 作AE ⊥BC 于E ,由A(1,0),B(4,0),C(0,−4),可得∠ABC =45°,AB =3,BC =4√2,即得AE =BE =√22AB =3√22,CE =BC −BE =5√22,从而tan∠ACB =AE CE =35=tan∠BDF =35,设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,可得4−t −t 2+5t−4=35,即可解得D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,由抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),知将其向左平移n 个单位的抛物线的解析式为y =−(x −m +n)(x −1+n),用待定系数法可求得直线AC 的解析式为y =mx −m ,根据x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,有x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,而CN AM =NG MH =2,可得NG =2MH ,即−x 2=2(x 1−1),即x 2=−2x 1+2,故x 1=2n +1,x 2=−2x 1+2=−4n ,代入x 1⋅x 2=n 2−mn −n 可得m =9n +3.本题考查二次函数综合应用,涉及锐角三角函数、三角形相似的判定与性质、一元二次方程根与系数的关系等知识,解题的关键是通过正确地作出辅助线,构造所需要的图形,从而列出方程,求得结果,此题综合性强,计算繁琐,属于考试压轴题.。

中考数学试卷分析(通用版)

中考数学试卷分析(通用版)

中考数学试卷分析一、数学试卷命题思路及试题结构特点试卷整体结构、基本题型、题量、难度及赋分办法基本符合学生实际情况,学生反映情况良好。

试卷的试题保持了注重考查基础知识、基本技能和数学思想方法的传统,做到了重点知识重点考的特色,并对应用数学的能力、综合运用数学知识分析问题、解决问题的能力做了重点的考查,适当考查了探索性试题。

为中考复习奠定了一定的基础,在面向全体学生打好共同基础的同时也给学有余力的学生留有充分发挥个人数学才能的空间。

同时对我校九年级数学教学具有一定的导向作用。

命题思路:贯彻《课程标准》的要求,试题源于课本,并适当拓宽加深,试题的编排具有起点低、坡度缓、难点分散等特点。

体现了对初中数学基础知识、基本技能和以思维为核心的数学能力的考查。

试卷分为选择、填空、解答题三个大题,共24题,满分120分。

1、填空题、选择题这部分试题在一定的广度和较浅的深度上重点考查数学基础知识、基本技能和基本数学方法。

并注意到适当增加思维量及运算量,考查学生的数学素质、思维品质、探索精神和学习能力。

特点:试题基本源于课本,既注意到知识的覆盖面,更重视了数学知识的内在联系,在一定程度上考查了知识的小综合能力和数学思想方法的运用。

试题在立意平淡中见精神,考查了九年级数学中最基础的部分。

个别题目的解答可以应用不同的方法,各种方法又有优劣之分,考生的差距不仅是会不会解,还有解题速度的快慢,即通过相对难度将考生加以区分。

其导向功能是:要求考生不仅要记住知识的结论,更要把握住概念、结论、方法的实质。

2、解答题考查学生综合运用所学数学知识分析、解决问题的能力,试题对考生应用数学的意识、探索、创新意识都提出了较高的要求。

对观察、分析、综合、概括能力以及推理计算能力的考查,体现了试题“高跷尾”的特点。

三、存在的主要问题及对策1,对初中数学中的概念、法则、性质、公式、的理解、存储、提取、应用均存在明显的差距。

不理解概念的实质,不理解知识形成产生过程,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算、推理发生错误。

2019年湖北省武汉市江夏区中考数学模拟试卷(5月份) 解析版

2019年湖北省武汉市江夏区中考数学模拟试卷(5月份) 解析版

2019年湖北省武汉市江夏区中考数学模拟试卷(5月份)一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.下列四个图形中,是轴对称图形的是()A.B.C.D.5.下列几何体的左视图为长方形的是()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.510.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.参考答案与试题解析一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.4.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.5.下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到各图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是=;故选:A.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:由图和题意可知,第一天产生新的微生物有6个标号,第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,而前四天所有微生物的标号共有3+6+12+24+48=93个,所以标号为100的微生物会出现在第五天.故选:C.9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.5【分析】先根据平移的性质求出平移后直线的解析式,由于,故可得出设B(a,n),D(3a,n﹣4),再根据反比例函数中k=xy为定值求出n.【解答】解:∵将直线y=n向下平移4个单位长度后,∴平移后直线的解析式为y=n﹣4,∵,∴CD=3AB,设B(a,n),D(3a,n﹣4),∵B、D在反比例函数的图象上,∴an=3a•(n﹣4)∴n=6故选:B.10.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+,∴y=x2+,故选:A.二.填空题(共6小题)11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是3.【分析】根据中位数的定义直接解答即可.【解答】解:把这些数从小到大排列为3,3,3,5,6,则这组数据的中位数是3;故答案为:3.13.计算:(1﹣)•=【分析】先计算括号内分式的减法,再计算乘法即可得.【解答】解:原式=(﹣)•=•=,故答案为:.14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为30°或150°.【分析】分两种情况,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD =30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:如图1,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,综上所述,等腰三角形ABC的顶角度数为30°或150°.故答案为:30°或150°.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是m=0或m>4.【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【解答】解:从图象可以看出当y=0时,y=|x2﹣2x﹣3|的x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.【分析】注意到∠BAE=∠BCD,于是作DF∥AC交BC于F,可得△ABE∼CFD,再根据相似三角形的性质列出比例方程解决问题.【解答】解:如图,作DF∥AC交BC于F.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠DFB=∠ACB=30°,∴BD=FD,∠ABE=∠CFD=120°,∵∠BAE=∠BCD,∴△ABE∼CFD,∴=,∵=,∴设AD=2x,BD=3x,∴AB=5x,DF=3x,BF=3x,BC=5x,CF=2x∴,解得x=,∴BC=5x=.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【分析】根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则逐一判断即可.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为=.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为5.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.【分析】(1)依据勾股定理即可得到AC的长;(2)取格点H、G,连AH交BC于点M,依据△ACH与△AGH全等,即可得到AM是∠BAC的平分线,连DG交AM于点P,则CP+DP的最小值等于线段DG的长.【解答】解:(1)由图可得,AC==5;故答案为:5;(2)如图取格点H、G,连AH交BC于点M,连DG交AM于点P,则CP+DP最小.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.【分析】(1)连接NO,过点O作OE⊥AC于点E,可得∠ABC=∠ACB,证明∠ACM =∠BCM=∠CBE,可得NO=EO,则结论得证;(2)过点M作MF⊥BC于点F,连结OM,ON,证得BM=BN=,设BC=a,CF =b,则MF=,BF=a﹣b,BM=,可得,解方程得b=,可求出答案.【解答】(1)证明:如图1,连接NO,过点O作OE⊥AC于点E,∵AB=AC,∴∠ABC=∠ACB,∵⊙O分别切AB于M,BC于N,∴∠ABO=∠CBO,∴∠ACM=∠BCM=∠CBE,∵ON⊥BC,OE⊥AC,∴NO=EO,∴AC是⊙O的切线;(2)解:如图2,过点M作MF⊥BC于点F,连结OM,ON,∵OM=ON,OB=OB,∴Rt△BOM≌Rt△BON(HL),∴BM=BN,∵OB=OC,ON⊥BC,∴BN=CN=BC,∴BC,∵,∴,∴sin=,设BC=a,CF=b,则MF=,BF=a﹣b,BM=,∵BF2+EM2=BM2,∴,解得b=或b=a(舍去).∴sin.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.【分析】(1)根据题意,可以列出相应的方程,从而可以求得A、B两市各需救灾物资多少吨;(2)根据题意,可以写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)根据题意,可以得到w与x的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m的取值范围.【解答】解:(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m=0,即m=10时无论如何调运,运费都一样.w=10200<10320,不合题意舍去;③当10﹣m<0,即m>10时,则w随x的增大而减小,∴x=260时,w有最小值,此时最小值是(10﹣m)×260+10200,∴(10﹣m)×260+10200≥10320,解得,m≤,又∵m>10,∴m≤不合题意,舍去.综上所述,0<m≤8,即m的取值范围是0<m≤8.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.【分析】(1)根据两边成比例夹角相等两三角形相似证明△ABD∽△ACB即可解决问题.(2)过点B作BG∥AC交FE的延长线于点G.证明△BDF≌△BEG(ASA),推出DF =EG,推出EF=GD,由BG∥AC推出=可得=.(3)如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ⊥BE 于J.利用相似三角形的性质求出AB,再证明CA=CB,再利用相似三角形的性质求出BD,解直角三角形求出FJ即可解决问题.【解答】(1)证明:如图1中,∵AB2=AD•AC即=,又∵∠A=∠A∴△ABD∽△ACB,∴∠ABD=∠C.(2)解:过点B作BG∥AC交FE的延长线于点G.∵BG∥AC,∴∠C=∠GBE,∵∠ABD=∠C,∴∠GBE=∠C=∠ABD,∵BD=BE,∴∠BDE=∠BED,∴∠BDF=∠BEG,∴△BDF≌△BEG(ASA),∴DF=EG,∴EF=GD,∵BG∥AC,∴=,即=.(3)解:如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ ⊥BE于J.∵AB2=AD•AC,AD=4.CD=5,∴AB2=4×9,∴AB=6,在Rt△AHC中,∵cos∠CAH==,∴AH=3,∴BH=AH=3,∵CH⊥AB,∴CA=CB,∴∠CAB=∠CBA,∵AD∥BG,∴=,∵FB=BG,∴AF=AD=4,∴BF=AB+AF=6+4=10,∵cos∠FBJ=cos∠BAC==,∴BJ=,∴FJ===,∵△ABD∽△ACB,∴=,∴=,∴BD=BE=6,∴S△BEF=•BE•FJ=×=20.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为(3,0).(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.【分析】(1)将A点坐标代入抛物线解析式中求出m的值,然后可将抛物线解析式写成交点式即可知道B点坐标.(2)先考虑M在y轴负半轴的情况,在y轴负半轴上截取OG=OA=1,连AG,可证△GMA∽△GAC,然后根据得出的等式列方程即可求出M点坐标,由对称性可直接写出另一种情况.(3)作EG⊥x轴于点G,FH⊥y轴于点H,由△EAG∽P AO得到线段比例等式推出OP 的长度,得出P点坐标,算出直线PB解析式,与抛物线解析式联立可求出F点横坐标,再由△PFH∽△PBO即可得到所求线段比.【解答】解:(1)将(﹣1,0)代入y=a(x2﹣2mx﹣3m2)得:1+2m﹣3m2=0,解得:m=1或m=﹣(舍),∴y=a(x2﹣2mx﹣3m2)=a(x+1)(x﹣3),∴B(3,0).故答案为:(3,0).(2)当am=1时,抛物线解析式为y=x2﹣2x﹣3,∴C(0,﹣3)∴OB=OC=3,∠ABC=45°,如图1,M在y轴负半轴上,在y轴负半轴上截取OG=OA=1,连AG,则∠AGO=45°=∠ABC,AG=,∴∠OCA+∠AMO=45°,又∵∠OCA+∠GAC=∠AGO=45°,∴∠AMG=∠GAC,又∵∠AGM=∠CGA,∴△GMA∽△GAC,∴AG2=MG•GC,又GC=OC﹣OG=2,设M(0,a)∴2=(﹣1﹣a)•2,∴a=﹣2,∴M的坐标为(0,﹣2).根据对称性可知(0,2)也符合要求.综上所述,满足要求的M点的坐标有:(0,﹣2)、(0,2).(3)由抛物线解析式可得:A(﹣m,0),B(3m,0).∵,∴,如图2,作EG⊥x轴于点G,FH⊥y轴于点H,则△EAG∽P AO,△PFH∽△PBO,∴===,∴AG=AO=m,OP=2EG,∴x E=﹣m,y E=am2,即EG=am2,∴OP=am2,∴P(0,﹣am2),又∵B(3m,0),∴直线PB的解析式为:y=amx﹣am2,∴amx﹣am2=a(x2﹣2mx﹣3m2),∴2x2﹣7mx+3m2=0,∴x1=3m(舍),x2=m,∴FH=m,∴===.。

历年湖北省武汉市中考数学试卷(含答案)

历年湖北省武汉市中考数学试卷(含答案)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A .B .C .D .8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt △CDF 中,cos ∠ADC=, ∴=,∵CD=5,∴DF=3,∴CF==4,∵S △CDE =6, ∴•ED•CF=6,∴ED==3,EF=ED +DF=6,∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=AB=6,AG==6,∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA , ∴=, ∴=,∴EG=9,∴BE=EG ﹣BG=9﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。

2020年湖北省武汉市中考数学模拟试卷(6)解析版

2020年湖北省武汉市中考数学模拟试卷(6)解析版

2020年湖北省武汉市中考数学模拟试卷(6)一、选择题(共9小题,每小题3分,共30分)1.(3分)方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9B.﹣9x C.9x D.﹣92.(3分)下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组3.(3分)抛物线y=2(x+3)2+5的对称轴是()A.x=3B.x=﹣5C.x=5D.x=﹣34.(3分)下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0 6.(3分)已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断7.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=328.(3分)如图,将△AOB绕点O按逆时针方向旋转55°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)抛物线y=ax2+bx+c(a>0),顶点纵坐标为﹣5.若|ax2+bx+c|=m有且只有两个不相等的实数根,则m的取值范围是()A.0<m<5B.m>5或m<0C.m>5或m=0D.m≥5或m=0二.填空题(共6小题,每小题3分,共18分)10.(3分)若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,m)、B(x1+x2,n)、C(x2,m),则n的值为.11.(3分)正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于.12.(3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.13.(3分)已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的侧面积为.14.(3分)已知函数y=,若使y=k成立的x值恰好有2个,则k 的值为.15.(3分)如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB =∠ACP,则点P运动的路径长为.三、解答题(共8题,共72分)16.(8分)解方程:x2﹣2x=2x+1.17.(8分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB =60°,求CD的长.18.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?19.(8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A (﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为.(2)要求在图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC 逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB.第二步:延长BC到格点E,使得CE=CB,连接AE.第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1.20.(8分)已知PA、PB分别与⊙O相切于A、B,连接OP.(1)如图1,AB交OP与点C,D为PB的中点,求证:CD∥PA,CD=PA;(2)如图2,OP交圆O与点E,EF⊥PB于点F,若PA=4,圆O的半径为2,求EF的长.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)22.(10分)已知,在△ABC中,∠ACB=30°(1)如图1,当AB=AC=2,求BC的值;(2)如图2,当AB=AC,点P是△ABC内一点,且PA=2,PB=,PC=3,求∠APC的度数;(3)如图3,当AC=4,AB=(CB>CA),点P是△ABC内一动点,则PA+PB+PC 的最小值为.23.(12分)二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y 轴交于点B(0,﹣3).(1)a=,c=;(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求PD+PC的最小值;=3,求点M的坐标.(3)如图2,点M在抛物线上,若S△MBC参考答案与试题解析一、选择题(共9小题,每小题3分,共30分)1.(3分)方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9B.﹣9x C.9x D.﹣9【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:4x2+9x﹣81=0,则一次项是9x,故选:C.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(a≠0).2.(3分)下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【分析】欲分析两个图形是否成中心对称,主要把一个图形绕一个点旋转180°,观察是否能和另一个图形重合即可.【解答】解:根据中心对称的概念,知②③④都是中心对称.故选:C.【点评】本题重点考查了两个图形成中心对称的定义.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(3分)抛物线y=2(x+3)2+5的对称轴是()A.x=3B.x=﹣5C.x=5D.x=﹣3【分析】根据题目中的函数解析式,可以得到该抛物线的对称轴,从而可以解答本题.【解答】解:∵抛物线y=2(x+3)2+5,∴该抛物线的对称轴是直线x=﹣3,故选:D.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.(3分)下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.【点评】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1、x2异号,结论D错误.综上即可得出结论.【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1、x2异号,结论D错误.故选:A.【点评】本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r <d时,点P在⊙O外.7.(3分)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.(3分)如图,将△AOB绕点O按逆时针方向旋转55°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【分析】根据旋转的性质得∠BOB′=55°,然后利用∠AOB′=∠BOB′﹣∠AOB进行计算即可.【解答】解:∵△AOB绕点O按逆时针方向旋转55°后得到△A′OB′,∴∠BOB′=55°,∴∠AOB′=∠BOB′﹣∠AOB=55°﹣15°=40°.故选:D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.9.(3分)抛物线y=ax2+bx+c(a>0),顶点纵坐标为﹣5.若|ax2+bx+c|=m有且只有两个不相等的实数根,则m的取值范围是()A.0<m<5B.m>5或m<0C.m>5或m=0D.m≥5或m=0【分析】利用图象法:首先得出新的函数图象的顶点坐标,再结合图象即可得出m的取值范围.【解答】解:由图象可知:将此抛物线在x轴下方的部分沿x轴往上翻折,得到一个新的函数图象的顶点的纵坐标为5,∵|ax2+bx+c|=m的图象是x轴上方部分(包含与x轴的两个交点),(1)当m=0时,|ax2+bx+c|=m有两个不相等的实数根,(2)在x轴上方时,只有m>5时,作平行于x轴的直线才会与图象有两个交点,∴m=0或m>5.故选:C.【点评】考查了抛物线与x轴的交点,解题的关键是利用图象法解决问题,体现了转化的思想,把求方程的根,转化为函数图象的交点问题.二.填空题(共6小题,每小题3分,共18分)10.(3分)若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,m)、B(x1+x2,n)、C(x2,m),则n的值为5.【分析】先根据点A,C的坐标,求出x1+x2=﹣2,代入二次函数解析式即可得出结论.【解答】解:∵A(x1,m)、C(x2,m)在二次函数y=2(x+1)2+3的图象上,∴=﹣1,∴x1+x2=﹣2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(﹣2+1)2+3=5,故答案为5.【点评】此题主要考查了二次函数图象上点的特点,二次函数的对称性,求出x1+x2=﹣2是解本题的关键.11.(3分)正n边形内接于半径为R的圆,这个n边形的面积为3R2,则n等于10.【分析】根据正n边形内接于半径为R的圆可得n个全等的等腰三角形进而利用面积求解.【解答】解:根据正n边形内接于半径为R的圆,则可将分割成n个全等的等腰三角形,其中等腰三角形的腰长为圆的半径R,顶角为,∵个n边形的面积为3R2,∴n××R×R×sin=3R2n sin=6解得n=10.故答案为10.【点评】本题考查了正多边形和圆,解决本题的关键是利用面积公式.12.(3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升10或70cm.【分析】分两种情形分别求解即可解决问题;【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.13.(3分)已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的侧面积为80πcm2.【分析】先利用勾股定理计算出这个圆锥的母线长10,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这个圆锥的母线长为=10,所以这个圆锥的侧面积=×2π×8×10=80π(cm2).故答案为80πcm2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.(3分)已知函数y=,若使y=k成立的x值恰好有2个,则k 的值为k=﹣1或k>3.【分析】首先在坐标系中画出已知函数y=的图象,然后利用数形结合的方法即可找到使y=k成立的x值恰好有2个的k值.【解答】解:函数y=的图象如图:根据图象知道当y=﹣1或y>3时,对应成立的x值恰好有2个,所以k=﹣1或k>3.故答案为:k=﹣1或k>3.【点评】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.15.(3分)如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB =∠ACP,则点P运动的路径长为π.【分析】由等边三角形典型在和已知条件得出∠APC=120°,得出点P的运动轨迹是,连接OA、OC,作OD⊥AC于D,由垂径定理得出AD=CD=AC=1,由圆周角定理得出∠AOC=120°,由直角三角形的性质得出OD=AD=,OA=2OD=,由弧长公式即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,如图所示:连接OA、OC,作OD⊥AC于D,则AD=CD=AC=1,∵所对的圆心角=2∠APC=240°,∴劣弧AC所对的圆心角∠AOC=360°﹣240°=120°,∵OA=OC,∴∠OAD=30°,∵OD⊥AC,∴OD=AD=,OA=2OD=,∴的长为=π;故答案为:π.【点评】本题考查了轨迹、等边三角形的判定与性质、圆周角定理、垂径定理、等腰三角形的性质、直角三角形的性质以及弧长公式等知识;熟练掌握等边三角形的性质和圆周角定理是解题的关键.三、解答题(共8题,共72分)16.(8分)解方程:x2﹣2x=2x+1.【分析】先移项,把2x移到等号的左边,再合并同类项,最后配方,方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:∵x2﹣2x=2x+1,∴x2﹣4x=1,∴x2﹣4x+4=1+4,(x﹣2)2=5,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.(8分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB =60°,求CD的长.【分析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.【解答】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE•sin∠DEB=,∴PD==,∴CD=2PD=2(cm).【点评】本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.18.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?【分析】根据树状图法,找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)设袋中有黄球m个,由题意得,解得m=1,故袋中有黄球1个;(2)∵∴P(两次都摸到红球)=.(3)设小明摸到红球有x次,摸到黄球有y次,则摸到蓝球有(6﹣x﹣y)次,由题意得5x+3y+(6﹣x﹣y)=20,即2x+y=7,∴y=7﹣2x,∵x、y、6﹣x﹣y均为自然数,∴当x=1时,y=5,6﹣x﹣y=0;当x=2时,y=3,6﹣x﹣y=1;当x=3时,y=1,6﹣x﹣y=2.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次或2次、3次、1次或3次、1次、2次.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.(8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A (﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.(1)∠ACB的大小为90°.(2)要求在图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:第一步:延长AC到格点B1,使得AB1=AB.第二步:延长BC到格点E,使得CE=CB,连接AE.第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.请你按步骤完成作图,并直接写出B1.【分析】(1)利用图象法观察图象即可判断.(2)根据AB=AB1=5,作出B1,再根据线段的垂直平分线的性质,推出AE=AB,推出∠EAC=∠CAB,再取格点F,使得AE⊥FB1得到点C1即可解决问题.【解答】解:(1)观察图象可知∠ACB=90°.故答案为90°.(2)如图,△AB1C1即为所求.【点评】本题考查作图﹣旋转变换,全等三角形的判定和性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.(8分)已知PA、PB分别与⊙O相切于A、B,连接OP.(1)如图1,AB交OP与点C,D为PB的中点,求证:CD∥PA,CD=PA;(2)如图2,OP交圆O与点E,EF⊥PB于点F,若PA=4,圆O的半径为2,求EF的长.【分析】(1)根据切线长定理得到PA=PB,∠OPA=∠OPB,根据垂径定理得到BC =CA,根据三角形中位线定理证明结论;(2)连接OB,根据勾股定理求出OP,证明△PEF∽△POB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:∵PA、PB分别与⊙O相切于A、B,∴PA=PB,∠OPA=∠OPB,∴OP⊥AB,∴BC=CA,又BD=DP,∴CD∥PA,CD=PA;(2)解:连接OB,∵PA、PB分别与⊙O相切于A、B,∴PB=PA=,OB⊥PB,由勾股定理得,OP===10,∴PE=10﹣2,∵EF⊥PB,OB⊥PB,∴EF∥OB,∴△PEF∽△POB,∴=,即=,解得,EF=2﹣2.【点评】本题考查的是切线长定理、相似三角形的判定和性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.【点评】本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.22.(10分)已知,在△ABC中,∠ACB=30°(1)如图1,当AB=AC=2,求BC的值;(2)如图2,当AB=AC,点P是△ABC内一点,且PA=2,PB=,PC=3,求∠APC的度数;(3)如图3,当AC=4,AB=(CB>CA),点P是△ABC内一动点,则PA+PB+PC 的最小值为.【分析】(1)如图1中,作AP⊥BC于P.利用等腰三角形的性质求出PC即可解决问题;(2)将△APB绕点A逆时针旋转120°得到△QAC.证明∠CPQ=90°即可解决问题;(3)如图3中,将△BCP绕点C逆时针旋转60°得到△CB′P′,连接PP′,AB′,则∠ACB′=90°.用PA+PB+PC=PA+PP′+P′B′,推出当A,P,P′,B′共线时,PA+PB+PC的值最小最小值=AB′的长;【解答】解:(1)如图1中,作AP⊥BC于P.∵AB=AC,AP⊥BC,∴BP=PC,在Rt△ACP中,∵AC=2,∠C=30°,∴PC=AC•cos30°=,∴BC=2PC=2.(2)如图2中,将△APB绕点A逆时针旋转120°得到△QAC.∵AB=AC,∠C=30°,∴∠BAC=120°,∴PA=AQ=2,PB=QC=,∵∠PAQ=120°,∴PQ=2,∴PQ2+PC2=QC2,∴∠QPC=90°,∵∠APQ=30°,∴∠APC=30°+90°=120°.(3)如图3中,将△BCP绕点C逆时针旋转60°得到△CB′P′,连接PP′,AB′,则∠ACB′=90°.∵PA+PB+PC=PA+PP′+P′B′,∴当A,P,P′,B′共线时,PA+PB+PC的值最小,最小值=AB′的长,由AB=,AC=4,∠C=30°,可得BC=CB′=3,∴AB′==.故答案为.【点评】本题属于三角形综合题,考查了解直角三角形,勾股定理以及逆定理,旋转变换等知识,解题的关键是利用旋转变换添加辅助线,用转化的思想思考问题,属于中考压轴题.23.(12分)二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y 轴交于点B(0,﹣3).(1)a=1,c=﹣3;(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求PD+PC的最小值;=3,求点M的坐标.(3)如图2,点M在抛物线上,若S△MBC【分析】(1)利用待定系数法把问题转化为方程组即可即可;(2)如图1中,作PH⊥BC于H.由DP+PC=(PD+PC)=(PD+PH),根据垂线段最短可知,当D、P、H共线时DP+PC最小,最小值为DH′;(3)如图2中,取点E(1,0),作EG⊥BC于G,易知EG=.由S=•BC•△EBCEG=•3=3,推出过点E作BC的平行线交抛物线于M1,M2,则=3,=3,求出直线M1M2的解析式,利用方程组即可解决问题,同法求出M3,M4的坐标.【解答】解:(1)把C(3,0),B(0,﹣3)代入y=ax2﹣2x+c得到,,解得.故答案为1,﹣3.(2)如图1中,作PH⊥BC于H.∵OB=OC=3,∠BOC=90°,∴∠PCH=45°,在Rt△PCH中,PH=PC.∵DP+PC=(PD+PC)=(PD+PH),根据垂线段最短可知,当D、P、H共线时DP+PC最小,最小值为DH′,在Rt△DH′B中,∵BD=4,∠DBH′=45°,∴DH′=BD=2,∴DP+PC的最小值为•2=4.(3)如图2中,取点E(1,0),作EG⊥BC于G,易知EG=.=•BC•EG=•3=3,∵S△EBC∴过点E作BC的平行线交抛物线于M1,M2,则=3,=3,∵直线BC的解析式为y=x﹣3,∴直线M1M2的解析式为y=x﹣1,由解得或,∴M1(,),M2(,),根据对称性可知,直线M1M2关于直线BC的对称的直线与抛物线的交点M3、M4也满足条件,易知直线M3M4的解析式为y=x﹣5,由解得或,∴M3(1.﹣4),M4(2,﹣3),综上所述,满足条件的点M的坐标为∴M1(,),M2(,),M3(1.﹣4),M4(2,﹣3).【点评】本题考查二次函数综合题、待定系数法、垂线段最短、平行线的性质、轴对称、一次函数的应用、二元一次方程组等知识,解题的关键是学会利用垂线段最短解决最值问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,属于中考压轴题.。

初四数学中考试卷分析

初四数学中考试卷分析

初四数学中考试卷分析中考数学试卷分析一、试卷情况分析本次中考数学试题深浅程度相对较低,题型和题量都和往年一样,总体难度必须比往年高一些,知识点考查面比较广为,没偏题难题,适度掌控运算量,适当加强思索量。

著重考查学生的综合能力和基础知识的掌控。

试题注重以下特点:1、以生为本,回归课本,突出教材的引领作用知识点全面覆盖全面且重点注重,全卷囊括了数学课程标准的大部分知识点,著重考查通性通法.2、源于教材,强化教材在教学改革与实践中的引领作用试题命制十分关注教材中的基本模型和基本图形,大量的题目都取材于课本,通过赋予新的背景或改变问题条件、拓展问题的深度改编而成。

如第5题、第23题等。

3、注重背景技术创新,设置具备人文元素的数学问题,彰显人文关怀。

例如第3题科学记数法的考查挑选了烟台gdp做为背景,富于时代气息;第20题统计数据题则以世界杯为切入点,切合学生的生活实际,纾解考试压力,彰显人文关怀。

4、关注高初中衔接,设置富含数学思想方法的数学问题,着眼学生发展试题侧重于考查了高中阶段自学所必不可少的基础知识,强化了科学知识考查的协调性和整体性。

其中,数与代数部分函数设置了5道有关方程(组)的题目,3道有关不等式(组)的题目,2道考查一次函数的题目,1道考查反比例函数的题目,2道考查二次函数的题目,共10道题目考查“方程与函数”的内容。

方程与函数的相关知识都是高中阶段学习的重要基础知识。

试题著重数学知识间的内在联系,强化各个核心知识点之间的综合考查的同时,全面考查了数学思想方法的运用,为高中阶段自学搞好了铺垫。

第24题牵涉半角,第25题是一道动态几何题,以正方形为几何背景,将全系列等、圆的科学知识方形其中,一共四个问号,前三个问号比较难,最后一个问号相对难度比较小,牵涉到求最大值、最小值的问题,学生首先必须自己图画出来草图,然后再展开水解,难度稍小。

第26题以二次函数为实地考察背景,对点的座标、求解二元一次方程组、二次函数的顶点与对称轴、相近三角形的性质与认定等都有所牵涉,在具体内容的答疑过程中又注重了方程思想、数形融合思想、函数思想、转变思想,存有一定的综合性和灵活性,这些试题都具备较好的区分度,有助于低初中的教学贯通,有助于高中学校选拔优秀学生。

2023年湖北省武汉市中考数学试卷及答案解析(word版)

2023年湖北省武汉市中考数学试卷及答案解析(word版)

2023年湖北省武汉市中考数学试卷及答案解析(word版)考试时间:2023年6月考试科目:数学考试地点:湖北省武汉市一、选择题(共30题,每题2分,共60分)1. 在三角形ABC中,已知∠A=60°,AB=5cm,AC=8cm,则BC的长度是多少?A. 5 cmB. 8 cmC. 11 cmD. 13 cm2. 若一元二次方程ax^2+bx+c=0(a≠0)的两个根为x1和x2, 则x1 + x2 的值是多少?A. aB. bC. cD. -b/a...二、填空题(共20题,每题2分,共40分)1. 设直线k的斜率为3,且过点(-2, 4),则直线k的方程是__________。

2. 若两个互为倒数的有理数和为0,则这两个数分别是__________和__________。

...三、解答题(共2题,每题20分,共40分)1. 已知函数y=2x^2-5x+3,求其对称轴方程和顶点坐标。

解答:对称轴方程的一般形式为x=h,其中h为对称轴的横坐标。

根据对称性,对称轴上任意一点(h,y)的函数值与对称轴上与其关于顶点对称的点(h,y')的函数值相等。

所以,有2h-5h+3=y-y',整理得到3h=y+y'-3。

由于顶点在对称轴上,所以顶点的横坐标与对称轴的横坐标相等,即h=x。

代入方程3h=y+y'-3中,得到3x=2x^2-5x+3。

解方程2x^2-8x+3=0,得到x=1或x=1.5。

将x=1和x=1.5代入函数y=2x^2-5x+3,求得顶点坐标分别为(1, 0)和(1.5, -0.75)。

所以,对称轴方程为x=1,顶点坐标分别为(1, 0)和(1.5, -0.75)。

2. 两条非平行直线分别是直线k1和直线k2,已知直线k1的斜率为2,过直线k1的一点(3,-2),直线k2经过(1, 4)且与直线k1垂直,求直线k2的斜率和方程。

解答:由直线k1的斜率为2,过直线k1的一点(3,-2),可得直线k1的方程为y-(-2)=2(x-3),整理得 y=2x-8。

2020年湖北省武汉市中考数学。试卷及答案解析

2020年湖北省武汉市中考数学。试卷及答案解析

2020年湖北省武汉市中考数学。

试卷及答案解析2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是()A。

3℃ B。

-3℃ C。

11℃ D。

-11℃2.若分式在实数范围内有意义,则实数x的取值范围是()A。

x>-2 B。

x<-2 C。

x=-2 D。

x≠-23.计算3x^2-x^2的结果是()A。

2 B。

2x^2 C。

2x D。

4x^24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A。

42、40 B。

42、38 C。

40、42 D。

2、405.计算(a-2)(a+3)的结果是()A。

a^2-6 B。

a^2+a-6 C。

a^2+6 D。

a^2-a+66.点A(2,-5)关于x轴对称的点的坐标是()A。

(2,5) B。

(-2,5) C。

(-2,-5) D。

(2,-5)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A。

3 B。

4 C。

5 D。

68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A。

3/4 B。

1/2 C。

1/4 D。

1/89.将正整数1至2020按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A。

2020 B。

2021 C。

2022 D。

201310.如图,在⊙O中,点C在优弧AB的中点D。

若⊙O的半径为,AB=4,则BC的长是()A。

B。

C。

D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算的结果是12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 成活数m 成活的频率(精确到0.01)400 325 0.81350 300 0.89700 640 0.91900 815 0.911400 1255 0.903500 3145 0.90由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.计算的结果是。

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年湖北省武汉市中考数学试卷(含答案及解析)

2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。

1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市中考数学试卷分析
试卷结构:
2017年武汉市中考数学依然延续了去年的中考模式,按照中考宣讲会的精神进行制卷,不仅加入新题型,同时将部分题型的位置更换。

本次试卷的布局依然按照2016年以来的10+6+8的结构,10道选择、6道填空、8道解答题。

其中选择题考查内容的顺序发生了一定的改变,第9题难度略有下降,第十题考查的是几何图形的找规律,解答题第22、23、24题也没有应用四调的题样,都发生了一定的变化。

总体上试卷难度比较符合之前公布的6.5难度系数,同时也继续体现出题者考验考生临场应变能力的思想,不难但是有变化的出题标准,全面考察考生初中三个年级的知识点综合能力与课本基础知识的牢固程度,继续贯彻不盲目训练专题,不搞题海战术,回归课本,重视课堂教育的教育方针与理念。

具体分析:
选择题
一、算术平方根:无任何变化,只要达到平时训练的基本要求,这个题不会丢分。

二、分式分母有意义:同上
三、整式的乘除:同上
四、统计中的众数、中位数:了解三数的基本概念,掌握图表读图的基本能力能够轻松解决
五、多项式的乘法;这题在去年乘法公式的基础上发生了一定的改变,
考查学生的基本运算能力。

六、轴对称:常考题型,通过画图可轻松解决。

如果记得规律的话更简单。

七、三视图:看清楚题目应该不会有问题。

八、找规律与一元一次方程的综合。

这题考查学生的发现能力与计算能力,有一定的综合性。

九、这是一道新的考查内容,知道三角形的三边,求内切圆的半径。

平时训练较多,难度不大。

十、也是一道找规律的题,学生做这题容易出现找漏的情况,需要学生有严谨的学习态度和慎密的思维能力。

就难度而言,不是很大。

填空题
十一、有理数的加减,无变化,简单
十二、分式的运算,考查的较基础。

十三、角度的运算,与去年相比无变化。

十四、两步概率,与去年相比无变化。

十五、三角形中线段的运算。

这题需要通过特殊角想到运用旋转的思路来解决问题,难度适中。

十六、二次函数图象和性质的综合运用。

需要学生分开口向上和开口向下两种情况进行分析解不等式组时还需要注意符号的变化。

解答题
十七、一元一次方程:无变化,基础题
十八、全等基本证明:无变化,基础题,考查SAS的全等证明
十九、统计图综合:无变化,集中考查样本总数,局部人数,扇形圆心角度数和样本的应用(将统计的信息应用到实际中)
二十,二元一次方程组和一元一次不等式组的应用题,与去年相比难度降低了,问题不大。

第一问设两个未知数列出二元一次方程组,并求解作答。

第二问抓住两个不超过构造两个不等式。

构成不等式组,求出解集。

二十一、圆证明与计算综合
大部分认真做过九年级圆的专项训练的考生一看到图形就会难以掩饰心中的兴奋,因为图形是原图,第二问中才转换角的方式用得较多,学生容易想到,所以此题大大降低了很多人的预期,关键是这道题第二问需要求出两条线段的长度,对于CD的长,学生不知从何入手分析,容易出现失分的情况。

二十二,反比例函数
题型有变化,但是难度增加了,具体体现在对图形的理解,如果考生能够沉下心计算,将题目过程书写完整,得满分不是太大问题。

第一问(3分):先通过一次函数求点的坐标,再通过点的坐标来求k的值。

第二问(4分):需要分清点M在点N的左边和右边两种情况进行讨论,学生做题时容易漏掉点M在点N左边的情况。

第三问(3分):是一道填空题,首先学生要知道将不等式进行变形,又需要分成分母大于0和分母小于0两种情况。

从而求出不等式的解集。

这题与高中衍接较紧密。

不易得分。

二十三、相似的计算与证明
无变化,延续此题惯有的风格特点,那就是越做越难,属于100以上学
生的攻坚对象。

第一问(3分):相似判定的考查
第二问(4分):利用相似在变图中进行先证明后计算,对高等的辅助线做法有较高要求。

第三问(3分):属于难题,不过分值较低,属于经典一步填空题。

二十四、二次函数综合题
第一问(3分):2点代入待定系数法求解析式
第二问(5分):这种类似的题在平时的训练中见过,要证两直线平行易想到要证角等,证角等可用这两角的对应三角函数值等,需要学生认真严谨的解答,计算量较大。

每个班应该都有同学能够做出来。

第三问(4分):函数与几何的综合、又牵涉到动态问题,对于学生难度较大,不易得分,幸好是一道填空题,分值不大,不要求写过程。

纵观整套试卷,考查内容的面广,知识与能力并重,分类讨论的较多,注重学生的思维过程的考查,容易入手,也容易失分。

是一套高质量的试卷。

这就需要我们数学老师在平时的教学中要抓住根本,教会学生数学基本的知识与技能,加强运算能力的培养,注重基本的解题方法和思路的训练,立足课本,加强学生思维能力的培养,只有这样,学生才能够在中考中拿得高分。

相关文档
最新文档