控制系统的数学模型

合集下载

第二章控制系统的数学模型.

第二章控制系统的数学模型.

2.2.1传递函数的定义和性质
⑴ 定义 线性定常系统的传递函数,定义为初始条件为零时,输出 量的拉氏变换与输入量的拉氏变换之比,记为G(S),即:
C ( s) G( s) R( s)
(2-4)
注:所有初始条件为零,指的是原系统处于静止状态. 设线性定常系统的n阶线性常微分方程为
dn d n 1 d a0 n c(t ) a1 n 1 c(t ) an 1 c(t ) an c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m 1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
F(t)
K
F(t) F2(t)
m
f
m
x(t)
F1(t) b)
x(t)
根据牛顿第二运动定律有:
d 2 x (t ) F (t ) F1 (t ) F2 (t ) m dt2
a)
图2-2 机械位移系统
(2-2) 7
式中:
F1 (t ) ——阻尼器阻力。其大小与运动速度成正比,方向 与运动方向相反,阻尼系数为f,即: dx (t ) F1 (t ) f dt F2 (t ) ——弹簧力。设为线性弹簧,根据虎克定律有:
F2 (t ) Kx(t )
K——弹簧刚度 联立以上三式并整理得:
d 2 x (t ) dx(t ) m f Kx (t ) F (t ) 2 dt dt
(2-3) 8
综上所述,列写元件微分方程的步骤可归纳如下: ① 根据元件的工作原理及其在控制系统中的作用,确定其 输入量和输出量; ② 分析元件工作中所遵循的物理规律或化学规律,列写相 应的微分方程; ③ 消去中间变量,得到输出量与输入量之间关系的微分方 程,便是元件时域的数学模型. 9

基本要求-控制系统数学模型

基本要求-控制系统数学模型
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型

2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。

自动控制原理:第二章--控制系统数学模型全

自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系

T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)

第二章_控制系统的数学模型

第二章_控制系统的数学模型
+
R
a
La
Ea
+
if -
i a (t ) U a (t )
m Mm
Jm fm
MC
dia ( t ) R a i a (t) E a dt E a C e m ( t ) u a La M m (t) M c (t) J m M m (t) C mi a (t) dm ( t ) f m m ( t ) dt
2.2 控制系统的复数域数学模型
1、传递函数的定义
在零初始条件下,线性定常系统输出量的拉普拉斯变 换与输入量的拉普拉斯变换之比,定义为线性定常系统 的传递函数。 即,
传递函数与输入、输出之间的关系,可用结构图表示:
若已知线性定常系统的微分方程为 dnc(t ) dn 1c(t ) dc(t ) a0 a1 a n 1 anc(t ) n n 1 dt dt dt m m 1 d r(t ) d r(t ) dr (t ) b0 b1 b m 1 b mr(t ) m m 1 dt dt dt
设 c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得
(a0s a1s
n m
n 1
an 1s an )C(s)
(b 0s b1s
m 1
bm 1s bm )R(s)
则系统的传递函数为
C(s) b 0sm b1sm 1 bm 1s bm G (s ) R(s) a0sn a1sn 1 an 1s an
L[f (t )] e sF(s)
F ( s ) f ( 1 ) ( 0 ) ( 1 ) L[ f (t )dt ] , f (0) f (t )dt t 0 s s

控制系统的数学模型

控制系统的数学模型

第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。

是对实际物理系统的一种数学抽象。

模型各有特点,使用时可灵活掌握。

若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。

11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。

第二章 控制系统的数学模型

第二章 控制系统的数学模型

= Ur (s)
传递函数为: di + u ur= R · + L i c dt Uc (s) 1 = duc G (s) = i = C dt Ur (s) LCs2 + RCs + 1
电气系统三要素:电阻、电容、电感
+ ί(t) R –
u(t)= ί(t)· R
u (t )
ί(t) C

u(t) ί(t)= R
图2-9 速度控制系统
+
R1 R2 R2 R1 k2
ui
R1
k1 u 1
c
u2
功 ua 放
m
SM
ω
负 载
ut
TG
运算放大器
uu+ ii+
_ +
+
Add
uo
差模输入电压等于零
u+= u-
运放同相输入端与反向输入端两点的电压相等,如同该 两点短路一样,称为虚短。
i+=i-=0
运放同相输入端与反向输入端的电流都等于零,如同该 两点被断开一样,称为虚断。
Tm s m ( s ) m (t ) K1U a ( s )
Tm s 1 m ( s) K1U a ( s)
m ( s) K1 G ( s) U a ( s) Tm s 1
m ( s) K2 G ( s) M c ( s) Tm s 1
传递函数的性质(续)
(5)传递函数与微分方程有相通性;
b1s b2 C (s) G ( s) R( s ) a0 s 2 a1s a2
对角线相乘
a0 s 2 a1s a2 C ( s ) b1s b2 R ( s )

控制系统的数学模型及传递函数【可编辑全文】

控制系统的数学模型及传递函数【可编辑全文】

可编辑修改精选全文完整版控制系统的数学模型及传递函数2-1 拉普拉斯变换的数学方法拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见表2-1:拉氏变换对照表F(s) f(t)11(t)t三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:,令t-a=τ,则有上式=例:, 求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)由正向使的f(t)值。

控制系统的数学模型(卢京潮课件)

控制系统的数学模型(卢京潮课件)
取一次近似,且令
y( x ) y( x ) y( x0 )
E0 sin x0 ( x x0 )
即有
y E0 sin x0 x
线性定常微分方程求解
微分方程求解方法
复习拉普拉斯变换有关内容(1)
1 复数有关概念
(1)复数、复函数 复数
s j
复函数 F ( s ) Fx ( s ) jF y ( s ) 例1 F ( s ) s 2 2 j
§2.2 控制系统的数学模型—微分方程
§2.2.1 线性元部件及系统的微分方程
例1 R-L-C 串连电路
ur ( t ) L di ( t ) Ri( t ) uc ( t ) dt du ( t ) i (t ) C c dt
d 2 uc ( t ) duc ( t ) LC RC uc ( t ) 2 dt dt

例7 例8 例9
1 1 L 1 t e Le ss sa sa s3 s - 3t 2 L e cos 5t 2 2 2 s 3 5 s 5 s s 3
f (t ) e
F ( s ) F ( s A) 右 dt源自00
0
0-f 0 s f t e st dt sF s f 0 右

L f n t s n F s s n-1 f 0 s n- 2 f 0 sf n- 2 0 f n1 0
d 2 uc ( t ) R duc ( t ) 1 1 u ( t ) ur ( t ) c 2 dt L dt LC LC
§2.2.1 线性元部件及系统的微分方程(1)

控制工程基础 第二章 控制系统的数学模型

控制工程基础 第二章 控制系统的数学模型

R1 ui C1 K
R2 C2 uc
U c ( s) K U i ( s ) ( R1C1s 1)( R2C2 s 1)

有源网络:
Ur R0
R1
C1 +12V
+
-12V
Uc
U c ( s) R1C1s 1 U r ( s) R0C1s
2-3 典型环节及其传递函数


环节:具有某种确定信息传递关系的元 件、元件组或元件的一部分称为一个环 节。 系统传递函数可写为:

例2 电学系统: 其中:电阻为R,电感为L,电容为C。
+ ur(t) - i
+ uc(t) -
解:系统的微分方程如下
d U c (t ) dUc (t ) LC RC U c (t ) U r (t ) 2 dt dt
2
拉氏变换后(零初始条件下)
U c ( s) 1 2 U r ( s ) LCs RCs 1
2 2
1 1 1 , 2 2 s Ts 1, T s 2Ts 1
各典型环节名称:


比例环节:K 一阶微分环节:s 1 2 2 s 二阶微分环节: 2 s 1 1 积分环节: s 1 惯性环节: 1 Ts 1 二阶振荡环节:2 s 2 2Ts 1 T

传递函数的性质: (1)传递函数只取决于系统或元件的结构和 参数,与输入输出无关; (2)传递函数概念仅适用于线性定常系统, 具有复变函数的所有性质; (3)传递函数是复变量s 的有理真分式, 即n≥m; (4)传递函数是系统冲激响应的拉氏变换;
传递函数的性质: (5)传递函数与真正的物理系统不存在一 一对应关系; (6)由于传递函数的分子多项式和分母多 项式的系数均为实数,故零点和极点可以是 实数,也可以是成对的共轭复数。

现代控制理论第一章-控制系统数学模型

现代控制理论第一章-控制系统数学模型

y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) R(s)
bn s n an s n
b1s b0 a1s a0
d
bn1sn1 b1s b0 ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
y bn1z(n1) b1z b0 z b0 x1 b1x2 bn1xn
写成矩阵形式
x1
x2
xn
0
0
0
a0
1 0 0 a1
0 1 0 a2
0 0 0 a3
0
0
0 1 an1
x1 x2
xn
0 u 0
1
x1
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系 统设计,本课程所研究的内容是基于系统的数学模型来进行的。因 此,本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换(状态变量选取非唯一)
写成矩阵形式
x1 0 1 0 x1 0
x2
0
0
1
x2
0
u
x3 a0 a1 a2 x3 b0
x1
y 1
0
0
x2
x3
状态图如下:
一般情况下,n 阶微分方程为: y(n) an1 y(n1) a1 y a0 y b0u
选择状态变量如下:
x1 y x1 x2 y x2 x3 y
0
x2
1 M

自动控制理论-第二章

自动控制理论-第二章

2-1 控制系统的时域数学模型
1、控制系统微分方程的建立 (1)举例 例1:电路无源网络 试列写以 u (t ) 为输入量,以 u (t )为 输出量的网络微分方程
i
o
解:设回路电流为 i(t ) ,由基尔霍夫 定律可写出回路方程为
di ( t ) 1 + i ( t ) dt + Ri ( t ) = u i ( t ) dt C ∫ 1 u o (t ) = i ( t ) dt C ∫ L
f 2 (t )
c(t ) = c1 (t )
作用时, c(t ) = c2 (t ) 叠加性:当 f (t ) 、 f (t ) 同时作用时,c(t ) = c1 (t ) + c2 (t ) 均匀性:当 f (t ) = A ⋅ f1 (t ) 时, c(t ) = A ⋅ c1 (t ) 线性系统的叠加原理表明:两个外作用同时加于系统所产生的 总输出,为各个外作用单独作用时分别产生的输出之和。
[
]
1 1 1 F ( s ) + n f ( −1) (0) + L + f ( − n ) (0) n s s s
式中
f
( −1)
f ( −1) (0)、f ( −2) (0) L f ( − n ) (0)
(−n)

f (t )
的各重积分在 t = 0 时的值。如果
(0) = f ( −2 ) (0) = L = f
(0) = 0 ,则有
L ∫ L ∫ f (t )(dt ) n =
[
]
1 F (s) sn
(4)初值定理 若函数 f (t ) 及其一阶导数都是可拉氏变换的,则
f (0 + ) = lim f (t ) = lim sF ( s)

自动控制原理:第2章-控制系统的数学模型可编辑全文

自动控制原理:第2章-控制系统的数学模型可编辑全文
下图所示为三个环节串联的例子。图中,每个环节的方框图为:
*
上式表明,三个环节的串联可以用一个等效环节来代替。这种情况可以推广到有限个环节串联(各环节之间无负载效应)的情况,等效环节的传递函数等于各个串联环节的传递函数的乘积,如有n个环节串联则等效传递函数可表示为:
*
2. 环节的并联
环节并联的特点是各环节的输入信号相同,输出信号相加(或相减)。
2.7 闭环系统的传递函数
一.闭环系统
*
(3)开环传递函数: 假设N(s)=0,主反馈信号B(s)与误差信号E(s)之比。
(2)反馈回路传递函数:假设N(s)=0,主反馈信号B(s)与输出信号C(s)之比。
*
(4)闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
复习拉普拉斯变换有关内容(6)
(3)积分定理
零初始条件下有:
进一步有:
例4 求 L[t]=?
解.
例5 求
解.
复习拉普拉斯变换有关内容(7)
(4)实位移定理
证明:
例6
解:

复习拉普拉斯变换有关内容(8)
(5)复位移定理
证明:

例7
例8
例9
复习拉普拉斯变换有关内容(9)
负反馈:反馈信号与给定输入信号符号相反的反馈。
正反馈:反馈信号与给定输入信号符号相同的反馈。
*
上述三种基本变换是进行方框图等效变换的基础。对于较复杂的系统,例如当系统具有信号交叉或反馈环交叉时,仅靠这三种方法是不够的。
(二)信号相加点和信号分支点的等效变换
对于一般系统的方框图,系统中常常出现信号或反馈环相互交叉的现象,此时可将信号相加点(汇合点)或信号分支点(引出点)作适当的等效移动,先消除各种形式的交叉,再进行等效变换即可。

控制系统的数学模型

控制系统的数学模型

第二章控制系统的数学模型2-1 什么是系统的数学模型?大致可以分为哪些类型?答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。

从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空间模型;等等。

2-2 系统数学模型的获取有哪几种方法?答获取系统数学模型的方法主要有机理分析法和实验测试法。

机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。

实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。

如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。

这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。

2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些?答主要步骤有:⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。

一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。

⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。

⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。

⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。

自动控制原理-控制系统的数学模型可编辑全文

自动控制原理-控制系统的数学模型可编辑全文
23
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【说明】 ur为输入向量, s1为非线性环节的饱和值,uc为输出向量。
Saturation( )函数
12.2 非线性环节的仿真
Saturation( )函数算法程序框图
12.2 非线性环节的仿真
•死区非线性
死区非线性环节的数学表达式:
ur s1 uc 0
ur s1
ur s1 s1 ur s1
【调用格式】
[t,y]=ode45('f',tspa,x0)
【说明】 f为定义的常微分方程函数名,tspa为起止时间向量,x0为初
始状态向量。 ode45( )函数
12.1 状态空间法仿真
例12.1.1 已知系统的开环传递函数为:
G(s) k(2s 1) s 2 (0.25s 1)2
在零初始条件下,当输入信号的幅值为1时,试绘制单位负反馈系统的仿真曲线。 MATLAB仿真程序l1211 令K=0.1,1,10,绘制单位负反馈系统的仿真曲线。
ur s1
DeadZone( )实现死区非线性。
【调用格式】
uc=DeadZone(ur,s1)
【说明】 ur为输入向量,s1为死区非线性环节的死区值 ,uc为输出向量。
DeadZone( )函数
12.2 非线性环节的仿真
DeadZone( )函数算法程序框图
12.2 非线性环节的仿真
•间隙非线性
12.1 状态空间法仿真
ode4( )函数实现上述算法,其程序框图如下:
开始
计算闭环状态空间系数矩阵 Ab=A-BvC
求四阶 Rung-Kutta 法各次斜率 kj
xn xn1
计算 x n1

xn

h 6
(k1
2k2
2k3
k4 ),
y n1

Cx n1
N Y
t=tf?
结束
12.1 状态空间法仿真
【说明】 ur为输入向量, uc为输出向量, urs,ucs为ur,uc前一时刻的
值 ,uss为下次运算保留的输入值, s1为环节的间隙宽度值。 backlash( )函数
12.2 非线性环节的仿真
backlash( )函数算法程序框图
12.3 离散系统的仿真
离散系统的数学模型一般用差分方程和离散状态方程来描述。
第十二章 控制系统仿真
控制系统CAD与仿真
主要内容
12.1 12.2 12.3 12.4
状态空间法仿真 非线性环节的仿真 离散系统的仿真 典型环节的SIMULINK仿真
控 制
信号流图
单输入单输出系统

(SISO)
统 仿
状态空间
多输入多输出系统

(MIMO)
主要研究内容
通过系统的数学模型和计算方法,编写程序运算语句,使之能自动求 解各环节变量的动态变化情况,从而得到关于系统输出和所需要的中间各 变量的有关数据、曲线等,以实现对控制系统性能指标的分析与设计。
•差分方程法
差分方程描述法系统仿真的步骤如下:
根据系统的结构图,在适当位置加设虚拟采样开关和保持器; 将原系统转换成状态空间形式,并按指定的采样周期,依照离散化 方法,将系统离散化,并得到离散化的状态方程,即系统的差分方程
x(k 1) Gx(k) Hu(k) y(k) Cx(k) Du(k)
当K=0.1时,令v=0.1,1,10,绘制反馈系统的仿真曲线。
例12.1.2 已知系统的状态方程为:
14 9 10 3
x


12
9
10

x


4
u
24 24 18 12
在零初始条件下阶跃信号的输入幅值为100,试应用状态空间法对系统仿真。
实现步骤
根据数学模型、要求 的精度和时间,确定
数值计算方法
按算法要求通过分解、 综合、等效变换等方 法转换成适于在计算 机上运行的公式
上机调试并不断改进, 满足系统各项动态性能 指标,并得到理想的仿 真结果
用合适的开发语 言进行算法编程 和实现
12.1 状态空间法仿真
•四阶龙格-库塔(Runge-Kutta)法
取 n 0,1,2,, N 不断递推,便可得到所需时刻各点的状态变量x(tn ) 和输 出量 y(tn ) 。
•闭环系统的模型建立
对SISO系统r、u、y、v均为标量,由图可知 u r vy ,得
x Ax B(r vy)
又由
y Cx
可得到系统的闭环状态方程:x ( A BvC)x Br Ab x Br
【调用格式】
[t,y]=ode4(A,B,C,D,x0,h,r,v,t0,tf)
【说明】{A,B,C,D}为系统的系数矩阵,x0为状态向量初值,h为仿真步
长,r为输入信号的幅值,v为反馈系数,t0为仿真的起始时间,tf终止时间, y为输出量。 ode4( )函数
MATLAB中的ode45()函数可实现四阶/五阶龙格-库塔算法。
已知开环系统的状态方程为
x Ax Bu

y

Cx
采用四阶龙格-库塔法进行求解和仿真,其求解步骤和方法如下::
1、由 x Ax Bu,可知 f (t, x) Ax Bu;
2、根据四阶龙格-库塔法的递推公式:
k1 k2

f (tn , xn )
f
(tn

h 2
MATLAB仿真程序l1212
12.2 非线性环节的仿真
•饱和非线性Biblioteka 饱和非线性环节的数学表达式:
s1 uc ur
s1
ur s1 s1 ur s1 ur s1
uc
-s1
o s1
ur
Saturation( )函数实现饱和非线性。
【调用格式】
uc=Saturation(ur,s1)
, xn

h 2
k1 )
k3

f
(tn

h 2 , xn

h 2 k2)
k4 f (tn h, xn hk3 )


xn 1

xn

h 6
(k1

2k2

2k3

k4
)
12.1 状态空间法仿真
3、由 tn1 时刻的状态为 x n1 ,得到
yn1 Cxn1
间隙非线性环节的数学表达式:
ur s1
uc

ur s1 ucs
ucs
ur 0 且uc 0 ur 0 且uc 0 ur 0 且uc 0 ur 0 且uc 0
backlash( )函数实现间隙非线性。
【调用格式】
[uc,uss]=backlash(urs,ur,ucs,s1)
相关文档
最新文档