苏教版高中数学必修三高一参考答案

合集下载

高中数学苏教版必修三教学案:第1章1.2流程图含答案

高中数学苏教版必修三教学案:第1章1.2流程图含答案

第1章算法初步1.2013 年全运会在沈阳举行,运动员 A 报名参赛100米短跑并经过初赛、半决赛、决赛最后获取了银牌.问题 1:请简要写出该运动员参赛并获银牌的过程.提示:报名参赛→初赛→半决赛→决赛.问题 2:上述参胜过程有何特色?提示:参胜过程是明确的.问题 3:倘若你家住南京,想去沈阳观看 A 的决赛,你怎样设计你的旅途?提示:第一预定定票,而后选择适合的交通工具到沈阳,准时出席,检票入场,进入竞赛场所,观看竞赛.x +=2,①2.给出方程组yx- y=1,②问题 1:利用代入法求解此方程组.提示:由①得y=2-x,③把③代入②得x-(2-x)=1,3即 x=2.④把④代入③得1y=.23x=2,获取方程组的解1y=2.问题 2:利用消元法求解此方程组.3提示:①+②得x=2.③3 1x = 2,将③代入①得y = ,得方程组的解2y = 1.问题 3:从问题 1、 2 能够看出,解决一类问题的方法独一吗?提示:不独一.1.算法的观点对一类问题的机械的、一致的求解方法称为算法.2.算法的特色(1) 算法是指用一系列运算规则能在有限步骤内求解某类问题,此中的每条规则一定是明确立义的、可行的.(2) 算法从初始步骤开始,每一个步骤只好有一个确立的后继步骤,进而构成一个步骤序列,序列的停止表示问题获取解答或指出问题没有解答.1.算法的基本思想就是探究解决问题的一般性方法,并将解决问题的步骤用详细化、程序化的语言加以表述.2.算法是机械的,有时要进行大批重复计算,只需循规蹈矩地去做,总能算出结果,往常把算法过程称为“数学机械化”,其最大长处是能够让计算机来达成.3.求解某一个问题的算法不必定只有独一的一个,可能有不一样的算法.[ 例 1] 以下对于算法的说法:①求解某一类问题的算法是独一的②算法一定在有限步操作后停止③算法的每一步操作一定是明确的,不可以存在歧义④算法履行后必定能产生确立的结果此中,不正确的有 ________.[ 思路点拨 ] 利用算法特色对各个表述逐个判断,而后解答.高中数学苏教版必修三教学案:第1章1.2流程图含答案[ 精解析 ]由算法的不独一性,知①不正确;由算法的有性,知②正确;由算法确实定性,知③和④正确.[答案]①[一点通]1.个型的,正确理解算法的观点及其特色是解决此的关.2.注意算法的特色:有限性、确立性、可行性.1.以下句表达中是算法的有________.①从南到巴黎能够先乘火到北京,再坐机到达1②利用公式S=2ah 算底1,高2的三角形的面1③2x>2x+4④求 M(1,2)与 N(-3,-5)两点的方程,可先求MN的斜率,再利用点斜式方程求得分析:算法是解决的步与程,个其实不限于数学.①②④都表达了一种算法.答案:①②④2.算以下各式中的S ,能算法求解的是________.①S=1+2+3+⋯+100②S=1+2+3+⋯+100+⋯③S=1+2+3+⋯+ n( n≥1且 n∈N)分析:算法的要求步是可行的,而且在有限步以内能达成任.故①、③可算法求解.答案:①③[ 例 2]已知直l 1:3x-y+12=0和 l 2:3x+2y-6=0,求 l 1,l 2, y 成的三角形的面.写出解决本的一个算法.[ 思路点 ]先求出l1,l2的交点坐,再求l 1, l 2与 y 的交点的坐,即获取三角形的底;最后求三角形的高,依据面公式求面.3x-y+ 12= 0,[ 精解析 ]第一步解方程得l1,l2的交点P(-3x+ 2y- 6= 02,6) ;第二步在方程 3x-y+ 12= 0 中令x=0 得y= 12,进而获取A (0,12) ;第三步在方程 3 x +2 -6=0 中令x =0 得 y = 3,获取 (0,3) ;yB第四步 求出△ ABP 底边 AB 的长 | AB | =12- 3= 9;第五步求出△ ABP 的底边 AB 上的高 h =2;1第六步 代入三角形的面积公式计算S =2| AB | · h ;第七步 输出结果.[一点通]设计一个详细问题的算法,往常按以下步骤:(1) 仔细剖析问题,找出解决本题的一般数学方法; (2) 借助相关变量或参数对算法加以表述; (3) 将解决问题的过程区分为若干步骤;(4) 用精练的语言将这个步骤表示出来.3.写出求两底半径分别为1 和 4,高也为 4 的圆台的侧面积、表面积 及体积的算法.解:算法步骤以下:第一步 取 r1=1, 2=4, =4;rh第二步第三步第四步第五步计算 l =r 2- r 12+ h 2;22=π(r + r ) l ;计算 S =π r,S =π r ; S1122侧1 2计算 S 表=S +S +S;12侧1计算 V = 3( S 1+ S 1S 2+ S 2 ) h .4.已知球的表面积为 16π,求球的体积.写出解决该问题的两个算法.解:算法 1:第一步 S =16π;第二步计算 =S ( 因为 =4π 2) ;R4πS R第三步 计算 V =34πR 3 ;第四步 输出运算结果 V .算法 2:第一步=16π;S计算 V =4S3第二步3π(4π );第三步输出运算结果V.[例3](12分 ) 某居民区的物业部门每个月向居民收取卫生费,计算方法是:3人或 3人以下的住宅,每个月收取 5 元;超出 3 人的住户,每高出 1 人加收 1.2元.设计一个算法,依据输入的人数,计算应收取的卫生费.[ 精解详析 ]设某户有 x 人,依据题意,应收取的卫生费y 是 x 的分段函数,即 y=5,≤3,x(4 分)1.2 x+ 1.4 ,x>3.算法以下:第一步输入人数 x;(6 分)第二步假如 x≤3,则 y=5,假如 x>3,则 y=1.2 x+1.4;(10 分)第三步输出应收卫生费 y.(12分)[一点通]对于此类算法设计应用问题,应该第一成立过程模型,依据模型,达成算法.注意每步设计时要用简炼的语言表述.5.以下算法:第一步输入 x 的值;第二步若 x≥0成立,则 y=2x,不然履行第三步;第三步y=log2(- x);第四步输出 y 的值.若输出结果 y 的值为4,则输入的x的值为 ________.分析:算法履行的功能是给定x,2x,x≥0,求分段函数 y=- x 对应的函数值.log 2, x<0由 y=4知2x=4或log2(- x)=4.∴x=2或-16.答案: 2 或- 166.已知直角三角形的两条直角边分别为a, b,设计一个求该三角形周长的算法.解:算法以下:第一步计算斜边 c=a2+ b2;第二步计算周长 l =a+ b+ c;第三步输出 l .1.算法的特色:有限性、确立性、逻辑性、不独一性、广泛性.2.在详细设计算法时,要明确以下要求:(1)算法设计是一类问题的一般解法的抽象与归纳,它要借助一般问题的解决方法,又要包括这种问题的全部可能情况.设计算法时常常要把问题的解法区分为若干个可履行的步骤,有些步骤是重复履行的,但最后却一定在有限个步骤以内达成.(2)借助相关的变量或参数对算法加以表述.(3)要使算法尽量简单,步骤尽量少.课下能力提高( 一 )一、填空题1.写出解方程2x+ 3= 0 的一个算法过程.第一步 __________________________________________________________________ ;第二步 __________________________________________________________________ .答案:第一步将常数项 3 移到方程右侧得2x=- 3;3第二步在方程两边同时除以2,得x=-2.2.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99. 求他的总分和均匀分的一个算法为:第一步令 A=89, B=96, C=99;第二步计算总分 S=________;第三步计算均匀分M=________;第四步输出 S和 M.分析:总分S 为三个成绩数之和,A+B+C S均匀数 M=3=3.答案: A+ B+ C S 33.给出以下算法:第一步输入 x 的值;第二步当x >4 时,计算y=+ 2;不然履行下一步;x第三步计算 y=4-x;第四步输出 y.当输入 x=0时,输出 y=__________.分析:因为x=0>4不可立,故y=4-x= 2.答案: 24.已知点P0( x0, y0)和直线 l : Ax+By+ C=0,求点到直线距离的一个算法有以下几步:①输入点的坐标x0, y0;②计算 z1= Ax0+By0+ C;③计算 z2= A2+ B2;④输入直线方程的系数A, B和常数 C;⑤计算= | z1|;z2⑥输出 d 的值.其正确的次序为 ________.分析:利用点到直线的距离公式:| 0+0+|Ax By Cd=A2+ B2.答案:①④②③⑤⑥5.已知数字序列: 2,5,7,8,15,32,18,12,52,8.写出从该序列搜寻18 的一个算法.第一步输入实数 a.第二步__________________________________________________________________.第三步输出 a=18.分析:从序列数字中搜寻18,一定挨次输入各数字才能够找到.答案:若 a=18,则履行第三步,不然返回第一步二、解答题6.写出求a, b, c 中最小值的算法.解:算法以下:第一步比较a ,b的大小,当>时,令“最小值”为b;不然,令“最小值”为a;a b第二步比较第一步中的“最小值”与 c 的大小,当“最小值”大于 c 时,令“最小值”为c;不然,“最小值”不变;第三步“最小值”就是a, b, c 中的最小值,输出“最小值”.7.某铁路部门规定甲、乙两地之间游客托运转李的花费为c=0.53 ω,ω≤50,50×0.53 +ω- 50×0.85 ,ω >50.此中ω(单位:kg)为行李的重量,怎样设计计算花费c(单位:元)的算法.解:算法步骤以下:第一步输入行李的重量ω;第二步假如ω≤50,那么c=0.53ω ;假如ω>50,那么c=50×0.53+(ω-50)×0.85;第三步输出运费 c.8.下边给出一个问题的算法:第一步输入 a;第二步若 a≥4,则履行第三步,不然履行第四步;第三步输出 2a- 1;第四步输出 a2-2a+3.问题: (1) 这个算法解决的是什么问题?(2)当输入a 等于多少时,输出的值最小?解: (1) 这个算法解决的问题是求分段函数2x- 1,x≥4,f ( x)=x2-2x+3,x<4的函数值问题.(2)当 x≥4时, f ( x)=2x-1≥7,当 x<4时, f ( x)= x2-2x+3=( x-1)2+2≥2.∴当 x=1时, f ( x)min=2.即当输入 a 的值为1时,输出的值最小.。

苏教版高中数学必修三高一参考答案

苏教版高中数学必修三高一参考答案

兴化市板桥高级中学2009-2010学年度第二学期期中学情检测高一数学参考答案1、902、2,1-==b a3、04、-25、),1(),(+∞⋃-∞aa 6、ο307、18、25 9、339210、311、112、直角 13、32312214、③ 15、解:(1)()[]()21cos cos cos -=+-=+-=B A B A C π∴C =120° (2)由题设:⎩⎨⎧=+=322b a ab︒-+=•-+=∴120cos 2cos 222222ab b a C BC AC BC AC AB ()()102322222=-=-+=++=ab b a ab b a 10=∴AB16、(1)因为x>0,y>0,且2x+y=1所以12121x y x y ⎛⎫+=+⨯ ⎪⎝⎭()122x y x y ⎛⎫=++ ⎪⎝⎭44y x x y =++448≥+=+=4112,,42y x y x x y ==上式中,等号当且仅当即也即x=y=时成立 min 128x y ⎛⎫∴+= ⎪⎝⎭(2)()()()()()22min ,,233023,3a+b 222601121a b R a b ab a b ab a b a b R a b a b ab a b a b a b a b a b ++∈++=-++∴=>∴+<∈+≥-++⎛⎫≥= ⎪⎝⎭∴+++-≥∴+≥==∴+=因为且而当时,有即上式中等号当且仅当时成立17、45451530453015sin sin 1000sin 30sin15sin15cos 7541000100010005001sin 30sin 302o o o oo o oo oo o o o ABS SBC BSA AS BS ABS BASBS BS ∆∠=-∠=-=∠=-=∴=∠∠∴=∴=⨯=⨯=⨯=在ABS 中,答:沿SB 还需走500米才能到达山顶。

高中数学苏教版必修三教学案:第1章 章末小结与测评含答案

高中数学苏教版必修三教学案:第1章 章末小结与测评含答案

一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b , 故输出b -1a =4-13=1. 答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________.a ←1b ←2c ←3a ←b b ←c c ←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________.S ←1For I From 1 to 10 S ←S +3×I End For Print S解析:由伪代码可知S=1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166.答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4s←s×ii←i+1End WhilePrint s解析:由算法语句知s=1×1×2×3×4=24.答案:248.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数是51.答案:519.下列算法,当输入数值26时,输出结果是________.Read xIf 9<x<100 Thena←x\10b←Mod(x,10)x←10b+aPrint xEnd If解析:这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x\10是取x除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.解析:本题第1次循环:s=1+(1-1)=1,i=1+1=2;第2次循环:s=1+(2-1)=2,i=2+1=3;第3次循环:s=2+(3-1)=4,i=3+1=4;第4次循环:s=4+(4-1)=7,i =4+1=5.循环终止,输出s的值为7.答案: 711.如图所示的流程图输出的结果为________.解析:由题意知,输出的b为24=16.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.j←1While j≤5a←mod a+j,5j←j+1End WhilePrint a解析:第一步:a=mod(1,5)=1,j=2;第二步:a=mod(1+2,5)=3,j=3;第三步:a =mod(3+3,5)=1,j=4;第四步:a=mod(1+4,5)=0,j=5;a=mod(0+5,5)=0,j=6,此时输出,∴a=0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m的取值范围是________.解析:由题知,k=1,S=0,第一次循环,S=2,k=2;第二次循环,S=2+2×2=6,k=3;……;第六次循环,S=30+2×6=42,k=6+1=7;第七次循环,S=42+2×7=56,k=7+1=8,此时应输出k的值,从而易知m的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I,使1×3×5×7×…×I>2 012的伪代码.解:t←1I←1While t≤2 012t←t×II←I+2End WhilePrint I-216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析:伪代码如图:While I≤50Read a I学生成绩If a I<60 ThenPrint “D”Else If a I<70 ThenPrint “C”Else If a I<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000) S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法.解:(1)y=100×1.012x(2)伪代码如下:S←100I←1.012For x From 1 To 10S←S×IEnd ForPrint S(3)即求满足100×1.012x≥120的最小正整数x,其算法流程图如图.。

2019-2020学年高中数学苏教版必修三教学案:第1章 章末小结与测评 Word版含答案

2019-2020学年高中数学苏教版必修三教学案:第1章 章末小结与测评 Word版含答案

一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b ,故输出b -1a =4-13=1.答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________. a←1b←2c←3a←b b←c c←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________. S←1For I From 1 to 10 S←S+3×I End For Print S解析:由伪代码可知S =1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166. 答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4 s←s×i i←i+1End While Print s解析:由算法语句知s =1×1×2×3×4=24. 答案:248.459与357的最大公约数是________. 解析:459=357×1+102, 357=102×3+51, 102=51×2,所以459与357的最大公约数是51. 答案:519.下列算法,当输入数值26时,输出结果是________. Read xIf 9<x <100 Then a ← x \10 b ← Mod(x,10) x ←10b +a Print x End If解析: 这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x \10是取x 除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析: 本题第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案: 711.如图所示的流程图输出的结果为________.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.a←0j←1While j≤5+j,j←j+1End WhilePrint a解析:第一步:a=mod(1,5)=1,j=2;第二步:a=mod(1+2,5)=3,j=3;第三步:a=mod(3+3,5)=1,j=4;第四步:a=mod(1+4,5)=0,j=5;a=mod(0+5,5)=0,j=6,此时输出,∴a=0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m的取值范围是________.解析:由题知,k=1,S=0,第一次循环,S=2,k=2;第二次循环,S=2+2×2=6,k=3;……;第六次循环,S=30+2×6=42,k=6+1=7;第七次循环,S=42+2×7=56,k=7+1=8,此时应输出k 的值,从而易知m的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I,使1×3×5×7×…×I>2 012的伪代码.解:t←1I←1While t≤2 012t←t×II←I+2End WhilePrint I-216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D ”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析:伪代码如图:I←1While I≤50Read 学生成绩If aI<60 ThenPrint “D”Else If aI<70 ThenPrint “C”Else If aI<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000)S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法.解:(1)y=100×1.012x(2)伪代码如下:S←100I←1.012For x From 1 To 10S←S×IEnd ForPrint S(3)即求满足100×1.012x≥120的最小正整数x,其算法流程图如图.。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

苏教版 江苏省宿迁中学高中数学必修三练习:2.1抽样方法(三) -含答案

苏教版 江苏省宿迁中学高中数学必修三练习:2.1抽样方法(三) -含答案

2.1抽样方法(三)【新知导读】1.为了保证分层抽样时每个个体被抽到的可能性相等,要求( )A.每层等可能抽样B.每层取同样多的样本容量C.所有层用同一方法等可能抽样D.不同层用不同的抽样方法抽样2.某地区高中分三类.A类校共有学生4000人.B类校共有学生2000人.C类校共有学生3000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A类校抽取的试卷份数应为()A.450 B.400 C. 300 D.2003.某市为了了解职工家庭生活情况,先把职工按所在国民经济行业分为13类,然后每个行业抽1100的职工家庭进行调查,这种抽样是_______________.【范例点睛】例1 .某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对北京奥运会筹备情况的了解,则应怎样抽样?【课外链接】1.某学校青年志愿者协会有250名成员,其中88名高一学生,112名高二学生,50名高三学生.为了调查参加志愿者协会活动与学习成绩的关系,准备抽取50名学生,进行调查,哪种方法更合适,如何实施呢?【随堂演练】1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法2.简单随机抽样、系统抽样、分层抽样之间的共同点是 ( )A.都是从总体中逐个抽取B.将总体分成几部分,按事先确定的规则在各部分抽取C.抽样过程中每个个体被抽到的可能性相等D.没有共同点3.某初级中学有学生270人,其中七年级108人,八、九年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑使用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按七、八、九年级依次统一编号为1,2, ...,270;使用系统抽样时,将学生统一随机编号1,2, ...,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,146,270;关于上述样本的下列结论,正确的是()A.②③都不能为系统抽样 B.②④都不能为分层抽样C.①④都可能为系统抽样 D.①③都可能为分层抽样4.一个公司共有N个员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为n 的样本,已知某部门有m个员工,那么这一部门应抽取的员工数为__________.5.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全校教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数为 ___________.6.要完成两项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.则应采用的抽样方法分别是________________________________________________________________.7.调查某班学生的平均身高,从50名学生中抽110,问如何抽样?如果知道男女生的身高有显著不同(男生30人,女生20人),又如何抽样?8.某公司的职工由管理人员、后勤人员、业务人员三部分组成,其中管理人员20人,后勤人员与业务人员之比为3:16,为了了解职工的文化生活状况,要从中抽取一个容量为21的样本,其中后勤人员入样3人,则该公司的职工共有多少人?9.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机关改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请写出具体措施.10.某批零件共160个,其中一级品48个,二级品64个,三级品32个,等外品16个,从中抽取一个容量为20的样本.请分别说明用简单随机抽样、系统抽样法和分层抽样法抽取时总体中每个个体被抽到的可能性相等.2.1抽样方法(三) 【新知导读】 1.A 2.B 3.分层抽样 【范例点睛】例1.(1)因为身体状况主要与年龄有关,所以应按老年、中年、青年分层抽样法进行抽样,要抽取40人,可以在老年、中年、青年职工中分别抽取4,12,24人.(2)因为出席这样的座谈会的人员应该代表各个部门,所以可用按部门分层抽样的方法进行抽样.要抽取25人,可以在管理、技术开发、营销、生产各部门的职工中分别随机抽取2,4,6,13人.(3)对北京奥运会筹备情况的了解与年龄、部门关系不大,可以用系统抽样或简单随机抽样进行. 【课外链接】解:由于各年级学习情况不同,宜采用分层抽样.因为5012505=,所以在高一抽取188185⨯≈(人),在高二抽取1112225⨯≈(人),在高三抽取150105⨯=(人) . 【随堂演练】 1.B 2.C 3.D 4.mnN5.50 6.①采用分层抽样,②采用简单随机抽样 7.解:可以用简单随机抽样,男女生身高有显著不同时,采用分层抽样,男生中抽3人,女生中抽2人.8.解:.该公司共有职工210人.9.解:因为机关改革关系到各种人的不同利益,故采用分层抽样方法为妥.100520=,1025∴=,70145=,2045=.所以从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人人数都较少,故可将他们分别按1~10和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部70人采用00,01,02, ...,69编号,然后用随机数表法抽取14人.10.解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号地160个签,从中随机抽取20个,显然每个个体被抽到地可能性为2011608=. (2)系统抽样法:将160个零件从1到160编号,按编号顺序分成20组,每组8个.先在第一组用抽签法抽得(18)k k ≤≤号,然后在其余组中分别抽取第8(1,2,3,...,19)k n n +=号,此时每个个体被抽到的可能性为18. (3)分层抽样法:按比例2011608=,分别在一级品、二级品、三级品、等外品中抽取14868⨯=个,16488⨯=个,13248⨯=个,11628⨯=个,每个个体被抽到的可能性分别是648,864,432,216,都是18. 综上所知,无论采取哪种抽样,总体的每个个体被抽到的可能性都是18.。

苏教版2018-2019学年高中数学必修三教学案:第3章 3.3 几何概型 Word版含答案

苏教版2018-2019学年高中数学必修三教学案:第3章 3.3 几何概型 Word版含答案

观察下面两个试验:(1)早上乘公交车去上学,公交车到站的时间可能是7:00至7:10分之间的任何一个时刻. (2)“神七”返回大陆时着陆场为方圆200 km 2的区域,而主着陆场为方圆120 km 2的区域,飞船在着陆场的任何一个地方着陆的可能性是均等的.问题1:上述两个试验中的基本事件的结果有多少个? 提示:无限个.问题2:每个试验结果出现的可能机会均等吗? 提示:是均等的.问题3:上述两试验属古典概型吗?提示:不属于古典概型,因为试验结果是无限个. 问题4:能否求两试验发生的概率? 提示:可以求出.1.几何概型的定义对于一个随机试验,将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的计算公式在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.1.在几何概型中,“等可能”应理解为对应于每个试验结果的点落入某区域内可能性大小,仅与该区域的度量成正比,而与区域的位置、形状无关.2.判断一试验是否是几何概型的关键是看是否具备两个特征:无限性和等可能性.[例1] 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 的长大于AC 的长的概率.[思路点拨] 在AB 上截取AC ′=AC ,结合图形分析适合条件的区域可求概率.[精解详析] 设AC =BC =a , 则AB =2a ,在AB 上截取AC ′=AC , 于是P (AM >AC )=P (AM >AC ′) =BC ′AB =AB -AC AB =2a -a 2a=2-22. 即AM 的长大于AC 的长的概率为2-22.[一点通]在求解与长度有关的几何概型时,首先找到几何区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找d 的过程中确认边界是问题的关键.1.在区间[1,3]上任取一数,则这个数大于等于1.5的概率为________. 解析:P =3-1.53-1=0.75.答案:0.752.已知函数f (x )=log 2x ,x ∈[12,2],在区间[12,2]上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x 0∈[12,2],∴x 0∈[1,2],从而由几何概型概率公式知所求概率P =2-12-12=23. 答案:23[例2] (湖南高考改编)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内, 用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=________.[思路点拨] 可判断为几何概型,利用面积比求其概率.[精解详析] 圆的半径是1,则正方形的边长是2,故正方形EFGH (区域d )的面积为(2)2=2.又圆(区域D )的面积为π, 则由几何概型的概率公式,得P (A )=2π.[答案]2π[一点通]解决此类问题的关键是:(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形.利用图形的几何特征计算相关面积.3.射箭比赛的箭靶是涂有彩色的五个圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”,奥运会的比赛靶面直径为122 cm, 靶心直径为12.2 cm ,运动员在70 m 外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为________.解析:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14π×12.2214π×1222=0.01. 答案:0.014.如图,平面上一长12 cm ,宽10 cm 的矩形ABCD 内有一半径为1 cm 的圆O (圆心O 在矩形对角线交点处).把一枚半径为1 cm 的硬币任意掷在矩形内(硬币完全落在矩形内),求硬币不与圆O 相碰的概率.解:由题意可知:只有硬币中心投在阴影部分(区域d )时才符合要求,所以不与圆相碰的概率为8×10-π×2280=1-π20.[例3] (12分)用橡皮泥做成一个直径为6 cm 的小球,假设橡皮泥中混入一个很小的砂粒,试求这个砂粒距离球心不小于1 cm 的概率.[思路点拨] 先判断概型为几何概型后利用体积比计算概率.[精解详析] 设“砂粒距离球心不小于1 cm ”为事件A ,球心为O ,砂粒位置为M ,则事件A 发生,即OM ≥1 cm.(3分)设R =3,r =1,则区域D 的体积为V =43πR3(5分)区域d 的体积为V 1=43πR 3-43πr 3.(7分)∴P (A )=V 1V =1-(r R )3=1-127=2627.(10分)故砂粒距离球心不小于1 cm 的概率为2627.(12分)[一点通]如果试验的结果所成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总的体积及事件A 所分布的体积.其概率的计算P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.5.一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是________.解析:记“蜜蜂能够安全飞行”为事件A ,则它位于与正方体玻璃容器6个表面的距离均大于10的区域飞行时是安全的,故区域d 为棱长为10的正方体,P (A )=103303=127.答案:1276.在正方体ABCD -A 1B 1C 1D 1中,棱长为1,在正方体内随机取点M ,则使四棱锥M- ABCD 的体积小于16的概率为________.解析:设M 到平面ABCD 的距离为h ,则V M-ABCD =13S 底ABCD ·h =16,S 底ABCD =1,∴h =12.∴只要点M 到平面ABCD 的距离小于12.所有满足点M 到平面ABCD 的距离小于12的点组成以ABCD 为底面,高为h (h <12)的长方体,又正方体棱长为1.∴使棱锥M -ABCD 的体积小于16的概率P =121=12.答案:12利用几何概型计算事件概率分以下几步:(1)判断是否为几何概型,此步关键是把事件看成一次试验,然后看试验是否是等可能试验,并且试验次数是否是无限的.(2)计算基本事件与事件A 所含的基本事件对应的区域的测度(长度、面积或体积). (3)利用概率公式计算.课下能力提升(十七)一、填空题1.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为 ________. 解析:[-1,2]的长度为3,[0,1]的长度为1,所以概率是13.答案:132.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.解析:由题意,硬币的中心应落在距圆心2~9 cm 的圆环上,圆环的面积为π×92-π×22=77π cm 2,故所求概率为77π81π=7781. 答案:77813.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.解析:由几何概型知,S 阴S 正方形=23,故S 阴=23×22=83. 答案:834.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为________.解析:边长为3,4,5三边构成直角三角形,P =(3-1-1)+(4-1-1)+(5-1-1)3+4+5=612=12. 答案:125.如图,在平面直角坐标系中,∠xOT =60°,以O 为端点任作一射线,则射线落在锐角∠xOT 内的概率是________.解析:以O 为起点作射线,设为OA ,则射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件.记“射线OA 落在锐角∠xOT 内”为事件A ,其几何度量是60°,全体基本事件的度量是360°,由几何概型概率计算公式,可得P (A )=60360=16. 答案:16二、解答题6.点A 为周长等于3的圆周上一个定点,若在该圆周上随机取一点B ,求劣弧AB ︵的长度小于1的概率.解:如图,圆周上使AM ︵的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1AM 2︵的长度为2,B 点落在优弧M 1AM 2︵上就能使劣弧AB ︵的长度小于1,所以劣弧AB ︵的长度小于1的概率为23.7.有一个底面半径为1,高为2的圆柱,点O 为底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 距离大于1的概率.解:区域D 的体积V =π×12×2=2π,当P 到点O 的距离小于1时,点P 落在以O 为球心,1为半径的半球内,所以满足P 到O 距离大于1的点P 所在区域d 的体积为V 1=V -V 半球=2π-23π=43π.所求的概率为V 1V =23.8.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间相见的概率.解:设两人分别于x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-23≤x -y ≤23.两人到达约见地点所有时刻(x ,y )的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x ,y )的各种可能结果可用图中的阴影部分(包括边界)来表示,因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为:S阴影S单位正方形=1-(13)212=89.P=。

高中数学苏教版必修3章末综合测评2含解析

高中数学苏教版必修3章末综合测评2含解析

章末综合测评(二)(时间120分钟,满分150分)一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中的横线上)1.下列四组对应变量:①学生的数学成绩与总成绩;②一个人的身高与脚的长度;③某工厂工人人数与产品质量;④人的身高与视力.其中具有相关关系的是________.【解析】人的身高与视力之间没有联系,不具有相关关系,同样③也不具有相关关系,其余均有相关关系.【答案】①②2.根据2005~2015年统计,全国营业税收总额y(亿元)与全国社会消费品零售总额x(亿元)之间有如下线性回归方程:y=0.568 7x-705.01.则全国社会消费品零售总额每增加1亿元时,全国营业税税收总额的变化为________.【解析】由线性回归方程中系数b的含义知全国营业税税收总额平均增加0.568 7亿元.【答案】平均增加0.568 7亿元3.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有________条鱼.【解析】设池塘内共有n条鱼,则30n=250,解得n=750.【答案】7504.某校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本.已知从女生中抽取80人,则n=________.【解析】 因为80∶1 000=8∶100,所以n ∶(200+1 200+1 000)=8∶100,所以n =192.【答案】 1925.对一组数据x i (i =1,2,3,…,n ),如果将他们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是________.(填序号)①平均数与方差均不变;②平均数变了,而方差保持不变;③平均数不变,而方差变了;④平均数与方差均发生了变化.【解析】 设原来数据的平均数为x -,将他们改变为x i +c 后平均数为x -′,则x -′=x +c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.【答案】 ②6.(2015·镇江高二检测)一小店批发购进食盐20袋,各袋重量(单位:g)为: 508 500 487 498 509 503 499 503 495 489 504 497 484 498 493 493 499 498 496 495其平均重量x -=497.4,标准差s =6.23,则20袋食盐重量位于(x --2s ,x -+2s )的频率是________.【解析】 由题意知x --2s =484.96,x -+2s =509.86.故落在区间(484.96,509.86)间的数据共19个,所以所求频率为1920=0.95. 【答案】 0.957.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.【解析】 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.【答案】768.茎叶图1记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则x、y 的值分别为________.图1【解析】因为甲组数据的众数为124,可得x=4,其中位数为124,由题意可得乙组数据的平均数为124,由此可得16(116×2+125+128+134+120+y)=124,∴y=5.【答案】4,59.(2015·连云港高一月考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图2所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.图2【解析】(0.006 0+0.003 6+0.002 4×2+0.001 2+x)×50=1,x=0.004 4,(0.003 6+0.006+0.004 4)×50×100=70.【答案】 (1)0.004 4 (2)7010.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示如图3,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是________.图3【解析】 由茎叶图可得 x -甲=78+81+84+85+925=84,x -乙=76+77+80+94+935=84,所以s 21=(78-84)2+(81-84)2+(84-84)2+(85-84)2+(92-84)25=22,s 22=(76-84)2+(77-84)2+(80-84)2+(94-84)2+(93-84)25=62,显然有s 1<s 2.【答案】 s 1<s 211.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对【解析】 设y 对x 的线性回归方程为y ^=bx +a ,因为b =-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12,a =176-12×176=88,所以线性回归方程为y ^=12x +88.【答案】 y ^=12x +8812.(2015·徐州高二检测)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图4所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则m e ,m 0,x -之间的关系是________.图4【解析】 由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现次数最多,故m 0=5,x-=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m 0<m e <x -.【答案】 m 0<m e < x -13.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图5所示,其中数据不在分点上,对图中提供的信息作出如下的判断:图5①成绩在49.5~59.5分段的人数与89.5~99.5分段的人数相等; ②从左到右数,第四小组的频率是0.03;③成绩在79.5分以上的学生有20人; ④本次考试,成绩的中位数在第三小组. 其中正确的判断有________.【解析】 ①49.5~59.5与89.5~99.5两段所在矩形的高相等,所以人数相等.②从左到右数,第四小组的频率/组距的值为0.03,频率为0.03×10=0.3. ③79.5分以上的学生共有50×(0.03+0.01)×10=20人.④49.5~59.5与89.5~99.5段的人数相等,69.5~79.5段的人数比79.5~89.5的人数多,所以中位数在69.5~79.5段,即在第三小组.【答案】 ①③④14.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是________. 【导学号:90200063】【解析】 ∵总体的个体数是10,且中位数是10.5, ∴a +b2=10.5,即a +b =21. ∴总体的平均数是10.要使总体的方差最小,只要(a -10)2+(b -10)2最小, ∵(a -10)2+(b -10)2=(a -10)2+(11-a )2=2a 2-42a +221, ∴当a =422×2=10.5时,(a -10)2+(b -10)2取得最小值,此时b =21-a =21-10.5=10.5.【答案】 10.5,10.5二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年40160280720 1 200小计160320480 1 040 2 000(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对北京冬奥会筹备情况的了解,则应怎样抽样?【解】(1)用分层抽样,并按老年4人,中年12人,青年24人抽取;(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取;(3)用系统抽样.对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.16.(本小题满分14分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图6),已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.图6(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】 (1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5,所以x =50.即参加这次测试的学生有50人.(3)达标率为(0.3+0.4+0.2)×100%=90%,所以估计该年级学生跳绳测试的达标率为90%.17.(本小题满分14分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20; 乙:8,14,13,10,12,21.(1)在下面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;甲 株高 乙(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.【解】 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈413,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈503.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.18.(本小题满分16分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图8(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).图8(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?【解】 (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5,∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中用分层抽样方法抽出100人,则月收入在[2 500,3 000)的这=25人.段应抽取100×2 50010 00019.(本小题满分16分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频率如下:[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;[117,119)20株;[119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?【解】(1)画出频率分布表如下:分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.87[119,121)70.070.94[121,123)40.040.98[123,125]20.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.20.(本小题满分16分)(2014·全国卷Ⅱ)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 【导学号:90200064】(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小乘法估计公式分别为: b ^=∑ni =1 (t i -t -)(y i -y -)∑ni =1 (t i-t -)2,a ^=y --b ^t -. 【解】 (1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4, y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑7i =1(t i -t -)2=9+4+1+0+1+4+9=28, ∑7i =1(t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1 (t i -t -)(y i -y -)∑7i =1(t i -t -)2=1428=0.5, a ^=y --b ^t -=4.3-0.5×4=2.3, 所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9,代入(1)中的回归方程,得y^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.。

苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)

苏教版高中数学必修三-第三章-概率知识讲解(全套及答案)

第3章概率§3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率(教师用书独具)●三维目标1.知识与技能:①了解随机事件、必然事件、不可能事件的概念;②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;2.过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力.通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;做到在探索中学习,在探索中提高.3.情感态度与价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系.●重点难点重点:理解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性.难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知.按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。

从而强化重点.(教师用书独具)●教学建议在本节课的教学中建议教师主要渗透以下几个方面的学法指导.(1)让学生亲自经历运用科学方法探索的过程。

主要是创设“掷硬币时‘正面向上’出现的比例是多少”的问题情境,让学生在探索中体会科学知识.(2)培养学生学会通过自学、观察、试验等方法获取相关知识,使学生在探索研究过程中提高分析、归纳、推理能力.(3)让学生通过试验,相互交流试验数据,体会相互合作提升办事效率.结合本节课的教学内容以及学生的认知情况,本节课主要突出运用了“探究式”教学方法,在试验探究的过程中,培养学生探究问题的能力、语言表达能力.●教学流程创设问题情境,引出问题1日常生活中的实例和问题2掷骰子实验.⇒引导学生结合前面学习过的频率的知识,观察、比较、分析,得出概率的概念.⇒通过引导学生回答所提问题理解频率与概率的关系.⇒通过例1及其变式训练,使学生掌握随机事件,必然事件及不可能事件的概念.⇒通过例2及其变式训练,使学生掌握概率与频率的关系问题的解题策略.⇒通过例3及其变式训练阐明概率的意义,使学生明确与概率有关的问题的解决方法.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.⇒归纳整理,进行课堂小结,整体认识本节课所学知识考察下列现象:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)常温常压下石墨能变成金刚石;(4)三角形的内角和大于360°;(5)明天下雨以上现象中哪几个是必然会发生的?哪几个是肯定不会发生的?【提示】(1)(2)必然发生;(3)(4)肯定不会发生;(5)可能发生也可能不发生.1.(1)定义:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件.(2)分类【问题导思】做一个简单的实验:把一枚骰子掷多次,观察出现的结果,并记录各结果出现的频数.在本实验中出现了几种结果,还有其它实验结果吗?【提示】一共出现了1点,2点,3点,4点,5点,6点六种结果,没有其它结果出现.若做大量地重复实验,你认为出现每种结果的次数有何关系?【提示】大致相等一般地,对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).(1)有界性:对任意事件A,有0≤P(A)≤1.(2)规范性:若Ω、Ø分别代表必然事件和不可能事件,则P(Ω)=1,P(Ø)=0.指出下列事件中哪些是必然事件、不可能事件、随机事件:(1)巴西足球队在下届世界杯足球赛中夺得冠军;(2)x2-3x+2=0有两个不相等的实数根;(3)李四走到十字路口遇到张三;(4)某人购买福利彩票5注,均未中奖;(5)在标准大气压下,温度低于0 ℃时,冰融化.【思路探究】本题可以根据事件的定义去判断,解决此类问题的关键是根据题意明确条件,判断在此条件下,事先能否断定出现某种结果.【自主解答】巴西足球队在下届世界杯足球赛中是否夺得冠军不确定,故(1)为随机事件;(2)∵Δ=(-3)2-8=1>0,∴(2)是必然事件;(3)(4)是随机事件;(5)是不可能事件.准确掌握随机事件、必然事件、不可能事件的概念是解题的关键,应用时要特别注意看清条件,在给定的条件下判断是一定发生,还是不一定发生,还是一定不发生,来确定属于哪一类事件.在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到至少15次传呼;⑤在标准大气压下,水的温度达到50 ℃时沸腾;⑥同性电荷,相互排斥.【解】由实数运算性质知①恒成立是必然事件;⑥由物理知识知同性电荷相斥是必然事件,①⑥是必然事件.没有水分,种子不会发芽,标准大气压下,水的温度达到50 ℃时不沸腾,③⑤是不可能事件.从1~6中取一张可能取出4也可能取不到4,电话总机在60秒可传呼15次也可不传呼15次.②④是随机事件.某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:时)进行了统计,统计结果如下表所示:(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 【思路探究】 (1)频率=频数÷总数.(2)先求出灯管使用寿命在[0,1 500)的频数,再应用公式f n (A )=n An 求解.【自主解答】 (1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中使用寿命不足1 500小时的频数是48+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即估计灯管使用寿命不足1500小时的概率为0.6.1.频率是事件A 发生的次数m 与试验总次数n 的比值,利用此公式可求出它们的频率.频率本身是随机变量,当n 很大时,频率总是在一个稳定值附近左右摆动,这个稳定值就是概率.2.解此类题目的步骤是:先利用频率的计算公式依次计算频率,然后用频率估计概率.下表中列出了10次抛掷一枚硬币的试验结果,n 为每次试验抛掷硬币的次数,m 为硬币正面向上的次数.计算每次试验中“正面向上”这一事件的频率,并考查它的概率.【解】 由事件发生的频率=mn ,可分别得出这10次试验中“正面向上”这一事件出现的频率依次为0.502,0.498,0.512,0.506,0.502,0.492,0.488,0.516,0.524,0.494.这些数字都在0.5附近摆动,由概率的统计定义可得,“正面向上”的概率为0.5.张明同学抛一枚硬币10次,共有8次反面向上,于是他指出:“抛掷一枚硬币,出现反面向上的概率应为0.8”.你认为他的结论正确吗?为什么?【思路探究】 正确理解频率定义及概率的统计性定义是解答本题的关键.他的结论显然是错误的.【自主解答】 从概率的统计定义可看出:事件A 发生的频率m n 叫做事件A 发生的概率的近似值.但要正确理解概率的定义必须明确大前提:试验次数n 应当足够多.也就是说,只有“在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定”时,才用这个常数来刻画该随机事件发生的可能性大小,即称为这一事件发生的概率的近似值.张明同学抛掷一枚硬币10次,有8次正面向上,就得出“正面向上”的概率为0.8,显然是对概率统计性定义曲解的结果.1.随机事件的概率,本质上是刻画该事件在一次试验中发生的可能性大小的数量,不能由此断定某次试验中一定发生某种结果或一定不发生某种结果.2.在理解概率的定义时,一定要将频率与概率区分开,频率与试验的次数有关,概率不随试验次数而变化,是个客观值.某同学认为:“一个骰子掷一次得到6点的概率是16,这说明一个骰子掷6次一定会出现一次6点.”这种说法正确吗?说说你的理由.【解】 这种说法是错误的.因为掷骰子一次得到6点是一个随机事件,在一次试验中,它可能发生,也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现6点,也可能不出现6点,所以6次试验中有可能一次6点也不出现,也可能出现1次,2次,…,6次.混淆随机事件的概念致误先后抛两枚质地均匀的硬币.(1)一共可能出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种? (3)出现“一枚正面,一枚反面”的概率是多少?【错解】 (1)一共可能出现“两枚正面”“两枚反面”“一枚正面,一枚反面”3种不同的结果.(2)出现“一枚正面,一枚反面”的结果有1种. (3)出现“一枚正面,一枚反面”的概率是13.【错因分析】 忽略了“一枚反面,一枚正面”与“一枚正面,一枚反面”是两种不同的结果,从而导致得出错误的结果.【防范措施】 1.明确事件的构成,分清事件间的区别与联系. 2.试验的所有结果要逐一写出,不能遗漏.【正解】 (1)一共可能出现“正、正”“正、反”“反、正”“反、反”4种不同的结果.(2)出现“一枚正面,一枚反面”的结果,是“正、反”“反、正”两种. (3)出现“一枚正面,一枚反面”的概率是12.1.随机事件可以重复地进行大量的试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现出一定的规律性.2.随机事件频率与概率的区别与联系①2013年清明节下雨②打开电视,正在播放电视剧《西游记》③半径为R的圆,面积为πR2④某次数学考试二班的及格率为70%【解析】③为必然事件,其余为随机事件.【答案】①②④2.下面给出了四种现象:①若x∈R,则x2<0;②没有水分,种子发芽;③某地明年8月8日天晴;④若平面α∩平面β=m,n∥α,n∥β,则m∥n.其中是确定性现象的是________.【解析】根据确定性现象的定义知①②④为确定性现象.【答案】①②④3.已知随机事件A发生的频率为0.02,事件A出现了1 000次,由此可推知共进行了________次试验.【解析】1 0000.02=50 000.【答案】50 0004.对某电视机厂生产的电视机进行抽样检测的数据如表所示:(1)(2)估计该厂生产的电视机是优等品的概率是多少?【解】(1)结合公式f n(A)=mn及题意可计算出优等品的各个频率依次为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由(1)知计算出的优等品的频率虽然各不相同,但却都在常数0.95左右摆动,且随着抽取台数n的增加,频率稳定于0.95,因此,估计该厂生产的电视机是优等品的概率是0.95.一、填空题1.下列事件:①物体在重力作用下会自由下落;②函数f(x)=x2-2x+3=0有两个零点;③下周日会下雨;④某寻呼台某一时段内收到传呼的次数少于10次.其中随机事件的个数为________.【解析】根据定义知①为必然事件,②为不可能事件,③④为随机事件.【答案】 22.某地气象局预报说,明天本地降雨概率为80%,则下列解释正确的是________.①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的机率是80%; ④以上说法均不正确.【解析】 本题主要考查对概率的意义的理解.选项①,②显然不正确,因为80%的概率是说降雨的概率,而不是说80%的区域降雨,更不是说有80%的时间降雨,是指降雨的可能性是80%.【答案】 ③3.某班共49人,在必修1的学分考试中,有7人没通过,若用A 表示参加补考这一事件,则下列关于事件A 的说法正确的是________(填序号).(1)概率为17;(2)频率为17;(3)频率为7;(4)概率接近17.【解析】 频率是概率的近似值,当试验次数很大时,频率在概率附近摆动,本题中试验次数是49,不是很大,所以只能求出频率为17,而不能求出概率.【答案】 (2)4.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为________.【解析】 16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.【答案】 0.35 5.给出下列4个说法:①现有一批产品,次品率为0.05,则从中选取200件,必有10件是次品;②做100次抛掷一枚硬币的试验,结果有51次出现正面向上,因此,出现正面向上的概率是51100;③抛掷一颗骰子100次,有18次出现1点,则出现1点的频率是950;④随机事件的概率一定等于这个事件发生的频率. 其中正确的说法是________(填序号).【解析】 次品率为0.05,即出现次品的概率(可能性)是0.05,所以200件产品中可能有10件是次品,并非“必有”,故①错;在1次具体的试验中,正面向上的次数与试验的总次数之比是频率,而不是概率,故②错;③显然正确;由概率的定义知,概率是频率的稳定值,频率在概率附近摆动,故随机事件的概率不一定等于该事件发生的频率,故④错.故填③.【答案】 ③6.某人忘记了自己的存折密码的最后一位数字,但只记得最后一位数字是偶数,他随意按了一个数字,则他按对密码的概率为________.【解析】 最后一位是偶数有0,2,4,6,8共5种情况,按任一数字都是随机的,因此他按对密码的概率P =15.【答案】 157.任意抛掷一颗质地不均匀的骰子,向上的各点数的概率情况如下表所示:【解析】 概率大的点数易出现,由上表知点数为6的最易出现. 【答案】 68.样本容量为200的频率分布直方图如图3-1-1所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为________.图3-1-1【解析】 落在[6,10)内的概率为0.08×4=0.32,所以频数为0.32×200=64.落在[2,10)内的频率为(0.02+0.08)×4=0.4.【答案】 64 0.4 二、解答题9.我国西部某地区的年降水量在下列范围内的概率如下表所示:(1)年降水量在[180,280)范围内的概率; (2)年降水量小于230 mm 的概率.【解】 (1)[180,280)分成两个范围,第一范围是在[180,230);第二范围是[230,280). 由于在第一个范围的概率为0.31,第二个范围的概率为0.21,因此,年降水量在[180,280)范围内的概率为P =0.31+0.21=0.52.(2)由于小于230 mm 有三个范围,其一是低于130 mm 的;其二是[130,180)的;其三是[180,230)的;而这三个范围的概率分别是0.15、0.28、0.31,因此,年降水量小于230 mm 时的概率为P =0.15+0.28+0.31=0.74.10.如果掷一枚质地均匀的硬币10次,前5次都是正面向上,那么后5次一定都是反面向上,这种说法正确吗?为什么?【解】 不正确.如果把掷一枚质地均匀的硬币1次作为一次试验,正面向上的概率是12,指随着试验次数的增加,即掷硬币次数的增加,大约有一半正面向上.但对于一次试验来说,其结果是随机的,因此即使前5次都是正面向上,但对后5次来说,其结果仍是随机的,每次掷硬币试验正面向上的概率仍然是12,即每次可能是反面向上,也可能是正面向上,可能性相等.11.已知f (x )=x 2+2x ,x ∈[-2,1],给出事件A :f (x )≥a (1)当A 为必然事件时,求a 的取值范围; (2)当A 为不可能事件时,求a 的取值范围. 【解】 f (x )=x 2+2x ,x ∈[-2,1], ∴f (x )min =-1, 此时x =-1.又f (-2)=0<f (1)=3, ∴f (x )max =3. ∴f (x )∈[-1,3](1)当A 为必然事件时,即f (x )≥a 恒成立,故有a ≤f (x )min =-1,即a 的取值范围是(-∞,-1].(2)当A 为不可能事件时, 即f (x )≥a 一定不成立, 故有a >f (x )max =3, 则a的取值范围为(3,+∞).(教师用书独具)2011年6月4日,中国选手李娜在法国网球公开赛女单决赛中战胜意大利老将斯齐亚沃尼,顺利在罗兰·加洛斯红土球场夺得了个人第一座大满贯冠军,这是中国的第一个单打大满贯冠军,也创下了亚洲女选手首次登顶大满贯的纪录.决赛前,有人对两人参赛训练中一发成功次数统计如下表(1)分别计算出两位运动员一发成功的频率,完成表格;(2)根据(1)中计算的结果估计两位运动员一发成功的概率.【思路点拨】先计算两位运动员一发成功的频率,然后根据频率估计概率.【规范解答】(1)中在0.9的附近,所以估计两人一发成功的概率均为0.9.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)(2)估计这一地区男婴出生的概率约是多少. 【解】 (1)计算mn 即得到男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.(2)由于这些频率非常接近0.5173,因此估计这一地区男婴出生的概率约为0.5173.§3.2古典概型(教师用书独具)●三维目标 1.知识与技能(1)理解基本事件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率. 2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.3.情感态度与价值观概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。

高中数学苏教版必修三教学案:第3章章末小结与测评含答案

高中数学苏教版必修三教学案:第3章章末小结与测评含答案

一、随机事件及概率1.随机现象在必定条件下,某种现象可能发生,也可能不发生,预先不可以判定出现哪一种结果.2.事件的分类(1)必定事件:在必定条件下,必定发生的事件;(2)不行能事件:在必定条件下,必定不发生的事件;(3)随机事件:在必定条件下,可能发生也可能不发生的事件,常用大写字母表示随机事件,简称为事件.3.随机事件的概率(1)随机事件的概率:假如随机事件在次试验中发生了次,当试验的次数很大时,我们能够将事件发生m A 生的概率的近似 ,即m的 率 作 事件()≈. nP An(2) 概率的性 :①有界性: 随意事件A ,有 0≤ P ( A ) ≤1.② 范性:若Ω、 ?分 代表必定事件和不行能事件,P ( Ω) = 1; P ( ?) = 0.二、古典概型 1.基本领件在一次 中可能出 的每一个基本 果. 2.等可能事件若在一次 中, 每个基本领件 生的可能性都同样, 称 些基本领件 等可能基本领件.3.古典概型(1) 特色:有限性,等可能性.(2) 概率的 算公式:假如一次 的等可能基本领件共有n 个,那么每一个等可能基本领件 生的概率都是1 ;nm假如某个事件 A 包括了此中 m 个等可能基本领件,那么事件A 生的概率P ( A ) =n .即P (A )= 事件 A 包括的基本领件数.的基本领件 数三、几何概型(1) 特色:无穷性,等可能性.(2) 概率的 算公式:在几何地区 D 中随机地取一点, 事件“ 点落在其内部一个地区d 内” 事件 A , 事件A 生的概率P ( A ) =d 的 度.D 的 度里要求 D 的 度不0,此中“ 度”的意 依 D 确立,当 D 分 是 段、平面 形和立体 形 ,相 的“ 度”分 是 度、面 和体 等.四、基本领件1.互斥事件(1) 定 :不可以同 生的两个事件称 互斥事件.假如事件A 1,A 2,⋯, A n 中的任何两个都是互斥事件,就 事件A 1, A 2,⋯, A n 相互互斥.(2) 定: A , B 互斥事件,若事件 A 、 B 起码有一个 生,我 把 个事件 作 A +B . 2.互斥事件的概率加法公式(1)若事件 A、B 互斥,那么事件 A+ B 生的概率等于事件 A、 B 分生的概率的和即 P( A+B)=P(A)+P(B).(2)若事件 A1, A2,⋯, A n两两互斥.P( A1+A2+⋯+ A n)= P( A1)+ P( A2)+⋯+ P( A n).3.立事件(1) 定:两个互斥事件必有一个生,称两个事件立事件.事件 A 的立事件A.(2)性: P( A)+P( A)=1,P( A)=1-P( A).( 考:90 分卷分: 120 分 )一、填空 ( 本大共14 小,每小 5 分,共 70 分)1.以下事件属于必定事件的有 ________.① 2, 2, 4 的三条段,成等腰三角形② 在响一声就被接到③ 数的平方正数④全等三角形面相等分析:① 2+ 2= 4,不可以成三角形,不行能事件;② 随机事件;③中0 的平方0,随机事件;④ 必定事件.答案:④2.同抛两枚地均匀的硬,出两个正面向上的概率是__________ .分析:共出 4 种果其两正面向上只有 1 种,1故 P=4.答案:143.在座平面内,已知点集M={( x, y)| x∈N,且 x≤3, y∈N,且 y≤3)},在 M中任取一点,个点在x 上方的概率是________.分析:会合 M中共有16个点,此中在 x 上方的有12 个,故所求概率123= . 1643答案:44.某人随机地将注A, B, C 的三个小球放入号1, 2, 3 的三个盒子中,每个盒子放一个小球,所有放完.则标明为B 的小球放入编号为奇数的盒子中的概率等于________.分析:随机地将标明为, , C 的三个小球放入编号为 1,2,3 的三个盒子中共有 6 种状况,A B而将标明为B 的小球放入编号为奇数的盒子中有,,;,,;,,;,,,共4种BACBCAACBCAB2状况,所以所求概率等于3.2答案: 35.已知射手甲射击一次,命中 9 环以上 ( 含 9 环 ) 的概率为 0.5 ,命中 8 环的概率为0.2 ,命中 7 环的概率为 0.1 ,则甲射击一次,命中6 环以下 ( 含 6 环 ) 的概率为 ________.分析:以上事件为互斥事件,故命中 6 环以下 ( 含 6 环 ) 的概率为 1-0.5 - 0.2 - 0.1 = 0.2.答案: 0.26.投掷一颗骰子, 察看掷出的点数, 设事件A 为出现奇数点, 事件B 为出现 2 点,已知 ( )P A11= 2, P ( B ) = 6,则出现奇数点或 2 点的概率之和为 ________.1 12 分析:出现奇数点或 2 点的概率为 P = 2+ 6= 3.2 答案: 37.某部三册的小说,随意排放在书架的同一层上,各册从左到右或从右到左恰巧为第1,2,3 册的概率为 ________.分析:所有基本领件为:123,132,213,231, 312,321 共 6 个.此中“从左到右或从右到2 1左恰巧为第 1, 2, 3 册”包括 2 个基本领件,故 P = 6= 3.答案: 138.函数 f ( x ) = x 2- x - 2,x ∈ [ - 5,5] ,那么随意 x 0∈[ - 5,5] 使 f ( x 0) ≤0的概率为 ________.1 2,x ∈ [ - 5, 5] ,区间长度为 10,分析: f ( x ) = x 2- x - 2= x --924129∵f ( x 0) = x 0- 2 - 4≤0,3∴- 1≤ x 0≤ 2,区间长度为 3,∴概率为 10.3答案: 109.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为 90%,则甲、乙两人下成平手的分析:甲不输为两个事件的和事件,其一为甲获胜( 事件A),其二为甲获平手( 事件B) ,并且两事件是互斥事件.∵P( A+ B)=P( A)+ P( B),∴P( B)= P( A+ B)- P( A)=90%-40%=50%.答案: 50%10.同时投掷两枚质地均匀的骰子,所得的点数之和为 6 的概率是 ________.分析:掷两枚骰子共有36 种基本领件,且是等可能的,所以“所得点数之和为6”的事件为(1 ,5),(2 , 4),(3 ,3) ,(4 ,2) ,(5 ,1) 共 5 个,故所得的点数之和为 6 的概率是P=5 . 365答案:3611.从分别写有ABCDE的五张卡片中任取两张,这两张卡片上的字母次序恰巧相邻的概率为________.分析:随机抽取两张可能性有AB, AC, AD, AE, BC, BD, BE,CD, CE,DE, BA,CA, DA,EA, CB,DB, EB,DC, EC,ED,共20种.卡片字母相邻:AB, BA, BC, CB, CD, DC, DE, ED共8种.∴概率为8 =2.20 52答案:512.如图,半径为10 cm的圆形纸板内有一个同样圆心的半径为 1 cm 的小圆.现将半径为2 cm的一枚铁片抛到此纸板上,使铁片整体随机落在纸板内,则铁片落下后把小圆所有覆盖的概率为 ________.分析:铁片整体随机落在纸板内的测度D=π R2=64π;而铁片落下后把小圆所有覆盖的测度d =πr2=π,所以所求的概率=d=π=1.P D64π641答案:6413. ( 安徽高考改编 ) 若某企业从五位大学毕业生甲、乙、丙、丁、戊中录取三人,这五人被录取的时机均等,则甲或乙被录取的概率为________.分析:由题意,从五位大学毕业生中录取三人,所有不一样的可能结果有( 甲,乙,丙 ), ( 甲,乙,丁 ) , ( 甲,乙,戊 ) ,( 甲,丙,丁 ) , ( 甲,丙,戊 ) , ( 甲,丁,戊 ) , ( 乙,丙,丁 ) , ( 乙,丙,戊 ) , ( 乙,丁,戊 ) ,( 丙,丁,戊 ) ,共 10 种,此中“甲与乙均未被录取”的所有不一样的可能结果只有 ( 丙,丁,戊 ) 这 1 种,故其对峙事件“甲或乙被录取”的可能结果有9 种,所求概率9P=10.9答案:1014.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次拿出后不放回,连续取两次,求拿出的两件产品中恰有一件次品的概率为________.分析:每次拿出一个,取后不放回地连续取两次,其全部可能的结果构成的基本领件有 6 个,即 ( a1,a2) , ( a1,b1) ,( a2,a1) ,( a2,b1) , ( b1,a1) ,( b1,a2) .此中小括号内左侧的字母表示第1 次拿出的产品,右侧的字母表示第2 次拿出的产品.用A表示“拿出的两件中,恰巧有一件次品”这一事件,则 A 包括( a1,b1),( a2,b1),( b1,a1),( b1,a2),即事件 A 由4个基本领件构成,4 2因此, P( A)=6=3.2答案:3二、解答题 ( 本大题共 4 小题,共50 分 )15. ( 本小题满分12 分 ) 除了电视节目中的游戏外,我们平常也会碰到好多和概率相关的游戏问题,且看下边的游戏:以下图,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1) 在第一轮抵达“车站”的概率是多少?(2) 假定你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?解: (1) 第一轮要到“车站”, 则一定掷出的点数之和为5,而用 2 颗骰子掷出 5 会有 4 种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1 ,4) , (2 ,3) , (3 , 2) , (4 , 1)4 种组合,4 1 而投掷两颗骰子共有 36 种可能结果,所以第一轮抵达“车站”的概率为36=9.(2) 需要掷出的点数之和为6 或 8 或 9,而要得出这 3 种结果共有以下 14 种组合: (5 , 1) ,(4 ,2),(3 , 3),(2 ,4) ,(1 ,5) ,(6 ,2) ,(5 ,3) ,(4 , 4) ,(3 ,5) ,(2 , 6) ,(6 , 3) ,(5 ,14 7 4) , (4 , 5) , (3 , 6) ,所以抵达这一地区的概率为36= 18.16.( 辽宁高考 )( 本小题满分 12 分 ) 现有 6 道题,此中4 道甲类题, 2 道乙类题,张同学从中任取 2 道题解答.试求:(1) 所取的 2 道题都是甲类题的概率;(2) 所取的 2 道题不是同一类题的概率.解: (1) 将 4 道甲类题挨次编号为1, 2,3, 4; 2 道乙类题挨次编号为 5, 6,任取 2 道题,基本领件为: {1 , 2} , {1 , 3} , {1 ,4} , {1 ,5} , {1 ,6} , {2 ,3} , {2 ,4} , {2 ,5} , {2 ,6} ,{3 , 4} , {3 , 5} , {3 , 6} , {4 , 5} ,{4 , 6} ,{5 , 6} ,共 15 个,并且这些基本领件的出现是等可能的.用 A 表示“都是甲类题”这一事件,则A 包括的基本领件有 {1 , 2} , {1 , 3} , {1 , 4} , {2 ,6 23} ,{2,4} , {3,4} ,共 6 个,所以 P ( A ) =15=5.(2) 基本领件同 (1) .用 B 表示“不是同一类题”这一事件,则B 包括的基本领件有 {1 , 5} ,8{1 ,6},{2 , 5},{2 ,6} ,{3 ,5} ,{3 ,6} ,{4 ,5} ,{4 , 6} ,共 8 个,所以P ( B ) =15.17.( 本小题满分 12 分 ) 某服务电话,打进的电话响第1 声时被接的概率是 0.1 ;响第2 声时被接的概率是 0.2 ;响第 3 声时被接的概率是0.3 ;响第 4 声时被接的概率是0.35.(1) 打进的电话在响 5 声以前被接的概率是多少?(2)打的响 4 声而不被接的概率是多少?解: (1) 事件“ 响第k 声被接” A k( k∈N),那么事件A k相互互斥,“打的在响 5 声以前被接” 事件A,依据互斥事件概率加法公式,得P(A)=P(A1+A2+A3+A4)=P(A1)+P( A2)+P( A3)+ P( A4)=0.1+0.2+0.3+0.35=0.95.(2) 事件“打的响 4 声而不被接”是事件A“打的在响 5 声以前被接”的立事件, A;依据立事件的概率公式,得P( A)=1-P( A)=1-0.95=0.05.18.( 本小分14 分 ) 一个袋中装有大小同样的 5 个球,将 5 个球分号1,2,3,4, 5.(1)从袋中拿出两个球,每次只拿出一个球,并且拿出的球不放回,求拿出的两个球上号之奇数的概率;(2)若在袋中再放入其余 5 个同样的球,量球的性,, 10 个球的性得分以下:8.7 , 9.1 , 8.3 ,9.6 , 9.4 , 8.7 , 9.7 , 9.3 ,9.2 , 8.0 ,把10 个球的得分当作一个体,从中任取一个数,求数与体均匀数之差的不超0.5的概率.解: (1) “拿出的两个球上号之奇数” 事件,Ω= {(1 ,2) ,(1 ,3) ,(1, 4) ,B(1 ,5),(2 , 1),(2 ,3) ,(2 ,4) ,(2 ,5) ,(5 ,1) ,(5 , 2),(5 , 3) ,(5 , 4) ⋯} ,共包括 20个基本领件;此中B={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包括6个基本领件,63P(B)== .20101(2) 本均匀数x=10(8.7+9.1+8.3+9.6+9.4+8.7+9.7+ 9.3 + 9.2+ 8.0) = 9,B 表示事件“从本中任取一数,数与本均匀数之差的不超0.5 ”,包括{8.7 ,9.1 , 9.4 , 8.7, 9.3 , 9.2}6 个基本领件,所以P( B) =6=3. 105。

2019-2020年苏教版数学必修三讲义:第1章+1.3+基本算法语句及答案

2019-2020年苏教版数学必修三讲义:第1章+1.3+基本算法语句及答案

1.3基本算法语句1.伪代码伪代码是介于自然语言和计算机语言之间的文字和符号.2.赋值语句在伪代码中,赋值语句用符号“←”表示,“x←y”表示将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或表达式.思考1:赋值语句两边的量可以互换吗?[提示]赋值符号“←”左右两边不能对换,如A←B和B←A的含义及运行结果是不同的.A←B表示用B的值替换A原来的值,B←A表示用A的值替换B 原来的值.思考2:赋值语句可以给代数式赋值吗?[提示]赋值语句不能给代数式赋值,如“a2b-ab2←0”是错误的,赋值语句只能给变量赋值.如果赋值符号左边的变量原来没有值,则执行赋值语句后获得一个值;如果已有值,则执行赋值语句后赋值符号右边的值将代替该变量原来的值,即将原来的值“冲掉”.思考3:赋值语句能进行代数式演算吗?如化简、因式分解等.[提示]不能用赋值语句进行代数式的演算(如化简、因式分解等).如y←x2-1←(x-1)(x+1)是不能实现的.在一个赋值语句中,只能给一个变量赋值,不能出现两个或多个“←”.但一个变量可以多次赋值.3.输入、输出语句输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print_x”表示输出运算结果x.4.条件语句(1)条件语句表达算法的选择结构.(2)条件语句的一般形式为:If A ThenBElseCEnd If其中A表示判断的条件,B表示满足条件时执行的操作内容,C表示不满足条件时执行的操作内容,End_If表示条件语句结束.(3)数学中的分类讨论、分段函数在算法中一般用条件语句.5.循环语句(1)循环语句的定义循环语句用来实现算法中的循环结构.(2)当型循环语句它表示当所给条件中成立时,执行循环体部分,然后再判断条件p是否成立.如果p仍成立,那么再次执行循环体,如此反复,直到某一次条件p不成立时退出循环,其一般格式为:While p循环体End while,其特点是先判断,后执行.(3)直到型循环语句它表示先执行循环体部分,然后再判断所给条件p是否成立,如果p不成立,那么再次执行循环体部分,如此反复,直到所给条件p成立时退出循环,其一般格式为Do循环体Until pEnd Do,其特点是先执行,后判断.(4)“For”语句当循环的次数已经确定时用“For”语句,其一般形式为For I from“初值”To“终值”step“步长”循环体End For.思考4:三种循环语句的区别与联系是什么?[提示]1.赋值语句“x←x+1”的正确解释为________.①x的值与x+1的值可能相等;②将原来x 的值加上1后,得到的值替换原来x 的值;③这是一个错误的语句;④此表达式经过移项后,可与x ←x -1功能相同.② [赋值符号与数学中的等号的意义是不完全相同的.x ←x +1在数学中不成立,但在赋值语句中将x 的原值加1,再赋给x .②正确.①③④不正确.]2.下面这个伪代码的输出结果是________. A ←10A ←A +15Print A25 [将A 的原值10加15后再赋给A,10+15=25.]3.下列语句,当输入x ←- 3.2时,输出的结果为________.Read xIf x <0 Thenx ←-x Print x3.2 [因为x =- 3.2<0,所以执行“Then ”引导的语句,故输出-(-3.2)=3.2.]4.下面伪代码输出的结果是________.n ←S ←While S <15S ←S +nn ←n -EndPrint n0 [当S ←5+4+3+2=14时,n ←2-1=1,此时S <15继续执行循环体,则S ←5+4+3+2+1=15,n ←1-1=0,此时S =15,循环结束,输出0.]a ←1b ←2a ←a +bPrint a(2)阅读下列两个伪代码,回答问题:①x ←3y ←4x ←y ②x ←3y ←4y ←x上述两个伪代码最后输出的x 和y 值分别为________.(1)3 (2)4,4 3,3 [(1)a ←1,b ←2,把1与2的和赋给a ,即a ←3,输出的结果为3.(2)伪代码①中的x ←y 是将y 的值4赋给x ,赋值后x 的值变为4,y 为4;②中y ←x是将x 的值3赋给y ,赋值后y 的值为3,x 为3.]赋值号与数学中的等号的意义是不完全相同的,赋值号左边的变量如果原来没有值,则执行赋值语句后,获得一个值,如果已有值,则执行该语句,以赋值号右边表达式的值代替该变量的原值,即将原值“冲掉”.如:N ←N +1,在数学中是不成立的,但在赋值语句中,意思是将N 的原值加1再赋给N .1.设A ←10,B ←20,则可以实现A ,B 的值互换的伪代码是________.①A ←10B ←20B ←A A ←B ②A ←10B ←20C ←A B ←C ③A ←10B ←20C ←A A ←B B ←C ④A ←10B ←20C ←A D ←B B ←C A ←B③ [①中伪代码执行后A =B =10;②中伪代码执行后A =B =10;③中伪代码执行后A =20,B =10;④中伪代码执行后A =B =10.]2.执行下面的伪代码的结果是X =________,Y =________,Z=________. X ←Y ←Z ←X ←Y Y ←XZ ←YPrint X ,Y ,Z2 2 2 [X ,Y ,Z 的初值分别为1,2,3,执行语句X ←Y 后,X =2,执行语句Y ←X 后,Y =2,执行语句Z ←Y 后,Z =2,所以X ,Y ,Z 的值都是2.]①输入语句Read a ;b ;c ;②输入语句Read x =3;③输出语句Print A =4;④输出语句Print20,3 2.④[①Read 语句可以给多个变量赋值,变量之间用“,”隔开;②Read 语句中只能是变量,而不能是表达式;③Print 语句中不用赋值号“=”;④Print 语句可以输出常量、表达式的值.]1.输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间应用逗号“,”隔开.2.输出语句可以输出常量,变量或表达式的值(输出语句有计算功能)或字符,伪代码中引号内的部分将原始呈现.3.写出下列伪代码的结果. Read a ,b Print a 2+1/b若输入2,1,则输出的结果为________.5 [若输入2,1,即a ←2,b ←1.所以22+11=4+1=5.输出的结果为a 2+1b =5.]4.下面算法的功能是求所输入的两个正数的平方和,已知最后输出的结果为3.46,试据此将算法补充完整.Print S b 1.5 x 21+x 22 [由于算法的功能是求所输入的两个正数的平方和,所以S =x 21+x 22,又由最后输出的结果是3.46,所以3.46=1.12+x 22,所以x22=2.25.又x 2是正数,所以x 2=1.5.]【例3】 已知函数f (x )=⎩⎨⎧x -1,x ≥0,3x 2-8,x <0.编写一个伪代码,对每输入的一个x 值,都得到相应的函数值,并画出其对应的流程图.[解] 解决分段函数求值的问题,编写伪代码要用条件语句,画流程图要用选择结构,可以先用自然语言,设计解决问题的算法,再转化为流程图和伪代码.用变量x ,y 分别表示自变量和函数值.步骤如下:S1 输入x 值.S2 判断x 的范围,若x ≥0,则用函数y ←x 2-1求函数值,否则用y ←3x 2-8求函数值.S3 输出y 的值.流程图如图所示:伪代码如下图所示:Readx If x ≥0 Theny ←x 2-1Elsey ←3x 2-8End IfPrint y1.书写条件语句时,为了清晰和方便阅读,通常将Then 部分和Else 部分缩进书写.2.在条件语句中,Then 部分和Else 部分是可选的,但语句的出口“End If”不能省.提醒:(1)条件语句的执行顺序与流程图中的选择结构的执行顺序一致,首先对条件进行判断,满足条件则执行该条件下的语句,不满足条件则执行下一步.(2)If 代表条件语句的开始,End If 代表条件语句的结束,这两点是判断一个语句是否为条件语句的关键.5.根据如下所示的伪代码,当输入的a ,b 分别为log 23,log 32时,最后输出的c 的值为________.Read a ,bIf a <b Thenc ←ac ←bPrint clog 32 [本伪代码的算法功能是输出a ,b 中较小的数.因为a =log 23>1,b =log 32<1,所以b <a ,所以c =b =log 32.]6.根据下面的算法语句,画出其对应的流程图.伪代码:Read xIf x >0 Theny ←1Else y ←EndPrint y[解] 伪代码中有条件语句,相应流程图用选择结构,解决的是一个两段函数求值的问题,用一个判断框就可以了.流程图如图所示:[1.循环结构流程图有几种形式?它们有何区别?可以相互转化吗?[提示]循环结构流程图有两种形式;当型循环和直到型循环,它们可以相互转化,先判断后执行的是当型循环,先执行后判断的是直到型循环.2.循环语句有几种形式?它们可以相互转化吗?[提示]循环语句有三种形式,如下表所示,当型循环语句和直到型循环语句可以相互转化,一般地,“For”语句可以改写成“While”语句,但“While”语句不一定能够改写成“For”语句.i ←p ←While i ≤99p ←p +ii ←i +Print p(1)伪代码中的循环语句是________型的循环语句;(2)将伪代码用另一类型的循环语句来实现.思路点拨:用“While ”语句描述的循环语句是当型循环语句,用“Do ”语句描述的循环语句是直到型循环语句,从上面的伪代码可以看出,这是一个用当型循环语句写的伪代码,此伪代码输出的是1+3+5+…+99的值.[解] (1)当(2)改成直到型循环语句如下: i←1p ←0Dop ←p +ii ←i +2Until i >99End DoPrint p1.本例中的伪代码能用“For”语句实现吗?思路点拨:本例中伪代码输出的是1+3+5+…+99的值,循环次数用步长确定,故可以用“For”语句实现.[解] 本例中的伪代码能用“For ”语句实现,用“For ”语句表示如下:S ←1For I From 3 To 99 Step 2S ←S +IPrint S2.设计算法,求1-3+5-7+…-99+101的值,用伪代码表示.[解] 循环语句有While 语句、Until 语句和For 语句,采用不同语句,其算法描述不同.用“For ”语句表示:S ←a ←For Ia ←a ×(-1)S ←S +a ×IPrint S用“While ”语句表示:S ←1I←3a ←1While I ≤101a ←a ×(-1) S ←S +a ×II ←I +Print S1.累加求和、累乘求积问题一般都要应用循环语句来设计伪代码,应用循环语句时,关键是设计循环条件及循环体.2.用循环语句编写伪代码的步骤(1)给循环语句中的变量赋初始值.(2)找出在伪代码中反复执行的部分,即循环体.(3)找出控制循环的条件:其中直到型循环是直到条件符合,即判断“Y”时,退出循环,条件不符合,即判断“N”时,继续循环;当型循环是当条件符合,即判断“Y”时,继续循环,条件不符合,即判断“N”时,退出循环.提醒:(1)“For ”语句中的I 是用于控制算法中循环次数的变量,起计数作用,它有初值和终值,是循环开始和结束时循环变量的值.(2)在“For ”语句中,如果省略“Step 步长”,那么重复循环时,I 每次增加1.1.本节课的重难点是用三种语句书写算法.2.(1)条件结构的适用范围:已知分段函数的解析式求函数值的问题,须用条件语句书写伪代码,当条件的判断有两个以上的结果时,可以选择条件结构嵌套去解决.(2)解此类问题的步骤:①构思出解决问题的一个算法(可用自然语言).②画出流程图,形象直观地描述算法.③根据流程图编写伪代码,即逐步把框图中的算法步骤用算法语句表达出来.3.两种循环语句的相同点是:(1)进入循环前的语句相同;(2)循环体相同;(3)输出部分相同.不同点是:(1)循环条件的位置不同;(2)循环条件不同.1.下面的伪代码输出的结果是( ) x ←6y ←3x ←x /3y ←4x +1Print x +yA .25B .27C .9D .11D[由题意知,x←6,y←3,x←6÷3=2,y←4×2+1=9,x+y=2+9=11.所以输出11.]2.判断输入的数x是否为正数,若是,输出它的平方,若不是,输出它的相反数,则横线上应填()y←-xy←x2Print yA.x<0 B.x≤0C.x>0 D.x≥0B[由题意知,x为正数时,输出x2,x 不是正数,即x≤0时,输出-x.观察伪代码知“If”执行的是输出相反数,故应填x≤0.]3.下列伪代码输出的结果为________.A←1B←1While BA←A+BB←A+BEnd WhileC←A+BPrint “C=”;CC=34[循环结构中,循环体的作用是将前两个数相加,得到后一个数;如果没有循环条件的限制,伪代码中的循环结构将依次给A ,B 赋值为:1,1,2,3,5,8,13,21,34,…,其中第1,3,5,…个数为A 的值,第2,4,6,…个数为B 的值,可见B =21时,循环结束,此时,A =13,所以C =A +B =34.]4.下面的语句运行后输出的结果为________.x ←0Dox ←x +x ←x 2Until x ≥20Print x25 [第一次循环:x =1,x =12;第二次循环:x =2,x =22;第三次循环:x =5,x =52=25,25≥20,循环终止.故输出x 的值为25.]5.给出如图所示的流程图,写出相应的伪代码.[解] 这是一个顺序结构的流程图,过程清楚,用输入,输出语句和赋值语句,编写伪代码即可.相应的伪代码如下所示.Readx,yx←x/2y←3×y Print x,y x←x-y y←y-1 Print x,y。

苏教版高中数学必修3第1章 算法初步 全章复习讲义(含答案解析)

苏教版高中数学必修3第1章 算法初步 全章复习讲义(含答案解析)

【知识梳理】知识点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。

(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。

(1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。

这是任何一个算法都离不开的基本结构。

(2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。

它是依据指定条件选择执行不同指令的控制结构。

(3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。

知识点三:基本算法语句程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句、赋值语句、条件语句和循环语句。

以下均为BASIC语言。

1.输入语句这个语句的一般格式是:INPUT “提示内容”;变量其中,“提示内容”一般是提示用户输入什么样的信息。

每次运行程序时,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。

INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…注:①“提示内容”与变量之间必须用分号“;”隔开。

苏教版高中数学必修三练习:1.2.1顺序结构含答案

苏教版高中数学必修三练习:1.2.1顺序结构含答案

1.2.1顺序结构【新知导读】1. 什么是流程图,它有哪些常用符号?2.顺序结构的流程图是什么?【范例点睛】例1. 尺规作图,确定线段AB 的一个5等分点.思路点拨:确定线段AB 的5等分点,是指在线段AB 上确定一点M ,使得AB AM 51=.因此解决这个问题的方法是:第一,从A 点出发作一条与原直线不重合的射线;第二,任取射线上一点C ,并在射线上作线段AD ,使AC AD 5=;第三,连接DB ,并过C 点作BD 的平行线交AB 于M ,M 就是要找的5等分点.这个实现过程用流程图表示:易错辨析:有些同学想直接从已知线段AB下手取5等分点,实际上用尺规是作不出来的。

方法点评:这个算法具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段n等分点的步骤,得到解决这个一般问题的算法.【课外链接】1.经过市场调查分析得知,2006年第一季度内,某地区对某件商品的需求量为12000件.为保证商品不脱销,商家在月初时将商品按相同数量投放市场.已知年初商品的库存量为50000件,用S表示商品的库存量,请设计一个算法,求出第一季度结束时商品的库存量,并画出流程图.思路点拨:因为第一季度商品的需求量为12000件,而且每个月以相同数量投放市场,因此每个月向市场投放4000件商品.可以用下表表示库存量随着月份的变化情况【随堂演练】1.算法的三种基本结构是( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.下列图形符号中,表示输入输出框的是()3.以下关于流程图(符号)的几种说法:①任何一个流程图都必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一具有超过一个退出点的符号.其中正确说法的个数是()A.1个B.2个C.3个D.0个4.流程图中的判断框,有m个入口和n个出口,则m,n的值分别为()A.1,1 B.1,2C.2,1 D.2,25.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是( )A B C D6.对顺序结构,下列说法:(1)是最基本、最简单的算法结构;(2)框与框之间是依次进行处理;(3)除输入框、输出框之外,中间过程都为处理框;(4)可以从一个框跳到另一个框图进行执行,其中正确的有()A.1个B.2个C.3个D.4个7.用赋值语句写出下列算法,并画出流程图:摄氏温度C为23.5℃,将它转换成华氏温度F,并输出.已知3295+=CF8.有关专家建议,在未来几年,中国的通货膨胀率保持在3%左右将对中国经济的稳定有利无害.所谓通货膨胀为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2006年的价格为10000元,请用流程图描述这种钢琴今后4年的价格变化情况,并输出4年后钢琴的价格.。

2019-2020学年高一数学苏教版必修3同步练习:3.2 古典概型 Word版含答案

2019-2020学年高一数学苏教版必修3同步练习:3.2 古典概型 Word版含答案

3.2 古典概型1、掷一枚骰子,则掷得奇数点的概率是( )A.16 B. 12 C. 13D. 14 2、在所有的两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( )A.56B.45C.23D.123、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y 的概率为( ) A.16 B. 536 C. 112 D. 12 4、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ) A .16B .14C .13D .125、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再贏两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12 B. 35C. 23D. 346、从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15 B. 25C. 825D. 9257、从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( )A.15 B. 25C. 310D. 7108、已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数, b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79 B. 13C. 59D. 239、集合{}{}2,3,1,2,3A B ==从,A B 中各任意取一个数,则这两数之和等于4的概率是( )A.23 B.12 C.13 D.1610、设集合{1,2},{1,2,3},A B ==分别从集合A 和B 中随机取一个数a 和,b 确定平面上的一个点(,),P a b 记“点(,)P a b 落在直线x y n +=上”为事件(25,N),n C n n ≤≤∈若事件n C 的概率最大,则n 的所有可能值为( ) A.3 B.4 C.2和5 D.3和411、从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 .12、袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.13、从n 个正整数1,2,,n ,中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =__________.14、在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为__________ 15、一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.答案以及解析1答案及解析: 答案:B解析:掷一枚骰子可能出现奇数点,也可能出现偶数点,且出现奇数点与偶数点的概率相同,故概率为12.2答案及解析: 答案:C 解析:3答案及解析: 答案:C解析:因为2log 1x y =,所以{}2,1,2,3,4,5,6x y x =∈,{}1,2,3,4,5,6y ∈,所以1,2,3,2,4,6,x x x y y y ⎧⎧======⎧⎨⎨⎨⎩⎩⎩共三种,故所求概率为316612=⨯.4答案及解析: 答案:A 解析:5答案及解析: 答案:D解析:方法一:以甲队再打的局数分类讨论,若甲队再打一局得冠军的概率为1p ,则112p =, 若甲队再打两局得冠军的概率为2p , 则2111224p =⨯=, 故甲队获得冠军的概率为1234p p +=,故选D. 方法二:设乙队获得冠军的概率为1p ,则1111224p =⨯=,故甲队获得冠军的概率为1314p p =-=,故选D.6答案及解析: 答案:B解析:所求概率为142525C P C ==,故选B. 考点: 古典概型 【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式()mP A n=求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n ,再运用公式()m P A n=求概率.7答案及解析: 答案:B解析:可看作分两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为(,)B C 与(,)C B 是一样的,故试验的所有基本事件总数为54210⨯÷=个,两字母恰好是相邻字母的有()()()(),,,,,,,A B B C C D D E 4个,故P= 42105P ==.8答案及解析: 答案:D解析:求导可得22'()2f x x ax b =++ 要满足题意需2220x ax b ++=有两个不等实根,即224()0a b ∆=->,即a b >,又,?a b 的取法共有339⨯=种, 其中满足a b >的有()()()1,0,2,0,2,1,()()()3,0,3,1,3,2共6种, 故所求的概率为6293P ==.9答案及解析: 答案:C解析:从,A B 中各取一个数有()()()()()()2,12,22,33,1,3,23,3共6种情况,其中和为4的有()()2,2,3,1共2种情况,所以所求概率2163P ==,故选C 。

高一数学苏教版高一数学必修三试题及答案

高一数学苏教版高一数学必修三试题及答案

高一数学下学期必修三基础检测题姓名:_________班级:________ 得分:________一.知识点回顾:1.在一定条件下,事先就能断定发生或不发生某种结果,这种现象叫 现象在一定条件下,某种现象可能发生,也可能不发生, 这种现象叫 现象2.一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将发生的频率 作为事件A 发生的概率的近似值3.概率的性质: ① 随机事件的概率为0()1P A ≤≤② 必然事件和不可能事件分别用Ω和φ表示,()1=ΩP ,()0=φP ;4.“频率”和“概率”两个概念的区别:频率具有随机性,它反映的是某一随机事件出现的频繁程度概率是一个客观常数,它反映了随机事件的属性5.如果一次试验的等可能事件有n 个,那么每个等可能基本事件发生的概率都是如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为6.一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率7.当总体中的个体数较多时,将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本.这种抽样方法叫做 抽样当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例抽样,这种抽样方法叫做 抽样8.考察样本数据的分散程度的大小,最常用的统计量是标准差。

标准差是样本数据到平均数的一种平均距离,一般用s 表示。

设一组数据,,n x x x ⋯12的平均数为x ,则s 2= 其中s 2表示方差而s 表示标准差9.作频率分布直方图的步骤:①求极差 ②决定组距与组数 ③将数据分组④计算各小组的频率,作频率分布表 ⑤画频率分布直方图。

10.算法流程图有 结构、 结构、 结构用伪代码表示的算法语句有 语句、 语句、 语句、 语句11.用样本分布估计总体分布的方法有:样本频率分布表、 图、 图、 图12.古典概型的两个特点 ,二.填空题1.对x 取某给定的值,用秦九韶算法设计求多项式326543x x x +++的值时, 应先将此多项式变形为2. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。

高一数学必修3全册各章节课堂同步习题(详解答案)

高一数学必修3全册各章节课堂同步习题(详解答案)
①计算 ;②输入直角三角形两直角边长 , 的值;
③输出斜边长 的值,其中正确的顺序是( )
A.①②③B.②③①C.①③②D.②①③
2.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( )
A.求输出 三数的最大数B.求输出 三数的最小数
C.将 按从小到大排列D.将 按从大到小排列
3.右边的程序框图(如上图所示),能判断任意输入的数 的奇偶性:其中判断框内的条件是
_________
7.用WHILE语句求 的值.
1.3算法案例
[自我认知]:
1.用辗转相除法求840与1785的最大公约数:
2.用更相减损术求612与468的最大公约数:
3.求多项式 当 的值.
4.以下给出的各数中不可能是八进制数的是( )
A.312 B.10110 C.82 D.7457
5.用秦九韶算法和直接算法求当 时
的值,做的乘法次数分别为( )
A.6,20 B.7,20 C.7,21 D.6,21
6.下列各数中最小的数是( )
A. B. C. D.
7.将389化成四进位制数的末位是( )
A. 1 B.2 C. 3 D. 0
8.三个数72,120,168的最大公约数是____________________.
[课后练习]:
= /2 =( - )/2 =( + )/2
输出 , 输出 , 输出 ,
=____, =____ =____, =_____ =____, =_____
5.写出下列程序运行后的结果. (2)
(1)
=1
=2
PRINT , , PRINT“C=”;C
END END
运行结果为____________;运行结果为__________.

2019-2020学年高一数学苏教版必修3同步练习:3.3 几何概型 Word版含答案

2019-2020学年高一数学苏教版必修3同步练习:3.3 几何概型 Word版含答案

姓名,年级:时间:3。

3 几何概型1、如图,矩形ABCD 中,点E 为边CD 的中点。

若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )2、A 。

14B 。

13C 。

12D.23。

2、若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A. π2 B 。

π4 C 。

π6 D 。

π83、一只小狗在如图所示的方砖上走来走去,最终停在涂色方砖的概率为( )A. 18B 。

79C. 29D 。

7164、如图,在矩形区域ABCD 的,A C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A. 14π-B 。

π12-C 。

22π-D 。

π45、一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A。

4 81πB. 814 81π-C. 1 27D. 8 276、有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A.B.C。

D。

7、某人手表停了,他打开电视机,想利用电视机上整点显示时间来校正他的手表,则他等待不超过一刻钟的概率为()A。

1 6B. 1 5C. 1 4D. 1 38、某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A 。

B. C 。

D.9、已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数, b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档