测度与概率(第2版)第一章部分作业
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
高等概率论
高等概率论第一章:测度与积分第一节:集族与测度(Ω,Φ,μ)---------测度空间①Ω---------------非空集合-------------研究对象全体②Φ----------------σ代数(域)-------由Ω的一些子集组成σ代数对集合的一切有限次或可数次运算封闭Φ{,}φ=Ω-------------平凡的σ代数③μ:Φ+→R ([0,1])集函数(是Ω的元素的一种测度或度量)例:Ω=[0,1].(a,b]?Ω,((,])a b b a μ- ,I 是Ω的子集,I 为区间,()I μ=I 的长度,Φ=B ([0,1])=()σε--------包含ε的最小σ代数,[0,1]ε=中的一切开集测度的唯一扩张定理,{:()}n x x ωξω?∈≤∈R Φ 称ξ是可测函数({})a b μξξ<≤---的分布①..()lim ()n x a e μξωμ→∞几乎处处收敛依测度收敛依分布收敛(弱收敛)②ξ是一维可测函数,积分ξωμωΩ()d ()-------数学期望积分的收敛性---------Lebesgue 控制收敛定理lim ()?lim ()n n x x d d ξωμξωμ→∞→∞ΩΩ=??Fatou 引理,Levy 引理记号、述语:大写英文字母表示Ω的子集(事件)花写英文字母表示Ω的子集组成的集合类(集类,集族)AαBβXχ?δEεΦφΓγHηIι??KκΛλMμNνOο∏πΘθPρ∑σTτYυ??ΩωΞξψψZζ 某集类对某种运算封闭:如A 对可数并封闭指:对?A1,A2,…A n ∈A ,则1i ∞=A i ∈A第二节:集族与测度1. 集合序列的极限设1,2,...,,...,A A An ?Ω111limsup {:}{,,...,}x K k k K k n kAn n An X A A Anωω→∞∞+=∞∞==∈Ω?∈== 可数个不同的,使至少一个发生111lim inf {:}{,,...,}x k k k k n kAn n An A A Anωω→∞∞+=∞∞==∈Ω∈== 除有限个以外,都发生关系:lim inf lim sup n n An An →∞→∞如果lim inf lim sup n n An An →∞→∞=,称{}An 的极限存在,记为lim x An →∞特例:单调上升集合列:121,lim n n A A An An ∞→∞=?=单调下降集合列:121,lim n n A A An An ∞→∞=?=例:A,B 是Ω的两个子集,221,,1,2,n n A A A B n -=== ,则lim sup ,lim inf n n An A B An A B →∞→∞==11((1),1(1))nn An n n=-+-,则lim sup [0,1],lim inf (0,1)n n An An →∞→∞==11(,1)(0,1)2211(,1)(0,1)22n n n n An Bn =-↑=-+↓2几种常用集类的定义:①A 称为一个π类:如果A 对有限交封闭②?称为一个λ类:如果:(a).ω∈ ?;(b). ?对真差封闭:若,A B ∈?,且A B ?,则B A -∈? (c )?对单调上升(下降)集合列的极限封闭③环A :如果A 对有限并、差运算封闭(交:()A B A A B =-- )④代数Φ:如果Φ是环,且Ω∈Φ0(代数对一切有限次运算封闭)⑤σ环A :如果A 对可数并、差运算封闭(?可数交封闭,极限运算封闭)⑥σ代数(域)Φ:如果Φ是σ环,且Ω∈Φ(σ代数对一切可数次集合运算封闭)⑦单调族M :如果M 对单调上升(下降)列的极限封闭,即:如果An ∈M ,且An ↑,则1n An ∞=∈ M如果An ∈M ,且An ↓,则1n An ∞=∈ M代数、且又是单调族σ?代数π类、且又是λ类σ?代数A 是任意集类,分别称λ()A ,σ()A ,M (A )是由A 生成的最小λ类,最小σ代数,最小单调类。
概率论与数理统计(第二版)徐全智课后习题第一章
概率论与数理统计(第二版)徐全智课后习题答案第一章 -设&瓦C 均牺机试鉴的三个隠[机审仲‘區特卜列事件用£比匚舉示出*<B仅仅丿笈生* <2)所有三G 夢件郁览生”(3)川坪甘均发生;.Q 不发主; ⑷至少有-个豪杵发生匚<5)至少有两"件St%⑹愴材-片艸建鉴 (7>恰有葫个事件发生*(3>没青~亍事件发主t (9)不寧于厲个事杵发生. ABC ; (2) AHC^ ⑶ ABC x (4)J|J5UC : {5}AB\J BCV ) AC ■.同时掷二颗戦子,记录三额锻子的点數之和’ 将一枚越币抛三欢・观索出现正反面的齐幷印能结杲” 对一目标进行射击,且到击中坟执%止,记氓射击杓按数: 将一单位怅的线段分为三段*舰蔡齐段的KZJ?-从分別标有号1+ 2.…、10的106球中任意収两球.记隶坪的号码.讯 Cl )门・嘔乳….1B};⑵{HHH, HH7, HTH, HTf. THH. TTH t THT, 777 } F(3) {5.6J/ - )j {4} {{耐”科;jr A Oj A Qz a 0,算* y 屮工.1 };•将12个螺fiiU/l 地放入20介盒子*试球毎牛盒子中的球不參丁T 个的枢率,杯 设只/)衰式所求的槪程 鮒 戶(/}=聲里理M ⑷乩20 3*-檸1°本书任意地放在书架上・其中有一程国柱成套的怡 求下列眾件的抵率’(1)成套的站放在一起I (?)成廷冊|$!5構欲颅序徉好放在一起*Mt "}设尸(丿)験示新黨的橫拿.观 P{A )~~ = ^-t 10! 30(2)设議示所求的概匙 则’鬥⑵■卫工 丄" 1W 7205” 一辆舍接汽车出发前載有5名乘客,即一位麟容独立的亞七个站中的任一牛站离幵 匾 |琪下列事件的概毂H )第七站恰好有两位乘客髀去匸<2>没脅两曲及脚童®上采客住问一站离去儿5名験害在七个站中的任就一牛姑壽开的结杲总散« »7\(门第七站恰好青两位象客心 其方法・黴设鬥冷为所求槪率.則,尸⑷-二{6}ABC{jABC{JA fiC h Ci\ ABC[jABC\jABC . cs > ABC ,(9> ABC 2-写出下列髓机试验的样本空何⑴⑵⑶⑷C5)6有一个随机数发生器,毎一次等可能的产生0入2,….9十个数字.由这些数字胡机编成的刀位数码(各数字允许靈复),从全部"位数码中任意选取一个,其最大数字不超过* <*^9)的概率.解:设p⑷表式所求的概率,则由全部"位数码的总数为10",得:P(/l) = ^^-.7 - 一元件盒中有50个元件.期中25件一等品■ 15件二導品.10件次制.从中任取10 件•求,(1)恰有两件一铮品,两件二等品的概率;(2)恰有两件一等品的槪率;(3)没有次品的概率.8 •片10个人分别佩戴考标号从1号到10号的纪念章■任意选出3人・记卜其纪念章的号码,试求:(1)最小的号码为5的概率:(2)最犬的号码为5的概率・解:从10人中任意选3人纪念章号码的总数为刀==G;・(1)最小号码为5,则余卞2个在6-10中选,即m =设P")为所求概率•则:(2)同理设P(B)为所求概率• M: P(&) = k = 0.05・9.段事件A,BRAUB的槪率分别为阳和尸,试求:P(AB\P(AB),P(AB\P(AB).解:P(AB) = P(A)^P(B)-P(A[)B) = p^q-r,P(AB)^P(B-A)^P(BUA)-P(A) = r-p (单调性>:P(AB)=:P(A-B) = P(A(jB)-P(B) = r-q调性人214. 一个盒子中有24个灯泡.其中有4个次品•若甲从魚中航机取走10个,乙取走余下的 14个・求4个次品灯泡被一人全部取走的權率.设* = {次品灯泡全部被甲取走}■ B = {次品灯泡全部被乙取走}•则互不相容,15・设梅5个球閒意地放入3个盒子中.求毎个盒子内至少有一个球的概牢•*• 5个球喷意地放入彳个盒子中骑件总»« = V. 1个魚子中一个或两个盒子中有球数为 m = 3 + C ;pJ+C ;p}.设所求概率为P(/)・则:P(/) = l- 6己知£和為同时发生.則久必发生,证明:P(4)nP(£) + P“J ・l ・证明:由己知,A.A 2 a A.再由单调性.P(A.A 2) P(A).则PU) 2 P(4 A 2)x P ⑷+p(x 2) - P(£ U 禹)••• ° s P(4 U 心)s 1, •••• P(A) > PGM) = P(£) + P(A 2)- P(A } u 禺)2 P (4) + P(AJ-117.掷一枚均匀硬币直到出现三次止面才停止•问正好在第六次停止的悄况卜,第五次也是 正面的概率是多少? 解:设/ = {第五次出现正面” 3 = {第六次停止}•则:P (A\B) = ¥^ = P(B)18.证明:P(A\B)> P(A)>0.则 P(B | A) > P(B).20.将两颗均勻骰子冋时掷一次•己知两个股子的点数Z 利是奇数・求两个骰子的点数z 和 水于8的様率.解:此事件的样本空间由36个样本点组成,设久二{两个股子的点数Z 和小T 8}・B = {科 个锻子的点数Z 和是奇数}・则FM : 36 36P[A\B) •弘型段二P(B) 1 322I ・设10件产胡中有4件是次品^从中任取两件,试求在所取得的产品中发现有一件挞次 也后・另一件也是次品的概率.*!设* = {所取得两件中至少有一件量次品}, 9 = {所取得两件产品郴是次品},:BdA t .\ AB^B. iro?(^) = l-P(l) = l-.-^- = i, p (^) =.所求録率 C|; 3G : 1521 45 £ 15 所求帳率为:P(A\JB)^P(A)^P(B) 3 + C ;p ;+C ;p ;二 5g? 81 证明: P ⑷):P ⑷)P(A) > P(A | B) =P(B).即证.19.设净件儿B 互不相容,且 P(B)>0,畑 P(A | B) 吃) l-P(B)0.1140.2 56« 0.25x0.1 + 0.5 x 0.2 + 0.25 x 0.4 - 0.225 ・两批同类产品各自有12件和2件,在毎-批产品中有-件次品,无竟中将第f 的一 H P 品混入第二批,现从第二批中取出一件,求第二批中収出次晶的概率.解:设月={第二批中取出次品}, ” = {第_批的次晶混入第二批}, *,7构成铎本空间的 一个划分,由全帳宰公式:W) = P(A)P(B M) + P(7)P(B I 刁 V X 容 +12 X 丄二 0.0985 ・12 11 12 11]・在一个盒子中装有15个乒乓球.其中有9个新球.在第一次比赛时任意取岀三个球, 比赛后仍放回原盒中•第二次比赛时•同样任恵的取岀三个球,求第二次取岀三个新球的概 辜・ 解:设B M {第二次取出3个新球}.可以看出・直接确定B 的概率P(B)是困难的,原因是, 第一次比赛之后,12个乒乓球中的新、旧球的分布悄况不満定,而一旦新旧球的分布情况 明珂了,那么相应的概率也容易求得.为此,设4・(第一次取到的3个球中有i 个新球}, i=O ,2, 3.容易判析&,£,4,心构成一个划分.由于P (4)=,i = 0,1,2,3,又P (B ⑷焰,2 0,1,2,3.20702527.仓库中存有从甲厂购进的产品30箱.从乙厂购进的同类产品25箱.甲厂的毎箱装12 个・废品率为0.04.乙厂的每箱装10个,废品率0.05.求,(I 班取一精,从此箱中任取一个为废晶的績率;(2怖所有产品开箱后混放,任取一个为废品的槪率.M : (1)设B = {取出的衆废品}, * = {从甲厂取山}, /!"构成一个划分,則P(B) = P(A)P(B | ><) + P (A)P(B | A) 30x12x0.04 + 25x10x0.05 30x12 + 25x1028.已知一批产胎中96%是合格rtt.用茱种检验方法辨认出合格品为合格品的M«M0 98» 而谋认废品迪合格品的帳率处0.05.求检春合格的一件产品确系合格的概率.解:设/■{检査合格产品}• 〃叫确系合格}• 由己知.P(B) ■ Q.96,P(A | B) = 0.98, P(A | B) 0.05 >由全櫃率公式,得:p (B) = Y P(4 )P(B | 4) = S !•€ (GJ1680 + 7560 + 7560 + 1680 A “心 * 0.0893 • 30x1230x12 + 25x10 x0.04 + • 25x10 30x12 + 25x10x0.05 = 0.0441 = 0.04417由贝叶斯公式:P (B | X )= ' B)二 ------ 妙少凹 __________P(A) P(B)P(A | B)+ P(B)P(A | B) 0.96x0,98 096x0^98 + 004x0.0529・己知5%的男人和0.25%的女人是色宙者,現随机挑选一人.此人恰为色旨者•问此人 是勇人的概率为多少(假设男人女人各占总人数的一半).解^设A^{色盲者}• B = {男人}. 构成样本空同的一个划分.且P(/< |5) = 0.05,"駐。
概率论与数理统计(茆诗松)第二版第一章习题参考答案
第一章 随机事件与概率习题1.11. 写出下列随机试验的样本空间:(1)抛三枚硬币; (2)抛三颗骰子;(3)连续抛一枚硬币,直至出现正面为止;(4)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,放回后再取出一个; (5)口袋中有黑、白、红球各一个,从中任取两个球,先从中取出一个,不放回后再取出一个. 解:(1)Ω = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(1, 0, 0),(0, 1, 1),(1, 0, 1),(1, 1, 1),(1, 1, 1)},其中出现正面记为1,出现反面记为0; (2)Ω = {(x 1 , x 2 , x 3):x 1 , x 2 , x 3 = 1, 2, 3, 4, 5, 6};(3)Ω = {(1),(0, 1),(0, 0, 1),(0, 0, 0, 1),…,(0, 0, …, 0, 1),…},其中出现正面记为1,出现反面记为0;(4)Ω = {BB ,BW ,BR ,WW ,WB ,WR ,RR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R ; (5)Ω = {BW ,BR ,WB ,WR ,RB ,RW},其中黑球记为B ,白球记为W ,红球记为R .2. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一枚硬币,试验停止.那么该试验的样本空间Ω是什么? 解:Ω = {Z1,Z2,Z3,Z4,Z5,Z6,FZ ,FF}. 3. 设A , B , C 为三事件,试表示下列事件:(1)A , B , C 都发生或都不发生; (2)A , B , C 中不多于一个发生; (3)A , B , C 中不多于两个发生; (4)A , B , C 中至少有两个发生. 解:(1)C B A ABC U ;(2)C B A C B A C B A C B A U U U ;(3)ABC 或C B A C B A C B A C B A BC A C B A C AB U U U U U U ; (4)ABC BC A C B A C AB U U U . 4. 指出下列事件等式成立的条件:(1)A ∪B = A ; (2)AB = A . 解:(1)当A ⊃ B 时,A ∪B = A ;(2)当A ⊂ B 时,AB = A .5. 设X 为随机变量,其样本空间为Ω = {0 ≤ X ≤ 2},记事件A = {0.5 < X ≤ 1},B = {0.25 ≤ X < 1.5},写出下列各事件:(1)B A ; (2)B A U ;(3)AB ; (4)B A U .解:(1)}5.11{}5.025.0{<<≤≤=X X B A U ;(2)Ω=≤≤=}20{X B A U ;(3)A X X AB =≤<≤≤=}21{}5.00{U ; (4)B X X B A =≤≤<≤=}25.1{}25.00{U U .6. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:A =“X = 1”,B =“X > 2”,C =“X = 0”,D =“X = 4”.解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立?(1)A − (B − C ) = (A − B )∪C ;(2)若AB = ∅且C ⊂ A ,则BC = ∅; (3)(A ∪B ) − B = A ; (4)(A − B )∪B = A .解:(1)不成立,C B A AC B A AC B A C B A C B A C B A C B A U U U U )()()()(−≠−====−=−−;(2)成立,因C ⊂ A ,有BC ⊂ AB = ∅,故BC = ∅;(3)不成立,因A B A B A B B B A B B A B B A ≠−====−U U U )()(; (4)不成立,因A B A B B B A B B A B B A ≠===−U U U U U ))(()(. 8. 若事件ABC = ∅,是否一定有AB = ∅?解:不能得出此结论,如当C = ∅时,无论AB 为任何事件,都有ABC = ∅. 9. 请叙述下列事件的对立事件:(1)A =“掷两枚硬币,皆为正面”; (2)B =“射击三次,皆命中目标”;(3)C =“加工四个零件,至少有一个合格品”. 解:(1)=A “掷两枚硬币,至少有一个反面”;(2)=B “射击三次,至少有一次没有命中目标”; (3)=C “加工四个零件,皆为不合格品”. 10.证明下列事件的运算公式:(1)B A AB A U =; (2)B A A B A U U =.证:(1)A A B B A B A AB =Ω==)(U U ;(2)B A B A B A A A B A A U U U U U =Ω==)())((. 11.设F 为一事件域,若A n ∈F ,n = 1, 2, …,试证:(1)∅ ∈F ;(2)有限并∈=U ni i A 1F ,n ≥ 1;(3)有限交∈=I ni i A 1F ,n ≥ 1;(4)可列交∈+∞=I 1i i A F ;(5)差运算A 1 − A 2 ∈ F .证:(1)由事件域定义条件1,知 Ω ∈F ,再由定义条件2,可得∅∈Ω=F ;(2)在定义条件3中,取A n + 1 = A n + 2 = … = ∅,可得∈=∞==U U 11i i ni i A A F ;(3)由定义条件2,知∈n A A A ,,,21L F ,根据(2)小题结论,可得∈=U ni i A 1F ,再由定义条件2,知∈=U ni i A 1F ,即∈=I ni i A 1F ;(4)由定义条件2,知∈L L ,,,,21n A A A F ,根据定义条件3,可得∈∞=U 1i i A F ,再由定义条件2,知∈∞=U 1i i A F ,即∈∞=I 1i i A F ;(5)由定义条件2,知∈2A F ,根据(3)小题结论,可得∈21A A F ,即A 1 − A 2 ∈ F .习题1.21. 对于组合数⎟⎟⎠⎞⎜⎜⎝⎛r n ,证明:(1)⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ; (2)⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛r n r n r n 111; (3)nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)12221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n L ;(5)⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ,n = min{a , b }; (6)⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 证:(1)⎟⎟⎠⎞⎜⎜⎝⎛=−=−−−=⎟⎟⎠⎞⎜⎜⎝⎛−r n r r n n r n n r n n r n n !)!(!)]!([)!(!; (2)⎟⎟⎠⎞⎜⎜⎝⎛=−=−+−−=−−−+−−−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−−r n r n r n r n r r n r n r n r n r n r n r n r n )!(!!)]([)!(!)!1()!1(!)!1()!()!1()!1(111; (3)由二项式展开定理nn n n y n n y x n x n y x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+−L 110)(,令x = y = 1,得 nn n n n 210=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛L ; (4)当1 ≤ r ≤ n 时,⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−=−⋅−=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!()!1(!)!(!!r n n r n r n n r n r n r n r n rr n r , 故12111101221−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−++⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n n n n L L ; (5)因a ax a a x a a x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(,b b x b b x b b x ⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=+L 10)1(, 两式相乘,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛0110b n a n b a n b a L ,另一方面ba b a b a x a b a x b a b a x x x ++⎟⎟⎠⎞⎜⎜⎝⎛+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=+=++L 10)1()1()1(,其中x n 的系数为⎟⎟⎠⎞⎜⎜⎝⎛+n b a ,即⎟⎟⎠⎞⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n b a b n a n b a n b a 0110L ; (6)在(5)小题结论中,取a = b = n ,有⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n n n 20110L , 再由(1)小题结论,知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛r n n r n ,即⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n 210222L . 2. 抛三枚硬币,求至少出现一个正面的概率.解:样本点总数n = 23 = 8,事件“至少出现一个正面”的对立事件为“三个都是反面”,其所含样本点个数为1, 即事件“至少出现一个正面”所含样本点个数为k = 8 − 1 = 7,故所求概率为87)(=A P . 3. 任取两个正整数,求它们的和为偶数的概率. 解:将所有正整数看作两个类“偶数”、“奇数”,样本点总数n = 22 = 4,事件“两个都是偶数”所含样本点个数为1,事件“两个都是奇数”所含样本点个数也为1, 即事件A =“它们的和为偶数”所含样本点个数k = 2,故所求概率为2142)(==A P .4. 掷两枚骰子,求下列事件的概率:(1)点数之和为6; (2)点数之和不超过6; (3)至少有一个6点. 解:样本点总数n = 62 = 36.(1)事件A 1 =“点数之和为6”的样本点有 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1),即个数k 1 = 5,故所求概率为365)(1=A P ;(2)事件A 2 =“点数之和不超过6”的样本点有(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), 即个数k 2 = 15,故所求概率为1253615)(2==A P ;(3)事件A 3 =“至少有一个6点”的样本点有(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6), 即个数k 3 = 11,故所求概率为3611)(3=A P .5. 考虑一元二次方程x 2 + Bx + C = 0,其中B , C 分别是将一颗骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q . 解:样本点总数n = 62 = 36,事件A 1 =“该方程有实根”,即B 2 − 4C ≥ 0,样本点有(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6),即个数k 1 = 19,故36191==n k p . 事件A 2 =“该方程有重根”,即B 2 − 4C = 0,样本点有(2, 1),(4, 4),即个数k 2 = 2,故1813622===n k q .6. 从一副52张的扑克牌中任取4张,求下列事件的概率:(1)全是黑桃; (2)同花;(3)没有两张同一花色; (4)同色.解:样本点总数270725123449505152452=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“全是黑桃”所含样本点个数7151234101112134131=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为0026.0270725715)(1==A P ;(2)事件A 2 =“同花”所含样本点个数2860123410111213441342=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为0106.02707252860)(2==A P ;(3)事件A 3 =“没有两张同一花色”所含样本点个数k 3 = 13 × 13 × 13 × 13 = 28561,故所求概率为1055.027072528561)(3==A P ;(4)事件A 4 =“同色”所含样本点个数29900123423242526242624=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛×=k , 故所求概率为1104.027072529900)(4==A P .7. 设9件产品中有2件不合格品.从中不返回地任取2个,求取出的2个中全是合格品、仅有一个合格品和没有合格品的概率各为多少?解:样本点总数36128929=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A 1 =“全是合格品”所含样本点个数211267271=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1273621)(1==A P ; 事件A 2 =“仅有一个合格品”所含样本点个数142712171=×=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1873614)(2==A P ;事件A 3 =“没有合格品”所含样本点个数1223=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为361)(3=A P . 8. 口袋中有7个白球、3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:样本点总数4512910210=××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件A =“两个球颜色相同”所含样本点个数24122312672327=××+××=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为1584524)(==A P . 9. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球.从两个口袋中各任取一球,求取到的两个球颜色相同的概率. 解:样本点总数n = 8 × 10 = 80,事件A =“两个球颜色相同”所含样本点个数k = 5 × 4 + 3 × 6 = 38,故所求概率为40198038)(==A P . 10.从n 个数1, 2, …, n 中任取2个,问其中一个小于k (1 < k < n ),另一个大于k 的概率是多少?解:样本点总数)1(212−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N ,事件A = “其中一个小于k ,另一个大于k ”所含样本点个数K = (k − 1)(n − k ), 故所求概率为)1())(1(2)(−−−=n n k n k A P .11.口袋中有10个球,分别标有号码1到10,现从中不返回地任取4个,记下取出球的号码,试求:(1)最小号码为5的概率; (2)最大号码为5的概率.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1 =“最小号码为5”所含样本点个数10123345351=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为21121010)(1==A P ; (2)事件A 2 =“最大号码为5”所含样本点个数4123234342=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为10522104)(2==A P . 12.掷三颗骰子,求以下事件的概率:(1)所得的最大点数小于等于5; (2)所得的最大点数等于5. 解:样本点总数n = 63 = 216,(1)事件A 1 =“所得的最大点数小于等于5”所含样本点个数k 1 = 53 = 125,故所求概率为216125)(1=A P ; (2)事件A 2 =“所得的最大点数等于5”所含样本点个数k 2 = 53 − 43 = 61,故所求概率为21661)(2=A P .13.把10本书任意地放在书架上,求其中指定的四本书放在一起的概率. 解:样本点总数n = 10!,事件A =“其中指定的四本书放在一起”所含样本点个数k = 4! × 7!,故所求概率为30189101234!10!7!4)(=×××××=×=A P . 14.n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率. 解:样本点总数N = (n − 1)!,事件A =“甲乙两人相邻而坐”所含样本点个数k = 2! × (n − 2)!,故所求概率为12)!1()!2(!2)(−=−−×=n n n A P . 15.同时掷5枚骰子,试证明:(1)P {每枚都不一样} = 0.0926; (2)P {一对} = 0.4630; (3)P {两对} = 0.2315;(4)P {三枚一样} = 0.1543(此题有误); (5)P {四枚一样} = 0.0193; (6)P {五枚一样} = 0.0008. 解:样本点总数n = 65 = 7776,(1)事件“每枚都不一样”所含样本点个数72023456561=××××==A k ,故P {每枚都不一样}0926.07776720==; (2)事件“一对”所含样本点个数3600345124563525162=××××××=⋅⋅=A C A k , 故P {一对}4630.077763600==; (3)事件“两对”所含样本点个数18004122312451256142325263=×××××××××=⋅⋅⋅=A C C C k , 故P {两对}2315.077761800==; (4)事件“三枚一样”所含样本点个数15005123345652235164=××××××=⋅⋅=C A k ,故P {三枚一样}1929.077761500==; 事件“三枚一样且另两枚不一样”所含样本点个数12004512334562535164=×××××××=⋅⋅=A C A k ,故P {三枚一样且另两枚不一样}1543.077761200==; (5)事件“四枚一样”所含样本点个数15051234234561545165=××××××××=⋅⋅=A C A k ,故P {四枚一样}0193.07776150==; (6)事件“五枚一样”所含样本点个数6161555166=×=⋅⋅=A C A k ,故P {五枚一样}0008.077766==. 16.一个人把六根草紧握在手中,仅露出它们的头和尾.然后随机地把六个头两两相接,六个尾也两两相接.求放开手后六根草恰巧连成一个环的概率.解:在同一种六个头两两相接情况下,只需考虑六个尾两两相接的样本点总数n = 5 × 3 = 15,事件A =“放开手后六根草恰巧连成一个环”所含样本点个数k = 4 × 2 = 8,故所求概率为158)(=A P .17.把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.解:样本点总数!!)!2(2n n n n n N ⋅=⎟⎟⎠⎞⎜⎜⎝⎛=,事件A =“没有两个‘1’连在一起”所含样本点个数11+=⎟⎟⎠⎞⎜⎜⎝⎛+=n n n k ,故所求概率为)!2()!1(!)(n n n A P +⋅=.18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X ,求X 的概率分布.解:样本点总数210123478910410=××××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件X = 0所含样本点个数7011234567802480=×××××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为3121070}0{===X P ; 事件X = 1所含样本点个数112212367812381=×××××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为158210112}1{===X P ; 事件X = 2所含样本点个数281127822282=×××=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为15221028}2{===X P . 19.n 个男孩,m 个女孩(m ≤ n + 1)随机地排成一排,试求任意两个女孩都不相邻的概率.解:样本点总数!!)!(m n m n n m n N ⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=,事件A =“任意两个女孩都不相邻”所含样本点个数)!1(!)!1(1m n m n m n k −+⋅+=⎟⎟⎠⎞⎜⎜⎝⎛+=, 故所求概率为)2()1)(()2()1()!1()!()!1(!)(+−++−+−=−+⋅++⋅=n m n m n m n n n m n m n n n A P L L .20.将3个球随机放入4个杯子中去,求杯子中球的最大个数X 的概率分布. 解:样本点总数n = 43 = 64,事件X = 1所含样本点个数24234341=××==A k ,故所求概率为836424}1{===X P ; 事件X = 2所含样本点个数363341323142=××==A C A k ,故所求概率为1696436}2{===X P ; 事件X = 3所含样本点个数4143==A k ,故所求概率为161644}3{===X P . 21.将12只球随意地放入3个盒子中,试求第一个盒子中有3只球的概率. 解:样本点总数n = 312 = 531441,事件A =“第一个盒子中有3只球”所含样本点个数11264051212310111223129=×××××=×⎟⎟⎠⎞⎜⎜⎝⎛=k ,故所求概率为2120.0531441112640)(==A P .22.将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;(3)某指定的m 个盒子中恰好有j 个球的概率.解:样本点总数为N 取n 次的重复组合,即)!1(!)!1(1−⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−+=N n n N n n N M , (1)事件A 1 =“某个指定的盒子中恰好有k 个球”所含样本点个数为N − 1取n − k 次的重复组合,即)!2()!()!2(21)(11−⋅−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−=N k n k n N k n k n N k n k n N K , 故所求概率为)1()2)(1()1()1()1()!2()!()!1()!1(!)!2()(1−−+−+−+−⋅+−−=−⋅−⋅−+−⋅⋅−−+=k n N n N n N N k n n n N k n n N N n k n N A P L L ;(2)事件A 2 =“恰好有m 个空盒”所含样本点个数可分两步考虑:首先N 选m 次的组合,选出m 个空盒,而其余N − m 个盒中每一个都分别至少有一个球, 其次剩下的n − (N − m )个球任意放入这N − m 个盒中,即N − m 取n − (N − m )次的重复组合,则)!1()!()!(!)!1(!)(12−−⋅−+⋅−⋅−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−−⎟⎟⎠⎞⎜⎜⎝⎛=m N N m n m N m n N m N n n m N K ,故所求概率为)!1()!1()!()!(!)!1(!)!1(!)(2−+⋅−−⋅−+⋅−⋅−⋅⋅−⋅=n N m N N m n m N m N n n N A P ;(3)事件A 3 =“某指定的m 个盒子中恰好有j 个球”所含样本点个数为m 取j 次的重复组合乘以N − m 取n − j 次的重复组合,则)!1()!()!1(!)!1()!1(1)()(13−−⋅−⋅−⋅−−−+⋅−+=⎟⎟⎠⎞⎜⎜⎝⎛−−−+−⎟⎟⎠⎞⎜⎜⎝⎛−+=m N j n m j j m n N j m j n j n m N j j m K , 故所求概率为)!1()!1()!()!1(!)!1(!)!1()!1()(3−+⋅−−⋅−⋅−⋅−⋅⋅−−−+⋅−+=n N m N j n m j N n j m n N j m A P .23.在区间(0, 1)中随机地取两个数,求事件“两数之和小于7/5”的概率.解:设这两个数分别为x 和y ,有Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},得m (Ω) = 1,事件A =“两数之和小于7/5”,有A = {(x , y ) | 0 < x +y < 7/5}, 得504153211)(2=⎟⎠⎞⎜⎝⎛×−=A m , 故所求概率为5041)()()(=Ω=m A m A P . 24.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的.如果甲船的停泊时间是一小时,乙船的停泊时间是两小时,求它们中任何一艘都不需要等候码头空出的概率是多少?解:设甲乙两艘轮船到达码头的时间分别为x 和y 小时,有Ω = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24},得m (Ω) = 242 = 576, 事件A =“它们中任何一艘都不需要等候码头空出”, 若甲先到,有x + 1 ≤ y ≤ 24;若乙先到,有y + 2 ≤ x ≤ 24;即A = {(x , y ) | 0 ≤ x ≤ 24, 0 ≤ y ≤ 24, x + 1 ≤ y ≤ 24或y + 2 ≤ x ≤ 24},得2101322212321)(22=×+×=A m , 故所求概率为11521013)()()(=Ω=m A m A P . 25.在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b , c (均小于d )的三角形,求三角形与平行线相交的概率.解:不妨设a ≥ b ≥ c ,三角形的三个顶点分别为A , B , C ,其对边分别为a , b , c ,相应三个角也记为A , B , C ,设O 为BC 的中点,点O 与最近的一条平行线的距离为x , 从点O 向三角形外作与平行线平行的射线OD , 若B , C 中点C 更靠近某条平行线,则记α = ∠COD ,否则记α = −∠BOD , 有π}π,20|),{(<<−≤≤=Ωααdx x ,得m (Ω) = π d ,事件E =“三角形与平行线相交”,当α ≥ 0时,如果C ≤ α < π,事件E 就是OC 与平行线相交; 如果0 ≤ α < C ,事件E 就是OC 或AC 与平行线相交; 当α < 0时,如果−π < α ≤ −B ,事件E 就是OB 与平行线相交;如果−B < α < 0,事件E 就是OB 或AB 与平行线相交.记}sin 2,|),{(1αααax C x E ≤≥=, )}sin(sin 2,0|),{(2αααα−+≤<≤=C b ax C x E ,}sin 2,|),{(3αααax B x E −≤−≤=,)}sin(sin 2,0|),{(4αααα++−≤<<−=B c ax B x E ,有E = E 1∪E 2∪E 3∪E 4,得∫∫−−−⎥⎦⎤⎢⎣⎡++−+⎟⎠⎞⎜⎝⎛−=0π)sin(sin 2sin 2)(BB d B c a d a E m ααααα∫∫+⎥⎦⎤⎢⎣⎡−++π0sin 2)sin(sin 2C C d a d C b a ααααα∫∫∫∫+−++++⎟⎠⎞⎜⎝⎛−=−−π0000πsin 2)sin()sin(sin 2ααααααααd a d C b d B c d a C B π0000πcos 2)cos()cos(cos 2ααααa C b B c aCB −−++−=−− 22cos cos 22a a C b b c B c a a +⎟⎠⎞⎜⎝⎛−−−++−⎟⎠⎞⎜⎝⎛−−=c b a a a c b a abc b a b ac b c a c c b a ++=−++=−+⋅−−+⋅−++=2222222222222,故所求概率为dcb a m E m E P π)()()(++=Ω=. 方法二:设事件A , B , C 分别表示“边长为a , b , c 三条边与平行线相交”,事件E 表示“三角形与平行线相交”, 由于三角形与平行线相交时,将至少有两条边与平行线相交,即E = AB ∪AC ∪BC ,则由三个事件的加法公式得P (E ) = P (AB ) + P (AC ) + P (BC ) − 2 P (ABC ), 因ABC 表示“三条边都与平行线相交”,有P (ABC ) = 0, 则P (E ) = P (AB ) + P (AC ) + P (BC ),另一方面,由于三角形与平行线相交时,将至少有两条边与平行线相交, 有A = AB ∪AC ,B = AB ∪BC ,C = AC ∪BC ,则P (A ) = P (AB ) + P (AC ) − P (ABC ) = P (AB ) + P (AC ), P (B ) = P (AC ) + P (BC ),P (C ) = P (AC ) + P (BC ),可得P (A ) + P (B ) + P (C ) = [P (AB ) + P (AC )] + [P (AC ) + P (BC )] + [P (AC ) + P (BC )]= 2[P (AB ) + P (AC ) + P (BC )],根据蒲丰投针问题知d a A P π2)(=,d b B P π2)(=,dc C P π2)(=, 故dcb a C P B P A P BC P AC P AB P E P π)]()()([21)()()()(++=++=++=.26.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在直径上一个区间内的可能性与这区间的长度成比例,求任意画弦的长度大于R 的概率.1A解:设弦与垂直于弦的直径的交点与圆心的距离为x ,有Ω = {x | 0 ≤ x < R },得m (Ω) = R ,事件A =“弦的长度大于R ”,有2222⎟⎠⎞⎜⎝⎛>−R x R ,2243R x <,即}230|{R x x A <≤=,得R A m 23)(=,故所求概率为23)()()(=Ω=m A m A P . 27.设一个质点落在xOy 平面上由x 轴、y 轴及直线x + y = 1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与区域的面积成正比,试求此质点还满足y < 2x 的概率是多少?解:Ω = {(x , y ) | 0 < x < 1, 0 < y < 1, 0 < x + y < 1},得21)(=Ωm , 事件A =“满足y < 2x ”,有A = {(x , y ) | 0 < y < 1, y /2 ≤ x ≤ 1 − y },得3132121)(=××=A m , 故所求概率为32)()()(=Ω=m A m A P . 28.设a > 0,有任意两数x , y ,且0 < x < a ,0 < y < a ,试求xy < a 2/4的概率. 解:Ω = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a },得m (Ω) = a 2,事件A =“xy < a 2/4”,有A = {(x , y ) | 0 ≤ x ≤ a , 0 ≤ y ≤ a , xy < a 2/4},即4ln 44ln 44)(22422422a a x a ax a dx x a a a A m aa aa +=⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∫, 故所求概率为5966.04ln 4141)()()(=+=Ω=m A m A P . 29.用主观方法确定:大学生中戴眼镜的概率是多少? (自己通过调查,作出主观判断)30.用主观方法确定:学生中考试作弊的概率是多少? (自己通过调查,作出主观判断)x习题1.31. 设事件A 和B 互不相容,且P (A ) = 0.3,P (B ) = 0.5,求以下事件的概率:(1)A 与B 中至少有一个发生; (2)A 和B 都发生; (3)A 发生但B 不发生. 解:(1)P (A ∪B ) = P (A ) + P (B ) = 0.3 + 0.5 = 0.8;(2)P (AB ) = 0;(3)P (A − B ) = P (A ) = 0.3.2. 设P (AB ) = 0,则下列说法哪些是正确的?(1)A 和B 不相容; (2)A 和B 相容;(3)AB 是不可能事件;(4)AB 不一定是不可能事件; (5)P (A ) = 0或P (B ) = 0; (6)P (A − B ) = P (A ). 解:(1)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(2)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容;(3)错误,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (4)正确,当P (AB ) = 0时,A 和B 可能相容也可能不相容,即AB 不一定是不可能事件; (5)错误,当P (A ) > 0,P (B ) > 0时,只要A 和B 不相容,就有P (AB ) = 0; (6)正确,P (A − B ) = P (A ) − P (AB ) = P (A ).3. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一个,试求取到二级品的概率. 解:设A , B , C 分别表示“取到一、二、三级品”,有P (A ) + P (B ) + P (C ) = 1,P (A ) = 3P (B ),)(21)(B P C P =, 则1)(29)(21)()(3==++B P B P B P B P ,即92)(=B P , 故取到二级品的概率92)(=B P .4. 从0, 1, 2, …, 9等十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)A 1 = {三个数字中不含0和5}; (2)A 2 = {三个数字中不含0或5}; (3)A 3 = {三个数字中含0但不含5}.解:样本点总数1201238910310=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,(1)事件A 1所含样本点个数56123678381=××××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故15712056)(1==A P ; (2)事件=2A “三个数字中含0和5”所含样本点个数8182=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故1514120112)(1)(22==−=A P A P ; (3)事件A 3所含样本点个数281278283=××=⎟⎟⎠⎞⎜⎜⎝⎛=k ,故30712028)(3==A P .5. 某城市中共发行3种报纸A , B , C .在这城市的居民中有45%订阅A 报、35%订阅B 报、25%订阅C 报,10%同时订阅A 报B 报、8%同时订阅A 报C 报、5%同时订阅B 报C 报、3%同时订阅A , B , C 报.求以下事件的概率: (1)只订阅A 报;(2)只订阅一种报纸的; (3)至少订阅一种报纸的; (4)不订阅任何一种报纸的.解:设A , B , C 分别表示“订阅报纸A , B , C ”,则P (A ) = 0.45,P (B ) = 0.35,P (C ) = 0.30,P (AB ) = 0.10,P (AC ) = 0.08,P (BC ) = 0.05,P (ABC ) = 0.03,(1))()()()()()())(()(ABC P AC P AB P A P AC AB P A P C B A P C B A P +−−=−=−=U U= 0.45 − 0.10 − 0.08 + 0.03 = 0.30;(2))()()()(B A P C B A P C B A P C B A C B A C B A P ++=U U ,因)()()()()()())(()(ABC P BC P AB P B P BC AB P B P C A B P C B A P +−−=−=−=U U= 0.35 − 0.10 − 0.05 + 0.03 = 0.23,)()()()()()())(()(ABC P BC P AC P C P BC AC P C P B A C P C B A P +−−=−=−=U U= 0.30 − 0.08 − 0.05 + 0.03 = 0.20,故73.020.023.030.0)()()()(=++=++=C B A P C B A P C B A P C B A C B A C B A P U U ; (3)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= 0.45 + 0.35 + 0.30 − 0.10 − 0.08 − 0.05 + 0.03 = 0.90;(4)10.090.01)(1(=−=−=C B A P C B A P U U .6. 某工厂一个班组共有男工9人、女工5人,现要选出3个代表,问选的3个代表中至少有1个女工的概率是多少?解:样本点总数364123121314314=××××=⎟⎟⎠⎞⎜⎜⎝⎛=n ,事件=A “选的3个代表中没有女工”所含样本点个数8412378939=××××=⎟⎟⎠⎞⎜⎜⎝⎛=A k ,故所求概率为1310364280364841)(1)(==−=−=A P A P . 7. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何? 解:“掷一颗骰子4次”的样本点总数n 1 = 64 = 1296,事件=1A “没有出现6点”所含样本点个数为625541==A k ,则5177.0129667112966251)(1)(11==−=−=A P A P ; “掷两颗骰子24次”的样本点总数n 2 = (62 )24 = 36 24,事件=2A “没有出现双6点”所含样本点个数为2424235)16(2=−=A k ,则4914.036353636351)(1)(242424242422=−=−=−=A P A P ;故掷一颗骰子4次至少出现一次6点的机会比掷两颗骰子24次至少出现一次双6点的机会更大. 8. 从数字1, 2, …, 9中可重复地任取n 次,求n 次所取数字的乘积能被10整除的概率. 解:样本点总数N = 9 n ,因事件A =“n 次所取数字的乘积能被10整除”就是“至少取到一次数字5并且至少取到一次偶数”, 则事件=A “没有取到数字5或没有取到偶数”, 设事件B =“没有取到数字5”,C =“没有取到偶数”,则事件B 所含样本点个数为K B = 8 n ,事件C 所含样本点个数为K C = 5 n , 且事件BC =“没有取到数字5和偶数”所含样本点个数为K BC = 4 n ,故nnn n n n n n n n n BC P C P B P C B P A P A P 945899495981)()()(1)(1)(1)(+−−=+−−=+−−=−=−=U . 9. 口袋中有n − 1个黑球和1个白球,每次从口袋中随机地摸出一球,并换入一只黑球.问第k 次摸球时,摸到黑球的概率是多少? 解:样本点总数N = n k ,事件=A “第k 次摸球时摸到白球”,此时前n − 1次摸球时都必须是摸到黑球, 则A 中所含样本点个数1)1(−−=k A n K ,故所求概率为kk nn A P A P 1)1(1)(1)(−−−=−=. 10.若P(A ) = 1,证明:对任一事件B ,有P (AB ) = P (B ).证:因P (A ) = 1,且A B A ⊂,有0)(1)()(=−=≤A P A P B A P ,则0)()()()(=−=−=AB P B P A B P A P ,故P (AB ) = P (B ).11.掷2n + 1次硬币,求出现的正面数多于反面数的概率. 解:设A =“出现的正面数多于反面数”,因掷奇数次硬币,出现的正面数与反面数不可能相等,事件=A “出现的反面数多于正面数”,由于掷一枚硬币出现正面与出现反面的可能性相同,则“出现的正面数多于反面数”与“出现的反面数多于正面数” 的可能性相同, 可得)()(A P A P =,又1()(=+A P A P ,故P (A ) = 0.5.12.有三个人,每个人都以同样的概率1/5被分配到5个房间中的任一间中,试求:(1)三个人都分配到同一个房间的概率; (2)三个人分配到不同房间的概率. 解:样本点总数n = 53 = 125,(1)事件A 1 =“三个人都分配到同一个房间”所含样本点个数为k 1 = 5,故所求概率为2511255)(1==A P ; (2)事件A 2 =“三个人分配到不同房间”所含样本点个数为60345352=××==A k ,故所求概率为251212560)(2==A P . 13.一间宿舍住有5位同学,求他们之中至少有2个人生日在同一个月份的概率.解:首先假设一个人的生日在每一个月份的可能性相同,样本点总数n = 125,事件=A “每个人生日都在不同月份”所含样本点个数为512A k A =,故所求概率为6181.014489121)(1)(5512==−=−=A A P A P . 14.某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.解:设A i =“第i 个战士拿到自己的枪”,n i ,,2,1L =,有==i ni A 1U “至少有1人拿到自己的枪”,因)()1()()()()(2111111n n nk j i kjinj i jini i i ni A A A P A A A P A A P A P A P L L U ⋅−+++−=−≤<<≤≤<≤==∑∑∑,且n n n A P i 1!)!1()(=−=,)1(1!)!2()(−=−=n n n n A A P j i ,)2)(1(1)(−−=n n n A A A P k j i ,……, 故!)1(!31!211!1)1()2)(1(1)1(11)(11321n n C n n n C n n C n n A P n nn n n n i ni −−=−+−+−=⋅−+−−−⋅+−⋅−×=L L U . 15.设A , B 是两事件,且P (A ) = 0.6,P (B ) = 0.8,问: (1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取到最小值,最小值是多少? 解:(1)因P (AB ) ≤ min{P (A ), P (B )} = P (A ) = 0.6,故当P (AB ) = P (A ) 时,P (AB )取到最大值0.6;(2)因P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = 0.4,故当P (A ∪B ) = 1时,P (AB )取到最小值0.4. 注:若A ⊂ B ,有AB = A ,可得P (AB ) = P (A ),但不能反过来,由P (AB ) = P (A ),得出A ⊂ B ;若A ∪B = Ω,可得P (A ∪B ) = 1,但不能反过来,由P (A ∪B ) = 1,得出A ∪B = Ω. 16.已知事件A , B 满足)()(B A P AB P I =,记P (A ) = p ,试求P (B ).解:因)()()(1)(1)()()(AB P B P A P B A P B A P B A P AB P +−−=−===U U I ,有1 − P (A ) − P (B ) = 0,故P (B ) = 1 − P (A ) = 1 − p .17.已知P (A ) = 0.7,P (A − B ) = 0.4,试求)(AB P .解:因P (A − B ) = P (A ) − P (AB ),有P (AB ) = P (A ) − P (A − B ) = 0.7 − 0.4 = 0.3,故7.0)(1(=−=AB P AB P . 18.设P (A ) = 0.6,P (B ) = 0.4,试证)()(B A P AB P I =.证:)()(4.06.01)()()(1)(1)()(AB P AB P AB P B P A P B A P B A P B A P =+−−=+−−=−==U U I . 19.对任意的事件A , B , C ,证明:(1)P (AB ) + P (AC ) − P (BC ) ≤ P (A );(2)P (AB ) + P (AC ) + P (BC ) ≥ P (A ) + P (B ) + P (C ) − 1. 证:(1)因P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ),且 (AB ∪AC ) ⊂ A ,ABC ⊂ BC ,有P (AB ∪AC ) ≤ P (A ),P (ABC ) ≤ P (BC ),故P (AB ) + P (AC ) − P (BC ) = P (AB ∪AC ) + P (ABC ) − P (BC ) ≤ P (AB ∪AC ) ≤ P (A ). (2)因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ),故P (AB ) + P (AC ) + P (BC ) = P (A ) + P (B ) + P (C ) + P (ABC ) − P (A ∪B ∪C )≥ P (A ) + P (B ) + P (C ) + P (ABC ) − 1 ≥ P (A ) + P (B ) + P (C ) − 1.20.设A , B , C 为三个事件,且P (A ) = a ,P (B ) = 2a ,P (C ) = 3a ,P (AB ) = P (AC ) = P (BC ) = b ,证明:a ≤ 1/4,b ≤ 1/4.证:因P (B ∪C ) = P (B ) + P (C ) − P (BC ) = 5a − b ,且a = P (A ) ≥ P (AB ) = b ,则P (B ∪C ) = 5a − b ≥ 4a ,即4a ≤ 1,故a ≤ 1/4且b ≤ a ≤ 1/4.21.设事件A , B , C 的概率都是1/2,且)()(C B A P ABC P I I =,证明:2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) − 1/2.证:因)(1)()()(C B A P C B A P C B A P ABC P U U U U I I −==== 1 − P (A ) − P (B ) − P (C ) + P (AB ) + P (AC ) + P (BC ) − P (ABC ),故2 P (ABC ) = P (AB ) + P (AC ) + P (BC ) + 1 − P (A ) − P (B ) − P (C ) = P (AB ) + P (AC ) + P (BC ) − 1/2. 22.证明:(1)P (AB ) ≥ P (A ) + P (B ) − 1;(2)P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 证:(1)因P (A ∪B ) = P (A ) + P (B ) − P (AB ),故P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1;(2)用数学归纳法证明,当n = 2时,由(1)小题知结论成立,设当n = k 时,结论成立,即P (A 1 A 2 …A k ) ≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1), 则P (A 1 A 2 …A k A k + 1) ≥ P (A 1 A 2 …A k ) + P (A k + 1) − 1≥ P (A 1) + P (A 2) + … + P (A k ) − (k − 1) + P (A k + 1) − 1 = P (A 1) + P (A 2) + … + P (A k ) + P (A k + 1) − k ,即当n = k + 1时,结论成立,故由数学归纳法知P (A 1 A 2 …A n ) ≥ P (A 1) + P (A 2) + … + P (A n ) − (n − 1). 23.证明:41|)()()(|≤−B P A P AB P . 证:因)()()](1)[()]()()[()()()()(A P A P A P AB P B A P AB P A P AB P B P A P AB P −−=+−=−,且0 ≤ P (AB )[1 − P (A )] ≤ P (A )[1 − P (A )],)](1)[(()()()(0A P A P A P A P B A P A P −=≤≤, 故)}()()],(1)[(max{|)()()](1)[(||)()()(|A P A P A P AB P B A P A P A P AB P B P A P AB P −≤−−=−4121)(41)]([)()](1)[(22≤⎥⎦⎤⎢⎣⎡−−=−=−≤A P A P A P A P A P .习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少? (2)已知一学生语文不及格,他数学也不及格的概率是多少? 解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05,故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ). 解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P ,事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P ,故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P .4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5,故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P .5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B ,样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P ,事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P ,故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ). 解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P ,事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P ,故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P .8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ).解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)。
概率论与数理统计第一章1-4高职高专
A
B
时发生
A1 , A2 ,, An 两两互斥
Ai Aj , i j, i, j 1,2,, n A1 , A2 ,, An , 两两互斥
Ai Aj , i j, i, j 1,2,
7. 事件的对立
AB , A B
习 题(P 50-51) 1.
ABC 2% 23% 20% 3% 7% 5% ABC
B
C
ABC 30%
A
2. (1) ABC=A
BC
B A
C
(2)
A
B C
3. 试把 相容的事件的和。
表示成n个两两互不
A
B
AB
ABC
C
6. 解:
(1) (2) (3) (4) (5)
第三节
频率定义
频率与概率
频率——对于随机事件A,若在N次试验中出现
—— A 与B 互相对立 每次试验 A、 B中
B A
A
有且只有一个发生
称B 为A的对立事件(or逆事件), 记为 B A 注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
8. 完备事件组
若 A1 , A2 ,, An两两互斥,且 Ai
n
则称 A1 , A2 ,, An 为完备事件组 或称 A1 , A2 ,, An 为 的一个分割
(1) 将3名优秀生分配到三个班级,共有3!种分 法,其余12名新生平均分配到三个班级,共有 种分法,因此所求概率为
交换 ( B C ) ( AB)C A( BC ) 分配律 ( A B) C ( A C ) ( B C ) A ( BC ) ( A B)( A C )
bipt概率论第一章试题含答案
)0.6=B ,则___()P AB 个是黄球,30球,取后不放回,求第二个人取得黄球的概率为,且事件,A B 互不相容,则)=B 个产品,其中有3个正品,按不放回抽样抽产品两次,每次抽为“第一次取到正品”,事件为“第二次取到的是正品”,则条件概率,现从甲乙两人中任选一人,由此21,则能将此密码译出的概率)0.7=B )1/4=AB ,)0,(=AB P AC D.920 34. )=B D.5. )0.84=P B ()=P B B. D.1. 在的整数中任意抽取一个数,设表示抽取的数能被2整除的数,能被表示抽取的数能被()P ABC )B C .2. 在的整数中任取1个数,求此数即不能被3. 将4个,用后放回,新球用过一次即算旧球. 设A={第一5. ,每次从中取一个零件,取出的零件不再放回去,求第三6. P {7. (1)8. 以C 9. (1(2)若从市场上的商品中随机抽取一件,发现是次品,求它是甲厂生产的概率.10. 设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球放入乙袋,再从乙袋中随机取一球,试求(1)两次都取到红球的概率;(2)从乙袋中取到红球的概率.11. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的产品中随机抽取一件,发现是次品,求该次品属A 工厂生产的概率.12. 有两箱同种类的零件,第一箱装50只,其中10只一等品,第二箱装30只,其中18只一等品.今从两箱中任意挑出一箱,然后从该箱中取零件两次,每次任取一只,不放回.求 (1)第一次取到的零件是一等品的概率;(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.13. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为2p . (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率. (2)若已知他第二次已经及格,求他第一次及格的概率.14. 有两种花籽,发芽率分别为0.8,0.9,从中各取一颗,设花籽是否发芽相互独立,求(1)这两颗花籽都能发芽的概率;(2)至少有一颗发芽的概率;(3)恰有一颗发芽的概率.15. 根据报道美国人血型的分布近似地为:A 型37%,O 型为44%,B 型为13%,AB 型为6%.夫妻拥有的血型是相互独立的.(1)B 型的人只有输入B 和O 两种血型才安全. 若妻为B 型,夫为何种血型未知,求夫是妻的安全输血者的概率.(2)随机地取一对夫妇,求妻为A 型,夫为B 型的概率.(3)随机地取一对夫妇,求其中一人为A 型,另一人为B 型的概率. (4)随机地取一对夫妇,求其中至少有一人为O 型的概率.16. 设第一只盒子中装有3只蓝球,2只绿球,2只白球;第二只盒子中装有2只蓝球,3只绿球,4只白球. 独立地分别在两只盒子中各取一只球. (1)求至少有一只蓝球的概率. (2)求有一蓝球一只白球的概率.(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率.。
概率论与数理统计(茆诗松)第二版第一章课后习题.参考答案(精品)
习题1.41. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门课都不及格的占3%.(1)已知一学生数学不及格,他语文也不及格的概率是多少?(2)已知一学生语文不及格,他数学也不及格的概率是多少?解:设A =“数学不及格”,B =“语文不及格”,有P (A ) = 0.15,P (B ) = 0.05,P (AB ) = 0.03,(1)所求概率为2.015.003.0)()()|(===A P AB P A B P ; (2)所求概率为6.005.003.0)()()|(===B P AB P B A P . 2. 设一批产品中一、二、三等品各占60%, 35%, 5%.从中任意取出一件,结果不是三等品,求取到的是一等品的概率.解:设A , B , C 分别表示“取出一、二、三等品”,有P (A ) = 0.6,P (B ) = 0.35,P (C ) = 0.05, 故所求概率为191205.016.0)(1)()()()|(=−=−==C P A P C P C A P C A P . 3. 掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,试求条件概率P (A | B ) 和P (B | A ).解:样本点总数n = 6 2 = 36,则事件A 中的样本点有 (4, 6), (5, 5), (6, 4),即个数k A = 3,有363)(=A P , 事件B 中所含样本点个数k B = 5 + 4 + 3 + 2 + 1 + 0 = 15,有3615)(=B P , 事件AB 中的样本点有 (4, 6),即个数k C = 1,有361)(=AB P , 故1513615361)()()|(===B P AB P B A P ,31363361)()()|(===A P AB P A B P . 4. 以某种动物由出生活到10岁的概率为0.8,而活到15岁的概率为0.5,问现年为10岁的这种动物能活到15岁的概率是多少?解:设A , B 分别表示“这种动物能活到10岁, 15岁”,有P (A ) = 0.8,P (B ) = 0.5, 故所求概率为858.05.0)()()()()|(====A P B P A P AB P A B P . 5. 设10件产品中有4件不合格品,从中任取两件,已知其中一件是不合格品,求另一件也是不合格品的概率.解:设A =“其中一件是不合格品”,B =“两件都是不合格品”,有AB = B ,样本点总数45210=⎟⎟⎠⎞⎜⎜⎝⎛=n , 事件A 中所含样本点个数30624241614=+=⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=A k ,得4530)(=A P , 事件AB = B 中所含样本点个数624=⎟⎟⎠⎞⎜⎜⎝⎛=B k ,得456)()(==B P AB P ,故所求概率为2.04530456)()()|(===A P AB P A B P . 6. 设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率.解:设A =“两件中至少有一件是合格品”,B =“两件都是合格品”,有AB = B , 样本点总数2)1(2−=⎟⎟⎠⎞⎜⎜⎝⎛=n n n N , 事件A 中所含样本点个数2)1)((2)1)(()(211−+−=−−−+−=⎟⎟⎠⎞⎜⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=m n m n m n m n m n m m n m n m k A , 得)1()1)(()(−−+−=n n m n m n A P , 事件AB = B 中所含样本点个数2)1)((2−−−=⎟⎟⎠⎞⎜⎜⎝⎛−=m n m n m n k B , 得)1()1)(()()(−−−−==n n m n m n B P AB P , 故所求概率为11)1()1)(()1()1)(()()()|(−+−−=−−+−−−−−==m n m n n n m n m n n n m n m n A P AB P A B P . 7. 掷一颗骰子两次,以x , y 分别表示先后掷出的点数,记A = {x + y < 10},B = {x > y },求P (B | A ),P (A | B ).解:样本点总数n = 6 2 = 36,则事件A 中所含样本点个数k A = 6 + 6 + 6 + 5 + 4 + 3 = 30,有3630)(=A P , 事件B 中所含样本点个数k B = 0 + 1 + 2 + 3 + 4 + 5 = 15,有3615)(=B P , 事件AB 中所含样本点个数k AB = 0 + 1 + 2 + 3 + 4 + 3 = 13,有3613)(=AB P , 故301336303613)()()|(===A P AB P A B P ,151336153613)()()|(===B P AB P B A P . 8. 已知P (A ) = 1/3,P (B | A ) = 1/4,P (A | B ) = 1/6,求P (A ∪B ). 解:因1214131)|()()(=×==A B P A P AB P ,2161121)|()()(===B A P AB P B P , 故431212131)()()()(=−+=−+=AB P B P A P B A P U . 9. 已知3.0)(=A P ,P (B ) = 0.4,5.0(=B A P ,求)|(B A B P U . 解:因2.05.03.01)()(1)()()(=−−=−−=−=B A P A P B A P A P AB P ,且8.05.04.013.01()(1)(1)()()()(=−−+−=−−+−=−+=B A P B P A P B A P B P A P B A P U , 故25.08.02.0)()()())(()|(====B A P AB P B A P B A B P B A B P U U U U . 10.设A , B 为两事件,P (A ) = P (B ) = 1/3,P (A | B ) = 1/6,求|(B A P . 解:因1816131)|()()(=×==B A P B P AB P ,有18111813131)()()()(=−+=−+=AB P B P A P B A P U , 则18718111)(1)()(=−=−==B A P B A P B A P U U ,且32311)(1)(=−=−=B P B P , 故12732187)()()|(===B P B A P B A P . 11.口袋中有1个白球,1个黑球.从中任取1个,若取出白球,则试验停止;若取出黑球,则把取出的黑球放回的同时,再加入1个黑球,如此下去,直到取出的是白球为止,试求下列事件的概率.(1)取到第n 次,试验没有结束;(2)取到第n 次,试验恰好结束.解:设A k =“第k 次取出的是黑球”,k = 1, 2, ……(1)所求概率为P (A 1A 2…A n − 1A n ) = P (A 1A 2…A n − 1)P (A n | A 1A 2…A n − 1)1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L ; (2)所求概率为)|()()(121121121−−−=n n n n n A A A A P A A A P A A A A P L L L)1(1113221)|()|()(121121+=+×××==−n n n A A A A P A A P A P n n L L L . 12.一盒晶体管有8只合格品,2只不合格品.从中不返回地一只一只取出,试求第二次取出的是合格品的概率.解:设A 1, A 2分别表示“第一次取出的是合格品、不合格品”,B 表示“第二次取出的是合格品”, 故所求概率为8.090729810297108)|()()|()()(2211==×+×=+=A B P A P A B P A P B P . 13.甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率;(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球.试求最后从乙口袋取出的是白球的概率.解:(1)设A 0 , A 1分别表示“从甲口袋取出的是白球、黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) )1)(()1(111+++++=++×+++++×+=n m b a bn n a m n n b a b m n n b a a ; (2)设A 0 , A 1 , A 2分别表示“从甲口袋取出的是2个白球、1个白球1个黑球、2个黑球”,B 表示“从乙口袋取出的是白球”,故所求概率为P (B ) = P (A 0)P (B | A 0) + P (A 1)P (B | A 1) + P (A 2)P (B | A 2)2)1)(()1(21)1)((222)1)(()1(++×−++−++++×−++++++×−++−=m n n b a b a b b m n n b a b a ab m n n b a b a a a )2)(1)(()1()1(2)2)(1(++−++−++++−=m n b a b a n b b n ab n a a . 14.有n 个口袋,每个口袋中均有a 个白球、b 个黑球.从第一个口袋中任取一球放入第二个口袋,再从第二个口袋中任取一球放入第三个口袋,如此下去,从第n − 1个口袋中任取一球放入第n 个口袋,最后再从第n 个口袋中任取一球,求此时取到的是白球的概率.解:设A k 表示“从第k 个口袋取出的是白球”,当k = 1时,有ba a A P +=)(1, 设对于k − 1,有b a a A P k +=−)(1, 则111)|()()|()()(1111++⋅+++++⋅+=+=−−−−b a a b a b b a a b a a A A P A P A A P A P A P k k k k k k k ba ab a b a b a a b a b a ab a a +=+++++=+++++=)1)(()1()1)(()1(, 故由数学归纳法可知,对任意自然数k ,b a a A P k +=)(,即ba a A P n +=)(. 15.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1.试求找到钥匙的概率.解:设A 1 , A 2 , A 3分别表示“钥匙掉在宿舍里、掉在教室里、掉在路上”,B 表示“找到钥匙”,故所求概率为P (B ) = P (A 1)P (B | A 1) + P (A 2)P (B | A 2) + P (A 3)P (B | A 3)= 0.5 × 0.8 + 0.3 × 0.3 + 0.2 × 0.1 = 0.51.16.两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设A 1, A 2分别表示“取出的是第一台、第二台车床加工的零件”,B 表示“取出的是合格品”,(1)所求概率为96.094.03197.032)|()()|()()(2211=×+×=+=A B P A P A B P A P B P ; (2)所求概率为5.004.006.031)()|()()()()|(2222=×===B P A B P A P B P B A P B A P . 17.有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求(1)第一次取出的零件是一等品的概率;(2)在第一次取出的是一等品的条件下,第二次取出的零件仍然是一等品的概率.解:设A 1 , A 2分别表示“挑出第一箱、第二箱”,B 1 , B 2分别表示“第一次、第二次取出的是一等品”,(1)所求概率为5.0301821502021)|()()|()()(2121111=×+×=+=A B P A P A B P A P B P ; (2)因14210360129173018214919502021)|()()|()()(2212121121=××+××=+=A B B P A P A B B P A P B B P , 故所求概率为5068.0710536015.0142103601)()()|(12112====B P B B P B B P .18.学生在做一道有4个选项的单项选择题时,如果他不知道问题的正确答案时,就作随机猜测.现从卷面上看题是答对了,试在以下情况下求学生确实知道正确答案的概率.(1)学生知道正确答案和胡乱猜测的概率都是1/2;(2)学生知道正确答案的概率是0.2.解:设A 1 , A 2分别表示“学生知道正确答案、胡乱猜测”,B 表示“题答对了”,(1)因P (A 1) = 0.5,P (A 2) = 0.5, 故所求概率为8.0625.05.025.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P , (2)因P (A 1) = 0.2,P (A 2) = 0.8, 故所求概率为5.04.02.025.08.012.012.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 19.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女比例为22:21的人群中随机地挑选一人,发现恰好是色盲患者,问此人是男性的概率是多少?解:设A 1 , A 2分别表示“此人是男性、女性”,B 表示“此人是色盲患者”, 故所求概率为9544.00025.0432105.0432205.04322)|()()|()()|()()|(2211111=×+××=+=A B P A P A B P A P A B P A P B A P . 20.口袋中有一个球,不知它的颜色是黑的还是白的.现再往口袋中放入一个白球,然后再从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?解:设A 1 , A 2分别表示“原来那个球是白球、黑球”,B 表示“取出的是白球”, 故所求概率为3275.05.05.05.015.015.0)|()()|()()|()()|(2211111==×+××=+=A B P A P A B P A P A B P A P B A P . 21.将n 根绳子的2n 个头任意两两相接,求恰好结成n 个圈的概率.解:样本点总数为N = (2n − 1) (2n − 3)…3 ⋅ 1 = (2n − 1)!!,事件A =“恰好结成n 个圈”所含样本点个数K = 1, 故所求概率为!)!12(1)(−=n A P . 22.m 个人相互传球,球从甲手中开始传出,每次传球时,传球者等可能地把球传给其余m − 1个人中的任何一个.求第n 次传球时仍由甲传出的概率.解:设A k 表示“第k 次传球时由甲传出”,k = 1, 2, ……,有P (A 1) = 1, 则)(111111)](1[0)|()()|()()(111111−−−−−−−−−=−⋅−+=+=k k k k k k k k k A P m m m A P A A P A P A A P A P A P , 故⎥⎦⎤⎢⎣⎡−−−−−−=−−−=−−)(11111111)(1111)(11n n n A P m m m m A P m m A P )(111111122−⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛−−−=n A P m m m )(11)1(11)1(11)1(111111112232A P m m m m m n n n n n n −−−−−−⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=L⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−=⎟⎠⎞⎜⎝⎛−−−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−−−−=⎟⎠⎞⎜⎝⎛−−++⎟⎠⎞⎜⎝⎛−−−=−−−−2223211111111111111)1(1111n n n n m m m m m m m m L . 23.甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷,试求第n 次由甲掷的概率.解:设A k 表示“第k 次由甲掷骰子”,k = 1, 2, ……,有P (A 1) = 1, 则)(326161)](1[65)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(32613261)(32613261)(3261)(2221−−−⎟⎠⎞⎜⎝⎛+⋅+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P 1111123221213232132161)(326132613261−−−−−⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⋅⎟⎠⎞⎜⎝⎛++⋅+=n n n n n A P L . 24.甲口袋有1个黑球、2个白球,乙口袋有3个白球.每次从两口袋中各任取一球,交换后放入另一口袋.求交换n 次后,黑球仍在甲口袋中的概率.解:设A k 表示“交换k 次后黑球在甲口袋中”,k = 1, 2, ……,有P (A 0) = 1, 则)(313131)](1[32)()|()()|()()(1111111−−−−−−−+=⋅−+⋅=+=k k k k k k k k k k A P A P A P A A P A P A A P A P A P , 故)(313131)(31313131)(3131)(22221−−−⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+=⎥⎦⎤⎢⎣⎡++=+=n n n n A P A P A P A P n n n n n A P ⎟⎠⎞⎜⎝⎛⋅+=⎟⎠⎞⎜⎝⎛+−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=⋅⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+=3121213131131131)(3131313102L . 25.假设只考虑天气的两种情况:有雨或无雨.若已知今天的天气情况,明天天气保持不变的概率为p ,变的概率为1 − p .设第一天无雨,试求第n 天也无雨的概率.解:设A k 表示“第k 天也无雨”,k = 1, 2, ……,有P (A 1) = 1, 则)1()](1[)()|()()|()()(111111p A P p A P A A P A P A A P A P A P k k k k k k k k k −⋅−+⋅=+=−−−−−−= 1 − p + (2p − 1) P (A k − 1),故P (A n − 1) = 1 − p + (2p − 1) P (A n − 1) = 1 − p + (2p − 1)[1 − p + (2p − 1) P (A n − 2)]= 1 − p + (2p − 1)(1 − p ) + (2p − 1)2 P (A n − 2)= 1 − p + (2p − 1)(1 − p ) + … + (2p − 1)n − 2 (1 − p ) + (2p − 1)n − 1P (A 1)111)12(2121)12()12(1])12(1)[1(−−−−+=−+−−−−−=n n n p p p p p . 26.设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入c (c > 0)个同色的球.试证:第k 次取到黑球的概率为b /(b + r ),k = 1, 2, ….证:设B k (b , r ) 表示“罐中有b 个黑球、r 个红球时,第k 次取到黑球”,k = 1, 2, …,用数学归纳法证明r b b r b B P k +=)),((, 当k = 1时,rb b r b B P +=)),((1,结论成立, 设对于k − 1,结论成立,即rb b r b B P k +=−)),((1, 对于k ,设A 1 , A 2分别表示“第一次取到黑球、红球”,有P (B k (b , r ) | A 1) = P (B k − 1 (b + c , r )),P (B k (b , r ) | A 2) = P (B k − 1 (b , r + c )),则P (B k (b , r )) = P (A 1) P (B k (b , r ) | A 1) + P (A 2) P (B k (b , r ) | A 2)= P (A 1) P (B k − 1 (b + c , r )) + P (A 2) P (B k − 1 (b , r + c ))rb bc r b r b br c b b c r b b r b r c r b c b r b b +=+++++=++⋅+++++⋅+=))(()(, 故对于k ,结论成立,rb b r b B P k +=)),((. 27.口袋中a 个白球,b 个黑球和n 个红球,现从中一个一个不返回地取球.试证白球比黑球出现得早的概率为a /(a + b ),与n 无关.证:设B n 表示“口袋中有n 个红球时白球比黑球出现得早”,n = 0, 1, 2, …, 用数学归纳法证明ba a B P n +=)(,与n 无关, 当n = 0时,显然有ba a B P +=)(0,结论成立, 设对于n − 1,结论成立,即ba a B P n +=−)(1, 对于B n ,设A 1 , A 2 , A 3分别表示“第一次取球时取到白球、黑球、红球”,有P (B n | A 3) = P (B n −1), 则P (B n ) = P (A 1) P (B n | A 1) + P (A 2) P (B n | A 2) + P (A 3) P (B n | A 3) = P (A 1) ⋅ 1 + P (A 2) ⋅ 0 + P (A 3) P (B n −1) ba ab a n b a an b a a b a a n b a n n b a a +=+++++=+⋅+++++=))(()(, 故对于n ,结论成立,b a a B P n +=)(,与n 无关. 28.设P (A ) > 0,试证)()(1)|(A P B P A B P −≥. 证:)()(1)()(1)()()()()()|(A P B P A P B A P A P B A P A P A P AB P A B P −≥−=−==. 29.若事件A 与B 互不相容,且0)(≠B P ,证明:)(1)()|(B P A P B A P −=. 证:因事件A 与B 互不相容,有B A ⊂,故)(1)()()()()()|(B P A P B P A P B P B A P B A P −===. 30.设A , B 为任意两个事件,且A ⊂ B ,P (B ) > 0,则成立P (A ) ≤ P (A | B ). 证:)()()()()()|(A P B P A P B P AB P B A P ≥==.31.若)|()|(B A P B A P >,试证)|()|(A B P A B P >. 证:因)(1)()()()()|()()()|(B P AB P A P B P B A P B A P B P AB P B A P −−==>=,有P (AB )[1 − P (B )] > P (B )[P (A ) − P (AB )], 则P (AB ) > P (A ) P (B ),得P (AB )[1 − P (A )] > P (A )[P (B ) − P (AB )], 故)|()()()(1)()()()()|(A B P A P B A P A P AB P B P A P AB P A B P ==−−>=. 32.设P (A ) = p ,P (B ) = 1 − ε ,证明:εεε−≤≤−−1)|(1p B A P p . 证:因P (AB ) ≤ P (A ) = p ,且P (AB ) = P (A ) + P (B ) − P (A ∪B ) ≥ P (A ) + P (B ) − 1 = p + 1 − ε − 1 = p − ε , 故p − ε ≤ P (AB ) ≤ p ,即εεεε−≤−==≤−−11)()()()|(1p AB P B P AB P B A P p . 33.若P (A | B ) = 1,证明:1|(=A B P . 证:因1)()()|(==B P AB P B A P ,有P (AB ) = P (B ), 则P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ),即()()(1)(1)(B A P B A P B A P A P A P ==−=−=U U , 故1)()()|(==A P B A P A B P .。
(完整版)概率论第二版习题
习题一 1习题一1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;(2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”.2. 投掷三枚大小相同的均匀硬币,观察它们出现的面.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面};(3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C .3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件:(1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -.4. 在区间]2,0[上任取一数,记112A x x ⎧⎫=<≤⎨⎬⎩⎭,1342B x x ⎧⎫=≤≤⎨⎬⎩⎭,求下列事件的表达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U .5. 用事件A ,B ,C 的运算关系式表示下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中至少有一个出现;(5)三个事件都不出现;(6)不多于一个事件出现;(7)不多于二个事件出现;(8)三个事件中至少有二个出现.6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设i A 表示事件“第i 次抽到废品”,试用i A 的运算表示下列各个事件:(1)第一次、第二次中至少有一次抽到废品;(2)只有第一次抽到废品;(3)三次都抽到废品;(4)至少有一次抽到合格品;(5)只有两次抽到废品.7. 接连进行三次射击,设i A ={第i 次射击命中}(i =1,2,3),试用321,,A A A 表示下述事件:(1)A ={前两次至少有一次击中目标};(2)B ={三次射击恰好命中两次};工程数学 概率统计简明教程(第二版)2 (3)C ={三次射击至少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个白球b 个黑球,从中有放回地抽取r 次(每次抽一个,记录其颜色,然后放回盒中,再进行下一次抽取).记i A ={第i 次抽到白球}(i =1,2,…,r ),试用{i A }表示下述事件:(1)A ={首个白球出现在第k 次};(2)B ={抽到的r 个球同色},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成立:(1)ABC =A ;(2)A B C A =U U .习题二 3习题二1. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:(1)第一次、第二次都取到红球的概率;(2)第一次取到红球、第二次取到白球的概率;(3)两次取得的球为红、白各一的概率;(4)第二次取到红球的概率.3. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:(1)最小号码是3的概率;(2)最大号码是3的概率.4. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,一只是不合格品;(3)至少有1只是合格品.5. 从某一装配线上生产的产品中选择10件产品来检查.假定选到有缺陷的和无缺陷的产品是等可能发生的,求至少观测到一件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某人去银行取钱,可是他忘记密码的最后一位是哪个数字,他尝试从0~9这10个数字中随机地选一个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰子,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、乙、丙三名学生随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8人,试求这三名学生住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A ={其中恰有一位精通英语};(2)事件B ={其中恰有两位精通英语};(3)事件C ={其中有人精通英语}.10. 甲袋中有3只白球,7只红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球,现从两个袋中各取一球,求两球颜色相同的概率.11. 有一轮盘游戏,是在一个划分为10等份弧长的圆轮上旋转一个球,这些弧上依次标着0~9十个数字.球停止在那段弧对应的数字就是一轮游戏的结果.数字按下面的方式涂色:0看作非奇非偶涂为绿色,奇数涂为红色,偶数涂为黑色.事件A ={结果为奇数},事件B ={结果为涂黑色的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B U ;(4))(AB P .12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =31的左边的概率. 13. 甲、乙两艘轮船都要在某个泊位停靠6 h ,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率.工程数学 概率统计简明教程(第二版)4 14. 已知B A ⊂,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B U ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .15. 设A ,B 是两个事件,已知P (A )=0.5,P (B )=0.7,()P A B U =0.8,试求:P (A -B )与P (B -A ).*16. 盒中装有标号为1~r 的r 个球,今随机地抽取n 个,记录其标号后放回盒中;然后再进行第二次抽取,但此时抽取m 个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k 个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. 一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投入基金,再购买股票的概率是多少?(2)已知他已购买股票,再投入基金的概率是多少?4. 罐中有m 个白球,n 个黑球,从中随机抽取一个,若不是白球则放回盒中,再随机抽取下一个;若是白球,则不放回,直接进行第二次抽取,求第二次取得黑球的概率.5. 一个食品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:如果收到一个消费者的投诉,已知投诉发生在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.8. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.9. 某次大型体育运动会有1 000名运动员参加,其中有100人服用了违禁药品.在使用者中,假定有90人的药物检查呈阳性,而在未使用者中也有5人检验结果显示阳性.如果一个运动员的药物检查结果是阳性,求这名运动员确实使用违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个白球6个黑球,乙袋中有4个白球2个黑球.先从甲袋中任取2球投入乙袋,然后再从乙袋中任取2球,求从乙袋中取到的2个都是黑球的概率.12. 设事件B A ,相互独立.证明:B A ,相互独立,B A ,相互独立.工程数学 概率统计简明教程(第二版)6 13. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B U U U14. 已知事件A 与B 相互独立,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 15. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译出的概率.16. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.*17. (配对问题)房间中有n 个编号为1~n 的座位.今有n 个人(每人持有编号为1~n 的票)随机入座,求至少有一人持有的票的编号与座位号一致的概率.(提示:使用概率的性质5的推广,即对任意n 个事件12,,,n A A A L ,有1121111111()()(1)()(1)().)k k n nk k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤⎛⎫=-+ ⎪⎝⎭+-++-∑∑∑L LL L L U *18. (波利亚(Pólya )罐子模型)罐中有a 个白球,b 个黑球,每次从罐中随机抽取一球,观察其颜色后,连同附加的c 个同色球一起放回罐中,再进行下一次抽取.试用数学归纳法证明:第k 次取得白球的概率为a a b+(1k ≥为整数).(提示:记{}k A k =第次取得白球,使用全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲乙两人各自独立地投掷一枚均匀硬币n 次,试求:两人掷出的正面次数相等的概率.20. 假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周五个工作日里每天是否发生故障相互独立,试求一周五个工作日里发生3次故障的概率.21. 灯泡耐用时间在1 000 h 以上的概率为0.2,求:三个灯泡在使用1 000 h 以后最多只有一个坏了的概率.22. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;(2)在此时刻恰好有一半电梯在运行的概率;(3)在此时刻至少有1台电梯在运行的概率.23. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P . *24. 设双胞胎中为两个男孩或两个女孩的概率分别为a 及b .今已知双胞胎中一个是男孩,求另一个也是男孩的概率.习题三725. 两射手轮流打靶,谁先进行第一次射击是等可能的.假设他们第一次的命中率分别为0.4及0.5,而以后每次射击的命中率相应递增0.05,如在第3次射击首次中靶,求是第一名射手首先进行第一次射击的概率.26. 袋中有2n-1个白球和2n个黑球,今随机(不放回)抽取n个,发现它们是同色的,求同为黑色的概率.*27. 3个外形相同但可辨别的球随机落入编号1~4的四个盒子,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒子的最小编号为2的概率.工程数学 概率统计简明教程(第二版)8 习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15i i p =(0,1,2,3,4,5)i =; (2)6)5(2i p i -=(0,1,2,3)i =; (3)251+=i p i (1,2,3,4,5)i =. 2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ⎛⎫<< ⎪⎝⎭;(3)(3)F (其中F (·)为X 的分布函数). 3. 一口袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这口袋中任取一球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. 一袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表示取出的3个球中最大号码,写出X 的分布律和分布函数.5. 在相同条件下独立地进行5次射击,每次射击时击中目标的概率为0.6,求击中目标的次数X 的分布律.6. 从一批含有10件正品及3件次品的产品中一件一件地抽取产品.设每次抽取时,所面对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为止所需次数X 的分布律:(1)每次取出的产品立即放回这批产品中再取下一件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出一件产品后总以一件正品放回这批产品中.7. 设随机变量X ),6(~p B ,已知)5()1(===X P X P ,求p 与)2(=X P 的值.8. 一张试卷印有十道题目,每个题目都为四个选项的选择题,四个选项中只有一项是正确的.假设某位学生在做每道题时都是随机地选择,求该位学生未能答对一道题的概率以及答对9道以上(包括9道)题的概率.9. 市120接听中心在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计算):求:(1)某天中午12点至下午3点没有收到紧急呼救的概率;(2)某天中午12点至下午5点至少收到1次紧急呼救的概率.10. 某商店出售某种物品,根据以往的经验,每月销售量X 服从参数4=λ的泊松分布.问在月初进货时,要进多少才能以99%的概率充分满足顾客的需要?11. 有一汽车站有大量汽车通过,每辆汽车在一天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X 服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y 为观察到的鸡蛋数,即Y 的分布与给定>0X 的条件下X 的分布相同,今求Y 的分布律.习题四 9 (提示:()(0),1,2,.P Y k P X k X k ===>=L 对于)13. 袋中有n 把钥匙,其中只有一把能把门打开,每次抽取一把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求首次打开门时试用钥匙次数的分布律.14. 袋中有a 个白球、b 个黑球,有放回地随机抽取,每次取1个,直到取到白球停止抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某高校在2010年上海世博会上的学生志愿者有6 000名,其中女生3 500名.现从中随机抽取100名学生前往各世博地铁站作引导员,求这些学生中女生数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ⎧=⎨⎩0,x A <<其他,试求:(1)常数A ;(2))5.00(<<X P . 17. 设随机变量X 的密度函数为()ex f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<<X P ;(3)X 的分布函数. 18. 证明:函数22e ,0,()0,0,xc x x f x c x -⎧⎪≥=⎨⎪<⎩(c 为正的常数)可作为一个密度函数.19. 经常往来于某两地的火车晚点的时间X (单位:min )是一个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ⎧--<<⎪=⎨⎪⎩其他. X 为负值表示火车早到了.求火车至少晚点2 min 的概率.20. 设随机变量X 的分布函数为0()1(1)e x F x x -⎧=⎨-+⎩,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求方程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银行的窗口等待服务的时间X (单位:min )是一随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -⎧⎪=⎨⎪⎩,0,,x >其它.某顾客在窗口等待服务,若超过10 min ,他工程数学 概率统计简明教程(第二版)10 就离开.(1)设某顾客某天去银行,求他未等到服务就离开的概率;(2)设某顾客一个月要去银行五次,求他五次中至多有一次未等到服务而离开的概率.24. 以X 表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -⎧->=⎨⎩其他. 求:(1)X 的密度函数;(2)P (至多等待2 min );(3)P (至少等待4 min );(4)P (等待2 min 至4 min 之间);(5)P (等待至多2 min 或至少4 min ).25. 设随机变量X 的分布函数为()arctan ()F x A B x x =+-∞<<+∞,求:(1)常数A ,B ;(2)(1)P X <;(3)随机变量X 的密度函数.26. 设随机变量X 服从)1,0(N ,借助于标准正态分布的分布函数表计算:(1))2.2(<X P ;(2))76.1(>X P ;(3))78.0(-<X P ;(4))55.1(<X P ;(5))5.2(>X P ;(6)确定a ,使得99.0)(=<a X P .27. 设随机变量X 服从)16,1(-N ,借助于标准正态分布的分布函数表计算:(1))44.2(<X P ;(2))5.1(->X P ;(3))8.2(-<X P ;(4))4(<X P ;(5))25(<<-X P ;(6))11(>-X P ;(7)确定a ,使得)()(a X P a X P <=>.28. 设随机变量X 服从正态分布2(,)N μσ,且二次方程240t t X ++=无实根的概率为12,求μ的值. 29. 某厂生产的滚珠直径X 服从正态分布)01.0,05.2(N ,合格品的规格规定直径为2.02±,求滚珠的合格率.30. 某人上班路上所需的时间)100,30(~N X (单位:min ),已知上班时间是8:30.他每天7:50分出门,求:(1)某天迟到的概率;(2)一周(以5天计)最多迟到一次的概率.习题五11习题五1. 二维随机变量),(Y X 只能取下列数组中的值:(0,0),(-1,1),11,3⎛⎫- ⎪⎝⎭,(2,0),且取这些组值的概率依次为125,121,31,61.求这二维随机变量的分布律,并写出关于X 及关于Y 的边缘分布律.2. 一口袋中有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球.设每次取球时,袋中每个球被取到的可能性相同.以Y X ,分别记第一、二次取得的球上标有的数字,求),(Y X 的分布律及)(Y X P =.*3. 从3名数据处理经理、2名高级系统分析师和2名质量控制工程师中随机挑选4人组成一个委员会,研究某项目的可行性.设X 表示从委员会选出来的数据处理人数,Y 表示选出来的高级系统分析师的人数,求:(1)X 与Y 的联合分布律;(2)()P X Y ≥.*4. 盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X ={前2次抽中红球数},Y ={4次共抽中红球数},求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律.5. 箱子中装有10件产品,其中2件是次品,每次从箱子中任取一件产品,共取2次.定义随机变量Y X ,如下:⎩⎨⎧=10X ,,若第一次取出正品,若第一次取出次品,⎩⎨⎧=10Y ,,若第二次取出正品,若第二次取出次品,分别就下面两种情况(1)放回抽样,(2)不放回抽样.求:(1)二维随机变量),(Y X 的联合分布律; (2)关于X 及关于Y 的边缘分布律;(3)X 与Y 是否独立,为什么?6. 设二维随机变量),(Y X的联合密度函数为01,01,(,)0,x y f x y <<<<=⎩其他.求:(1)关于X 及关于Y 的边缘密度函数;(2)110,022P X Y ⎛⎫≤≤≤≤ ⎪⎝⎭. 7. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中区域D 为x 轴,y 轴及直线y =2x +1围成的三角形区域.求:(1)),(Y X 的联合密度函数;(2)110,044P X Y ⎛⎫-<<<< ⎪⎝⎭;(3)关于X 及关于Y 的边缘密度函数;(4)X 与Y 是否独立,为什么?8. 设二维随机变量),(Y X 服从在区域D 上的均匀分布,其中D 为由直线x +y =1,x +y =-1,工程数学 概率统计简明教程(第二版)12x -y =1,x -y =-1围成的区域.求:(1)关于X 及关于Y 的边缘密度函数;(2)()P X Y ≤;(3)X 与Y 是否独立,为什么?9. 设随机变量X ,Y 是相互独立且分别具有下列分布律:写出表示),(Y X 的联合分布律.10. 设进入邮局的人数服从参数为λ的泊松分布,每一个进入邮局的人是男性的概率为p (0<p <1),X 为进入邮局的男性人数,Y 为女性人数,求:(1)关于X 及关于Y 的边缘分布律;(2)X 与Y 是否独立,为什么?11. 设X 与Y 是相互独立的随机变量,X 服从[0,0.2]上的均匀分布,Y 服从参数为5的指数分布,求:),(Y X 的联合密度函数及)(Y X P ≥.12. 设二维随机变量),(Y X 的联合密度函数为(34)e (,)0x y k f x y -+⎧=⎨⎩,0,0,x y >>其他,求:(1)系数k ;(2))20,10(≤≤≤≤Y X P ;(3)证明X 与Y 相互独立.13. 已知二维随机变量),(Y X 的联合密度函数为⎩⎨⎧-=0)1(),(y x k y x f ,01,0,x y x <<<<其他,,(1)求常数k ;(2)分别求关于X 及关于Y 的边缘密度函数;(3)X 与Y 是否独立?为什么.14. 设随机变量X 与Y 的联合分布律为:且53)01(===X Y P ,求:(1)常数a ,b 的值;(2)当a ,b 取(1)中的值时,X 与Y 是否独立,为什么?*15. 对于第2题中的二维随机变量),(Y X 的分布,求当2=Y 时X 的条件分布律.习题五13*16. 对于第7题中的二维随机变量),(Y X 的分布,求:(1)1110442P X Y ⎛⎫-<<<< ⎪⎝⎭;(2)当102X x x ⎛⎫=-<< ⎪⎝⎭时Y 的条件密度函数()Y X f y x . *17. 设二维连续型随机变量),(Y X ,证明:对任何x ,有()()()d ,Y P X x P X x Y y f y y +∞-∞≤=≤=⎰其中()Y f g 为Y 的边缘密度函数.工程数学 概率统计简明教程(第二版)14习题六1. 设随机变量X 的分布律为求出:(1)2+X ;(2)1+-X ;(3)2X 的分布律.2. 设随机变量X 服从参数1=λ的泊松分布,记随机变量⎩⎨⎧=10Y ,11.X X ≤>若,若试求随机变量Y 的分布律.3. 设随机变量X 的分布密度为⎩⎨⎧=02)(x x f ,01,,x <<其他,求出以下随机变量的密度函数:(1)X 2;(2)1+-X ;(3)2X .4. 对圆片直径进行测量.测量值X 服从)6,5(上的均匀分布,求圆片面积Y 的密度函数.5. 设随机变量X 服从正态分布),(10N ,试求随机变量函数2Y X =的密度函数)(y f Y .6. 设随机变量X 服从参数1=λ的指数分布,求随机变量函数e X Y =的密度函数)(y f Y .7. 设随机变量X 服从)1,0(N ,证明:a X +σ服从),(2σa N ,其中σ,a 为两个常数且0>σ.8. 设随机变量X 在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧-=101Y 0,0,0.X X X >=<,若,若,若试求随机变量函数Y 的分布律.9. 设二维随机变量),(Y X 的分布律:习题六15求以下随机变量的分布律:(1)Y X +;(2)Y X -;(3)X 2;(4)XY . 10. 设随机变量X ,Y 相互独立,且11,4X B ⎛⎫ ⎪⎝⎭:,11,4Y B ⎛⎫⎪⎝⎭:, (1)记随机变量Y X Z +=,求Z 的分布律;(2)记随机变量X U 2=,求U 的分布律.从而证实:即使X ,Y 服从同样的分布,Y X +与X 2的分布并不一定相同.*11. 设随机变量X 服从参数为λ的泊松分布,给定X k =,Y 的条件分布为参数为k ,p 的二项分布(0<p <1,k 为非负整数).求:(1)Y 的分布律;(2)X -Y 的分布律;(3)证明:Y 与X -Y 相互独立. (提示:()()(),0,1,.k yP Y y P Y y X k P X k y +∞=======∑L )12. 设二维随机变量X ,Y 的联合分布律为:求:(1)max(,)U X Y =的分布律; (2)),min(Y X V =的分布律; (3)(,)U V 的联合分布律.13. 设二维随机变量()Y X ,服从在D上的均匀分布,其中D为直线0,0==y x ,2,2==y x 所围成的区域,求X Y -的分布函数及密度函数.*14. 设随机变量X ,Y 相互独立,且有相同的分布(0,1)N ,U X Y =-,V X Y =-,求:(1)U 的密度函数;(2)V 的密度函数.15. 设二维随机变量,X Y 的分布密度为),(y x f ,用函数f 表达随机变量Y X +的密度函数.16. 设随机变量2~(,)X N a σ,2~(,)Y N b τ,且X ,Y 相互独立,Z X Y =+,求Z X x =的条件分布密度函数.17. 用于计算机接线柱上的保险丝寿命服从参数2.0=λ的指数分布.每个接线柱要求两个这样的保险丝,这两个保险丝有独立的寿命X 与Y .(1)其中一个充当备用件,仅当第一个保险丝失效时投入使用.求总的有效寿命Z =X +Y 的密度函数.(2)若这两个保险丝同时工程数学 概率统计简明教程(第二版)16独立使用,则求有效寿命max(,)U X Y =的密度函数.18. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,记Z 是以X ,Y 为边长的矩形的面积,求Z 的密度函数.*19. 设随机变量X ,Y 相互独立,且都服从区间(0,1)上的均匀分布,求X Z Y=的密度函数.(提示:使用1()()()()d ()d Z Y F z P Z z P Z z Y y f y y P X yz y =≤=≤==≤⎰⎰,其中用到X 与Y 的独立性.)习题十二23习题七1. 设随机变量X 的分布律为求:(1)()E X ;(2))1(+-X E ;(3))(2X E ;(4)()D X .2. 设随机变量X 服从参数为λ的泊松分布(0>λ),且已知((2)(3))2E X X --=,求λ的值.3. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,试求2X 的数学期望2()E X .4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量.它在[2 000,4 000](单位:吨)上服从均匀分布.若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元.问应组织多少货源,才能使平均收益最大?5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3.假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()E X 和方差()D X .6. 设随机变量X 有分布律:1()(1,2,),k k p P X k pq k -====L其中01,1p q p <<=-,称X 服从具有参数p 的几何分布,求()E X 和()D X .(提示:由幂级数逐项求导的性质可知211011k kk k kq q q ∞∞-=='⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑∑,21(1)k k k k q∞-=-=∑3012)11k k q q q q ∞=''''⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭∑ 7. 设随机变量X 的密度函数为1()e 2x f x -=,求:(1)()E X ;(2))(2X E 的值.8. 某商店经销商品的利润率X 的密度函数为)(x f 2(1)0,x -⎧=⎨⎩,01,x <<其他,求()E X ,()D X .9. 设随机变量X 服从参数为λ的泊松分布,求1(1)E X -+.工程数学 概率统计简明教程(第二版)2410. 设随机变量X 服从参数为p 的几何分布,0M >为整数,max(,)Y X M =,求()E Y . *11. 设随机变量X 有分布律:(),0,1,2,,k M N M k n k p P X k k n M N n -⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭====∧⎛⎫ ⎪⎝⎭L ,其中min(,)n M n M ∧=. 12(1):.12(1)n n n n n n m m m m m m ⎛--⎫⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭提示使用*12. 将已写好n 封信的信纸随机地装入已写好的n 个收信人的对应地址的信封,若有一封信的信纸的收信人与信封一致时,称之为有一个配对.今X 为n 封已随机装好的信的配对数,求(),()E X D X .111111,:(1,2,,),,(),()0,cov(,),()=()2cov(,).n i i i i j i n n ni j i j i=1i j j i X i n X X E X E X X X X D X D X X X =-==+⎛⎧=== ⎨ ⎩⎝⎫+⎪⎭∑∑∑∑L 第封信配对,提示记有先求其他及使用公式13. 设随机变量X 的概率密度为1e ,0,()0,0,x x f x x -⎧>=⎨≤⎩求()E X ,)2(X E ,2(e )X E X -+,()D X .14. 设随机向量),(Y X 的联合分布律为:求,(),(),(2),(3),(),(),cov(,),.X Y E X E Y E X Y E XY D X D Y X Y ρ-15. 盒中有3个白球和2个黑球,从中随机抽取2个,X ,Y 分别是抽到的2个球中的白球数和黑球数,求X 与Y 之间的相关系数Y X ,ρ.16. 设随机变量Y X ,相互独立,它们的密度函数分别为22e ()0x X f x -⎧=⎨⎩,0,,0,x x >≤44e ()0y Y f y -⎧=⎨⎩,0,,0,y y >≤求)(Y X D +.*17. 设随机变量1,,n X X L 独立,具有公共的(0,1)上的均匀分布,令1min ,i i nY X ≤≤=求(),()E Y D Y .习题十二25*18. 设随机变量X 有密度函数1e ,0,()()0,xx x f x ααλλα--⎧>⎪=Γ⎨⎪⎩其他λα>>(0,0为常数),则称X 服从具有参数αλ(,)的伽玛分布,记为~X αλΓ(,),其中10()e d y y y αα∞--Γ⎰=.有性质:对任意实数x ,有(1)()x x x Γ+=Γ,特别对正整数n 有(1)!n n Γ+=.今设1~(,)Y αλΓ,2~(,)Z αλΓ,且Y 与Z 相互独立,ZW Y=,求()E W 1:()().Z E W E E Z E Y Y ⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭提示使用独立性,有 *19. 设随机变量X 服从参数为(a ,b )的贝搭分布,即有密度11()(1),01,()()()0,a b a b x x x a b f x --Γ+⎧-<<⎪ΓΓ=⎨⎪⎩其他,求(),()E X D X .[提示:已知贝搭函数1110:(,)(1)d ,.t t t αβαββαββαβαβ--⎛⎫ΓΓ=- ⎪Γ⎝⎭⎰()()提示已知贝搭函数有关系式(,)=(+) 20. 验证:当),(Y X 为二维连续型随机变量时,按公式()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰及按公式()()d E X xf x x +∞-∞=⎰算得的()E X 值相等.这里,),(y x f ,)(x f 依次表示X Y X ),,(的分布密度,即证明:()(,)d d E X xf x y y x +∞+∞-∞-∞=⎰⎰()d xf x x +∞-∞=⎰21. 设二维随机变量),(Y X 服从在A 上的均匀分布,其中A 为x 轴,y 轴及直线x +y +1=0所围成的区域,求:(1)()E X ;(2))23(Y X E +-;(3))(XY E 的值.22. 设随机变量),(Y X 的联合密度函数为212,01,(,)0,y y x f x y ⎧≤≤≤=⎨⎩其他.求()E X ,()E Y , ()E XY ,22()E X Y +,()D X ,()D Y .23. 设随机变量Y X ,相互独立,且()()1E X E Y ==,()2D X =,()3D Y =.求:(1)22(),()E X E Y ;(2))(XY D .24. 袋中有2n个外形完全相同的球,其中n k ⎛⎫⎪⎝⎭个标有数字k (k =0,1,…,n ),从中不放回抽取m 次(每次取1个),以X 表示取到的m 个球上的数字之和,求E (X ).。
概率统计练习题(第2版)(3)
27. 设某地区成年居民中肥胖者占 10%,不胖不瘦者占 82%,瘦者占 8%,又知肥胖者患高 血压的概率为 20%,不胖不瘦者患高血压病的概率为 10%,瘦者患高血压病的概率为 5%, 试求:(1)该地区居民患高血压病的概率;(2)若知某人患高血压,可否断定他属于肥胖者?
5. 盒中有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只测 试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 10 次测试时发现 的概率。
6. 盒中装有 10 只外形相同的晶体管,其中有 4 只次品,6 只正品,现从中随机地抽取一只 测试,测试后不放回,直到找出 4 只次品为止,求最后一只次品晶体管在第 5 次测试时发现 的概率。
10. 从一付扑克的 13 张黑桃中,一张接一张地有放回地抽取 3 次,求抽到有同号的概率。
11. 已知 P(B) = b, P( A B) = c , 0 ≤ b ≤ c ,求 P( AB )
12. 设 A,B,C 是三个事件,且 P( A) = P(B) = P(C) = 1 , P( AB) = P(BC) = 0 , 5
(1)求系数
A,B
的值;(2)计算 P−
a 2
<
X
≤
a 2
。
3. 设随机变量 X 的分布函数为
F ( x)
=
a
+
b (1 + x)2
概率论基础(第2版)李贤平 全部习题解答
0.45 0.1. 0.08 0.03 0.30
(2) P{只订购 A 及 B 的} PAB C} P AB P ABC 0.10 0.03 0.07
(3) P{只订购 A 的} 0.30
,
Cbk Cbbk
a
此题即等于要证
Cakr Cbbk
C br ab
,
0 r a .见(1.3.6)
k 0
利用幂级数乘法可证明此式。因为
(x 1)a (x 1)b (x 1)ab ,比较等式两边 xbr 的系数即得证。
9.袋中有白球 5 只,黑球 6 只,陆续取出三球,求顺序为黑白黑的概率。
有 CN2 种取法;这种场合的种数有 Cn11CN2 种。当 n 个数由三样数构成时,可得场合种数为
Cn21CN3
种,等等。最后,当
n
个数均为不同数字时,有
n-1
个间壁,有
C n1 n1
种取法;数字
有
CNn
种取法;这种场合种数的
Cnn11C
n N
种。所以共有有利场合数为:
m1
Cn01C1Nຫໍສະໝຸດ Cn11CN20.73 0.14 0.03 0.90 . (6)P{不订任何报纸的} 1 0.90 0.10 .
2.若 A,B,C 是随机事件,说明下列关系式的概率意义:(1) ABC A ;(2) A B C A ;
(3) AB C ;(4) A BC .
解:
(1)ABC A BC A(ABC A显然) B A且C A ,若 A 发生,则 B 与 C 必
(3)设 A 1,2, B 1,3, C 3, 则 A {3}, A B 1,2,3, A B 1, A B {2}, A C 1,2,3。
测度论与概率论第一章第二节测度论中的常用集族(版本14523)
4
证明:往证: (1) ⇒ (2) 。 对任意 A∈ F , Ac = X \ A∈ F
往 证 : (2) ⇒ (3) 。 任 取 A, B∈F , 则 Ac , Bc ∈F , Ac ∪ Bc ∈ F , 于 是
( ) A ∩ B = : (3) ⇒ (1) 。 取 A, B∈F , 则 Ac , Bc ∈F , A \ B = A ∩ Bc ∈F ,
A ∩ B ∈F , A∆B ∈F , A ∪ B = ( A ∩ B) ∆ ( A∆B) ∈F 。
往 证 : (2) ⇒ (3) 。 设 A,B ∈ F , 因 为 F 对 并 运 算 和 对 称 差 运 算 封 闭 , 所 以
A ∩ B = ( A ∪ B) ∆ ( A∆B) ∈F ,如果还有 A ⊃ B ,则 A \ B = A∆B ∈F 。
∀A, B ∈F ( X ) , A \ B 为 X 的子集,所以 A \ B ∈ F ( X ) 。故 F ( X ) 为环。
【例 1.2.5】 例 1.3.1 和例 1.3.2 中的集族不是环,因为两个区间的差可能不是一个区间,如
[1,3) \ [2, 2.5) = [1, 2) ∪[2.5,3) 。
显然这 8 个半开半闭区间是两两不相交的,且属于 F ,故[a,b) \ [c, d ) ∈ F 。
综合以上分析,可知 F 为半环。
图 1.3.1
图 1.3.2
【例 1.2.3】 设 X 为任意集, F ( X ) 为 X 中的全体子集组成的集族,则 F ( X ) 为半环。
事实上
(1)φ ⊂ X ,所以φ ∈F ( X ) ;
1
(2)假设[a,b),[c, d ) ∈ F ,这里[a,b) = [a1,b1 )×[a2,b2 ) ,[c, d ) = [c1, d1 ) ×[c2 , d2 ) 。
概率论与数理统计——第一章练习题
第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。
事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。
A 中的某个样本点出现了,事件A 发生,否则,A 不发生。
因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。
样本空间S 有两个特殊的子集;S 自身和空集φ。
S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。
在一定条件下,每次试验一定发生的事情,称为必然事件。
每次试验一定不发生的事情,称为不可能事件。
必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。
此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。
样本点的个数超过一个的事件,称为复合事件。
2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。
其运算规律也同集合间的运算规律。
(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。
若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。
(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。
同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。
可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。
(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。
概率论基本知识(通俗易懂)
第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机试验。
例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1随机试验以上试验的共同特点是:1.试验可以在相同的条件下重复进行;2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发生哪一个可能结果在试验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。
我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。
§1.2样本空间与随机事件(一) 样本空间与基本事件E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。
E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。
例:§1.1中试验 E 1--- E 7E 1:S 1={H,T}E 2:S 2={ HHH,HHT,HTH,THH,HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把试验 E 的全部可能结果中某一确定的部分称为随机事件。
概率统计参考答案 第二版 王明慈
概率统计参考答案习题一1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)}A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C)U ;(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生:BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、 设P(A)=0.5,P(B)=0.6,问:(1) 什么条件下,P(AB)取得最大值,最大值是多少?解:由P (AUB )=P (A )+P (B )-P (AB )得到P (AB )=P (A )+P (B )-P (AUB )<=0.5+0.6-0.6=0.5,此时,P (AUB )=0.6。
概率论与数理统计(茆诗松)第二版第一章课后习题1.5参考答案
习题1.51. 三人独立地破译一个密码,他们能单独译出的概率分别为1/5, 1/3, 1/4,求此密码被译出的概率. 解:设A , B , C 分别表示“第一、第二、第三人能单独译出”,有A , B , C 相互独立,即C B A ,,相互独立, 故所求概率为535214332541)()()(1)(1)(=−=××−=−=−=C P B P A P C B A P C B A P U U . 2. 有甲乙两批种子,发芽率分别为0.8和0.9,在两批种子中各任取一粒,求:(1)两粒种子都能发芽的概率;(2)至少有一粒种子能发芽的概率;(3)恰好有一粒种子能发芽的概率.解:设A , B 分别表示“甲批、乙批的种子能发芽”,有A , B 相互独立,(1)所求概率为P (AB ) = P (A ) P (B ) = 0.8 × 0.9 = 0.72;(2)所求概率为P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.8 + 0.9 − 0.72 = 0.98;(3)所求概率为P (A ∪B − AB ) = P (A ∪B ) − P (AB ) = 0.98 − 0.72 = 0.26.3. 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.8和0.7,现已知目标被击中,求它是甲射中的概率.解:设A , B 分别表示“甲、乙射击命中目标”,有A , B 相互独立, 故所求概率为)()()()()()()()()()()()|(B P A P B P A P A P AB P B P A P A P B A P A P B A A P −+=−+==U U 8511.0474094.08.07.08.07.08.08.0===×−+=. 4. 设电路由A , B , C 三个元件组成,若元件A , B , C 发生故障的概率分别是0.3, 0.2, 0.2,且各元件独立工作,试在以下情况下,求此电路发生故障的概率:(1)A , B , C 三个元件串联;(2)A , B , C 三个元件并联;(3)元件A 与两个并联的元件B 及C 串联而成.解:设A , B , C 分别表示“元件A , B , C 发生故障”,有A , B , C 相互独立, (1)所求概率为552.08.08.07.01()((1)(1)(=××−=−=−=P P P P C B A P U U ;(2)所求概率为P (ABC ) = P (A ) P (B ) P (C ) = 0.3 × 0.2 × 0.2 = 0.012;(3)所求概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C )= 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.5. 在一小时内甲、乙、丙三台机床需维修的概率分别是0.9、0.8和0.85,求一小时内(1)没有一台机床需要维修的概率;(2)至少有一台机床不需要维修的概率;(3)至多只有一台机床需要维修的概率.解:设A , B , C 分别表示“甲、乙、丙三台机床不需要维修”,有A , B , C 相互独立,(1)所求概率为P (ABC ) = P (A ) P (B ) P (C ) = 0.1 × 0.2 × 0.15 = 0.003;(2)所求概率为388.085.08.09.01()()(1)(1)(=××−=−=−=C P B P A P C B A P C B A P U U ;(3)所求概率为)()()()()(BC A P C B A P C AB P ABC P BC A C B A C AB ABC P +++=U U U)()()()()()()()()()()()(C P B P A P C P B P A P C P B P A P C P B P A P +++== 0.1 × 0.2 × 0.15 + 0.1 × 0.2 × 0.85 + 0.1 × 0.8 × 0.15 + 0.9 × 0.2 × 0.15 = 0.059.6. 设A 1 , A 2 , A 3相互独立,且P (A i ) = 2/3,i = 1, 2, 3.试求A 1 , A 2 , A 3中(1)至少出现一个的概率;(2)恰好出现一个的概率;(3)最多出现一个的概率.解:(1)所求概率为27263131311)()()(1)(1)(321321321=××−=−=−=A P A P A P A A A P A A A P U U ; (2)所求概率为)(321321321A A A A A A A A A P U U)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=92323131313231313132=××+××+××=; (3)所求概率为)(321321321321A A A A A A A A A A A A P U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=277313131323131313231313132=××+××+××+××=. 7. 若事件A 与B 相互独立且互不相容,试求min{P (A ), P (B )}.解:因事件A 与B 相互独立且互不相容,有P (AB ) = P (A ) P (B ) 且AB = ∅,即P (AB ) = 0,则P (A ) P (B ) = 0,即P (A ) = 0或P (B ) = 0,故min{P (A ), P (B )} = 0.8. 假设P (A ) = 0.4,P (A ∪B ) = 0.9,在以下情况下求P (B ):(1)A , B 不相容;(2)A , B 独立;(3)A ⊂ B .解:(1)因A , B 不相容,有P (A ∪B ) = P (A ) + P (B ),故P (B ) = P (A ∪B ) − P (A ) = 0.9 − 0.4 = 0.5;(2)因A , B 独立,有P (A ∪B ) = P (A ) + P (B ) − P (AB ) = P (A ) + P (B ) − P (A ) P (B ), 故8333.06.05.04.014.09.0)(1)()()(==−−=−−=A P A P B A P B P U ; (3)因A ⊂ B ,有P (B ) = P (A ∪B ) = 0.9.9. 设A , B , C 两两独立,且ABC = ∅.(1)如果P (A ) = P (B ) = P (C ) = x ,试求x 的最大值;(2)如果P (A ) = P (B ) = P (C ) < 1/2,且P (A ∪B ∪C ) = 9/16,求P (A ).解:(1)因ABC = ∅,有P (AB ∪AC ) = P (AB ) + P (AC ) − P (ABC ) = P (A ) P (B ) + P (A ) P (C ) = 2 x 2,则2 x 2 = P (AB ∪AC ) ≤ P (A ) = x ,得x ≤ 0.5, 另一方面,x 可以取到0.5,若取P (A ) = P (B ) = 0.5,P (AB ) = 0.25,B A B A C U =, 则5.0)()()()()()()()(=−+−=+==AB P B P AB P A P B P A P A P C P U ,且P (AB ) = 0.25 = P (A ) P (B ),A , B 独立,)()(25.0)()()()(C P A P AB P A P B A P AC P ==−==,有A , C 独立,)()(25.0)()()()(C P B P AB P B P A P BC P ==−==,有B , C 独立,即P (A ) = P (B ) = P (C ) = 0.5,A , B , C 两两独立,且ABC = ∅,得x 可以取到0.5,故x 的最大值等于0.5;注:掷两次硬币,设A 表示“第一次出现正面”,B 表示“第二次出现正面”,C 表示“恰好出现一次正面”,有P (A ) = P (B ) = P (C ) = 0.5,ABC = ∅,且AB 表示“两次都出现正面”,P (AB ) = 0.25 = P (A )P (B ),有A , B 独立;AC 表示“第一次出现正面,第二次反面”,P (AC ) = 0.25 = P (A )P (C ),有A , C 独立;BC 表示“第一次出现反面,第二次正面”,P (BC ) = 0.25 = P (B )P (C ),有B , C 独立.(2)设P (A ) = P (B ) = P (C ) = x ,有21<x , 因P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC )= P (A ) + P (B ) + P (C ) − P (A ) P (B ) − P (A ) P (C ) − P (B ) P (C ) = 3x − 3x 2, 则233169x x −=,即0)43)(41(1632=−−=+−x x x x ,得41=x 或43=x ,但21<x , 故41=x . 10.事件A , B 独立,两个事件仅A 发生的概率或仅B 发生的概率都是1/4,求P (A ) 及P (B ).解:因A , B 独立,且41)()(==B A P B A P ,有)()](1[)()()](1)[()()(B P A P B P A P B P A P B P A P −==−=, 则P (A ) = P (B ),得41)](1)[(=−A P A P ,即0]21)([41)()]([22=−=+−A P A P A P , 故21)(=A P ,21)(=B P . 11.一实习生用同一台机器接连独立地制造3个同种零件,第i 个零件是不合格品的概率为p i = 1/(i + 1),i = 1, 2, 3,以X 表示3个零件中合格品的个数,求P {X ≤ 2}.解:设A i 表示“第i 个零件是不合格品”,i = 1, 2, 3,有A 1 , A 2 , A 3相互独立, 故)1)(1)(1(1)()()(1)(1}3{1}2{321321321p p p A P A P A P A A A P X P X P −−−−=−=−==−=≤434332211=××−=. 12.每门高射炮击中飞机的概率为0.3,独立同时射击时,要以99%的把握击中飞机,需要几门高射炮? 解:设X n 表示n 门高射炮击中飞机的次数,且每门高射炮击中飞机的概率为p = 0.3,则至少命中一次的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.7 n ≥ 0.99,即0.7 n ≤ 0.01, 故9114.127.0ln 01.0ln =≥n ,即需要13门高射炮就能以99%的把握击中飞机. 13.投掷一枚骰子,问需要投掷多少次,才能保证至少有一次出现点数为6的概率大于1/2?解:设X n 表示投掷n 次骰子出现点数为6的次数,且每次投掷骰子出现点数为6的概率p = 1/6,则至少有一次出现点数为6的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (5/6) n ≥ 1/2,即(5/6) n ≤ 1/2, 故8018.3)6/5ln()2/1ln(=≥n ,即需要投掷4次,才能保证至少有一次出现点数为6的概率大于1/2. 14.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,试求该射手进行一次射击的命中率.解:设X 表示该射手四次射击的命中次数,且射手进行一次射击的命中率为p , 则至少命中一次的概率为8180)1(1}0{1}1{4=−−==−=≥p X P X P ,即811)1(4=−p , 故射手进行一次射击的命中率为32=p . 15.每次射击命中率为0.2,试求:射击多少次才能使至少击中一次的概率不小于0.9?解:设X n 表示n 次射击的命中次数,且每次射击命中率为p = 0.2,则至少命中一次的概率为P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.8 n ≥ 0.9,即0.8 n ≤ 0.1, 故3189.108.0ln 1.0ln =≥n ,即射击至少11次才能使至少击中一次的概率不小于0.9. 16.设猎人在猎物100米处对猎物打第一枪,命中猎物的概率为0.5.若第一枪未命中,则猎人继续打第二枪,此时猎物与猎人已相距150米.若第二枪仍未命中,则猎人继续打第三枪,此时猎物与猎人已相距200米.若第三枪仍未命中,则猎物逃逸.假如该猎人命中猎物的概率与距离成反比,试求该猎物被击中的概率.解:设A i 表示“第i 枪命中猎物”,i = 1, 2, 3,有A 1 , A 2 , A 3相互独立,则P (A 1) = 0.5,31)(150100)(12==A P A P ,41)(200100)(13==A P A P , 故所求概率为)()()()(321211321211A A A P A A P A P A A A A A A P ++=U U43129413221312121)()()()()()(321211==××+×+=++=A P A P A P A P A P A P . 17.某血库急需AB 型血,要从身体合格的献血者中获得,根据经验,每百名身体合格的献血者中只有2名是AB 型血的;(1)求在20名身体合格的献血者中至少有一人是AB 型血的概率;(2)若要以95%的把握至少能获得一份AB 型血,需要多少位身体合格的献血者.解:设X n 表示n 名身体合格的献血者中AB 型血的人数,且每名献血者是AB 型血的概率为p = 0.02,(1)P {X 20 ≥ 1} = 1 − P {X 20 = 0} = 1 − (1 − p )20 = 1 − 0.9820 = 0.3324;(2)因P {X n ≥ 1} = 1 − P {X n = 0} = 1 − (1 − p ) n = 1 − 0.98 n ≥ 0.95,即0.98 n ≤ 0.05, 故2837.14898.0ln 05.0ln =≥n ,即需要149位献血者才能以95%的把握至少能获得一份AB 型血. 18.一个人的血型为A , B , AB , O 型的概率分别为0.37, 0.21, 0.08, 0.34.现任意挑选四个人,试求:(1)此四人的血型全不相同的概率;(2)此四人的血型全部相同的概率.解:(1)所求概率为P (A 1) = 4! × 0.37 × 0.21 × 0.08 × 0.34 = 0.0507;(2)所求概率为P (A 2) = 0.374 + 0.214 + 0.084 + 0.344 = 0.0341.19.甲、乙两选手进行乒乓球单打比赛,已知在每局中甲胜的概率为0.6,乙胜的概率为0.4.比赛可采用三局两胜制或五局三胜制,问哪一种比赛制度对甲更有利?解:三局两胜制,甲2∶0胜乙的概率为0.6 2 = 0.36,甲2∶1胜乙的概率为2 × 0.6 2 × 0.4 = 0.288,则三局两胜制时,甲获胜的概率为P (A 1) = 0.36 + 0.288 = 0.648;五局三胜制,甲3∶0胜乙的概率为0.6 3 = 0.216,甲3∶1胜乙的概率为3 × 0.63 × 0.4 = 0.2592, 且甲3∶2胜乙的概率为20736.04.06.02423=××⎟⎟⎠⎞⎜⎜⎝⎛,则五局三胜制时,甲获胜的概率为P (A 2) = 0.216 + 0.2592 + 0.20736 = 0.68256;故P (A 1) < P (A 2),五局三胜制时对甲更有利.20.甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者与第三人比赛,依次循环,直至有一人连胜两场为止,此人即为冠军.而每次比赛双方取胜的概率都是1/2,现假定甲、乙两人先比,试求各人得冠军的概率.解:设每局比赛中,甲胜乙、乙胜甲、甲胜丙、丙胜甲、乙胜丙、丙胜乙分别记为A b , B a , A c , C a , B c , C b ,则甲得冠军的情况有两类:① A b A c ,A b C a B c A b A c ,A b C a B c A b C a B c A b A c ,……,(A b C a B c )k A b A c ,……,② B a C b A c A b ,B a C b A c B a C b A c A b ,B a C b A c B a C b A c B a C b A c A b ,……,(B a C b A c )k A b ,……,故甲得冠军的概率为P (A ) = (0.5 2 + 0.5 5 + 0.5 8 + ……) + (0.5 4 + 0.5 7 + 0.5 10 + ……)145141725.015.05.015.03432=+=−+−=; 由对称性知乙得冠军的概率145)()(==A P B P ; 而丙得冠军的情况也有两类:① A b C a C b ,A b C a B c A b C a C b ,A b C a B c A b C a B c A b C a C b ,……,(A b C a B c )k A b C a C b ,……,② B a C b C a ,B a C b A c B a C b C a ,B a C b A c B a C b A c B a C b C a ,……,(B a C b A c )k B a C b C a ,……,故丙得冠军的概率为P (C ) = (0.5 3 + 0.5 6 + 0.5 9 + ……) + (0.5 3 + 0.5 6 + 0.5 9 + ……)725.015.0233=−×=. 21.甲、乙两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本.但赌博在中途被打断了,请问在以下各种情况下,应如何合理分配赌本:(1)甲、乙两个赌徒都各需赢k 局才能获胜;(2)甲赌徒还需赢2局才能获胜,乙赌徒还需赢3局才能获胜;(3)甲赌徒还需赢n 局才能获胜,乙赌徒还需赢m 局才能获胜.解:记每一局中甲赢的概率为p = 0.5,假设赌博继续下去,按甲、乙最终获胜的概率分配赌本,(1)由对称性知,甲、乙获胜的概率相等,则P (A 1) = P (B 1) = 0.5,故甲、乙应各得赌本的一半;(2)因甲获胜的概率为P (A 2) = p 2 + 2 (1 − p ) p 2 + 3 (1 − p ) 2 p 2 = 0.5 2 + 2 × 0.5 3 + 3 × 0.5 4 = 0.6875,则乙获胜的概率P (B 2) = 1 − P (A 2) = 0.3125,故甲应得赌本的68.75%,乙应得赌本的31.25%;(3)因甲获胜的概率为n m n n np p m m n p p n p p n p A P 123)1(12)1(21)1(1)(−−⎟⎟⎠⎞⎜⎜⎝⎛−−+++−⎟⎟⎠⎞⎜⎜⎝⎛++−⎟⎟⎠⎞⎜⎜⎝⎛+=L 1215.0125.0215.015.0−+++⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+=m n n n n m m n n n L , 则乙获胜的概率为P (B 3) = 1 − P (A 3)⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+−=−+++1215.0125.0215.015.01m n n n n m m n n n L , 故甲应得赌本的1215.0125.0215.015.0−+++⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+m n n n n m m n n n L , 乙应得赌本的⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−+++⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+−−+++1215.0125.0215.015.01m n n n n m m n n n L . 注:也可假设无论结果如何,都要进行n + m 局比赛,甲获胜的条件是前n + m − 1局比赛中,甲至少赢得n 局比赛,故甲获胜的概率为1211311)1(11)1(1)(−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−+−+++−⎟⎟⎠⎞⎜⎜⎝⎛+−++−⎟⎟⎠⎞⎜⎜⎝⎛−+=m n m n m n p m n m n p p n m n p p n m n A P L 15.011111−+⎥⎦⎤⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−+−+++⎟⎟⎠⎞⎜⎜⎝⎛+−++⎟⎟⎠⎞⎜⎜⎝⎛−+=m n m n m n n m n n m n L . 22.一辆重型货车去边远山区送货.修理工告诉司机,由于车上六个轮胎都是旧的,前面两个轮胎损坏的概率都是0.1,后面四个轮胎损坏的概率都是0.2.你能告诉司机,此车在途中因轮胎损坏而发生故障的概率是多少吗?解:设X 与Y 分别表示在途中损坏的前胎个数与后胎个数,A 与B 分别表示至少有一个前胎与后胎损坏,且每个前胎损坏的概率为p 1 = 0.1,每个后胎损坏的概率为p 2 = 0.2,A 与B 相互独立,则P (A ) = P {X ≥ 1} = 1 − P {X = 0} = 1 − (1 − p 1)2 = 1 − 0.92 = 0.19,P (B ) = P {Y ≥ 1} = 1 − P {Y = 0} = 1 − (1 − p 2)4 = 1 − 0.84 = 0.5904,故P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.19 + 0.5904 − 0.19 × 0.5904 = 0.6682.23.设0 < P (B ) < 1,试证事件A 与B 独立的充要条件是)|()|(B A P B A P =.证:必要性,若事件A 与B 独立, 则)()()()()()()|(A P B P B P A P B P AB P B A P ===,)(()()(()()|(A P P B P A P P B A P B A P === 故)|()|(B A P B A P =; 充分性,若)|()|(B A P B A P =,有)(1)()()()()()(B P AB P A P P B A P B P AB P −−==, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB )P (B ) = P (A )P (B ) − P (B )P (AB ),故P (AB ) = P (A ) P (B ),即事件A 与B 独立.24.设0 < P (A ) < 1,0 < P (B ) < 1,1)|()|(=+B A P B A P ,试证A 与B 独立. 证:因)(1)(1)()(()()()()|()|(B P B A P B P AB P P B A P B P AB P B A P B A P −−+=+=+U , )(1)()()(1)()(B P AB P B P A P B P AB P −+−−+= )](1)[()]()()(1)[()](1)[(B P B P AB P B P A P B P B P AB P −+−−+−= )](1)[()()()]([)()()()()()(2B P B P B P AB P B P B P A P B P B P AB P AB P −+−−+−= 1)](1)[()()()()](1)[()]([)()()()(2+−−=−−+−=B P B P B P A P AB P B P B P B P B P B P A P AB P , 且1|()|(=+B A P B A P , 则0)](1)[()()()(=−−B P B P B P A P AB P , 故P (AB ) = P (A ) P (B ),即事件A 与B 独立.25.若P (A ) > 0,P (B ) > 0,如果A , B 相互独立,试证A , B 相容.证:因A , B 相互独立,有P (AB ) = P (A ) P (B ) > 0,故AB ≠ ∅,即A , B 相容.。
概率论第二版第1、2章习题解答
第1章 随机事件与概率习 题 1.22.一批产品由95件正品和5件次品组成,从中不放回抽取两次,每次取一件.一件.求:(1)第一次抽得正品且第二次抽得次品的概率;(2)抽得正品和次品各一件的概率.品各一件的概率.解 设A ={第一次抽得正品且第二次抽得次品},B ={抽得正品和次品各一件},则,则11955111009919()0.048396C C P A C C ×==»×,1111955595111009938()0.096396C C C C P B C C ×+×==»×. 3.从0,2,3,4,5,6这六个数中任取三个数,求取得的三个数字能组成三位数且为偶数的概率.且为偶数的概率.解 据题意,可分为“个位是0”与“个位不是0”两种情况,即所求事件的概率为的概率为2111534436543441765430A C C C p A +´+´´===´´. 4.已知某城市中有55%的住户订日报,65%的住户订晚报,的住户订晚报,且至少订这两且至少订这两种报中一种的住户比同时订两种报的住户多一倍,求同时订两种报的住户占百分之几.分之几.解 设A ={住户订日报},B ={住户订晚报},则()0.55P A =,()0.65P B =,且()2()P A B P A B = , 从而有从而有 ()()()2(P A P B P A B P A B +-=,11()[()()](0.550.65)0.433P AB P A P B =+=+=, 即同时订两种报的住户占百分之四十.即同时订两种报的住户占百分之四十.5.从0~9十个数字中任取三个不同的数字,求:三个数字中不含0或5 的概率.的概率.解 设A ={不含数字0},B ={不含数字5},则所求概率为()P A B .33399833310101014()()()()15C C C P A B P A P B P AB C C C =+-=+-= . 6.10把钥匙中有3把能打开一把锁,现任取两把,求能打开锁的概率.把能打开一把锁,现任取两把,求能打开锁的概率. 解 设A ={任取两把钥匙,能打开锁},利用对立事件,有,利用对立事件,有2721078()1()111515C P A P A C =-=-=-=. 7.一盒中有10只蓝色球, 5只红色球,现一个个的全部取出.求第一个取出的是蓝色球,最后一个取出的也是蓝色球的概率.解 设A ={第一个取出的是蓝色球,最后一个取出的也是蓝色球},则113110139151510913!3()15!7C A C P A A ´´===. 8.把12枚硬币任意投入三只盒中,求第一只盒子中没有硬币的概率.枚硬币任意投入三只盒中,求第一只盒子中没有硬币的概率. 解 设A ={第一只盒子中没有硬币},则,则12121222()33P A æö==ç÷èø. 9.把7个编号的同类型的球投进4个编号的盒子中,每个球被投进任何一个盒子中都是等可能的.求第一个盒子恰有2个球的概率.个球的概率.解 设A ={第一个盒子中恰有2个球},则,则25773()0.3114C P A ×=».10.从5副不同的手套中任意取4只手套,求其中至少有两只手套配成1副的概率.副的概率.解 设A ={至少有两只手套配成1副 },则,则411115222241013()1()121C C C C C P A P A C ××××=-=-=. 或 121125422541013()21C C C C C P A C +==.11.一副没有王牌的扑克牌共52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张牌花色各异;(2)四张牌中只有两种花色;(3)四张牌中有三种花色.)四张牌中有三种花色.解 设A ={四张牌花色各异},B ={四张牌中只有两种花色},C ={四张牌中有三种花色},则,则111113131313452()0.1055 C C C C P A C ×××=», 2221134131321313452()()0.2996C C C C C C P B C ×+××=» , 3121143131313452()0.5843 C C C C C P C C ××××==. 12.掷三枚均匀的骰子,已知它们出现的点数各不相同,求其中有一枚骰子的点数为4的概率.的概率.解 设A ={其中有一枚骰子的点数为4 },则,则1113541116543541()6542C C C P A C C C ´´===´´.13.一间宿舍内住有8位同学,求他们之中至少有2个人的生日在同一个月份的概率.月份的概率.解 设A ={至少有2个人的生日在同一个月份},则,则81288!()1()10.95412C P A P A ×=-=-». 14.四个人参加聚会,由于下雨他们各带一把雨伞.聚会结束时每人各取走一把雨伞,求他们都没拿到自己雨伞的概率.走一把雨伞,求他们都没拿到自己雨伞的概率.解 设i A ={第i 个人拿到自己的雨伞个人拿到自己的雨伞},B ={四个人都没有拿到自己的雨伞 },则,则12341234124()()()1()P B P A A A A P A A A A P A A A A ===-11131[1]2!3!4!8=--+-=. 15.有四个人等可能的被分配到六个房间中的任一间中.求:(1)四个人都分配到不同房间的概率;(2)有三个人分配到同一房间的概率.)有三个人分配到同一房间的概率.解 设A ={四个人分配到不同房间},B ={四个人中有三个人分配到同一房间},则,则4644!5()618C P A ´==, 31146545()654C C C P B ´´==.16.一袋中有n 个黑球和2个白球,现从袋中随机取球,每次取一球,求第k 次和第k +1次都取到到黑球的概率.次都取到到黑球的概率.解 设A ={第k 次和第k +1次都取到到黑球},则,则111!(1)()(2)!(2)(1)n n C C n n n P A n n n -××-==+++. 17.n 个人围一圆桌坐,求甲、乙两人相邻而坐的概率.个人围一圆桌坐,求甲、乙两人相邻而坐的概率.解 设A ={甲、乙两人相邻而坐},则,则2(2)!2()(1)!(1)n P A n n -==--.18.6个人各带一把铁锹参加植树,休息时铁锹放在一起,休息后每人任取一把铁锹继续劳动,求至少一个人拿对自己带来的铁锹的概率.取一把铁锹继续劳动,求至少一个人拿对自己带来的铁锹的概率.解 设i A ={第i 个人拿到自己的铁锹个人拿到自己的铁锹},B ={至少有一人拿对自己带来的铁锹铁锹 },则,则12345612456()1()1()()P B P B P A A A A A A P A A A A A A =-=-=111119110.6322!3!4!5!6!144=-+-+-=».19.两艘轮船都要停靠同一泊位,它们可能在一昼夜的任意时间到达,设两船停靠泊位的时间分别需要1小时与2小时,求一艘轮船停靠泊位时,另一艘轮船需要等待的概率.艘轮船需要等待的概率.解 设,x y 分别为甲,乙两船到达码头的时间,设A ={一艘轮船停靠泊位时,另一艘轮船需要等待}.故样本空间{(,)|024,024}x y x y W =≤≤≤≤, A 发生的等价条件为“1x y x +≤≤”或“2y x y +≤≤”,令 {(,)(1)(2),(,)}D x y x y x y x y x y =++ÎW ≤≤≤≤, 则样本空间的面积则样本空间的面积 2424576S W =´=,且区域D 的面积的面积 2221124232269.522D S =-´-´=, 则 ()0.1207DS P A S W =».20.平面上画有间隔为d 的等距平行线,向平面任意投掷一枚长为()l l d <的针,求针与平行线相交的概率.的针,求针与平行线相交的概率.解 以x 表示从针的中点到最近一条平行线的距离,针与其所夹角为j ,则样本空间(,)0,02d x x j j ìüW =p íýîþ≤≤≤≤,事件A ={针与平行线相交}发生的等价条件“sin 2l x j ≤”,令{(,)sin ,(,)}2l D x x x j j j =ÎW ≤, 则样本空间为边长分别为p 及2d 的矩形,面积为的矩形,面积为 2d S W p =,且区域D 的面积的面积 0s i n d 2D l S l pj j ==ò, 则 2()D S l P A S dW==p .习 题1.3 1.某种动物的寿命在20年以上的概率为0.8,在25年以上的概率为0.4. 现有一该种动物的寿命已超过20年,求它能活到25年以上的概率.年以上的概率.解 设A ={该种动物能活到25年以上},B ={该种动物的寿命超过20年},即A B Ì.已知.已知()0.4, ()0.8P A P B ==. 所求概率为所求概率为 ()()(|)0.5()()P A B P A P A B P B P B ===. 2. 在100件产品中有5件是次品,从中不放回地抽取3次,每次抽1件. 求第三次才取得次品的概率.第三次才取得次品的概率.解 设i A ={第i 次取到合格品},B ={第三次才取到次品},由乘法公式有,由乘法公式有12312131295945()()()(|)(|)0.04601009998P B P A A A P A P A A P A A A ===××». 3.有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,三厂产品中合格品率分别为95%、90%、85%,现从这批产品中随机抽取一件,求该产品为合格品的概率.解 设1A ={甲厂的产品},2A ={乙厂的产品},3A ={丙厂的产品},B ={取到一件合格品}.即123,,A A A 构成一个完备事件组.则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.50.950.30.90.20.85=´+´+´=.4. 一袋中有黄球10个,红球6个. 若不放回取球两次,每次取一球. 求下列事件的概率:(1)两次都取到黄球;(2)第二次才取到黄球;(3)第二次取到黄球.取到黄球.解 设1A ={第一次取到黄球},2A ={第二次取到黄球},则,则(1)121211093()()(|)16158P A A P A P A A ==×=; (2)121216101()()(|)16154P A A P A P A A ==×=; (3)21211211096105()()(|)()(|)161516158P A P A P A A P A P A A =+=×+×=. 5. 一城市位于甲、乙两河的交汇处,若有一条河流泛滥,一城市位于甲、乙两河的交汇处,若有一条河流泛滥,该市就会受灾,该市就会受灾,已知在某季节内,甲、乙两河泛滥的概率均为0.01,且当甲河泛滥时引起乙河泛滥的概率为0.5.求在此季节内该市受灾的概率..求在此季节内该市受灾的概率.解 设A ={甲河泛滥甲河泛滥 },B ={乙河泛滥乙河泛滥 },由题意有,由题意有()0.01,()0.01,(|)0.5P A P B P B A ===,则 ()()(|)0.0P A B P A P B A ==.在此季节内该市受灾的概率为在此季节内该市受灾的概率为()()()()0.010.010.0050.015P A B P A P B P AB =+-=+-= .6. 在下列条件下,求:(|),(|), (), ()P A B P B A P AB P AB . (1)已知()0.4, ()0.3, ()0.18 P A P B P AB ===;(2)已知()0.4, ()0.3P A P B ==,且A ,B 互不相容.互不相容.解 (1)()0.18(|)0.6()0.3P AB P A B P B ===,()0.18(|)0.45()0.4P AB P B A P A ===,()()()0.30.180.12P AB P B P AB =-=-=,()()1()1[()()()]P AB P A B P A B P A P B P AB ==-=-+-1(0.40.30.18)0.48=-+-=.(2)由于A ,B 互不相容,故()0P AB =,所以,所以()(|)0()P AB P A B P B ==,()(|)0()P AB P B A P A ==,()()()()0.3P AB P B P AB P B =-==,()()1()1[()()]P AB P A B P A B P A P B ==-=-+ 1(0.40.3)0.3=-+=. 7. 某体育比赛采用五局三胜制,甲方在每一场比赛中胜乙方的概率是0.6(假定没有和局),求甲方最后取胜的概率.,求甲方最后取胜的概率.解 比赛采用五局三胜制,甲最终获胜,至少需要比赛三局,且最后一局必须是甲胜,而前面甲需要胜二局,例如,比赛三局,甲胜:甲甲甲;比赛四局,甲胜:甲乙甲甲,乙甲甲甲,甲甲乙甲;再由独立性,甲最终获胜的概率为甲胜:甲乙甲甲,乙甲甲甲,甲甲乙甲;再由独立性,甲最终获胜的概率为P (甲胜)=32323234(1)(1)p C p p C p p +-+-323232340.60.6(10.6)0.6(10.6)0.6826C C =+-+-=.8. 设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(1)取出的零件有一个为一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率.的条件下,后取的仍是一等品的条件概率.解 设i A ={第i 箱被挑中},i =1,2,121()()2P A P A ==;设j B ={第j 次取出的是一等品},j =1,2.(1)取出的零件有一个为一等品的概率为)取出的零件有一个为一等品的概率为12121212()()()P B B B B P B B P B B =+1211212122()()(|)()(|)P B B P A P B B A P A P B B A =+11040118120.205772504923029=××+××»,1211212122()()(|)()(|)P B B P A P B B A P A P B B A =+ 14010112180.205772504923029=××+××»,所求概率为所求概率为 12121212()()()0.4115P B B B B P B B P B B =+» . (2)1211212122211111212()()(|)()(|)(|)()()(|)()(|)P B B P A P B B A P A P B B A P B B P B P A P B A P A P B A +==+ 11091181725049230290.4856110118250230××+××=»×+×. 在先取的是一等品的条件下,后取的仍是一等品的条件概率为0.4856.9. 设玻璃杯整箱出售,每箱20只,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1. 一顾客选出一箱玻璃杯,随机查看4只,若无残次品,该顾客则购买此箱玻璃杯,否则不买.客则购买此箱玻璃杯,否则不买.求:(1)顾客买此箱玻璃杯的概率;(2)若顾客购买了此箱玻璃杯,箱中确实无残次品的概率.顾客购买了此箱玻璃杯,箱中确实无残次品的概率.解 设i A ={箱中有i 件 残次品},i =0,1,2;B ={顾客买下该箱玻璃杯},则,则012()0.8,()0.1,()0.1P A P A P A ===,441918012442020412(|)1,(|),(|)519C C P B A P B A P B A C C =====. (1)由全概率公式,有)由全概率公式,有001122()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++41210.80.10.10.943519=´+´+´».(2)由贝叶斯公式,有)由贝叶斯公式,有000()(|)10.8(|)0.848()0.943P A P B A P A B P B ´==». 10. 某年级三个班报名参加志愿者的人数分别为10人、15人、25人,其中女生的分别为3人、7人、5人.人.现随机地从一个班报名的学生中先后选出两人,求:(1)先选出的是女生的概率;(2)已知后选出的是男生,而先选出的是女生的概率.的是女生的概率.解 设i A ={取到第i 班报名表},i =1,2,3,1231()()()3P A P A P A ===; 设j B ={第j 次选出的报名表是女生},j =1,2.(1)由全概率公式,有)由全概率公式,有1111212313()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++1317152931031532590=´+´+´=.(2)已知后选出的是男生,先选出的是女生的概率为12122()(|)()P B B P B B P B =, 而 2121222323()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 17181206131031532590=´+´+´=, 12112121223123()()(|)()(|)()(|)P B B P A P B B A P A P B B A P A P B B A =++13717815202310931514325249´´´=´+´+´=´´´, 从而从而 12122()2920(|)()619061P B B P B B P B ===. 11. 某产品的合格品率为97%时则达到行业标准.商家批量验收时,误拒收“达标的产品”的概率为0.02,误接收“未达标产品”的概率为0.05. 求一批产品被接收,此批产品确已达标的概率.解 设A ={产品合格},A ={产品不合格},()0.97,()0.03P A P A ==; B ={接收产品},B ={拒收产品},(|)0.02,(|)0.05P B A P B A ==.由贝叶斯公式,所求概率为()(|)(|)()(|)()(|)P A P B A P A B P A P B A P A P B A =+0.970.980.99840.970.980.030.05´=»´+´.12. 一盒中有12个乒乓球,其中9个是新的.第一次比赛时从中任取3个来用,比赛后仍放回盒中,第二次比赛时再从盒中任取3个.个. 求:(1)第二次取出的球皆为新球的概率;(2)若第二次取的球皆为新球,求第一次取到的都是新球的概率.都是新球的概率.解 设i A ={第一次取到i 个新球},i =0,1,2,3, B ={第二次取出的都是新球}.312213393939012333331212121212710884(),(),(),()220220220220C C C C C C P A P A P A P A C C C C ========.3398013312128456(|),(|)220220C C P B A P B A C C ====,3376233312123520(|),(|)220220C C P B A P B A C C ====. (1)由全概率公式,有)由全概率公式,有00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++0.1458»;(2)由贝叶斯公式,有)由贝叶斯公式,有333()(|)(|)0.2381()P A P B A P A B P B =».13. 某人忘记了某电话号码的最后一个数字,但知最后一个数字为奇数,求拨号不超过3次而接通电话的概率.次而接通电话的概率.解 设i A ={第i 次拨号拨通电话},i =1,2,3, B ={拨号不超过3次接通电话},则112123B A A A A A A = .11()5P A =,12121411()()(|)545P A A P A P A A ==×=,1231213124311()()(|)(|)5435P A A A P A P A A P A A A ==××=,故 1121233()()()()5P B P A P A A P A A A =++=.14. 某仓库有同样规格的产品12箱,其中甲、乙、丙三个厂生产的产品分别为6箱、4箱、2箱,且三个厂的次品率分别为8%、6%、5%. 现从12箱中任取一箱,再从该箱中任取一件产品,求取到一件次品的概率.箱中任取一箱,再从该箱中任取一件产品,求取到一件次品的概率.解 设1A ={甲厂的产品},2A ={乙厂的产品},3A ={丙厂的产品},B ={取到一件次品}.即123,,A A A 构成一个完备事件组.构成一个完备事件组. 则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++6420.080.060.050.0683121212=´+´+´=.15. 第一箱中有2个白球和6个黑球,第二箱中有4个白球与2个黑球. 现从第一个箱中任取出两球放到第二个箱中,然后从第二个箱中任意取出一球,求此球是白球的概率.求此球是白球的概率.解 设1A ={从第一箱中取出2个白球},2A ={从第一箱中取出1个白球1个黑球},3A ={从第一箱中取出2个黑球},B ={从第二箱中取出1个白球}. 即123,,A A A 构成一个完备事件组,且构成一个完备事件组,且1122266212122288811215(),(),()282828C C C C P A P A P A C C C ======.则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++16125154928828828816=´+´+´=.16. 设袋中有n 个黑球,m 个白球,现从袋中依次随机取球,每次取一个球,观察颜色后放回,并加入1个同色球和2个异色球. 求第二次取到黑色球且第三次取到白色球的概率.且第三次取到白色球的概率.解 设i A ={第i 次取到白色球},i =1,2,3,则所求概率为,则所求概率为 2312311231()()(|)()(|)P A A P A P A A A P A P A A A =+23143636mn m nn m n m n m n m n m n m n m ++++=××+××++++++++++.习 题 1.41. 已知()0.4, ()=0.3P A P B =,且A 、B 相互独立,试求:(|),(),P A B P A B (), (), ()P AB P AB P A B .解 ()()()(|)()0.4()()P A B P A P B P A B P A P B P B ====,()()()()()()()()0.58P A B P A P B P AB P A P B P A P B =+-=+-= ,()()()(10.4)0.30.18P AB P A P B ==-´=, ()()()(10.4)(10.3)0.42P AB P A P B ==-´-=,()()()()(10.4)0.30.180.72P A B P A P B P AB =+-=-+-= .2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8,求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.目标被命中的概率.解 设A ={甲击中目标},B ={乙击中目标},则()0.7,()0.8P A P B ==. (1)()()()0.70.80.56P AB P A P B ==´=;(2)()()()()()()()0.38P AB AB P AB P AB P A P B P A P B =+=+= ; (3)()()()()()()()()0.94P A B P A P B P AB P A P B P A P B =+-=+-= . 3. 甲、乙二人约定,将一枚匀称的硬币掷三次,若至少出现两次正面,则甲胜;否则乙胜.求甲胜的概率.则甲胜;否则乙胜.求甲胜的概率.解 至少出现两次正面包含两种情况:恰有两次出现正面、三次都是正面.恰有两次出现正面的概率为223113()228C ×=;三次都是正面的概率为33311()28C =.故甲胜的概率为故甲胜的概率为311882+=. 5. 甲、乙二人进行棋类比赛,假设没有和棋,每盘甲胜的概率为p ,乙胜的概率为1-p . 每盘胜者得1分,输者得0分.分. 比赛独立地进行到有一人首先超过对方2分时结束.分时结束. 求甲首先超过对方2分的概率.分的概率.解 设{}C =甲首先超过对方甲首先超过对方22分,每盘比赛若甲胜记为A , 若乙胜记为B , 根据题意,比赛共进行偶数盘,若甲首先超过对方2分时,则有分时,则有共赛两盘共赛两盘: :AA ; 共赛四盘共赛四盘: :ABAA BAAA ; 共赛六盘共赛六盘: :ABABAA BAABAA ABBAAA BABAAA ; 共赛八盘共赛八盘: :ABABABAA BAABABAA ABBAABAA ABABBAAABABAABAA BAABBAAA ABBABAAA BABABAAA ; ……即 23242353464()2(1)2(1)2(1)2(1)P C p p p p p p p p p =+-+-+-+-+ 2222333444[12(1)2(1)2(1)2(1)]p p p p p p p p p =+-+-+-+-+20[2(1)]kk p p p ¥==-å212(1)p p p =--.6. 一汽车沿一街道行驶,要经过三个有信号灯的路口,每个信号灯工作都是相互独立,且红、黄、绿信号显示时间的比例为2:1:2,求此车通过三个路口时遇到一次红灯的概率.口时遇到一次红灯的概率.解 汽车经过三个有信号灯的路口,可以看作是3重伯努利试验.此车通过三个路口时遇到一次红灯的概率为过三个路口时遇到一次红灯的概率为12323()()0.43255C ×=. 7. 甲、乙、丙三人同时独立的向一飞机射击,他们击中飞机的概率分别为0.4,0.5,0.7. 设若只有一人击中,飞机坠毁的概率为0.2,若恰有两人击中,飞机坠毁的概率为0.5,若三人均击中,,若三人均击中,飞机坠毁的概率为飞机坠毁的概率为0.8. 求飞机坠毁的概率.毁的概率.解 设i A ={飞机被i 个人击中},i =1,2,3, B ={飞机坠毁},由独立性有,由独立性有1()0.40.50.30.60.50.30.60.50.70.36P A =´´+´´+´´=, 2()0.40.50.30.40.50.70.60.50.70.41P A =´´+´´+´´=, 3()0.40.50.70.14P A =´´=.123(|)0.2,(|)0.5,(|)0.8P B A P B A P B A ===, 故 31()()(|)0.360.20.410.50.140.80.389i ii P B P A P B A ===´+´+´=å.8. 某厂生产的仪器,经检验可直接出厂的占0.7,需调试的占0.3,调试后可出厂的占0.8,调试后仍不能出厂的占0.2. 现新生产(2)n n ≥台仪器(设每台仪器的生产过程相互独立),求:(1)全部能出厂的概率;(2)恰有两台不能出厂的概率;(3)至少两台不能出厂的概率.)至少两台不能出厂的概率.解 设A ={1台仪器可直接出厂}, B ={1台仪器最终能出厂},则,则,A B B A BA Ì=+,()()()()()(|)0.70.30.80.94p P B P A P BA P A P A P B A ==+=+=+´=. (1)P {仪器全部能出厂}0.94n n p ==; (2)P {恰有两台不能出厂}222222(1)0.940.06n nn nn nC pp C----=-=;(2)P {至少两台不能出厂}11111[(1)]10.940.060.94nn nn n n p C p p C --=-+-=--×.9. 5个元件工作独立,每个元件正常工作的概率为p ,求以下系统正常工作的概率.,求以下系统正常工作的概率.(1)串联;(2)并联;(3)桥式连接(如图1.4.1).解 设C 为系统正常工作,利用独立性有为系统正常工作,利用独立性有(1) 当元件串联时,需5个元件都正常工作,系统才能正常工作:个元件都正常工作,系统才能正常工作:5555()P C C p p ==;(2)当元件并联时,5个元件至少有一个正常工作,系统才能正常工作:5()1(1)P C p =--;(3)记中间的元件为5A ,左面两个元件分别为13,A A ,右面两个元件为24,A A 。
2023-2024学年河南省济源市高中数学人教B版 必修二统计与概率章节测试-1-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年河南省济源市高中数学人教B 版 必修二统计与概率章节测试(1)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)2827.52828.52927.52928.51.某交警部门对城区上下班交通情况作抽样调查,上下班时间各抽取12辆机动车的行驶速度(单位:km/h )作为样本进行研究,做出样本的茎叶图,则上班、下班时间行驶速度的中位数分别是( )A. B. C. D. 0.650.350.30.0052. 从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件 B = “抽到二等品”,事件C =“抽到三等品”,且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )A. B. C. D. 第一种方案更划算第二种方案更划算两种方案一样无法确定3. 原油作为“工业血液”、“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A. B. C. D. 71535254. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的心理状况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )A. B. C. D. 总体个体总体的一个样本样本容量5. 为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是( )A. B. C. D.S M 2=9S N 2=9S M 2=3S n2=36. 一个样本M 的数据是x 1 , x 2 , …,x n , 它的平均数是5,另一个样本N 的数据x 12 , x 22 , …,x n 2它的平均数是34.那么下面的结果一定正确的是( )A. B. C. D. 45,5646,4547,4545,477.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是( )A. B. C. D. 91827368. 某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。