第六章_配位化合物的结构和性质 2
配位化合物的结构和性质
2
3
sp
sp2
直线形
平面三角形
[Ag(NH3)2]+
[CuCl3]2-
4
sp3
d3s dsp2
四面体
四面体 平面正方形 三角双锥形 四方锥形
[Ni(NH3)4]2+
MnO4[Ni(CN)4]2Fe(CO)5 [TiF5]2-
5
dsp3 d4s
6
d2sp3
八面体
[Fe(CN)6]3-
6.2 价键理论
(3) 平行正方形场
在平行正方形配合物中,四个配体沿x,y轴正负方向与
中心离子接近。 在平行正方形配合物中,dx2-y2轨道的电子云极大值方向 指向配体,因此能级最高,高于Es能级;dxy 轨其也在xy平面上,所以
也要受到较大的排斥故能级也高于Es能级;dz2 轨道的能级 较低,低于Es能级;dyz和dxz轨道受到的排斥作用相同,是 简并的,能级最低。这样,在平面正方形场中,能级分裂为 四组。
由于△值通常从光谱确定,故称这个顺序为光谱化学序列。
分裂能和成对能
b) 当配体固定时,分裂能随中心离子的不同而不同,其
大小次序为:
Pt 4 Ir 3 Pd 4 Rh3 Mo3 Ru3 Co3 Cr 3 Fe 3 V 2 Co2 Ni 2 Mn2
中正负离子的静电作用;
中心离子在配体的静电作用下,使原来简并的d轨道分 裂成能级不同的几组轨道;
d电子在分裂的d轨道上重新排布,优先占据能量较低
的轨道,往往使体系的总能量有所降低,形成强场低自 旋、弱场高自旋的配合物。
二、d轨道在晶体场中的分裂
d原子轨道的角度分布图
配位化合物的结构与性质
配位化合物的结构与性质配位化合物是由中心金属离子和周围的配体离子或分子通过配位键结合形成的化合物。
由于配体的性质和配位方式的不同,配位化合物具有丰富的结构和性质。
本文将从配位化合物的结构和性质两个方面进行探讨。
一、配位化合物的结构配位化合物的结构主要包括中心金属离子和配体的组成以及它们之间的配位方式。
1. 中心金属离子中心金属离子是配位化合物的核心,它通常是一个带正电荷的离子。
常见的中心金属离子有过渡金属、稀土金属和镧系金属等。
不同的中心金属离子具有不同的电子排布和电子轨道结构,因此导致了不同的化学性质和配位特性。
2. 配体配体是与中心金属离子形成配位键的离子或分子。
常见的配体包括氨、水、氯化物、亚硝酸根、硫氰酸根等。
它们具有孤对电子或反应活性基团,能够提供一对或多对电子给中心金属离子形成配位键。
不同的配体具有不同的硬软酸碱特性,从而影响了配位键的强度和稳定性。
3. 配位方式配位方式是指配体与中心金属离子形成的空间排布方式。
常见的配位方式有线性、平面、四面体、八面体等。
不同配位方式对应于不同的配体数目和配位键的排布方式,从而影响了配位化合物的结构和性质。
二、配位化合物的性质配位化合物的性质主要由中心金属离子和配体的性质以及它们之间的配位方式决定。
1. 化学性质配位化合物具有多种多样的化学性质。
一方面,中心金属离子的价态和电子排布可以影响配位键的稳定性和反应活性;另一方面,配体的硬或软酸碱特性影响了配位键的强度和反应性。
通过改变中心金属离子和配体的性质,可以调控配位化合物的催化活性、化学吸附性能等。
2. 物理性质配位化合物的物理性质包括颜色、磁性、光学性质等。
其中,颜色是由于配位化合物中的电子跃迁所引起的,不同电子能级之间的跃迁导致了不同的吸收光谱和颜色。
磁性是由于中心金属离子孤对电子或配体的磁性所引起的,不同的磁性表现出不同的磁化行为。
光学性质则与配位化合物的吸收、散射、透射等相关。
3. 结构性质配位化合物的结构性质包括配位键长度、配位键角度等。
配位化合物的结构与性质
具有空的价轨道
2010-11-19
2
一. 配合物概述
配合物是由中心金属原子(M)与配位体 (L) 按一定的组成和空 间构型组成的化合物 (MLn),是金属离子最普通的一种存在形 式。其中: n = 2~12,主要是 4和6
特点: 中心原子具有空的价轨道 配位体具有孤对电子或多个非定域电子 通过配键形成――配位离子和配位化合物分子 类型: 以中心原子数的多少分为单核或多核配位化合物 多核可以形成M一M之间有键结合的金属原子簇化合物
2010-11-19
3
应用领域: 分析化学,分离化学,催化化学,生物化学,分子生物学,
酶学,检验,分离,沉淀,络合,增溶,染料,生物,叶绿素 ( Mg ) , 血红素(Fe) ,细胞色素( Cu , V )等。
主要理论: 价键理论,配位场理论
配位体: 具有孤对电子或π键电子并能与金属离子进行配位的原子
H2 C
NH2
C
C
O
OO
O
EDTA4-乙二胺四乙酸根
乙二胺en
2010-11-19
6
二. 配位化合物结构理论
价键理论――晶体场理论――分子轨道理论――配位场理论
杂化轨道 静电作用模型 MOT处理配键 配位化合物的
VBT理论 共价配键
MOT+CFT
电价配键
1. VBT ① 共价配键和d-s-p杂化轨道(低自旋化合物)
第六章 配位化合物的结构与性质
2010-11-19
1
配位化合物过去叫络合物,是一类比较复杂的分 子,一般是指由中心原子(过渡金属原子或离子) 与若干配体以配位键结合而成的化合物。
(有孤对电子或π键的分子或阴离子) 配体
配位化合物的结构与性质
配位化合物的结构与性质配位化合物是由中心金属离子和一定数量(通常2-10个)的可供配位的分子或离子(配体)通过配位键结合而形成的化合物。
它是化学中非常重要的一类分子,具有多种结构和性质。
结构特点配位化合物最明显的结构特点是中心金属离子和配体之间的配位键,通常是通过金属离子上的空位轨道与配体上的待键电子形成的。
这种配位键形成的结果是形成了一个略呈正八面体或正四面体形态的金属配合物分子。
这种结构基本的几何参数是配合物中金属离子和配体之间的键长,金属离子上配位轨道形态的种类,以及金属离子和配体之间的角度。
除此之外,配位化合物还表现出明显的立体性。
比如说,在多数属于八面体结构的金属配合物中,配体的排布方式并不对称,导致配合物整体呈现出某种程度的非对称性。
性质特点配位化合物的性质特点十分丰富。
这类化合物同时拥有金属离子和配体的特性,因此它们的物理化学性质具有较强的多样性。
化学反应:配合物可以催化反应或受体原位离子介导的化学反应,具有种种反应规律,并可以通过多种方法来改变它的反应方式和反应速率等性质。
比如说,常见的螯合反应和配体置换反应等。
光学性质:许多金属配合物由于其具备特殊的结构和电子状态,有着比较特殊的发射和吸收光谱。
在吸收光谱方面,金属配合物可以吸收具有相应能量的光线。
而在发射光谱方面,则是通过激发过程所带来的电子的反跃而发出特定的光线。
这种光学性质已被广泛采用于生物分子探针和材料科学领域。
磁性:由于金属中心离子的未配对电子结构,在许多情况下会带来显著的磁性效应。
基于这种效应,配位化合物在磁性和电子学领域中有着广泛应用。
酸碱性:金属离子通常处于一种特殊的氧化态,因此对酸碱性的响应性也具有特殊的特点。
这种性质使得一些金属配合物具备了很好的可控酸碱催化性质,也有助于在一些化学反应循环中使反应处于最佳的酸碱平衡状态。
总体而言,配位化合物是现代化学中一类重要的分子。
它的复杂性和多样性在众多领域中的应用前景十分广泛,其中包括生物医学和材料科学等重要领域。
配位化合物的结构与性质
配位化合物的结构与性质在无机化学领域中,配位化合物是指由一个中心金属离子与一或多个配位基团组成的化合物。
配位基团可以是有机或无机的,通过与中心金属离子形成化学键,使得金属离子被包围在一个空间中。
这种特殊的结构使得配位化合物具有独特的性质和广泛的应用。
一、结构特点配位化合物的结构通常由中心金属离子和配位基团以一定的几何排列方式组成。
最常见的几何排列包括线性、平面四方形、正方形、八面体和八面体等。
这种排列方式不仅由金属离子和配位基团的性质决定,还受到配位基团之间的相互作用和空间限制的影响。
1. 线性结构:当配位基团是双电子供体时,配位化合物多呈现线性结构。
例如,四氯合银(I) [AgCl4]- 和四氢合铜(I) [CuH4]^- 都是线性结构。
2. 平面四方形结构:当金属离子与四个配位基团形成平面四方形结构时,配位数为4。
例如,四氯合铜(II) [CuCl4]^2- 和四氟合铁(II) [FeF4]^2-。
3. 正方形结构:某些金属离子具有8个电子的自然稳定结构,形成正方形结构。
例如,六氟合钴(III) [CoF6]^3-。
4. 八面体结构:当金属离子与六个配位基团形成八面体结构时,配位数为6。
这种结构在配位化合物中很常见,例如六氯合钴(III) [CoCl6]^3- 和六氟合铂(IV) [PtF6]^2-。
5. 八面体结构:金属离子与八个配位基团形成八面体结构的配位化合物具有配位数为8。
这种结构在过渡金属配位化合物中较为常见,例如八氟合铁(III) [FeF8]^3-。
二、性质特征配位化合物的性质由以下因素决定:中心金属离子的性质、配位基团的性质、配位数和配位体的空间排列等。
下面将介绍配位化合物的一些典型性质。
1. 形成稳定的络合物:配位基团与中心金属离子之间通过配位键形成络合物。
这种络合作用增加了配位化合物的稳定性,使其在化学反应中更加耐受。
2. 形成彩色络合物:一些过渡金属离子能够吸收可见光的特定波长,因此形成的配位化合物会呈现出不同的颜色。
配位化合物的结构与性质
配位化合物的结构与性质配位化合物是指由中心金属离子和周围配位体(也称为配位络合物)通过配位键相互结合而形成的化合物。
它们广泛存在于生命系统、催化剂和材料科学等领域,具有丰富的结构和性质。
本文将重点讨论配位化合物的结构与性质,并进一步探讨其中的影响因素。
一、结构特征1. 配位数与配位键类型:配位化合物的结构特征受到中心金属离子的配位数和配位键类型的影响。
根据配位基团与金属之间的配位键数,我们可以区分出单齿、双齿、三齿等不同的配位体。
例如,一种醋酸盐配合物中,乙酸根离子通过氧原子与金属离子形成双齿配位,而三齿配体可通过三个原子与金属离子形成配位键。
2. 配位几何构型:配位基团与金属之间的配位键具有一定的空间取向,导致配位化合物呈现不同的配位几何构型。
常见的配位几何构型包括线性、四方形、八面体等。
例如,一种八面体配合物中,六个配位基团通过配位键与中心金属离子连接,使得配合物的结构形成了八面体状。
二、理化性质1. 稳定性和热稳定性:配位化合物通常具有较高的稳定性,这归功于金属与配位体之间的强的配位键。
这些配位键不易被热量或其他外界条件破坏,从而赋予了配位化合物良好的热稳定性。
2. 磁性和颜色:配位化合物中的中心金属离子在配位体的影响下,可以表现出不同的磁性和颜色。
例如,一些配位化合物由于自旋和有序排列引起的相互作用,表现出磁性行为。
同时,由于配位体的电子结构调节作用,配位化合物还会呈现出不同的颜色。
这些性质的变化可以用于研究配位化合物的性质和应用。
三、影响因素1. 配位体的选择:配位体的选择对配位化合物的结构和性质有着重要影响。
不同类型的配位体具有不同的电子性质和空间取向,从而影响了配位化合物的配位数和配位几何构型。
2. 金属离子的性质:金属离子的尺寸、电子组态和电荷状态等也会影响配位化合物的结构和性质。
例如,金属离子的电荷状态越高,它与配位体之间的相互作用越强,从而使配位化合物的稳定性增加。
3. 外界条件:一些外界条件,如温度、压力和溶剂等,也会影响配位化合物的结构和性质。
配位化合物的结构与性质
配位化合物的结构与性质
配位化合物是由中心金属离子与周围的配体离子共同构成的。
它们的结构和性质对于理解和应用这些化合物具有重要意义。
结构
配位化合物的结构由中心金属离子和配体离子之间的配位键连接模式所决定。
常见的配位键连接模式包括线性、平面和立体等。
- 线性配位键连接模式:配体离子在平衡位置排列,形成一条直线连接中心金属离子。
- 平面配位键连接模式:配体离子在平衡位置排列,形成一个平面与中心金属离子相连接。
- 立体配位键连接模式:配体离子在平衡位置排列,形成一个立体结构与中心金属离子相连接。
性质
配位化合物具有一系列独特的性质,包括磁性、光学性质和化
学活性。
- 磁性:配位化合物中的中心金属离子通过与配体离子之间的
电子转移产生磁性。
它们可以表现出顺磁性或反磁性,这取决于中
心金属离子和配体离子之间的电子排列方式。
- 光学性质:一些配位化合物具有特殊的光学吸收和发射性质,可以用于制备染料、荧光标记物等。
- 化学活性:由于中心金属离子和配体离子之间的配位键的特
殊性质,配位化合物在化学反应中表现出不同的活性。
它们可以参
与配位交换反应、氧化还原反应等。
结构和性质的研究对于配位化合物的设计和合成具有重要意义。
通过了解配位化合物的结构和性质,我们可以合理设计新型配位化
合物以满足不同的应用需求。
医用化学-第6章-配位化合物
书写规则:[M 无机负离子 无机分子 有机物]
书写含多种配体配合物的化学式时,一般按照配体
命名先后顺序来写 :
(1)阳离子在前阴离子在后。如[Ag(NH3)2]Cl、H2[SiF6], [Ag(NH3)2]Cl
(2)配位个体先形成体,后配体,有多个配体时,阴离子 在前,中性分子在后;无机配体在前,有机配体在后;同类 配体,以配位原子英文字母次序为准。
即:由一简单正离子(或原子)和一定数目的阴离子 或中性分子以配位键相结合而成的具有一定特性的复杂结 构单元。如: [Ag(NH3)2]Cl 、[Cu(NH3)4]SO4、 [Ni(CO)4] 四 羰合镍 [Pt(NH3)2Cl2]、 K4[Fe(CN)6] 、 [Co(NH3)6]Cl3、 K2[HgI4]
3)配位数
与中心离子(或原子)成键的配位原子的总数
配位数 配位体i 的数目 齿数
例如:
单齿配体 多齿配体
Cu(NH3
)
42+
4
PtCl3 (NH3 )-
CoCl2 (en)2 2
Al(C 2O4 )3 3-
Ca(EDT A) 2-
4 31 4 2 22 6 32 6 1 6 6
一、配合物的基本概念
实验已知氢氧化铜与足量氨水反应后溶解是因为生成了 [Cu(NH3) 4]2+ ,其结构简式为:
NH3
2+
H3N Cu NH3
NH3 试写出实验中发生的两个反应的离子方程式?
Cu 2+ +2NH3 .H2O
Cu(OH)2 + 2 NH4 +
Cu(OH)2 + 4NH3 . H2O
第一节 配合物的基本概念
第六章--配合物的结构和性质
• VBT的基本要点: 的基本要点: 的基本要点
和配体L之间 (A)配合物的中心离子 和配体 之间,是由中心离子提供 )配合物的中心离子M和配体 之间, 与配位数相图的空轨道来接受配体提供的孤对电子, 与配位数相图的空轨道来接受配体提供的孤对电子,形成配 位键。 位键。 有空轨道,: 3有孤对电 ,:NH 如:在[Cu(NH3)4]2+中,Cu2+有空轨道,: ( 故可以形成配位键: 子,故可以形成配位键:见P69。 。 (B)为了形成稳定的配合物,中心离子采取杂化轨道与配位 )为了形成稳定的配合物, 原子形成σ配键, 原子形成σ配键,杂化轨道的类型与配位个体的配位键型和 空间构型相对应。 P71表 空间构型相对应。见P71表。
●单核配位化合物:一个配位化合物分子(或离子)中只含有一 单核配位化合物:一个配位化合物分子(或离子) 单核配位化合物 个中心原子。 个中心原子。 ●多核配位化合物:含两个或两个以上中心原子。 多核配位化合物:含两个或两个以上中心原子。 ●金属原子簇化合物:在多核配位化合物中,若M—M之间有键 金属原子簇化合物:在多核配位化合物中, 之间有键 合称为金属原子簇化合物 金属原子簇化合物。 合称为金属原子簇化合物。 ●配位化合物是金属离子最普遍的一种存在形式。 配位化合物是金属离子最普遍的一种存在形式。 ●金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。
内轨型配合物: 内轨型配合物: 为外轨型配合物, 如[FeCN6]3- 为外轨型配合物,见P69。 。 特点: 轨道参与杂化; 特点:(n-1)d轨道参与杂化;配体的孤对电子部分 轨道参与杂化 进入中心离子的( ) 轨道中 轨道中; 进入中心离子的(n-1)d轨道中;配体一般为电负 性小的原子, 性小的原子,如C,P,因电负性小,易给出电子, ,因电负性小,易给出电子, 对中心离子的价层电子结构有强烈的影响。 对中心离子的价层电子结构有强烈的影响。因此内 轨型配位键形成时打乱了中心离子的外层电子排布。 轨型配位键形成时打乱了中心离子的外层电子排布。
配位化合物的结构和性质
配位化合物的结构和性质配位化合物是由中心金属离子与周围配体形成的化合物。
它们具有多种不同的结构和性质,对于化学领域的研究和应用有着重要的意义。
一、结构配位化合物的结构可以分为线性、平面四方形、八面体和正方形平面等多种形式。
其中,线性结构是指配体以直线形式与中心金属离子相连,形成一条直线。
而平面四方形结构则是指配体以四个顶点的方式与中心金属离子相连,形成一个四边形平面。
八面体结构则是指配体以六个顶点的方式与中心金属离子相连,形成一个八面体。
正方形平面结构则是指配体以四个顶点的方式与中心金属离子相连,形成一个正方形平面。
这些不同的结构形式决定了配位化合物的物理和化学性质。
二、性质1. 形成常数:形成常数是衡量配位化合物形成程度的指标。
它是指配体与中心金属离子结合形成配位化合物的平衡常数。
形成常数的大小与配体与中心金属离子的亲和力有关,一般来说,形成常数越大,配位化合物的形成越稳定。
2. 配位键的强度:配位键的强度是指配体与中心金属离子之间的键的强度。
它取决于配体的性质以及配位化合物的结构。
一般来说,配位键的强度越大,配位化合物的稳定性越高。
3. 配位化合物的颜色:配位化合物常常具有丰富的颜色。
这是由于配体与中心金属离子之间的电子转移引起的。
当配体中的电子跃迁到中心金属离子的d轨道时,会吸收一定波长的光,产生特定的颜色。
4. 磁性:配位化合物的磁性是由中心金属离子的电子结构决定的。
当中心金属离子的d轨道未被配体完全填满时,配位化合物会表现出磁性。
具体来说,如果中心金属离子的d轨道未被配体填满一半,则为顺磁性;如果中心金属离子的d轨道被配体填满一半,则为抗磁性。
5. 光学活性:某些配位化合物具有光学活性,即能够旋转平面偏振光的偏振面。
这是由于配位化合物中的手性中心引起的。
手性中心是指一个分子中存在对映异构体的碳原子或金属离子。
三、应用配位化合物的结构和性质对于化学领域的研究和应用有着重要的意义。
首先,通过研究不同结构的配位化合物,可以深入了解化学反应的机理和动力学过程。
(06) 第六章 配合物的结构与性质-2
Cr(CO)6 Mn2(CO)10 Fe(CO)5 Co2(CO)8 Ni(CO)4
例 Mn2(CO)10是典型的双核羰基化合物,
•其中 Mn—Mn 直接成键。每个 Mn与5 个 CO 形成八面体 其中 直接成键。 与 个配位, 构型中的 5 个配位,第六个配位位置通过 Mn—Mn 键相互 提供一个电子, 个价电子。 提供一个电子,使每个 Mn原子周围满足 18 个价电子。 原子周围满足 •为了减少空间阻碍引起的排斥力,羰基基团互相错开。 为了减少空间阻碍引起的排斥力,羰基基团互相错开。 为了减少空间阻碍引起的排斥力
b) Pt2+的充满电子的 d 轨道和 C2H4 的π*轨道叠加成键,由Pt2+提供 d 电子成π配键。 * 以上成键方式的作用: 1. 防止由于形成σ配键使电荷过分集中到金属原子上; 2.促进成键作用。
过渡金属(M)和烯烃 和烯烃( 过渡金属 和烯烃
C
C
) 间形成 配键的情况 间形成σ-π配
★ 除乙烯外,其他的烯烃和炔烃也能和过渡金属形成配位化合物。
Co2(CO)8 的情况和 Mn2(CO)10相似。
CO的等电子体与过渡金属形成的配位化合物: ● CO的等电子体与过渡金属形成的配位化合物:
N2、NO+、CN-等和 CO 是等电子体,由于结构的相似性,它们也可 和过渡金属形成 配位化合物。 例如,在1965年,人们得到了第一个N2分子配位化合物[Ru(NH3)5N2]Cl3 ★ NO与过渡金属形成的配位化合物: NO比CO多一个电子,这个电子处在π* 轨道上,当NO和过渡金属配 位时,由于π* 轨道参与反馈π键的形成,所以每个NO分子有3个电子参 与成键。 当按照18电子结构规则计算时,由NO分子与CO分子可形成下列化 合物: V(CO)5NO , Mn(CO)4NO,Mn(CO)(NO)3, Fe(CO)2(NO)2,[Fe(NO)(CO)3]-, Co(CO)3(NO),Co(NO)3
化学配位化合物的结构与性质
化学配位化合物的结构与性质化学配位化合物是由中心金属离子和周围的配位基团(分子或离子)通过配位键形成的化合物。
它们在化学、生物学和材料科学等领域中具有重要的应用价值。
本文将讨论化学配位化合物的结构和性质,并探讨它们在不同领域中的应用。
一、结构与配位键化学配位化合物的结构通常由中心金属离子、配位基团以及配位键构成。
配位基团通常是具有孤对电子的原子或者原子团,例如氨、水、氯等。
配位键是由配位基团的孤对电子与中心金属离子的空轨道形成的共价键。
这种键被称为配位键,通过配位键,配位基团与中心金属离子相互连接,形成立体构型各异的化学配位化合物。
二、性质与应用1. 形状与结构多样性:化学配位化合物由于中心金属离子和配位基团的多样性,可以形成各种不同结构和形状的化合物。
这些化合物可以具有线性、平面和立体等不同的几何构型,从而对其性质和应用产生重要影响。
2. 稳定性和反应性:化学配位化合物通常具有较高的稳定性,能够在一定条件下保持其结构和性质。
但同时,也具有一定的反应性,在适当的条件下可以与其他物质进行反应,形成新的化合物。
这种反应性使得化学配位化合物在催化和分析等领域中得到广泛应用。
3. 光电性质:部分化学配位化合物具有良好的光学和电学性质。
例如,一些过渡金属配合物能够吸收可见光,显示出丰富的颜色,并且具有荧光和磷光现象。
这些性质使得它们在光催化、光敏材料和显示技术等领域有重要应用。
4. 生物活性:化学配位化合物在生物学领域中具有广泛的应用。
一些金属配合物具有抗菌、抗肿瘤和抗炎等生物活性,被广泛研究用于药物开发和生物标志物检测。
结论化学配位化合物由中心金属离子和配位基团通过配位键形成,具有多样的结构和性质。
它们在化学、生物学和材料科学等领域中具有重要的应用价值。
通过研究和了解化学配位化合物的结构与性质,可以为其在不同领域的应用提供有益的指导和启示。
注:以上内容基于化学配位化合物的普遍性质,具体化合物的结构和性质可能会有所不同,请在具体研究和实验中进行进一步的深入探索。
结构化学基础-6配位化合物的结构和性质
4 t 0 9 ☻ 立方体场( Oh, 8 配位):
☻ 平面正方形场(D4h):
4 8 = 2 t 2 0 0 9 9
x y2
Ed 2
Ed xy Eb1 g Eb2 g 10 Dq
所以,d 8 结构形成平面正方形结构者甚多。但当 Dq 较小时 (弱场),也可能形成正四面体配位化合物。
• N2的HOMO(3g)能量比CO低,而LUMO轨道又比 CO的高 • 即 N2 较 CO 来说,既不易给出电子,又不易 接受电子。 • 所以 N2 分子配合物不易合成。
磷配体
金属不饱和烃配合物
• 1825年, Zeise(蔡斯)盐:PtCl3(C2H4)]–K+
金属不饱和烃配合物
• 这样既可防止由于形成配键使电荷过分集 中到金属原子上,又促进成键作用。
核磁共振
研究对象:原子核的磁矩在磁场中对电磁波的吸收和发射
• 第1次,美国科学家Rabi发明了研究气态原子核磁性的共振方法,获 l944年诺贝尔物理学奖。 • 第2次,美国科学家Bloch(用感应法)和Purcell(用吸收法)各自独 立地发现宏观核磁共振现象,因此而获1952年诺贝尔物理学奖。 • 第3次,瑞士科学家Ernst因对NMR波谱方法、傅里叶变换、二维谱技 术的杰出贡献,而获1991年诺贝尔化学奖。 • 第4次,瑞士核磁共振波谱学家Kurt Wüthrich,由于用多维NMR技术在 测定溶液中蛋白质结构的三维构象方面的开创性研究,而获2002年诺 贝尔化学奖。同获此奖的还有一名美国科学家和一名日本科学家。 • 第5次,美国科学家Paul Lauterbur于1973年发明在静磁场中使用梯度 场,能够获得磁共振信号的位置,从而可以得到物体的二维图像;英 国科学家Peter Mansfield进一步发展了使用梯度场的方法,指出磁共 振信号可以用数学方法精确描述,从而使磁共振成像技术成为可能, 他发展的快速成像方法为医学磁共振成像临床诊断打下了基础。他俩 因在磁共振成像技术方面的突破性成就,获2003年诺贝尔医学奖。
配位化合物的结构与性质
配位化合物的结构与性质配位化合物是由中心金属离子与周围的配体离子或分子通过配位键结合而成的化合物。
它们具有独特的结构与性质,对于我们理解化学反应、催化、材料科学等方面都具有重要意义。
本文将介绍配位化合物的结构特点以及其性质,并探讨它们在现代科学中的应用。
1. 配位化合物的结构特点配位化合物的结构特点主要体现在以下几个方面:1.1 配位键的形成配位化合物中的配位键是通过金属离子与配体之间的配位作用形成的。
这种配位作用是一种共价键的特殊形式,可以通过配体的配位对数来描述。
常见的配位键包括金属-配体配位键、金属-金属配位键等。
1.2 配合物的配位几何结构配位几何结构指的是配位化合物中金属离子与配体之间的空间排列方式。
根据配位原理,常见的配位几何结构包括线性、方形平面、三角双锥、正四面体等。
1.3 配位化合物的立体异构性由于配位离子的配位数和配位键的种类不同,配位化合物可能存在多种立体异构体。
这种立体异构性对于配位化合物的物理性质和化学性质都有重要影响。
2. 配位化合物的性质配位化合物具有多种独特的性质,包括磁性、光谱性质、催化性质等,下面将分别进行介绍。
2.1 磁性配位化合物中的金属离子可以表现出不同的磁性行为,例如顺磁性和反磁性。
这种磁性行为与金属离子周围配体的性质密切相关。
2.2 光谱性质配位化合物在紫外可见光谱和红外光谱等方面具有独特的性质。
通过光谱分析,可以了解配位化合物的电子结构、配位键性质等信息。
2.3 催化性质配位化合物广泛应用于催化领域。
例如,贵金属配位化合物在有机合成中具有良好的催化活性,可以加速化学反应的进行。
3. 配位化合物的应用配位化合物在科学研究和工业应用中有广泛的应用。
3.1 化学分析与测定配位化合物在化学分析与测定中起着重要作用。
例如,通过络合滴定可以定量测定金属离子的浓度。
3.2 金属催化剂配位化合物在金属催化剂中起着关键作用,广泛应用于化学合成、能源转换等领域。
金属配位催化剂可以提高反应速率和选择性,有效地促进化学反应的进行。
有机化学基础知识点配位化合物的结构和性质
有机化学基础知识点配位化合物的结构和性质配位化合物是有机化学中一个重要的研究领域,它形成于配位键的形成和金属离子的配位,具有独特的结构和性质。
既然我们谈到了有机化学基础知识点,让我们来深入了解一下配位化合物的结构和性质。
一、配位化合物结构的基本特点配位化合物通常由一个中心金属离子和一些称为配体的分子或离子组成。
配体通常是有机化合物,具有不同的配位原子,如氮、氧、硫等。
它们通过配位键与中心金属离子结合。
1. 配位键的形成配位键是指配体的一个或多个配位原子与中心金属离子之间的共有电子对。
配位键的形成通常是由配位原子上的孤对电子(孤对电子是未参与共价键形成的电子对)与金属离子形成的。
例如,以水合铜离子Cu(H2O)6^2+为例,氧原子上的孤对电子直接与铜离子形成了配位键。
2. 配位数与配位体配位数是指配位原子或配体与中心金属离子之间的配位键数量。
根据配位数的不同,配位体可以分为双齿配体、三齿配体、四齿配体等。
例如,以乙二胺(NH2CH2CH2NH2)为配体的四氯合铜(II)配合物[CuCl2(NH2CH2CH2NH2)2]的配位数是六。
3. 配位化合物的空间构型配位化合物的空间构型由配位体的取向和排布所决定。
常见的空间构型有正方形平面型、八面体型等。
这些不同的空间构型会影响到化合物的性质和反应性。
二、配位化合物的性质配位化合物由于金属离子与配体之间的配位键的形成,使其具有一些独特的性质。
1. 形成稳定的络合化合物由于配位键的形成,配位化合物通常具有较高的稳定性。
这使得它们在催化、溶剂选择性和聚合物合成等方面具有广泛的应用。
2. 形成具有特定功能的配位聚合物配位化合物的结构可以通过合适的选择和设计配体,形成具有特定功能的配位聚合物。
这些聚合物在催化、传感、光电子等领域中有广泛的应用。
3. 光谱性质配位化合物常常具有丰富的光谱性质,如紫外可见吸收光谱、红外光谱、荧光光谱等。
这些光谱性质对于研究配位化合物的结构和反应机制具有重要意义。
06配位化合物的结构和性质
[[R Ch o 2 2O O ((6 6H H ]]))3 3
180 60-c1m 后者 比 的 前者 4% 7增 2730 -1 0cm
[[IRr6C h ]63]3C l l 224009300-1 -c10m 后 cm 者 比 的 前者 2% 增 3 大
△<P (弱场)
E高 E低P0
弱场应采取高自旋排布。
电子排布规则:
P P
2019/11/2
强场低自旋 弱场高自旋
22
第六章 配位化合物的结构和性质
d电子在配位场中的排布
d4 ~d7组态有高低自旋之分,d1 ~d3 和
d8 ~d10组态无高低自旋之分。
例1 写出下列各络合物的d电子排布:
第六章 配位化合物的结构和性质
§6-1 概 述
配位化合物的定义
具有空的价轨道的金属原子或离子与具有
孤对电子或 键的分子或离子按一定组成和空
间构型结合成的稳定的结构单元。
2019/11/2
1
第六章 配位化合物的结构和性质
配位化合物的化学键理论
价键理论(VBT) 20 世纪 30 年代初由 Pauling 等人提出。它的 基本思想是中心离子的杂化轨道与配位体孤对电子 形成配键。中心离子采用什么样的杂化轨道,取决 于中心离子的电子构型和配体的性质。
[Fe(CN)6]3
t
5 2
g
e
0 g
[C(rH2O)6]3
t
3 2
g
e
0 g
[CoF6 ]3
t
4 2g
e
2 g
2019/11/2
23
第六章 配位化合物的结构和性质
第六章配位化合物结构与性质习题答案
第六章配位化合物结构与性质习题答案6150(1) [RhCl6]3-(2) [Ni(H2O)6]2+6001分裂成两组, d22yx 和2zd处于高能级,d xy,d yz,d xz处于低能级。
6002X-为弱场配体,CN-为强场配体, NH3介于两者之间。
6003(A)6004否6005(C)6006-2△06007此结论仅在O h场中,中心离子d 电子数n=4--7 时才成立。
6008-0.4△0×6 =-2.4△06009假设填T d空隙LFSE(Td)=[4×(-0.267△)+4×0.178△] = -0.356△假设填O h空隙LFSE(Oh)=[6×(-0.4△)+2×0.6△] = -1.2△Ni2+倾向填入稳定化能大的空隙中,所以NiAl2O4为反尖晶石。
6010小6011参看《结构化学基础》 (周公度编著) p.275 6012(1) t 2g 4 e g 2(2) - 0.4△ (3) │M s │=6π2h(4) μ= 26μβ6013(D) 6014能级次序: d 22y x -最高, 2d z 次之,d xy 再次之,d yz ,d xz 最低。
理由:①因z 方向拉长,相应xy 平面上的 4 个L 靠近,所以d 22y x -能级升高,d z2能级下降; ②因为 d xy 在xy 平面内,受L 的影响大,所以d xy 能级上升,而d yz , d xz 受xy 平面上的 4 个L 排斥小,所以能级下降。
③但因z 方向上方还有 1 个L,加之2z d 的"小环"在xy 平面上,可受到L 的直接作用,所以2d z 能级高于 d xy 能级。
6015O h 点群,说明Jahn-Teller 效应为 0,按强场排:( t 2g )6(e g )0LFSE =-2.4△0 6016(B), (D) 6017否 6018(B)6019(1) [Fe(CN)6]3-: μ= [n(n+2)]1/2μβ; n1= 1[FeF6]3-: n2= 5(2) 中心离子Fe3+为d5结构,配位场为八面体场。
结构化学6配位化合物的结构和性质教学
0 0
0
-8Dq
t
2 2g
0
-12Dq
t
3 2g
00 00
d4
t 23g eg1
0
0
-6 Dq
t
4 2g
10
d5
t
3 2g
eg2
0
0
0 Dq
t
5 2g
20
d6
t
4 2g
eg2
1
d7
t
5 2g
eg2
2
d8
t
6 2g
eg2
3
d9
t
6 2g
eg3
4
1
-4 Dq
t
6 2g
2 -8 Dq t26ge1g
3 -12Dq t26geg2 4 -6 Dq t26geg3
L L
x
L
z
L
L
Ly
L
ddz2z2 x
z
L L
xL
yL
d L xz
z
L
L
L
Lz
L
L
y
Ly
L
L
L
L
d x2y2
x
d L
xy
正八 面体 配位 场
Lz
L
L
Ly
Lx
dL yz
2020/5/25
31
配合物离子的颜色
所吸收光子的频率与分裂能大小有关。 颜色的深浅与跃迁电子数目有关。
2020/5/25
33
学稳定性有下列次序:
d1〈d2〈d3〉d4〉d5〈d6〈d7〈d8〉d9 〉d10
配合物的畸变和姜-泰勒效应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
覆盖式 D5h D5d
交错式
以二茂铁(交错式)的分子轨道做详细说明: 亚铁离子有6个价电子, 两个环戊烯阴离子共12个价电子,总共 18个价电子刚好填满这9个能级较低的分子轨道.(见下图)
二苯铬
6.4 金属-金属四重键
在过渡金属配位化合物中,金属原子之间 可以形成单键,双键,三重键和四重键,四重键的 形成必须有d轨道参加,所以它只能在过渡金属原子 之间形成 Re2Cl82-离子在成键时, Re用dx2-y2,s,px ,py四 条轨道进行杂化,产生四 条dsp2杂化轨道,接受四 个Cl-配体的孤对电子, 形成四条正常的键
晶体场稳定化能(CFSE)
定义:d电子从未 分裂的d轨道进入 分裂后的d轨道, 所产生的总能量下
降值。
2.CFSE 的计算
n1:t 2 g 轨道中的电子数 n : e 轨道中的电子数 2 g
d轨道中的成对电子数 m1:八面体场中, d轨道中的成对电子数 m2:球形体场中,
CFSE=(-4n1+6n2)Dq+(m1-m2)P
6.5 过渡金属原子簇化合物的结构和性质
原子簇的定义 F. A. Cotton: 原子簇(Cluster)是“含有直接 而明显键合的两个或两个以上的金属原子化合 物 原子簇化合物(Cluster Compounds)是含有三 个或三个以上互相键合或极大部分互相键合 的金属原子的配位化合物 徐光宪:原子簇 为若干有限原子(三个或三 个以上)直接键合组成多面体或缺顶多面体 骨架为特征的分子或离子
因此, 可以根据对称性对金属原子轨道进行分类: a1g—— s t1u——px、py、pz eg——dz2、dx2-y2 t2g——dxy、dxz、dyz 前三类可用于参与形成键, 后一类可参与形成键。
2014-5-19
9
M的6个原子轨 道与6个配位体 群轨道组合得 到12个离域分 子轨道,一半 为成键轨道, 一半为反键轨 道, M的dxy、 dxz、dyz则形成 非键的t2g分子 轨道
LFSE=(-4n1+6n2)Dq ,配位场稳定化能
CFSE=n1Et2g+n2Eeg+(m1-m2)P
=n1(-4Dq)+n2(6Dq)+(m1-m2)P
=(-4n1+6n2)Dq+(m1-m2)P
3.影响CFSE的因素
d电子数目,配位体的强 弱,晶体场的类型
4.晶体场理论的应用 解释配合物的磁性 解释配合物的稳定性
解释配合物的颜色(吸收光谱)
* 解释离子水合热变化规律
晶体场理论的应用 解释配合物的磁性
解释配合物的稳定性
解释配合物的颜色(吸收光谱)
* 解释离子水合热变化规律
6.2 分子轨道理论和配位场理论
由金属中心的原子轨道与配体的分子轨道线 性组合成配合物的分子轨道 ψ=cMψM+ΣcLψL
6.5.1 18电子规则和金属-金属键的键数
每个过渡金属原子(M)参加成键的价层原子轨 道有9个(5个d轨道,1个s轨道和3个p轨道),在分 子中每个过渡金属原子可以容纳18个价电子以形成 稳定的结构,此即18电子规则。 M n 中n个金属原子之间互相成键,互相提供电 子,M原子间成键的总数可以用键数(b)表示。
[C5H5]- 6e
C 6 H6 6e
[C7H7]+ 6e
[C8H8]2- 10e
一些平面构型对称多烯的构型和π电子数
(1) 20世纪50年代合成出一种新物质Fe(C5H5)2,称 二茂铁,西方俗称三明治结构; (2) 之后陆续合成出一系列过渡金属与环戊烯基的 配合物,Ru,Co,Mn,Ni(C5H5)2等; (3) 过渡金属与苯基也可以形成三明治化合物,如 二苯铬Cr(C6H6)2等; (4) 后来进一步研究发现,环烯烃( 3 元环、 4 元环 直至 7 、 8 元环)都能与过渡金属形成这种夹心化 合物,但以5元环,6元环为最常见; (5)这种夹心化合物也可以是混合环体系,如一个5 元环与一个 3元环的 Ti(C5H5)(C3Ph3),一个 7元环与 一个5元环的(C5H5)V(C7H7)。有些是金属与一个环 烯 基 配 位 。 再 与 三 个 羰 基 配 位 , 例 如 Cr(C6H6)(CO)3
即四个Co原子形成六个金属-金属键,几何构型应为四面体骨架。
又如:[Rh6C(CO)15]2-
g=6×9+15×2+4+2=90
价电子总数包括六个Rh的价电子,15个羰基提 供的电子,Rh6骨架中C的四个价电子和簇合物带的 二价负电荷,总计为90个电子
b=(1/2)×(18×6 -90)=9
六个Rh之间形成九个金属-金属键,该金属簇合 物的骨架结构为三棱柱。
[例6.5.1]Ir4(CO)12 g=4×9+12×2=60 b=(1/2)×(18×4-60)=6 [例6.5.2]Re4(CO)162g=4×7+16×2+2=62
b=(1/2)×(18×4-62)=5 [例6.5.3]Os4(CO)16 g=4×8+16×2=64 b=(1/2)×(18×4-64)=4
2g
E
0
e g
2g
遇到中性配体,例如N2、CO等用中性原子与金属原 子或离子结合而成的配合物,晶体场理论不能作出合 理解释,用配位场理论则能加以说明。
Ni(CO)4
σ-π双键结构
M-C-O 中σ-π配键示意图 M ++ + + C≡O
--- M +++
C≡O
+
M
+
C≡O
M
-
C≡O
除CO外,N2、O2、NO等小分子均能与过渡金属形 成类似的σ-π授受键配合物。 PF3、PCl3、PR3等分子与过渡金属也形成σ-π授受 键的配合物,在PR3中P有一孤对电子可提供电子 对给中心金属原子,它还有空d轨道可接受金属原 子反馈的电子,形成σ-π配键,例如:Pd(PF3)4、 Ni(PF3)4等。
乙炔配合物
2014-5-19
20
6.3.4 环多烯和过渡金属的配位化合物
许多环多烯具有离域π键的结构,离域π键可以作 为一个整体和中心金属原子通过多中心π键形成配位 化合物。平面对称的环多烯有很多,下图只列出其中 一些比较常见的环多烯的结构式和电子数。
Ph
2
Ph Ph
2
[C3Ph3]+ 2e
[C4H4]2- 6e
许多过渡金属 能以σ-π配键与CO配体形成配 合物,例如:Ni(CO)4,Fe(CO)5,Cr(CO)6等。
配位场理论不象晶体场理论那样只考虑静电作用。也得到了d 轨道能级分裂,说明配位场效应是适应于过渡金属配合物的
一般原理。
在晶体场理论中: 其差别在于: 配位场理论中:
E
0
eg
Et Et
π:d x y,d x z,d y z
•配位体的轨道则按照其跟金属原子或离子形成σ轨 道的对称性,先自行组合成群轨道。
2014-5-19 7
群轨道:ψs=C1(φ1+φ2+φ3+φ4+φ5+φ6)
ψdz2=C2(-φ1-φ2+2φ3-φ4-φ5+2φ6) ψd(x2-y2)=C3(φ1-φ2+φ4-φ5) ψpx=C4(φ1-φ4) ψpy=C5(φ2-φ5) ψpz=C6(φ3-φ6)
不饱和烃配位化合物
早在19世纪初,Zeise合成出蔡斯盐K[PtCl3(C2H4)]· H 2 O, 其一价负离子[PtCl3(C2H4)]-的结构如下:
[PtCl3(C2H4)]-的结构
各个键的形成示意图
乙炔有两套相互垂直的π与π*轨道,两套轨道均 可以和对称性匹配的金属d轨道重叠。乙炔即 可做2电子给予体,又可以作为4电子给予体。
八面体配位化合物中分子轨道的形成及能级图
6.3 σ-π配键与有关配位化合物的结构和性质 在配合物中,配体以孤对电子与金属原子的空d轨 道形成σ配键,金属原子的d轨道上电子再反馈到配 体的π*轨道上形成反馈π键,两种作用结合起来, 称为σ-π授受键. 1.使金属原子与碳原子之间的键比单键强 2.因为反键π*轨道上也有一定数量的电子,配体分 子内部的键变弱。
对称性匹配,轨道最大重叠,能级相近 1.只考虑中心与配体的价轨道,并按σ和π轨道分类 2.将配体的σ和π重新组合成与中心对称的群轨道 3.按对称性将中心原子轨道与配体的群轨道线性组 合成分子轨道
6.2.1 ML6八面体配位化合物的分子轨道 •在处理八面体配位化合物ML6时,先按M和L组 成的分子轨道是σ轨道还是π轨道将M的价轨道进 行进行分组: σ:s,p x ,p y ,p z ,dx2-y2 ,dz2
两个金属各自还剩四条d轨道,dz2、dyz、dxz、dxy,相互重叠形 成四重的金属-金属键。这四重键,一条是dz2-dz2头对头产生 的键,两条是由dyz与dyz、dxz与dxz肩并肩产生的键,还有 一条是dxy与dxy面对面产生的键。
Re2Cl82-的结构为重叠构型
因为重叠型使 dxy和 dxy ( 或 dx2 - y2 与 dx 2 - y2 )能进行有效的 重叠,但交错型时,这种重叠趋势趋于0, (重叠型的) 重叠的 结果使在Re与Re之间形成了1条、2条和1条四重键, 因而键 距很短,键能很大比一般单键或双键的键能都大,故Re2Cl82- 能稳定存在。
b = (1/2)(18n-g)
式中g代表分子中与M n 有关的价电子总数,它包含 三部分电子: 1.组成M n簇合物中n个M原子的价电子数; 2.配位体提供给n个M原子的电子数; 3.若簇合物带有电荷,则包括所带电荷数。
现举Co4(CO)12为例说明: g=4×9+12×2=60