正交试验设计PPT教学课件
合集下载
《正交设计》课件
《正交设计》ppt课 件
目录
CONTENTS
• 正交设计简介 • 正交设计的基本原理 • 正交设计实例 • 正交设计的优势与局限性 • 正交设计未来的发展趋势和展望
01
正交设计简介
正交设计的定义
总结词
正交设计是一种实验设计方法,通过合理地选择实验条件和水平,利用正交表安排实验并分析实验结果,以找出 最优的实验条件。
正交设计遵循科学的方法论,能够保证实 验结果的可重复性和可推广性。
正交设计的局限性
对实验条件要求高
正交设计需要严格控制实验条件,以确保实验结果的准确性和可靠性 。然而,在实际操作中,完全控制所有实验条件是十分困难的。
对实验参数敏感度低
正交设计通常采用固定的参数组合进行实验,难以适应参数变化对实 验结果的影响。
在养殖业中,正交设计可以 用于优化养殖环境、饲料配 方、养殖密度等方面的因素 ,提高养殖效益和产品质量 。
在农业工程中,正交设计可 以用于优化灌溉系统、土壤 改良、农业机械等方面的因 素,提高农业生产效率和资 源利用率。
正交设计在医学研究中的应用
01
医学研究中的正交设计是指 通过合理安排治疗方案、药 物剂量、实验条件等方面的 因素,以达到优化医学治疗 的目的。
在处理非线性关系和多因素复杂问题时, 可以结合其他设计方法(如响应曲面法、 遗传算法等)以提高实验效率和准确性。
灵活调整参数组合
根据实际情况灵活调整参数组合,以提高 实验结果的准确性和可靠性。
加强数据处理和分析
对实验数据进行深入的处理和分析,以揭 示隐藏在数据背后的规律和趋势,从而更 好地解释实验结果。
02
正交设计的基本原 理
试验的安排
正交表选择
目录
CONTENTS
• 正交设计简介 • 正交设计的基本原理 • 正交设计实例 • 正交设计的优势与局限性 • 正交设计未来的发展趋势和展望
01
正交设计简介
正交设计的定义
总结词
正交设计是一种实验设计方法,通过合理地选择实验条件和水平,利用正交表安排实验并分析实验结果,以找出 最优的实验条件。
正交设计遵循科学的方法论,能够保证实 验结果的可重复性和可推广性。
正交设计的局限性
对实验条件要求高
正交设计需要严格控制实验条件,以确保实验结果的准确性和可靠性 。然而,在实际操作中,完全控制所有实验条件是十分困难的。
对实验参数敏感度低
正交设计通常采用固定的参数组合进行实验,难以适应参数变化对实 验结果的影响。
在养殖业中,正交设计可以 用于优化养殖环境、饲料配 方、养殖密度等方面的因素 ,提高养殖效益和产品质量 。
在农业工程中,正交设计可 以用于优化灌溉系统、土壤 改良、农业机械等方面的因 素,提高农业生产效率和资 源利用率。
正交设计在医学研究中的应用
01
医学研究中的正交设计是指 通过合理安排治疗方案、药 物剂量、实验条件等方面的 因素,以达到优化医学治疗 的目的。
在处理非线性关系和多因素复杂问题时, 可以结合其他设计方法(如响应曲面法、 遗传算法等)以提高实验效率和准确性。
灵活调整参数组合
根据实际情况灵活调整参数组合,以提高 实验结果的准确性和可靠性。
加强数据处理和分析
对实验数据进行深入的处理和分析,以揭 示隐藏在数据背后的规律和趋势,从而更 好地解释实验结果。
02
正交设计的基本原 理
试验的安排
正交表选择
正交试验设计PPT课件
验设计方法提供依据。
03
扩展正交试验设计的应用领域
研究正交试验设计在其他领域的应用可能性,如社会科学、人文科学等。
谢谢
THANKS
正交表的选择与设计
根据试验目的和因素数量选择合 适的正交表。
确定水平数,即各因素的取值数 量。
确定试验次数,即正交表的行数。
试验方案的制定
根据正交表,确定每个因素的取值组合。 确定试验的顺序,以避免误差的积累。
制定详细的试验步骤和操作规程。
试验数据的收集与分析
按照试验步骤进行试验,并记 录每个试验的结果。
降低试验成本
通过优化试验次数,可以减少 人力、物力和时间的投入,从 而降低试验成本。
加速试验进程
较少的试验次数意味着更短的 时间和更快的反馈,有助于加
速产品研发和优化进程。
因素水平的优化
确定关键因素
在正交试验设计中,首先需要明确哪 些因素是关键因素,并针对这些因素 进行优化。
选择合适水平
针对每个关键因素,选择合适的水平 进行试验,以获得最佳的试验效果。
CHAPTER
人工智能与机器学习在正交试验设计中的应用
机器学习算法优化正交试验设计过程
01
通过机器学习算法,可以自动分析历史数据,预测最佳试验条
件,从而减少试验次数,提高试验效率。
数据挖掘与知识发现
02
利用机器学习技术对大量试验数据进行挖掘,发现隐藏的模式
和关系,为后续试验提供指导。
自动化与智能化
03
结合人工智能技术,实现正交试验设计的自动化和智能化,减
少人为干预,提高试验精度和可靠性。
多目标优化问题的正交试验设计研究
1 2 3
多目标决策理论的应用
简易正交试验设计方法精品PPT课件
图2 简单比较法方案
固定T1和m2,改变p的三次实验如图2 (2)所示,发现p=p3时的实验效果 最好,因此认为因素p应取p3水平。
固定p3和m2,改变T 的三次实验如图2 (3)所示,发现因素T 宜取T2水平。
因此可以引出结论:为提高合格产 品的产量,最适宜的操作条件为T2p3 m2。与全面搭配法方案相比,简单比 较法方案的优点是实验的次数少,只 需做9次实验。但必须指出,简单比较 法方案的试验结果是不可靠的。需要 寻找一种合适的试验设计方法。
(2)表中任意两列并列在一起形成若干个数字对, 不同数字对出现的次数也都相同。在表L9(34)中, 任意两列并列在一起形成的数字对共有9个: (1,1),(1,2),(1,3),(2,1),(2,2), (2,3),(3,1),(3,2),(3,3),每一个数 字对各出现一次。
这两个特点称为正交性。正是由于正交表 具有上述特点,就保证了用正交表安排的 试验方案中因素水平是均衡搭配的,数据 点的分布是均匀的。因素、水平数愈多, 运用正交试验设计方法,愈发能显示出它 的优越性,如上述提到的6因素3水平试验, 用全面搭配方案需729次,若用正交表L27 (313)来安排,则只需做27次试验。
试验设计方法常用的术语定义如下:
试验指标:指作为试验研究过程的因变量,常为 试验结果特征的量(如得率、纯度等)。例1的试 验指标为合格产品的产量。
因素:指作试验研究过程的自变量,常常是造成 试验指标按某种规律发生变化的那些原因。如例1 的温度、压力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又 称为等级。如例1的温度有3个水平。温度用T表 示,下标1、2、3表示因素的不同水平,分别记 为T1、T2、T3。
2(T2) 1(p1)
固定T1和m2,改变p的三次实验如图2 (2)所示,发现p=p3时的实验效果 最好,因此认为因素p应取p3水平。
固定p3和m2,改变T 的三次实验如图2 (3)所示,发现因素T 宜取T2水平。
因此可以引出结论:为提高合格产 品的产量,最适宜的操作条件为T2p3 m2。与全面搭配法方案相比,简单比 较法方案的优点是实验的次数少,只 需做9次实验。但必须指出,简单比较 法方案的试验结果是不可靠的。需要 寻找一种合适的试验设计方法。
(2)表中任意两列并列在一起形成若干个数字对, 不同数字对出现的次数也都相同。在表L9(34)中, 任意两列并列在一起形成的数字对共有9个: (1,1),(1,2),(1,3),(2,1),(2,2), (2,3),(3,1),(3,2),(3,3),每一个数 字对各出现一次。
这两个特点称为正交性。正是由于正交表 具有上述特点,就保证了用正交表安排的 试验方案中因素水平是均衡搭配的,数据 点的分布是均匀的。因素、水平数愈多, 运用正交试验设计方法,愈发能显示出它 的优越性,如上述提到的6因素3水平试验, 用全面搭配方案需729次,若用正交表L27 (313)来安排,则只需做27次试验。
试验设计方法常用的术语定义如下:
试验指标:指作为试验研究过程的因变量,常为 试验结果特征的量(如得率、纯度等)。例1的试 验指标为合格产品的产量。
因素:指作试验研究过程的自变量,常常是造成 试验指标按某种规律发生变化的那些原因。如例1 的温度、压力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又 称为等级。如例1的温度有3个水平。温度用T表 示,下标1、2、3表示因素的不同水平,分别记 为T1、T2、T3。
2(T2) 1(p1)
《正交实验法》课件
临床试验设计
正交实验法可用于设计临 床试验方案,优化试验参 数,提高试验的可靠性和 效率。
医学诊断方法优化
通过正交实验法,可以优 化医学诊断方法,提高诊 断的准确性和可靠性。
PART 04
正交实验法的扩展与改进
多因素正交实验设计
பைடு நூலகம்
定义
优点
多因素正交实验设计是正交实验法的 一种扩展,它用于研究多个因素对实 验结果的影响。
对于非水平因素或非参数实验 ,正交实验法可能不适用。
正交表的选择和实验设计需要 经验积累,否则可能导致实验
结果不准确。
PART 02
正交实验法的基本原理
正交表的概念与分类
总结词
正交表是正交实验法中的核心工具,用于安排多因素多水平的实验。
详细描述
正交表是一张预先制定的表格,用于安排实验并记录实验结果。根据实验因素的数量和每个因素的水平数,可以 选择不同的正交表。正交表有多种类型,如L4(2^3)、L8(2^7)等,其中L表示正交表,括号内数字表示实验因素 数和每个因素的水平数。
农药配制
通过正交实验法,可以找 到最佳的农药配方,有效 防治病虫害,同时减少对 环境的负面影响。
种植技术优化
正交实验法可以帮助农业 科研人员优化种植技术, 提高作物的生长速度和抗 逆性。
医学研究中的应用
新药研发
在药物研发过程中,正交 实验法可用于筛选最佳的 药物配方和剂量,提高药 物的疗效和安全性。
交互效应和水平间的差异。
优点
能够同时研究不同水平因素之间 的交互作用,更全面地了解实验
系统的特性。
正交实验与其他实验设计方法的比较
与单因素实验设计比较
单因素实验设计只考虑单个因素对实验结果的影响,无法全面了解多因素之间 的交互作用。正交实验设计能够同时研究多个因素,更全面地了解实验系统的 特性。
《正交试验设计》PPT幻灯片PPT
或实体
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平
➢
一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度
正交试验设计PPT课件精选全文
所谓均衡分散,是指用正交表挑选出来的 各因素水平组合在全部水平组合中的分布是均 匀的 。 由 图10-1可以看出,在立方体中 ,任 一平面内都包含 3 个“(·)”, 任一直线上都包 含1个“(·)” ,因此 ,这些点代表性强 ,能够 较好地反映全面试验的情况。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋
势
图
计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋
势
图
计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。
简易正交试验设计方法【共46张PPT】
最好能使用一种叫做随机化的方法。所谓随机化就
是采用抽签或者查随机数值表的办法,来决定排列
的顺序。
(3)试验进行的次序没必要完全按照正交表上试验号码
的顺序。为减少试验中由于先后实验操作熟练的程度不
匀带来的误差干扰,理论上推荐用抽签的办法来决定试
验的次序。 ③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。
表3 L 9(3 4)表头设计方案
列号
1
2
3
4
1
T
p
m
空
方2
空
T
p
m
案3
m
空
T
p
4
P
m
空
T
四、正交试验的操作方法
(1)分区组。对于一批试验,如果要使用几台不同的 机器,或要使用几种原料来进行,为了防止机器或原 料的不同而带来误差,从而干扰试验的分析,可在开 始做实验之前,用L表中未排因素和交互作用的一个 空白列来安排机器或原料。
图2 简单比较法方案
固定T1和m2,改变p的三次实验如图2(2)
所示,发现p=p3时的实验效果最好,因 此认为因素p应取p3水平。
固定p3和m2,改变T 的三次实验如图2 (3)所示,发现因素T 宜取T2水平。
因此可以引出结论:为提高合格产品的
产量,最适宜的操作条件为T2p3m2。与
全面搭配法方案相比,简单比较法方案的
标按某种规律发生变化的那些原因。如例1的温度、压 力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又称为等 级。如例1的温度有3个水平。温度用T表示,下标1、2、 3表示因素的不同水平,分别记为T1、T2、T3。
是采用抽签或者查随机数值表的办法,来决定排列
的顺序。
(3)试验进行的次序没必要完全按照正交表上试验号码
的顺序。为减少试验中由于先后实验操作熟练的程度不
匀带来的误差干扰,理论上推荐用抽签的办法来决定试
验的次序。 ③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。
表3 L 9(3 4)表头设计方案
列号
1
2
3
4
1
T
p
m
空
方2
空
T
p
m
案3
m
空
T
p
4
P
m
空
T
四、正交试验的操作方法
(1)分区组。对于一批试验,如果要使用几台不同的 机器,或要使用几种原料来进行,为了防止机器或原 料的不同而带来误差,从而干扰试验的分析,可在开 始做实验之前,用L表中未排因素和交互作用的一个 空白列来安排机器或原料。
图2 简单比较法方案
固定T1和m2,改变p的三次实验如图2(2)
所示,发现p=p3时的实验效果最好,因 此认为因素p应取p3水平。
固定p3和m2,改变T 的三次实验如图2 (3)所示,发现因素T 宜取T2水平。
因此可以引出结论:为提高合格产品的
产量,最适宜的操作条件为T2p3m2。与
全面搭配法方案相比,简单比较法方案的
标按某种规律发生变化的那些原因。如例1的温度、压 力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又称为等 级。如例1的温度有3个水平。温度用T表示,下标1、2、 3表示因素的不同水平,分别记为T1、T2、T3。
八正交试验设计讲PPT课件
数理统计 08-05
平
这是三因素三水
试验,通常有两种试验 B3
方法:
(1)全面实验法:
B2
对所有的搭配做试验,共
B1
需进行3³=27次试验。如图 A1
所示,立方体包含了27个
节点,分别表示27次试验。
C3
C2
A2
A3 C1
数理统计
08-06 表8-1
数理统计 08-07
• 全面试验法的优缺点: 优点:对各因素与试验指标之间的关系剖析得比 较清楚,可以分析各因素的效应及交互作用,也 可选出最优条件组合。 缺点:(1) 试验次数太多,费时、费事,当因素 水平比较多时,试验无法完成;
的生产条件。
3
B3
2
B2
6 5 8
4
1
B1
A1
A2
9
7
C3 C2 A3 C1
用正交试验法( L9 (34 ) )安排试验只需要9次试验
数理统计 08-14
图8-2
(1)A1B1C1 (3)A1B3C3 (4)A2B1C2 (6)A2B3C1
(2)A1B2C2 (5)A2B2C3
数理统计
08•-1正5 交试验法的优点:
数理统计
08-18
• 正交表的正交性(以L9 (34 )为例)
数理统计 08-04
在例1中,对因素A、B、C在试验范围内分 别选取三个水平: A:A1=80℃、A2=85℃、A3=90℃ B:B1=90Min、B2=120Min、B3=150Min C:C1=5%、C2=6%、C3=7%
(正交试验设计中,因素可以是定量的, 也 可以是定性的。而定量因素各水平间的距离可以 相等也可以不等)。
正交试验设计(PPT 19页)
例:某农场对四块大豆试验田作施肥试验。每块田以不同的方式施以磷肥
和氮肥,其产量如下:
可以看出
当施氮肥和不施氮肥时,施以4公斤磷肥后的增产数量是不同的 当施磷肥和不施磷肥时,施以6公斤氮肥后的增产数量是不同的6 若N, P分别起作用时增产为50, 30kg。但同时施时其效果并不是
4 正交表的性质
二 挑升温因速素度、A 选恒温水温平度、B 制恒温定时因间素C 水降平温速表度D
1 300C晶/小体时退火6工00艺0C 试验因6小素时水平表1.5安培
因素
2水平 500C/小时
4500C
2小时
1.7安培
3 1000C/小时 5000C * 4小时 *150C/小时 *
*
10
晶体退火工艺试验安排及试验结果分析表
1 合理安排试验,减少实验次数,当因素越多时,正交
试验设计的这一优越性越突出 2 在众多影响因素中,分清因素主次,抓住主要矛盾 3 正交试验设计是掌握各影响因素与产品质量指标之间
关系的有效手段,为生产过程的质量控制提供有利的条件 4 找出最优的设计参数和工艺条件 5 指出进一步试验方向
3
三 正交表及其特点
2 因素 ● 定义:在试验中,影响试验结果的试验条件称为因素 ● 分类:可控因素:在试验中可以人为地加以调节和控制的因素。 不可控因素:由于自然、技术和设备等条件的限制,暂时还不能为人
们控制和调节的因素。如气温、降雨量等
● 在正交试验中,所考察的因素都是可控因素,被考察因素通常以大写英文字 母A、B、C…表示。
12
六 试验结果分析
1 计算试验结果总和
2 对每一列计算每个水平的试验结果总和Байду номын сангаасij Tij——第j列第i水平的试验结果之和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z12X11 Z22X21 Z32X31
... Zn2 X11
... Z11X11
... Z21X21
...
Z31X31
... ...
... ZnmXnm
2020/12/10
16
根据矩正X的列正交性:
2020/12/10
11
2020/12/10
12
2020/12/10
13
由此分别得出结论:温度越高转化率越 好,以90℃为最好,但可以进一步探索 温度更好的情况。反应时间以120分转化 率最高。用碱量以6%转化率最高。 所以最适水平是A3B2C2。
2020/12/10
14
多元回归正交设计
多元回归的正交设计,以最小二乘法为核心, 结合正 交试验的正交性来设计试验.
2020/12/10
5
全面试验对各因子与指标间的关系
剖析得比较清楚。但试验次数太多。特 别是当因子数目多,每个因子的水平数 目也多时。试验量大得惊人。如选六个 因子,每个因子取五个水平时,如欲做 全面试验,则需56=15625次试验,这实 际上是不可能实现的。如果应用正交实 验法,只做25次试验就行了。而且在某 种意义上讲,这25次试验代表了15625次 试验。
各水平间的距离可以相等,也可以不相 等。
这个三因子三水平的条件试验,通常有 两种试验进行方法:
2020/12/10
4
(Ⅰ)取三因子所有水平之间的组合,即 AlBlC1,A1BlC2,A1B2C1, ……, A3B3C3,共有33=27次试验。用图表示 就是图1 立方体的27个节点。这种试验 法叫做全面试验法。
2020/12/10
10
正交表具有何两列所构成的各有序数对出现的次数 都一样多。所以称之谓正交表。 例如在L9(34)中(见表1),各列中的l、2、3都 各自出现3次;任何两列,例如第3、4列,所 构成的有序数对从上向下共有九种,既没有重 复也没有遗漏。其他任何两列所构成的有序数 对也是这九种各出现一次。这反映了试验点分 布的均匀性。
2020/12/10
2
试验设计例
为提高某化工产品的转化率,选择了三个 有关因素进行条件试验,反应温度(A),反应时 间(B),用碱量(C),并确定了它们的试验范围: A:80-90℃ B:90-150分钟 C:5-7% 试验目的是搞清楚因子A、B、C对转化率有什 么影响,哪些是主要的,哪些是次要的,从而 确定最适生产条件,即温度、时间及用碱量各 为多 少才能使转化率高。试制定试验方案。
2020/12/10
6
(Ⅱ)简单对比法
变化一个因素而固定其他因素,如首先固定B、C于Bl、 Cl,使A变化之:
↗A1 B1C1 →A2
↘A3 (好结果)
如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之: ↗B1
A3C1 →B2 (好结果) ↘B3
得出结果以B2为最好,则固定B于B2,A于A3,使C变化之: ↗C1
A3B2→C2 (好结果) ↘C3
试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。
2020/12/10
7
这种方法一般也有一定的效果,但 缺点很多。首先这种方法的选点代表性 很差,如按上述方法进行试验,试验点 完全分布在一个角上,而在一个很大的 范围内没有选点。因此这种试验方法不 全面,所选的工艺条件A3B2C2不一定是 27个组合中最好的。其次,用这种方法 比较条件好坏时,是把单个的试验数据 拿来,进行数值上的简单比较,而试验 数据中必然要包含着误差成分,所以单 个数据的简单比较不能剔除误差的干扰, 必然造成结论的不稳定。
2020/12/10
8
试验工作者在长期的工作中总结出一套办法,创造出所谓的正交 表。按照正交表来安排试验,既能使试验点分布得很均匀,又能 减少试验次数。如上例, 对应于A有Al、A2、A3三个平面,对应 于B、C也各有三个平面,共九个平面。则这九个平面上的试验点 都应当一样多,即对每个因子的每个水平都要同等看待。具体来 说,每个平面上都有三行、三列,要求在每行、每列上的点一样 多。这样,作出如图2所示的设计,试验点用⊙表示。我们看到, 在9个平面中每个平面上都恰好有三个点而每个平面的每行每列 都有一个点,而且只有一个点,总共九个点。这样的试验方案, 试验点的分布很均匀,试验次数也不多。
2020/12/10
3
这里,对因子A,在试验范围内选了三个 水平;因子B和C也都取三个水平: A:Al=80℃,A2=85℃,A3=90℃ B:Bl=90分,B2=120分,B3=150分 C:Cl=5%,C2=6%,C3=7% 当然,在正交试验设计中,因子可以是
定量的,也可以是定性的。而定量因子
正交试验设计
张金伟 讲
2020/12/10
1
正交试验设计方法,简称正交设计,是 试验设计的重要组成部分,该方法由日本 的田口玄一于1949年创立。正交试验设 计方法是从全面试验中挑出部分有代表 的点进行试验, 这些代表点具有“均匀” 和“整齐”的特点.正交试验设计是部分 因子设计(fraction factorial designs)的主 要方法,具有很高的效率.
2020/12/10
9
2.正交表
为了叙述方便,用L代表正交表,常用的有L8(27), L9(34),L16(45),L8(4×24),L12(211),等等。此符号 各数字的意义如下:
L8(27) 7为此表列的数目(最多可安排的因子数)
2为因子的水平数 8为此表行的数目(试验次数)
L18(2×37) 有7列是3水平的 有1列是2水平的 L18(2×37)的数字告诉我们,用它来安排试验,做18 个试验最多可以考察一个2水平因子和7个3水平因子。
1 x11 x12 ... x1m
y1
b0 e1
.yy.n2.1111
x21 x31 ... xn1
x22 x32 ... xn2
... ... ... ...
xxx.n32.m mm .bb.m .1.ee..n2.
简写为:Y=XB+e
2020/12/10
15
记 则 Xij Zij Xij
1 Z11X11 1 Z21X21 X1 Z31X31 1 ... 1 Zn1 Xn1