污染物在水体中的扩散

合集下载

数学模型在环境污染中的应用

数学模型在环境污染中的应用

数学模型在环境污染中的应用环境污染一直是人类面临的重要问题之一,其给人类的生活和健康产生了巨大的威胁。

为了解决环境污染问题,科学家们借助数学模型的力量,对污染物的传输、转化和影响进行深入研究,为环境保护和污染治理提供了重要参考。

本文将介绍数学模型在环境污染中的应用,并重点探讨数学模型在空气污染和水污染领域的应用。

一、数学模型在空气污染中的应用空气污染是世界各地普遍存在的问题,严重影响了人类的健康和生活质量。

数学模型可以帮助科学家们了解空气中污染物的来源、传播和浓度分布规律,从而为污染治理提供科学依据。

1. 污染物传输模型数学模型可以描述大气中污染物的传输过程。

通过考虑风向、风速和地形等因素,科学家们可以建立污染物传输模型,预测不同区域的污染物浓度。

这些模型可以帮助政府和环境保护机构制定科学合理的空气质量标准,并确定污染源的管控措施。

2. 污染源排放模型数学模型还可以用于估算污染源的排放量。

通过收集和分析大量数据,科学家们可以建立排放模型,预测不同污染源的排放量。

这些模型可以为政府和企业制定减排政策和措施提供科学依据,降低大气污染物的排放量。

数学模型还可以用于评估空气污染对人类健康的风险。

科学家们可以建立健康风险评估模型,通过考虑污染物暴露水平、暴露时间和人群脆弱性等因素,预测不同污染物对人体的健康影响。

这些模型可以帮助政府和医疗机构采取相应的健康保护措施,减少空气污染对人体健康的危害。

二、数学模型在水污染中的应用水污染是全球范围内的严重问题,对水资源的短缺和水生态系统的破坏造成了严重威胁。

数学模型在水污染领域的应用,可以帮助科学家们了解污染物在水体中的传输和扩散规律,为水污染治理和水资源管理提供科学支持。

1. 污染物扩散模型数学模型可以描述水体中污染物的传输和扩散过程。

通过建立扩散模型,科学家们可以预测不同水体中污染物的浓度分布,并找出造成水污染的主要原因。

这些模型可以为水污染治理提供决策依据,指导政府和环境监测部门制定相应的防控措施。

河流水体污染物迁移与扩散过程

河流水体污染物迁移与扩散过程

河流水体污染物迁移与扩散过程水是生命之源,然而现代工业和生活活动所产生的污染物对河流水体造成了严重的破坏。

了解河流水体污染物的迁移与扩散过程对于保护水资源、维护生态平衡至关重要。

本文将通过阐述污染物迁移的途径和扩散的机制,以及相关的防治措施,来探讨河流水体污染物迁移与扩散过程。

一、河流水体污染物迁移途径1.水流迁移:河流的水流是污染物迁移的主要途径之一。

污染物通过水流的推动,沿着河流的流向传播。

大部分溶解性污染物会随着水流的流动被稀释和运移,而悬浮物和沉积物中的颗粒污染物则会随着悬浮物和沉积物的运动而迁移。

2.气候影响:气候因素也是影响污染物迁移的重要因素之一。

降雨量的大小和频率,以及水温、湍流等气候因素都会对污染物迁移产生影响。

降雨会冲刷河岸和流域中的污染物,使其进入河流;而温度和湍流等因素会影响水的流速和水深,从而影响污染物的扩散。

二、河流水体污染物扩散机制1.弥散扩散:河流中的扩散过程主要通过弥散来实现。

当污染物浓度梯度存在时,污染物会沿着浓度梯度方向进行自发性扩散,使其浓度逐渐减小。

弥散过程不需要外界的能量输入,是一种自发的物理现象。

2.湍流扩散:湍流是河流中常见的现象,也是污染物扩散的重要机制之一。

湍流会引起水流的混合和波动,从而将污染物在水流中更加均匀地分布。

湍流对于扩散的增大起到了重要的促进作用。

三、河流水体污染物迁移与扩散的防治措施1. 减少污染物的排放:减少污染物的源头排放是解决河流水体污染的关键。

通过加强环境管理和监管,推动工业企业、农村和城市居民等各方减少污染物的排放,从源头上减轻河流水体的污染负荷。

2. 改善河流水质:对于已经受到污染的河流水体,采取适当的治理措施是必要的。

包括沿岸绿化、湿地修复、人工湖建设等手段,可以减缓污染物的迁移和扩散,同时提高水体的自净能力。

3. 强化监测与预警:建立完善的河流水体监测网络,及时掌握水质的变化和污染源的情况,对河流水体的污染问题提前进行预警,以便采取相应的措施进行干预和管理。

3.0 污染物在水体中的迁移与转化

3.0 污染物在水体中的迁移与转化

横向混合阶段
经过一定距离后污 染物在整个横断面 上达到浓度分布均 匀,这一过程称为 横向混合阶段。
断面充分 混合后阶段
污染物浓度在横 断面上处处相等。 河水向下游流动 的过程中,持久 性污染物的浓度 将不再变化,非 持久性污染物浓 度将不断减少。
二、氧垂曲线
水体受到污染后,水体中溶解氧逐渐被消耗,到临 界点后又逐步回升的变化过程,称氧垂曲线。
有机物降解方程式
d L
dt

K1 L
L L0 e K1t
x L0 (1 eK1t )
氧垂曲线的求解
d D
dt

K2 D
清洁带
污染带
恢复带 清洁带
DO BOD5
河流流下时间/d
河流中生化需氧量和溶解氧的变化曲线
图中这条呈下垂状的反映河流中溶解氧含量的曲线即 为氧垂曲线。 在图中: 污染带、恢复带和清洁带; 氧垂曲线反映了河流中DO的变化情况,侧面反映出
四、污 水 出 路与排放标准
排放水体
污水的 最终出路
工农业利用
地下水回灌
污水综合排放标准GB8978-1996



城镇污水处理厂污染物排放标准

GB 18918-2002


地表水环境质量标准

GB 3838-2002


海洋水质量标准GB3097

对人体健康不应产生不良影响

对环境质量和生态系统不应产生不良影响

对产质的要求或标准

应为使用者和公众所接受

回用系统在技术上可行,操作简便

环境科学概论复习

环境科学概论复习

环境科学概论复习环境科学概论第⼀章绪论1 环境:环境是以⼈类为主体的外部世界,主要是地球表⾯与⼈类发⽣相互作⽤的⾃然要素及其总体。

2 环境要素:环境要素是指构成⼈类环境整体的各个相对独⽴的、性质不同⽽⼜服从整体演化规律的基本物质组分,也称环境基质。

3 环境质量;环境质量是环境素质好坏的表征,是⽤定性和定量的⽅法对具体的环境要素所处的状态的描述。

4 环境容量:是在⼈类⽣存和⾃然⽣态系统不致受害的前提下,某⼀环境所能容纳的污染物的最⼤负荷量。

5 环境污染:环境污染是指⼈类活动产⽣的有害物质或因⼦进⼊环境,引起环境系统的结构与功能发⽣变化,危害⼈体健康和⽣物的⽣命活动的现象。

环境污染的特点:时间分布性空间分布性污染物含量的复杂性污染因素作⽤的综合性⼆环境的组成⾃然环境⾮⽣物环境物质:空⽓、⽔、⼟壤、能量:阳光、引⼒、地磁⼒、地热⽓候:光照、温度、降⽔、风等物质代谢的原料:氧⽓、⼆氧化碳、有机质等⽣物环境⼈⼯环境⼯程环境交通社会环境经济关系道德观念⽂化风俗意识形态⼯业农业建筑通讯⼯程三、环境的特性1.环境的整体性环境各要素之间相互联系、相互制约局部环境与整体环境相互影响、依存环境中物质和能量的循环与转化跨界(省市、地区、国家)环境的影响2.环境的区域性纬度地带性⼲湿度地带性垂直地带性3.环境的综合性环境问题是多因素综合作⽤的结果解决环境问题需要多学科的综合4.环境的有限性资源的有限性环境容量的有限性5.环境的相对稳定性环境中物流、能流和信息流不断变化,环境本⾝具有⼀定的抗⼲扰⾃我调节能⼒,在⼀定的⼲扰强度范围内,环境的结构和功能基本不变。

6.环境变化的滞后性环境受到外界影响后,环境发⽣变化的时间要滞后于外界⼲扰的时间。

例如:臭氧层空洞的形成第⼆节环境问题⼀、环境问题及其分类环境问题是指由于⼈类活动或⾃然原因引起环境质量恶化或⽣态系统失调,对⼈类的⽣活和⽣产带来不利的影响或灾害,甚⾄对⼈体健康带来有害影响的现象。

环境科学中的水体污染物传输与迁移规律

环境科学中的水体污染物传输与迁移规律

环境科学中的水体污染物传输与迁移规律水体污染是当前全球面临的重要环境问题之一,对于环境科学的研究而言,探讨水体污染物的传输与迁移规律至关重要。

水体污染物的传输与迁移规律研究是指研究污染物在水体中的扩散、迁移及其垂直和水平分布等现象,以便为环境保护和水资源管理提供科学依据。

水体污染物传输与迁移规律的研究对于水质评价、水资源管理、环境保护等方面具有重要意义。

其中,以下几个方面是研究该规律的重要内容:首先,污染物在水体中的扩散规律是研究的重点之一。

污染物的扩散受到多种因素的影响,包括水流速度、河道的形态、湍流程度、悬浮物等。

研究表明,水流速度是影响污染物扩散的关键因素之一,水流速度越大,污染物的扩散范围越大。

其次,污染物在水体中的迁移规律也是研究的重要内容之一。

污染物在水体中的迁移主要包括上游向下游的迁移和垂直方向上的迁移。

上游向下游的迁移主要受到水流和水流速度的影响,而垂直方向上的迁移则与污染物的密度、沉降速度等因素有关。

研究表明,不同类型的污染物在水体中的迁移规律存在差异,需根据具体情况进行深入研究。

另外,污染物在水体中的垂直和水平分布也是研究的重要内容之一。

水体中污染物的垂直和水平分布受到多种因素的影响,包括水流速度、水体深度、溶解度等。

研究表明,污染物的垂直分布是由水深和密度决定的,而水平分布则受到水流速度和水体形态等因素的影响。

此外,污染物在水体中的降解和转化过程也是研究的重要内容之一。

污染物在水体中的降解和转化主要包括生物降解、化学降解和物理转化等过程。

研究表明,生物降解是水体中一种重要的去污机制,而化学和物理转化则直接影响污染物的彻底去除效果。

总的来说,水体污染物传输与迁移规律的研究对于水质评价、水资源管理和环境保护等方面具有重要意义。

通过对污染物传输与迁移规律的研究,可以为制定水质管理措施、减少水体污染物排放和提高水环境品质提供科学依据。

因此,加强对水体污染物传输与迁移规律研究的重要性不可忽视。

环境学概论 第三章水体环境解读

环境学概论  第三章水体环境解读

3.水资源的特性(与其它自然资源相比)
A B C D 资源的循环性 储量的有限性 分布的不均衡性 利用的多用性
E
利害的两重性(图)
5
4.地球上局部存在水荒的原因
A B C 淡水在地球上的分布极不平衡 城市、工业区高度集中,耗水量大。 水污染严重,“水质型缺水” 突出。(图A) (图B)
二.天然水的水质 1.天然水化学成份的形成 2.天然水的化学组成 3.各种类型的天然水质 4.天然水体的自净作用
*放射性类
来源:核武器试验;原子能工业排放或泄漏 。 危害:主要通过α、β、γ等射线损害人体组织,并可在人
体内蓄积,促成贫血、白血球增生、恶性肿瘤等病
症,严重的可导致生命危险。
19
第二节
污染物在水体中的扩散
一. 污染物在水体中的运动特征
1.推流迁移:指污染物在水流作用下产生的迁移作用 此过程中污染物质总量不变,浓度也不变 2.分散作用:包含分子扩散、湍流扩散和弥散三个方面。 此过程中污染物质总量不变,但浓度减小 3.污染物的衰减和转化 进入水环境中的污染物可以分为两大类: 保守物质和非保守物质 此过程中污染物质总量与浓度均发生变化
1.有机物生物化学分解 ①水解反应:指复杂的有机物分子与水电离出的H+或OH-
结合生成较简单化合物的反应。
②氧化反应:包括脱氢作用和脱羧作用两类 2.耗氧有机物的生物降解
代表性有机物:碳水化合物;脂肪和油类;蛋白质 (1)碳水化合物
25
(2)脂肪和油类
(3)蛋白质
26
需氧有机物降解的共同规律是:首先在细胞体外发生水解, 然后在细胞内部继续水解和氧化。降解的后期产物都是生成各 种有机酸,在有氧条件下,可以继续分解,其最终产物是CO2、 H2O及NO3-等;在缺氧条件下则进行反硝化、酸性发酵等过程, 其最终产物除CO2、H2O外,还有NH3、有机酸、醇等。 2.耗氧有机物降解与溶解氧的平衡 在污染河流中耗氧作用和复氧作用影响着水中溶解氧的含量 耗氧作用:指有机物分解和有机体呼吸时耗氧,使水中溶解

污染物在水体中的迁移转化方式

污染物在水体中的迁移转化方式

污染物在水体中的迁移转化方式主要有以下三种途径:
(1)氧化-还原作用。

天然水体中有许多无机和有机氧化剂和还原剂,如溶解氧、Fe3+、Mn4+、Fe2+、S2-及有机化合物等,这些物质对污染物的转化起重要作用。

如环境中重金属在一定氧化-还原条件下,容易发生价态变化,结果是其化学性质改变,迁移能力也会发生改变。

水体中的氧化-还原类型、速率和平衡,在很大程度上决定了水中重要溶质和污染物的性质。

如在一个厌氧湖泊中,湖下层的元素以还原态存在:碳还原成CH4,氮还原成[*]等,而表层水由于可被大气中氧补充,成为氧化性介质,达到热力学平衡时,碳成为CO2,氮成为[*]。

显然这种变化对水生生物和水质影响很大。

(2)络合作用。

天然水体中有许多无机配位体,如OH-、Cl-[*]、[*]和有机配位体如氨基酸、腐殖酸,以及洗涤剂、农药、大分子环状化合物等,它们可以与水中的污染物,特别是重金属发生络合反应,改变其性质和存在状态,影响污染物在水体中发生、迁移、反应和生物效应。

(3)生物降解作用。

水体中的微生物,特别是底泥中的厌氧微生物,可以使一些污染物发生转化,如把无机汞转变为有机汞。

水体污染物传输与扩散过程分析模型构建研究

水体污染物传输与扩散过程分析模型构建研究

水体污染物传输与扩散过程分析模型构建研究水体污染物传输与扩散过程是水环境领域的重要研究内容。

构建准确可靠的水体污染物传输与扩散分析模型,对于评估水体污染风险、制定有效的水环境管理措施具有重要意义。

本文将重点讨论水体污染物传输与扩散模型的构建方法和相关研究进展。

首先,传统的水体污染物传输与扩散模型通常基于水动力学理论,采用质点追踪方法来描述污染物的传输过程。

其中,最经典的是拉格朗日模型和欧拉模型。

拉格朗日模型以污染物质点的运动轨迹为基础,能够精确描述个别点的传输情况。

欧拉模型则以流体的机械性质为基础,描述流体内污染物浓度的分布情况。

这两种模型在实践中常常结合使用,以获得更为准确的传输与扩散结果。

然而,传统的水体污染物传输与扩散模型对于实际情况的假设过于简单,无法完全反映复杂的水环境系统。

为了解决这一问题,近年来出现了基于数值模拟和统计学方法的新型模型。

数值模拟方法借助计算机对水体流动和污染物传输进行数值模拟,能够解决不规则地形条件下流体运动的问题,并提供更精确的模拟结果。

统计学方法则通过统计分析大量实测数据,掌握水体污染物传输过程中的规律性,以此反推可能的传输路径和扩散方式。

此外,为了提高水体污染物传输与扩散模型的准确性,研究人员还引入了环境因子的考虑。

例如,气象因子(风速、风向等)和水文因子(水深、流速等)都对污染物的传输过程产生重要影响。

因此,在构建模型时,需要综合考虑多个环境因子的相互作用,以获得更为准确的模拟结果。

除了传输过程的模型构建,对于污染物浓度分布的模拟也是水体污染模型研究的重点。

传统的模型通常采用估算公式或者经验公式来估计水体污染物的浓度。

而现代模型则更多地采用基于混合层模型、稳态模型和非稳态模型的方法来描述水体污染物的浓度分布。

这些模型基于不同假设和方程,能够更准确地预测污染物在水体中的浓度分布情况。

此外,水体污染物传输与扩散模型的研究还面临着一些挑战。

首先,水体环境系统具有时空尺度的不均匀性,模型需要能够兼顾不同尺度上的传输与扩散过程。

大气污染物在土壤及水体中的迁移与转化

大气污染物在土壤及水体中的迁移与转化

大气污染物在土壤及水体中的迁移与转化近年来,随着工业化和城市化的加速发展,大气污染日益成为我们面临的严峻挑战。

大气污染物不仅对空气质量造成严重威胁,也可能通过迁移与转化进入土壤和水体中,进一步对生态环境和人类健康构成风险。

本文将从科学角度,探讨大气污染物在土壤及水体中的迁移与转化过程。

一、大气污染物的源头与排放要了解大气污染物在土壤及水体中的迁移与转化,我们首先需要了解污染物的源头与排放。

工厂排放物、汽车尾气以及农业活动都是主要的大气污染源。

这些污染物包括颗粒物、二氧化硫、氮氧化物等。

来源不同,性质各异,这决定了它们在土壤及水体中的迁移与转化行为也各有差异。

二、大气污染物在土壤中的迁移与转化1. 颗粒物的沉降和吸附颗粒物是大气污染物中最常见的一种。

当它们进入土壤中时,会通过沉降和吸附的方式留在土壤中。

颗粒物的质量和粒径大小决定了它们的迁移性。

较重的大颗粒物会很快沉降到土壤表面,对土壤质量和农作物生长产生负面影响;而较轻的小颗粒物则可以在土壤中迁移较远距离,甚至通过长距离输送形成大范围的污染。

2. 氮氧化物的转化过程氮氧化物是工业排放和农业活动中常见的大气污染物之一。

当它们进入土壤中时,会发生一系列的生物地球化学反应。

一方面,氮氧化物可能与土壤中的有机物或无机物相互作用,形成稳定的化合物,降低其迁移能力;另一方面,它们也可能通过微生物的作用,转化为其他氮化合物,如亚硝酸盐和氨盐,进一步影响土壤中的氮循环。

三、大气污染物在水体中的迁移与转化1. 溶解态污染物的扩散和溶解度一些大气污染物如氨气、二氧化硫等能够溶解在水中,形成溶解态污染物。

这些溶解态污染物可以随着水体的流动迁移,进一步扩散到其他水域。

溶解态污染物的迁移速度主要由扩散系数和水流速度决定。

另外,溶解度也会影响污染物在水中的浓度,从而影响水体生态系统的健康状况。

2. 悬浮态污染物的沉降和沉积与土壤中的颗粒物类似,大气污染物中的悬浮态颗粒物也可以通过降雨等方式沉降到水体中。

环境工程学中稀释的原理

环境工程学中稀释的原理

环境工程学中稀释的原理
环境工程中稀释的基本原理可以概括为:
1. 降低污染物浓度
向污染物中加入大量的稀释水可以降低污染物的相对浓度,从而减轻污染程度。

2. 加速扩散稀释
在水体中增加流速或产生湍流,可以使污染物迅速扩散并稀释在大体积水中。

3. 提高自净能力
适度稀释可以防止水体中污染物超标,减缓生化反应,保持水体自净能力。

4. 调节pH值
加入稀释水可调节pH值,使其保持在生物适宜的范围,避免酸碱度过大或过小。

5. 控制盐度变化
海洋排放的工业废水加入稀释水,可以减少盐度剧烈变化对海洋生物的伤害。

6. 稀释高浓度毒性污染物
可以大量清洁水迅速稀释高浓度的有毒有害污染物,降低其毒性影响。

7. 稀释温度过高的水体
向水体中注入大量较低温度的稀释水,可以降低水温,防止高温对生物的损害。

8. 经济实用的简易处理
稀释是环境工程中应用广泛的简易治理方法之一,投资和运行成本较低。

但是稀释法只是一种简易处理,不能从根本上消除污染,需要配合其他工程手段综合治理。

环境学概论 3水体污染

环境学概论 3水体污染

③总有机碳量(TOC):水中溶解性和 悬浮性有机物中存在的全部碳量 ④ 总需氧量(TOD):当有机物全部被 氧化时,碳被氧化为二氧化碳,而氢、 氮、硫则被氧化为水、一氧化氮和二氧 化硫等。此时氧化所需的氧量称为总需 氧量。 • 在水质状况基本相同的情况下,BOD5与 TOC或TOD之间存在一定的相关关系。 通过实验建立相关,则可快速测定出 TOC,从而推算出其他有机物污染指标。
• 用BOD、DO两组方程式来表达水质变化。则 S-P模型的基本形式:
dL k1 L dt dc k1 L k2 (cs c ) dt
这两个方程式是耦合的。当取边界条件时
L 0
• 可得解析解为
L L0e k1 L0 k1t k2t k2t C C ( e e ) ( C C ) e s s 0 k2 k1
(一)河流 • 污染程度随径流量变化 • 污染扩散快 • 污染影响大 (二)湖泊(水库) • 污染来源广、途径多、类型复杂 • 污染稀释和搬运能力弱 • 生物降解和累积能力强
(三)地下水 • 污染来源广泛 • 污染难于治理 • 污染危害严重 (四)海洋 • 污染源多而复杂 • 污染持续性强 • 污染扩散范围大
• 常用的表示耗氧有机物污染的指标有: ① 化学耗氧量(COD):在规定条件下, 使水样中能被氧化的物质氧化所需耗用氧 化剂的量。常用的氧化剂K2Cr2O7、 KMnO4。 2K2Cr2O7+3C+8H2SO4→ 2K2SO4+2Cr2(SO4)3+3CO2+8H2O ② 生化需氧量(BOD):指在好气条件下, 微生物分解水体中有机物质的生物化学过 程中所需溶解氧的量,是反映水体中有机 污染程度的综合指标之一

污染物在水体中的运动特征

污染物在水体中的运动特征

污染物在水体中的运动特征污染物进入水体之后,随着水的迁移运动、污染物的分散运动以及污染物质的衰减转化运动,使污染物在水体中得到稀释和扩散,从而降低了污染物在水体中的浓度,它起着一种重要的“自净作用”。

根据自然界水体运动的不同特点,可形成不同形式的扩散类型,如河流、河口、湖泊以及海湾中的污染物扩散类型。

这里重点介绍河流中污染物扩散。

一、推流迁移推流迁移是指污染物在水流作用下产生的迁移作用。

推流作用只改变水流中污染物的位置,并不能降低污染物的浓度。

在推流的作用下污染物的迁移通量可按下式计算:f x = u x c,f y = U y C,f z = U z C (3-1)式中:f x、f y、f z --------------- X、y、z方向上的污染物推流迁移通量;U x、U y、U z ---------- 在X、y、z方向上的水流速度分量;C——污染物河流水体中的浓度。

二、分散作用污染物在河流水体中的分散作用包含三个方面内容:分子扩散、湍流扩散和弥散。

在确定污染物的分散作用时,假定污染物质点的动力学特性与水的质点一致。

这一假设对于多数溶解污染物或呈胶体状污染物质是可以满足的。

分子扩散是由分子的随机运动引起的质点分散现象。

分子扩散过程服从费克(Fick )第一定律,即分子扩散的质量通量与扩散物质的浓度梯度成正比,即de . de . de s ■E M阮,I 厂-E M灵I YE咋<3-2)E M -- 分子扩散系数;c――分子扩散所传递物质的浓度。

分子扩散是各向同性的,上式中的负号表示质点的迁移指向负梯度方向。

湍流扩散是在河流水体的流湍流场中质点的各种状态(流速、压力、浓度等)的瞬时值相对于其平均值的随机脉动而导致的分散现象。

当水流体的质点的紊流瞬时脉动速度为稳定的随机变量时,湍流扩散规律可以用费克第一定律表达,即(3-4)Ec、E y、E z――x、y、z方向的湍流扩散系数;由于湍流的特点,湍流扩散系数是各向异性的。

环境毒理学课后习题答案

环境毒理学课后习题答案

环境毒理学第一章绪论1、什么是环境毒理学?它是怎样产生的?环境毒理学(environmental toxicology)是利用毒理学方法研究环境,特别是空气、水和土壤中已存在或即将进入的有毒化学物质及其在环境中的转化产物,对人体健康的有害影响及其作用规律的一门学科。

是环境科学(environmental sciences)和生态毒理学(ecotoxicology)的重要组成部分。

环境毒理学的产生过程:早在远古时代,人们对一些动植物的有毒作用就已有认识,并已有文献记载。

18世纪西班牙化学家和生理学家Bonaventura Orfila:现代毒理学的奠基人。

毒理学在第二次世界大战后得到快速发展。

2、环境毒理学的研究对象、主要任务和内容是什么?环境毒理学的研究对象主要是对各种生物特别是对人体产生危害的各种环境污染物(environmental pollutant)。

环境污染物主要是人类的生产和生活活动所产生的化学性污染物。

环境毒理学的主要任务是研究环境污染物对人体的损害作用及其机理,探索环境污染物对人体健康的损害的早期检测指标和生物标志物,从而为制定环境卫生标准和有效防治环境污染对人体健康的危害提供理论依据;此外,根据环境污染物对其他生物(包括动物、植物、微生物等)个体、种群及生态系统的危害,甚至在特定环境中对整个生物社会的危害,研究其损害作用及其机理、早期损害指标及防治理论和措施。

环境毒理学的最终任务是保护包括人类在内的各种生物的生存和持续健康的发展。

环境毒理学的主要内容是研究环境污染物及其在环境中降解和转化产物对机体相互作用的一般规律,包括毒物在体内的吸收、分布和排泄等生物转运过程和代谢转化等生物转化过程,剂量与作用的关系,毒物化学结构和毒性以及影响毒作用的各种有关因素。

3、阐述环境毒理学的主要研究方法。

体外试验(in vitro test):器官水平(包括器官灌流和组织培养,基本保持器官完整性,常用于毒物代谢的研究);细胞水平(应用的细胞包括已建株的细胞系(株)和原代细胞(可用不同的器官进行制备),可用于外来化合物的毒性和致癌性的各种过筛试验,也可用来研究化合物的代谢和中毒机理的探讨);亚细胞水平(研究中毒机理、毒物引起损伤的亚细胞定位以及化合物代谢);分子水平(如研究毒物对生物体内酶的影响)。

水环境中的污染物迁移与转化

水环境中的污染物迁移与转化

水环境中的污染物迁移与转化水是生命之源,对于维持生态平衡和人类生存至关重要。

然而,随着工业化和城市化的快速发展,水环境面临着日益严重的污染问题。

污染物的迁移与转化是水环境中一个重要的过程,它直接影响着水质的变化和生态系统的稳定性。

污染物迁移是指污染物在水体中的传播和扩散过程。

当污染物进入水体后,受到水流的作用,会随着水流的运动而迁移。

污染物的迁移受到多种因素的影响,如水流速度、水体的地形和水深等。

水流速度越快,污染物的迁移距离就越远;水体的地形和水深也会影响污染物的迁移路径和速度。

此外,污染物的物理性质和化学性质也会对其迁移过程产生影响。

除了迁移,污染物在水环境中还会发生转化过程。

转化是指污染物在水体中发生化学反应或生物转化的过程。

这些转化过程可以导致污染物的浓度减少或改变其化学性质。

例如,有机物在水体中可以被微生物降解,从而减少其对水质的影响;重金属污染物可以通过沉积作用沉积到沉积物中,减少其对水体的毒性。

转化过程的发生受到水体中的物理、化学和生物因素的影响,如温度、氧气含量、微生物种类等。

污染物的迁移与转化过程对于水环境的保护和治理具有重要意义。

首先,了解污染物的迁移路径和速度可以帮助我们预测污染物在水体中的扩散范围,从而采取相应的措施进行防治。

其次,研究污染物的转化过程可以帮助我们寻找有效的处理方法,如利用微生物降解有机污染物或采用沉淀技术去除重金属污染物。

此外,污染物的迁移与转化过程还可以为环境监测提供参考依据,通过监测污染物的迁移和转化情况,可以评估水体的污染程度和生态系统的健康状况。

然而,要深入研究水环境中的污染物迁移与转化并非易事。

首先,水环境的复杂性使得污染物的迁移和转化过程充满了不确定性。

水体中的流动、混合和扩散等因素都会对污染物的迁移路径和速度产生影响,这需要我们进行详细的实地调查和数值模拟分析。

其次,污染物的迁移和转化过程涉及到多个学科领域,如环境科学、化学和生物学等,需要跨学科的合作和研究方法的综合应用。

污染物在环境中迁移与转化

污染物在环境中迁移与转化
在天然水体中,不同形态的汞具有各自的化学反应特征,它们影响着 汞的化学行为,决定着汞的迁移过程,其过程包括以下几方面。
水中汞的气态迁移
汞在水中的气态迁移涉及到汞的气化作用以及二甲 基化作用,此时汞转变为挥发态的汞进入大气。
当天然水体中含氧量减少时,水体氧化还原电位降 低,汞易被水中有机质、微生物或其它还原剂还原为 Hg,即以汞的气态由水体逸散到大气中; 当天然水体中含汞量稍高,pH≥7时,水中汞可在 厌气微生物的作用下生成(CH3)2Hg。由于(CH3 )2Hg在水中溶解度很小所以易逸散到大气中。
天然水体是由固相、水相、生物相组成的复杂体系。在水相中,汞以 Hg2+、 CH3Hg+、CH3HgCl、C6H5Hg+ 为主要形态。在固相中,以Hg+、 Hg0、HgS、(CH3Hg) 2S 为主要形态。在生物相中,以Hg2+、CH3Hg+、 CH3HgCH3为主要形态。它们随着水环境形态的变化而变化。
(2)大气污染物的转化

(3)危害
a、损害人和动物的健康; b、影响植物生长; c、降低大气的能见度;
(4)控制措施
a、控制污染源 b、采用无污染运输 c、利用化学抑制剂 d、植树造林
(2)汞在土壤环境中的迁移
土壤中的粘土矿物带有负电荷,可以吸收以阳离子形态存在的汞.
腐殖质是一些含有方向结构的化合物,通过含酚羟基、羧基、磺酸基、
氨基等反应基团的作用,汞被腐殖质螯合或吸附。一般来说,土壤腐殖 质含量越高,土壤吸附汞的能力越强。
植物对汞的吸收主要是通过根来完成的。很多情况下,汞化合物在土壤 中先转化为金属汞或者甲基汞后才能被植物吸收。汞在植物各部的分布 一般是根>茎、叶>种子。这种趋势是由于汞被植物吸收后,常与根上 的蛋白质反应沉积于根上,阻碍向地上部分的运输。

第3.3节 污染物在水中的扩散

第3.3节 污染物在水中的扩散

DO
饱和溶解氧浓度Cs
氧垂曲线
复氧曲线 耗氧曲线
0
tc
t
第三章 水体环境
单位:ppm
BOD D
第一天 5 1
第二天 4 2
第三天 3 2.5
第四天 2 3.5
第五天 1 4.5
DO =L0 – BOD + D DO1 =L0 – 5 + 1= L0 - 4 DO2 = DO1 – 4 + 2= L0 - 6 DO3= DO2 – 3 + 2.5= L0 – 6.5 DO4= DO3 – 2 + 3.5 = L0 - 5 DO5= DO4– 1 + 4.5= L0 – 1.5
第三章第三章水体环境水体环境第二节第二节污染物在水中的扩散污染物在水中的扩散一污染物在水中的运动特征一污染物在水中的运动特征二河流水体中污染物的稳态解二河流水体中污染物的稳态解三河流水质模型三河流水质模型第三章第三章水体环境水体环境一污染物在水中的运动特征一污染物在水中的运动特征一推流迁移一推流迁移二分散迁移二分散迁移三污染物的衰减和转化三污染物的衰减和转化一推流迁移一推流迁移11何谓推流迁移
Ka——大气复氧常数 Kar=Ka20θ7-20
第三章 水体环境
(四)简单河断水质模型
1、条件:
2、模型曲线:
➢只有一个排放口的单一河段;
➢将排放口的作为河段起点,x=0;
L0
➢将上游河段的水质作为河段水质底值;
➢河流中的BOD衰减和溶解氧的复氧都是
反应恒定的一级反应;
➢河流中的耗氧决定于BOD。
第三章 水体环境 例1:向一条河流稳定排放污水,污水流量q=0.15m3/s,BOD5浓度为 30mg/L,河流流量Q=5.5m3/s ,流速ux=0.3m/s,本底BOD5浓度为 0.5mg/L , BOD5的衰减速度常数K=0.2/d,纵向弥散系数为Dx=10 m2/s , 试求排放点下游10Km处的BOD5浓度。

水质污染物分布与扩散模型研究

水质污染物分布与扩散模型研究

水质污染物分布与扩散模型研究水是我们生活中不可或缺的重要资源,但由于工业化和城市化的加速,水质污染日益严重,这对人类健康和生态环境带来了极大的威胁。

因此,研究和预测水质污染物的分布与扩散模型,对于环境保护和污染控制至关重要。

本文将介绍水质污染物分布与扩散模型的研究进展和应用。

一、水质污染物的种类和来源水质污染物主要包括有机物、无机物和微生物等。

有机物污染物主要来自农业、工业废水和生活污水等,如农药、农田流失物、工业有机废物和有机溶剂等。

无机物污染物包括重金属、硝酸盐和磷酸盐等,其主要来源是工业废水、农业面源污染和城市排水等。

微生物污染物主要来自动物粪便、人体排泄物和废水等。

二、水质污染物的分布与扩散机制水质污染物在水体中的分布与扩散受到多种因素的影响,包括水流速度、水深、水体温度、风向、水体的物理和化学特性等。

此外,水质污染物在水体中的迁移还会受到地形地貌、河道结构和湖泊水体深度等地理因素的影响。

分布模型的研究可以利用现代计算机模拟技术,根据观测数据建立数学模型,预测水质污染物的分布。

目前常用的分布模型包括二维和三维水质模型,其中二维水质模型适用于河流、湖泊和水库等相对简单的水体,而三维水质模型适用于复杂的河口、湾区和海洋等水体。

传统的分布模型主要基于质量守恒、动量守恒和能量守恒原理,通过求解复杂的方程组来推算水质污染物的分布。

近年来,由于计算机技术的进步,计算流体力学(CFD)方法在水质模型中的应用也越来越广泛。

CFD方法通过离散化和数值求解,能够更准确地模拟水质污染物的分布与扩散过程。

三、水质污染物分布与扩散模型的应用水质污染物分布与扩散模型在环境保护和水资源管理中发挥着重要作用。

以下是几个常见的应用领域:1. 水源地保护:水源地是城市和农村的重要水资源,但由于农药和有机物的使用,水源地容易受到污染。

水质模型可以预测污染物在水源地中的分布,为防止污染提供科学依据,保护水源地的水质安全。

2. 水生态环境保护:水质模型可以预测水体中污染物的来源、分布和扩散,帮助分析其对水生态环境的影响。

重金属污染物在水体中的迁移与转化

重金属污染物在水体中的迁移与转化

重金属污染物在水体中的迁移与转化重金属污染是目前环境保护面临的严重问题之一。

这些污染物来源广泛,包括人类活动、自然气体、化石燃料的使用等。

其中,水体污染是较为常见的一种形式,因为水体可以容纳更多的污染物,而且它们可以在其中进行迁移和转化。

本文将介绍重金属在水体中的迁移与转化,以及一些治理方法。

1. 重金属污染物的来源和特点重金属污染主要来自于人类活动,如企业排放、汽车尾气、垃圾焚烧、农业施肥等。

它们有着一些特殊的性质,如密度大、稳定性高、难以降解等。

这些特点使得它们很容易在环境中积累和恶化,在人体和生态系统中造成严重的影响。

因此,减少重金属的排放和治理已成为当今环境保护的重要课题。

2. 重金属在水体中的迁移和转化重金属可以进入水体中,并在其中进行迁移和转化。

它们会随着水的流动在水体中扩散,也会沉淀在水底,与水体中的微生物、植物发生反应。

其中,重金属的迁移和转化过程主要包括以下几个方面:2.1 溶解和离子交换有些重金属是以离子形式存在于水中的,如铜离子、铅离子、镉离子等。

这些离子可以在水体中被溶解、分散,或是与其他离子交换,如钙离子、镁离子等。

在这个过程中,重金属的浓度和活性都会发生变化,对水体及其中的生物和环境产生影响。

2.2 吸附与沉淀重金属还可以从水中被吸附到固体表面,如沉积物、悬浮物、生物体等。

这个过程受到各种因素的影响,如水体中的 pH 值、温度、阳离子的浓度等。

吸附后的重金属可以随着固体的运动而移动,也可以沉淀在水底,被封存或长期地影响水体质量。

2.3 生态学效应水体中的微生物、植物或动物也可能与重金属相互作用,发生一些生态学效应。

如有些微生物可以利用重金属为其能量来源,而有些植物则会对重金属产生一定的抗性和纳米转化。

对于水体生态系统而言,这些作用可能会对物质循环、生物能量流动、群落结构等方面产生影响。

3. 如何治理水体中的重金属污染由于重金属化学稳定性高,且污染程度已经相当严重,治理水体中的重金属污染是一个繁琐、复杂和长期的过程。

污染物在水体中的扩散

污染物在水体中的扩散

③.弥散: 由横断面流速不均引起,即由湍流时平均值与时均 值的空间平均值的系统差列所产生的分散现象。 c I”x=-Dx—, x c I”y=-Dy—, y c I”z=-Dz — z
I,,x , I,,y , I,,z:弥散作用导致的污染物质量通量; Dx, Dy, Dz :弥散系数;c:湍流时平均浓度的空间平均值。
进入水体污染物有两大类:保守物质和非保守物质
污染物衰减
衰减发生在非持久污染物的溶解氧化过程中 和放射性物质衰变过程中。持久性污染物不 发生衰减。 衰减过程基本符合一级反应动力学规律: dc — =-kc dt
Kc为反映速度常数

综上所述可知:
①推移作用:总量不变,分布状态也不变;
②推移+分散:总量不变,分布状态发生变化; ③推移+分散+衰减:总量变化,分布状态变化。


三种扩散系数的量质范围(数量级):
分子扩散Em:10-5~10-4 m2/s


湍流扩散系Ex,Ey,Ez:10-2~100 m2/s
弥散系数Dx,Dy,Dz:101~104 m2/s

3.衰减和转化
保守物质:随水流运动而不断变换所处的空间位置,不断向 周围扩散而降低其初始浓度,但不改变总量。重金属,高分 子有机化合物 非保守物质:不断扩散而降低浓度外,因污染物自身衰减而 加速浓度的下降。衰减:自身运动变化规律决定的,在水环 境里由于化学的或生物的反应不断衰减。有机物在水体微生 物作用下的氧化分解过程。
第二节
污染物在水体中的扩散
一.污染物在水体中的运动特征
污染物在水体的运动形式有三种:


①推移迁移;
②扩散; ③衰减。

环境中的污染物的迁移和转化

环境中的污染物的迁移和转化

环境中的污染物的迁移和转化随着现代工业和城市化的发展,环境污染问题日益严重。

环境中的污染物会通过多种途径迁移和转化,对生态和人类健康造成严重的威胁。

本文将介绍环境中的污染物迁移和转化的相关知识。

一、污染物在水体中的迁移和转化水体是生态系统中不可或缺的重要组成部分,水中污染物的迁移和转化对整个生态系统健康具有举足轻重的影响。

水中污染物迁移和转化主要包括以下几个方面:1、水中污染物的迁移水中污染物的迁移包括水流迁移和水体深度迁移两种方式。

水流迁移指的是污染物随着水流的运动迁移到不同位置,包括沉积物中和水生生物体内。

而水体深度迁移则是指污染物随着水体中的溶解氧、温度和光照条件的变化,从水体表层向深层迁移。

2、水中污染物的转化水中污染物的转化包括生物转化和非生物转化两种方式。

生物转化是指水生生物通过代谢作用将有机污染物转化为更简单的物质,例如水草可以将氨氮转化为硝态氮。

而非生物转化则是指非生物媒介或化学反应的作用下,污染物的结构和性质发生改变的过程,例如有机化合物在光照作用下产生自由基反应。

二、污染物在大气中的迁移和转化大气是地球生态系统环境的另一个组成部分,大气中的污染物对人类健康和生态环境造成的威胁也越来越严重。

大气中污染物的迁移和转化主要包括以下几个方面:1、大气中污染物的迁移大气中污染物的迁移主要是通过大气扩散和输送来实现的。

大气扩散是指大气中的气体、颗粒物质和水滴在大气层中不断的扩散和混合,从而实现了污染物在大气的广泛传递。

而输送则是指污染物在局部和全球尺度下的气流输送,例如大气中的臭氧和氮氧化物可以通过风吹向别的国家和地区。

2、大气中污染物的转化大气中污染物的转化主要是指污染物通过化学反应、光解和生物转化等方式发生结构和性质的变化。

其中,化学反应是大气中污染物转化的重要方式之一,例如大气中的二氧化硫和氮氧化物可以通过光化学反应形成光化学烟雾。

而光解和生物转化则是指污染物在大气中光照或微生物的影响下发生的结构和性质的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h—水深;B—河宽;其它符号同前。
2.分散作用(扩散)
①分子扩散:由分子随机运动引起的质点分散现象。
c
c
c
Ix= -Em—, Iy= -Em—, Iz= -Em —
x
y
z
Ix, Iy, Iz,:扩散通量;Em:分子扩散系数;c:浓度。 分子扩散各向同性,“-”表示质点的迁移指向负状态瞬时值相对平均值的随机脉动引起;
第二节 污染物在水体中的扩散
一.污染物在水体中的运动特征
污染物在水体的运动形式有三种: ①推移迁移; ②扩散; ③衰减。 三种运动的作用使污染物浓度降低,称水体“自净
作用”。
1.推移
特点:只改变污染物位置,而不降低其浓度。 模式:
fx=uxc fy=uyc fz=uzc
fx,fy,fz为x,y,z方向上的污染物推流迁移通量; ux,uy,uz为水流速度分量;c为污染物在河流水体中的浓度。
3.衰减和转化
进入水体污染物有两大类:保守物质和非保守物质
保守物质:随水流运动而不断变换所处的空间位置,不断向 周围扩散而降低其初始浓度,但不改变总量。重金属,高分 子有机化合物
非保守物质:不断扩散而降低浓度外,因污染物自身衰减而 加速浓度的下降。衰减:自身运动变化规律决定的,在水环 境里由于化学的或生物的反应不断衰减。有机物在水体微生 物作用下的氧化分解过程。
1
4KDX u2 x
当x=0, c=c0 时, 上式的解为( 取负值) C=c0exp{uxx/2Dx[1-(1+4kDx/ux2)1/2]} 弥散项忽略,则一维稳态模型 解为:c=c0exp(-Kxx/ux) 式中c0=(Qc1+qc2)/(Q+q)
Q为河流流量;c1为河流中污染物的本底浓度;q为排入河流的污水的流 量;c2为无水中的某污染物浓度;c为污染物的浓度;Dx纵向弥散系数; ux断面平均流速;K污染物的衰减速度常数
污染物衰减
衰减发生在非持久污染物的溶解氧化过程中 和放射性物质衰变过程中。持久性污染物不 发生衰减。
衰减过程基本符合一级反应动力学规律: dc — =-kc dt
Kc为反映速度常数
综上所述可知: ①推移作用:总量不变,分布状态也不变; ②推移+分散:总量不变,分布状态发生变化; ③推移+分散+衰减:总量变化,分布状态变化。
2、二维稳态模型:
Dx 2c/ x2+Dy 2c/ y2-ux c/ x-uy c/ y-
kc=0
(2)
在均匀流场中其解析解为:
C(x,y)=Q/4 h(x/ux)2√(Dx Dy))*[exp(y-uyx/ux)2/4Dyx/ux)
]*exp(-kx/ux)
(2-1)
忽略Dx,ux:
c I”x=-Dx—,
x
c I”y=-Dy—,
y
c I”z=-Dz —
z
I,,x , I,,y , I,,z:弥散作用导致的污染物质量通量; Dx, Dy, Dz :弥散系数;c:湍流时平均浓度的空间平均值。
三种扩散系数的量质范围(数量级): 分子扩散Em:10-5~10-4 m2/s 湍流扩散系Ex,Ey,Ez:10-2~100 m2/s 弥散系数Dx,Dy,Dz:101~104 m2/s
污染物质在进入河流水体后作着复 杂的运动,描述其运动的模型及为 复杂。
二.河水中污染物扩散的稳定解
所谓稳态指:dc/dt=0
1、一维稳态模型
Dx 2c/ x2-ux c/ x-Kc=0 (1)
其特征方程为:Dx2 - ux -k=0
特征根为: 1,2=ux/2Dx(1+m)
式中:m=
c
c
c
I’x= -EX—, I’y= -Ey—, I’z= -Ez—
x
y
z
I,x , I,y , I,z:湍流扩散导致的污染物质量通量;Ex, Ey,
Ez :湍流扩散系数;c:湍流扩散所传递物质的平均浓度。湍 流运动各项异性。
③.弥散: 由横断面流速不均引起,即由湍流时平均值与时均 值的空间平均值的系统差列所产生的分散现象。
C(x,y)=Q/(ux*h√(4Dxx/ux))*exp(-uxy2/4Dyx)
*exp(-kx/ux )
(2-2)
在河流有边界条件下:
才用镜像法:
C(x,y)=2*Q/(ux*h√(4Dxx/ux))*[exp(-uxy2/4Dyx)
+∑exp(-ux(2nB-y)2/4Dyx
kx/ux)
+ ∑exp(-ux(2nB+y)2/4Dyx]*exp((2-3)
相关文档
最新文档