第16届“华杯赛”小学组初赛试题及答案
2011年第16届华杯赛小学组决赛真题及答案
答案:(1)18+23/24(2)70(3)45(4)12(5)2.094(6)5(7)8000/3(8)10
(9)2011。
连结DF,可以证明三角形ADF既是长方形的一半,也是梯形的一半
(10)8种354、367、381、397、851、957、961、991。
注:如果坏的可以是不亮的,那么还包含351、357、361、391、951,共计13种。
(11)三或五。
第一个和最后一个周日可以是1、29或3、31。
(12)253。
14*0+15*1+15*2+……+15*15+16*14>2011。
(13)312。
个位和为21,十位和为9,共36+48+48=132种;个位和为11,十位和为20,共72+36+72=180种。
(14)假设小虫向F方向走,则两只蜘蛛走向B和E,这样小虫必须退回G。
其中一只蜘蛛由B走向C,另一只在E点徘徊不动。
之后C点的蜘蛛继续向G点追逐小虫,而E点的蜘蛛一直保持自己位于小虫关于面对角线HF的对称点上,即可抓到小虫。
另外两个方向同理,蜘蛛必可抓到小虫。
2016年华杯赛小学四年级组习题
四 年 级 组 练 习 卷 (一)、选择题(每小题10分,共40分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确 答案的英文字母写在每题的圆括号内。
)月1日,星期三下午,冬冬接到一封来自上海的信。
原来冬冬是一位勤学多思的好学生,他在全国小学数学奥林匹克比赛中获得一等奖,主办单位在信中邀请他于 会呢!你能算一算,冬冬领奖的那一天是星期()。
至少有()个人在玩游戏D )(出石头的不伸手指,出剪子的伸2根,出布的伸5 根)(A ) 5 ( B )8 ( C )11 ( D )144. 唐僧师徒四人途径一个桃园,被园主发现有人偷吃了桃子,盘问中,孙悟空:“八戒偷吃了”;猪八戒:“我和沙师弟两人至多有一个人偷吃了”; 沙僧:“二师兄(猪八戒)没有偷吃,偷吃的是我”; 唐僧: “如果八戒偷吃了,沙僧一定也吃了”。
现在知道,师徒四人中只有一个说假话,那么,说假话的是()。
(A )孙悟空(B )猪八戒(C )沙僧(D )唐僧二、填空题(每小题10分,共40分。
)5. 如果2只香蕉能换6个苹果,4个苹果能换16个梨,那么3只香蕉能换个梨。
6. 如右图,在方框内填入数字,使算式成立,那么所得的积是。
7 .将一个正六边形切割成三个完全相同的小正六边形和三个完全相同的菱形(如右图)。
如果大正六边形的面积为 360平方厘米,那么每个菱形的面积是平方厘米。
6月25日到上海参加颁奖大 (A )日(B )一(C )五(D )六2.在下面的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形。
个人, 遛,并且有3个人出石头“不。
”请问:屋子里四人回答如下:7口 X 8口 □ 5口 □ □ 6 □共伸'问他22 申 其中一个小朋友说:8. 老师让丁丁写出3个非零的自然数,且3个数的和是9。
如果数相同、顺序不同算同一种写法,例如1+ 2 + 6 2+ 1 + 6还有6+ 1 + 2都算是同一种写法。
历届华杯赛初赛小高真题库
初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
华杯赛初赛试题及答案
华杯赛初赛试题及答案华杯赛初赛试题及答案一、选择题1.下列选项中,哪个是所有外国歌曲?A.梅花香自苦寒来B.黄河之水天上来C.Let It GoD.没那么简单答案:C2.中国三大中心城市不包括以下哪个城市?A.北京B.上海C.深圳D.广州答案:D3."世界上最长的河流"指的是哪条河?A.长江B.亚马逊河C.尼罗河D.黄河答案:C4.下面哪个星座是水瓶座?A.1月20日-2月18日B.2月19日-3月20日C.3月21日-4月19日D.4月20日-5月20日答案:A5.以下哪个国家拥有最多的人口?A.印度B.巴西C.美国D.俄罗斯答案:A二、填空题1.请列举五大洲的名称。
答案:______、______、______、______、______。
2.请写出日本首都的名称。
答案:_________。
3.请填写下列成语:一日三秋。
答案:______。
4.下面哪个不是动物的名字?A.猫B.狗C.凳子D.鸟答案:C5.请写出中国古代四大发明中的任意一项。
答案:______。
三、问答题1.请简述中国的国旗和国徽的设计。
答案:中国的国旗背景为红色,中间有五颗黄色的星星,象征着中国共产主义革命的五类人民。
国徽上有天安门的图案以及麦穗和五星。
2.请写出任意一位中国的古代历史人物。
答案:_________。
3.请解释什么是环保。
答案:环保是指保护和改善环境,使人们的生活环境更加美好,并且不对地球造成不可逆转的伤害。
四、判断题判断下列句子的正误,正确的写“对”,错误的写“错”。
1.地球是宇宙中唯一有生命的行星。
答案:错2.北京是中国的首都。
答案:对3.《罗密欧与朱丽叶》是一部古希腊悲剧。
答案:错4."绿水青山就是金山银山"是习近平提出的口号。
答案:对5.手机可以用来打电话和上网。
答案:对五、作文题请根据自己的实际情况,写一篇关于节约用水的作文。
(文章正文内容,请根据个人实际情况进行书写,字数不限)答案:(以下为作文示例)在日常生活中,节约用水对我们每个人都非常重要。
(完整版)第十六届华杯赛总决赛试题
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
华杯赛试题及答案小学
华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。
2. 一个数的最大因数是______。
3. 一个数的因数的个数是______。
4. 一个数的倍数的个数是______。
三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。
2. 一个数的平方是64,求这个数。
3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。
请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。
答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。
第十六届华赛杯小学组决赛试题及答案
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
华杯赛试题及答案六年级
华杯赛试题及答案六年级华杯赛试题及答案(六年级)一、选择题(每题5分,共40分)1. 一个数的3倍是48,这个数是多少?A. 16B. 24C. 12D. 48答案:B解析:设这个数为x,则3x=48,解得x=24。
2. 一个数的4倍加上5等于35,这个数是多少?A. 7B. 8D. 10答案:B解析:设这个数为x,则4x+5=35,解得x=8。
3. 一个数的2倍减去3等于17,这个数是多少?A. 11B. 12C. 13D. 14答案:B解析:设这个数为x,则2x-3=17,解得x=12。
4. 一个数的5倍等于它的8倍减去10,这个数是多少?A. 2C. 6D. 8答案:A解析:设这个数为x,则5x=8x-10,解得x=2。
5. 一个数的6倍加上8等于它的7倍减去6,这个数是多少?A. 14B. 20C. 26D. 32答案:A解析:设这个数为x,则6x+8=7x-6,解得x=14。
6. 一个数的3倍减去4等于它的2倍加上5,这个数是多少?B. 13C. 17D. 21答案:A解析:设这个数为x,则3x-4=2x+5,解得x=9。
7. 一个数的4倍加上3等于它的5倍减去2,这个数是多少?A. 5B. 10C. 15D. 20答案:A解析:设这个数为x,则4x+3=5x-2,解得x=5。
8. 一个数的5倍等于它的6倍减去7,这个数是多少?A. 7B. 14C. 21D. 28答案:A解析:设这个数为x,则5x=6x-7,解得x=7。
二、填空题(每题5分,共30分)9. 一个数的3倍加上4等于它的5倍减去1,这个数是______。
答案:5解析:设这个数为x,则3x+4=5x-1,解得x=5。
10. 一个数的4倍减去6等于它的3倍加上3,这个数是______。
答案:9解析:设这个数为x,则4x-6=3x+3,解得x=9。
11. 一个数的5倍加上7等于它的6倍减去8,这个数是______。
答案:15解析:设这个数为x,则5x+7=6x-8,解得x=15。
历年华杯赛试题及答案小学
历年华杯赛试题及答案小学华杯赛,全称“全国青少年数学华罗庚金杯赛”,是中国最具影响力的青少年数学竞赛之一,旨在激发青少年对数学的兴趣,培养他们的数学思维能力。
以下是一些历年华杯赛小学组的试题及答案,供参考。
试题一:小明有3个红球和2个蓝球,他随机从袋子里摸出一个球,然后放回。
接着,他又随机摸出一个球。
请问小明两次都摸到红球的概率是多少?答案:小明第一次摸到红球的概率是3/5,放回后,第二次摸到红球的概率仍然是3/5。
因此,两次都摸到红球的概率是(3/5) * (3/5) = 9/25。
试题二:有一个数字序列:1, 1, 2, 3, 5, 8, 13, 21, ... 这个序列的特点是每一项都是前两项的和。
请问这个序列的第10项是多少?答案:这是一个斐波那契数列。
根据题目给出的数列,第10项是第9项(21)和第8项(13)的和,即21 + 13 = 34。
试题三:一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:班级中有20名男生,总共40名学生,所以选择到男生的概率是20/40 = 1/2。
试题四:一个圆形的直径是14厘米,求这个圆的面积。
答案:圆的面积公式是A = πr²,其中r是圆的半径。
直径是14厘米,所以半径是14/2 = 7厘米。
代入公式得到面积A = π * 7² = 49π ≈ 153.94平方厘米。
试题五:小华有5个苹果,他决定将这些苹果平均分给3个朋友。
如果每个朋友分得的苹果数必须是整数,小华应该如何分配?答案:小华可以将5个苹果分成1, 2, 2的组合,这样每个朋友得到的苹果数都是整数。
试题六:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米。
求这个长方体的体积。
答案:长方体的体积公式是V = 长 * 宽 * 高。
代入数值得到V = 8 * 6 * 5 = 240立方厘米。
试题七:如果一个数的平方等于这个数本身,那么这个数是什么?答案:这个数是0或1,因为0² = 0,1² = 1。
第十六届“华杯赛”小学组决赛试题c答案
第十六届华罗庚金杯少年数学邀请赛决赛试题 C 参考答案(小学组)一、 填空题 (每小题 10 分,共 80 分)题号12345678答案 17114036114.18879000524二、解答下列各题 (每题 10 分,共 40 分, 要求写出简要过程)9. 答案: 1000解答. 因为华杯决赛是四位数, 所以不会小于 1000. 当华杯决赛=1000,十六届=990, 兔年 =21时题目要求的等式成立. 10. 答案: 70.解答. 连接 FD 的直线与 AE 的延长线相交于 H . 则△ DFG 绕点 D 逆时针旋转 180o与 △ DHE 重合 , DF=DH .梯形 AEGF 的面积=△AFH 的面积=2×△AFD 的面积 =长方形 ABCD 的面积 =70(平方厘米). 11. 答案: 17 解答. 合数有:4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,…….因为 4 + 6 + 9 = 19, 所以 19 能写成 3 个不相等的合数之和. 大于 19 的奇数 n 可以表示成 n =19+2k , k 是非零自然数, 进而n=4+9+(6+2k).注意 6+2k为大于 2 的偶数, 是合数, 所以不小于 19 的奇数都写成 3 个不相等的合数之和.另外,17 不能写成 3 个不相等的合数之和.12.答案: 4, 6.解答. 设这个月的第一个星期日是a日(1≤a≤7),则这个月内星期日的日期是7k+a,k是整数, 7k+a≤ 31.要求有三个奇数.当a=1时,要使7k+1是奇数, k 为偶数,即 k 可取0,2,4三个值,此时,7k+a= 7k+1分别为 1, 15, 29, 这时 21 号是星期六.当a=2时,要使7k+2是奇数, k 为奇数,即 k 可取1, 3两个值, 7k+2不可能有三个奇数.当a=3时,要使7k+3是奇数, k 为偶数,即 k 可取0, 2, 4三个值,此时7k+a= 7k+3分别为 3, 17, 31, 这时 21 号是星期四.当 4 ≤a≤ 7 时,7k+a不可能有三个奇数.三、解答下列各题 (每小题 15 分,共 30 分,要求写出详细过程)13.答案: 252.解:令 m =15k ,k是自然数,首先考虑满足下式的最大的m,⎡ 1 ⎤ ⎡ 2 ⎤ ⎡ 3 ⎤ ⎡m -1⎤ ⎡ m ⎤⎢ ⎥ + ⎢ ⎥ + ⎢ ⎥ + + ⎢ ⎥ + ⎢ ⎥ ≤ 2000.15⎣15⎦ ⎣15⎦ ⎣15⎦ ⎣ ⎦ ⎣15⎦于是⎡ 1 ⎤ ⎡ 2 ⎤ ⎡ 3 ⎤ ⎡m -1⎤ ⎡ m ⎤⎢ ⎥ + ⎢ ⎥ + ⎢ ⎥ + + ⎢ ⎥ + ⎢ ⎥15⎣15 ⎦ ⎣15⎦ ⎣15⎦ ⎣ ⎦ ⎣15⎦ = 0 ⨯15 +1⨯15 + 2 ⨯15 ++ (k -1) ⨯15 + k= 15k (k-1) + k = 15k 2-13k≤ 2000.2 2因此15k2-13k≤ 4000.又15⨯172-13⨯17 = 4114 > 4000, 15⨯162-13⨯16 = 3632 < 4000, 得知 k 最大可以取16.当k =16时, m=240.注意到这时2000-15k2-13k= 2000-3632= 184 = 16⨯11+ 8 .2 2注意到⎡ 1 ⎤ ⎡ 2 ⎤ ⎡16 ⨯15 -1⎤ ⎡16 ⨯15⎤⎢ ⎥ + ⎢ ⎥ + + ⎢ ⎥ + ⎢ ⎥15⎣15 ⎦ ⎣15 ⎦ ⎣ ⎦ ⎣ 15 ⎦⎡16 ⨯15 +1⎤ ⎡16 ⨯15 + 2 ⎤ ⎡16 ⨯15 +11⎤ ⎡16 ⨯15 +12 ⎤+ ⎢ ⎥ + ⎢ ⎥ + + ⎢ ⎥ + ⎢ ⎥15 15 15⎣ ⎦ ⎣15 ⎦ ⎣ ⎦ ⎣ ⎦= 1816 +16 ⨯12 = 2008 > 2000而⎡1⎤+⎡2⎤+⎡3⎤+ +⎡16⨯15+11⎤= 1816 +16 ⨯11 = 1992 < 2000.⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢⎥⎣15⎦ ⎣15⎦ ⎣15⎦⎣ 15 ⎦所以 252 是满足题目要求的n的最小值.14.解答. 由题设知水箱底面积 S 水箱=40×25=1000.水箱体积 V 水箱=1000×60=60000,铁块底面积 S 铁=10×10=100.铁块体积 V 铁=10×10×10=1000.(1)若放入铁块后,水箱中的水深恰好为 60 时,1000a+1000=60000, 得a=59.所以,当 59≤a≤60 时,水深为 60(多余的水溢出).(2)若放入铁块后,水箱中的水深恰好为 10 时,1000a+1000=10000, 得a=9.a×40×25+10×10×10 所以,当 9≤a<59 时,水深为= a+1.(3)由(2)知,当 0<a<9 时,设水深为x,则101000x=1000a+100x.得x=9a.10答:当 0<a<9 时,水深为9a;当 9≤a<59 时,水深为a+1;当 59≤a≤60 时,水深为 60.。
1-16届华杯赛初赛原题无答案
一届华杯赛少年数学邀请赛初赛试题及答案1. 1966、1976、1986、1996、2006这五个数的总和是多少?2.每边长是10厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽1厘米的方框。
把五个这样的方框放在桌面上,成为一个这样的图案(如图1所示)。
问桌面上被这些方框盖住的部分面积是多少平方厘米?3.105的约数共有几个?4.妈妈让小明给客人烧水沏茶。
洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要花20分钟。
为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?5.下面的算式里,四个小纸片各盖住了一个数字。
被盖住的四个数字的总和是多少?6.松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个。
它一连几天采了112个松子,平均每天采14个。
问这几天当中有几天有雨?7.边长l米的正方体2100个,堆成了一个实心的长方体。
它的高是10米,长、宽都大于高。
问长方体的长与宽的和是几米?8.早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。
两辆车的速度都是每小时60千米。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍。
到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍。
那么,第一辆汽车是8点几分离开化肥厂的?9.有一个整数,除300、262、205得到相同的余数。
问这个整数是几?10.甲、乙、丙、丁四个人比赛乒乓球,每两个人都要赛一场。
结果甲胜了丁,并且甲、乙、丙三人胜的场数相同。
问丁胜了几场?11.两个十位数1111111111和9999999999的乘积有几个数字是奇数?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子。
问至少要取多少根才能保证达到要求?13.有一块菜地和一块麦地。
菜地的一半和麦地的l/3放在一起是13公顷。
第十六届“华杯赛”小学组决赛试题D答案
第十六届华罗庚金杯少年数学邀请赛决赛试题D 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 1901解答. 因为华杯决赛是四位数, 十六届是三位数, 兔年是两位数, 所以等式成立时有华杯决赛=19011010020112011=--≤--兔年十六届.当华杯决赛=1901, 十六届=100, 兔年=10时题目要求的等式成立. 10. 答案: 52.5.解答:因为DE AC //,所以COD AOE S S ∆∆=.又CDE COD S S CE OC ∆∆=,EACCODEAC AOE S S S S CE OE ∆∆∆∆==, 所以=OE OC CDEEACS S ∆∆. 因为三角形EAC 在边AC 上的高和三角形CDE 在边DE 上的高相等,所以21===∆∆DE AC S S OE OC CDE EAC . 因为21==∆∆OE OC S S DOE COD , 所以202==∆∆COD DOE S S . 因为21==∆∆OE OC S S AOE AOC , 所以52121===∆∆∆COD AOE AOC S S S . 所以15=+=∆∆∆AOE AOC ACE S S S .因为CE AB //,所以21==∆∆CE AB S S ACE ABC , 即5.721==∆∆ACE ABC S S . 所以5.52=+++=∆∆∆∆DOE COD ACE ABC ABCDE S S S S S .11. 答案: 7.解答. 每张卡片, 所写数字有几个约数就被翻过几次. 被翻了奇数次的卡片红色面朝上, 而只有完全平方数才能有奇数个约数, 所以本题也就是求写有完全平方数的卡片有几张, 而50765432112222222<<<<<<<≤,所以红色朝上的卡片共有7张. 12. 答案: 11厘米. 解答. 如图,球的内接正方体ABCD -A 1B 1C 1D 1的顶点在球面上, 它的(体)对角线AC 1就是球的直径, 即201021=⨯=AC (厘米).由图形的对称性, 可知 1111190,90AA C A B C ∠=︒∠=︒. 设正方体的棱长为a 即11111AA A B B C a ===, 连续用勾股定理两次, 得到2222221111112,3AC a AC AA AC a ==+=,则2224001320400,13333a a ====. 显然, 只要一个正方体的棱长a 为整数, 满足2133a ≤, 那么这个正方体一定可以放入球中, 因为 221112113314412=<<=. 故所求的棱长为整数的正方体的最大棱长等于11厘米.三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)13. 答案: 2004, 2032, 2060, 2088.解答. 根据题意, 符合题意的年份必定是闰年(二月有29天), 并且二月一日恰好是星期日, 所以得先找到二十一世纪第一个二月一日是星期日的年份.根据题意, 2011年4月16日是星期六, 可倒推得2004年2月1日是星期日.这样可按每隔4⨯7(28)年为一个周期推算, 二十一世纪符合题意的年份有2004, 2032, 2060和2088年, 共有4个. 14. 答案:51703475,解答. 设这两个最简分数为am bk 和cm dk, 其中:()1b,d =; (1) ()1a,c =; (2) ()1am,bk =;()1cm,dk =. (3)既然cm am m -=, 所以有1a c -=. (4)又因为[]1050123557am,cm ==⨯⨯⨯⨯⨯,并结合(4),可得到: ① 14c =, 15a =,5m =,此时,757056bk dk -=,或 151416bk dk -=; (5) ② 6c =, 7a =,55m =⨯,此时,756516bk dk ⨯⨯-=; (6) ③ 5c =, 6a =,57m =⨯,此时,675716bk dk ⨯⨯-=; (7) ④ 2c =, 3a =,557m =⨯⨯,此时,35725716bk dk ⨯⨯⨯⨯-=; (8) ⑤ 1c =, 2a =,3557m =⨯⨯⨯,此时,235735716bk dk ⨯⨯⨯⨯⨯-=. (9) 上面第(6)式中,756576156bk dk bk dk ⨯⨯⎛⎫-=⨯-= ⎪⎝⎭,结合条件(1),必有5k ,即k 有约数5,和(3)矛盾. 即151416b k d k -=无解. 同样,(7) ,(8) 和 (9) 中,必有7k , 均和(3)矛盾,即都无解. 仅考虑(5),151416bk dk -=,151415141161514d bkbd bk dkkbd d b--===-, (10)根据(1),(2)和(3),应当有()()15141 15141b,d b ,d ,d b -=-=,此即意味着:n b d k ⨯-=)1415(, (11)并且(10)变形为11123nbd =⨯⨯,即n,b,d 只能取1,2,3,6. 由(3)和(11),可知:()()151141n,,n,==,因此得1n =. 同样,()151b,=,()141d ,=,因此可得:23b ,d ==. 所以()2151434bk d b =⨯-=,()3151451dk d b =⨯-=. 这两个分数是7534和7051.。
小学华赛初赛试题及答案
小学华赛初赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 地球是太阳系中最大的行星B. 地球是太阳系中唯一的行星C. 地球是太阳系中唯一有生命的行星D. 地球是太阳系中最小的行星答案:C2. 以下哪种动物不是哺乳动物?A. 狮子B. 鲨鱼C. 猫D. 狗答案:B3. 世界上最长的河流是?A. 尼罗河B. 亚马逊河C. 长江D. 密西西比河答案:A4. 以下哪种植物是草本植物?A. 松树B. 竹子C. 玫瑰D. 橡树答案:C5. 人体中最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C6. 下列哪种元素是人体必需的微量元素?A. 铁B. 钙C. 氧D. 氢答案:A7. 以下哪个国家不是G8成员国?A. 美国B. 俄罗斯C. 巴西D. 德国答案:C8. 世界上最高峰是?A. 安第斯山脉B. 阿尔卑斯山脉C. 喜马拉雅山脉D. 落基山脉答案:C9. 以下哪种颜色的光波长最长?A. 红色B. 蓝色C. 绿色D. 紫色答案:A10. 以下哪种动物是两栖动物?A. 鳄鱼B. 青蛙C. 蛇D. 乌龟答案:B二、填空题(每题2分,共20分)1. 地球的赤道周长大约是________公里。
答案:400752. 人体最大的淋巴器官是________。
答案:脾脏3. 世界上最深的海沟是________。
答案:马里亚纳海沟4. 世界上最大的沙漠是________。
答案:撒哈拉沙漠5. 国际单位制中,电流的单位是________。
答案:安培6. 人体中含量最多的元素是________。
答案:氧7. 世界上最大的淡水湖群是________。
答案:五大湖8. 世界上最大的珊瑚礁群是________。
答案:大堡礁9. 世界上最大的哺乳动物是________。
答案:蓝鲸10. 世界上最长的运河是________。
答案:京杭大运河三、简答题(每题10分,共30分)1. 请简述太阳系中八大行星的名称。
华赛杯试题及答案六年级
华赛杯试题及答案六年级华赛杯试题及答案(六年级)一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 25B. 30C. 50D. 60答案:C3. 一个数的3倍是45,这个数是多少?A. 15B. 45C. 5D. 3答案:A4. 一个圆的半径是5厘米,它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π答案:C5. 一个数除以5余2,除以7余3,这个数是多少?A. 17B. 23C. 29D. 35答案:C6. 一个数的4倍加上3等于35,这个数是多少?A. 7B. 8C. 9D. 10答案:B7. 一个数的5倍减去6等于24,这个数是多少?A. 6C. 4D. 3答案:A8. 一个数的3倍加上4等于22,这个数是多少?A. 6B. 7C. 8D. 9答案:B9. 一个数的2倍减去3等于11,这个数是多少?A. 7B. 8C. 9答案:C10. 一个数的6倍加上5等于37,这个数是多少?A. 5B. 6C. 7D. 8答案:B二、填空题(每题3分,共30分)11. 一个数的5倍是30,这个数是______。
答案:612. 一个数的7倍减去8等于35,这个数是______。
答案:713. 一个数的4倍加上6等于28,这个数是______。
答案:514. 一个数的3倍减去5等于10,这个数是______。
答案:515. 一个数的2倍加上7等于19,这个数是______。
答案:616. 一个数的6倍减去3等于27,这个数是______。
答案:517. 一个数的5倍加上4等于29,这个数是______。
答案:518. 一个数的4倍减去2等于14,这个数是______。
答案:419. 一个数的3倍加上8等于26,这个数是______。
答案:820. 一个数的2倍减去9等于3,这个数是______。
2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及
2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及(时间2022年3月19日10:00-11:00)这次华杯赛,除上述十道题目外,南京有的考点还有2道附加题第11题:有6个时刻,6:30,6:31,6:32,6:33,6:34,6:35这几个时刻里,______时刻时针和分针靠得最近,_____时刻时针和分针靠得最远。
第12题:一个纸片倒过来,0,1,8三个数字转180°后不变,6变成9,9变成6,其他数字转180°后没意义。
问,7位数转180°后不变的有______个,其中能被4整除的数有_____个,这些转180°后不变的7位数的总和是______.【参考答案及详解】1.任何四个连续自然数之和一定被4除余2,所以只有102满足条件。
“都为合数”这个条件可以被无视了。
C2.容易发现,如果原数字有n根火柴,则对应数字7-n。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
C3.这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,所以差为6/49。
D4.任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,那么张说的是真话,矛盾。
B5.看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;看蚂蚁所在的行,可知应该在中间一行,所以是N。
B6.增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为3/2,增加了1/2,所以原定时间是5/6某2=5/3(小时)。
A7.如图所示,有8个。
画出其中的两个,其余的完全对称。
88.相遇后,甲还需要3小时返回甲地。
华杯赛16试题及答案
华杯赛16试题及答案一、选择题1. 下面哪个选项不属于华杯赛的赛事项目?A. 语言类竞赛B. 数学类竞赛C. 体育类竞赛D. 电脑类竞赛2. 华杯赛16的主办城市是?A. 北京B. 上海C. 广州D. 成都3. 华杯赛16的比赛日期是?A. 7月B. 8月C. 9月D. 10月4. 参加华杯赛16需要缴纳的报名费用是多少?A. 免费B. 100元C. 200元D. 500元5. 以下哪个选项是关于华杯赛16比赛规则的描述?A. 比赛采取单循环制B. 比赛每年举办一次C. 比赛共分为三个阶段D. 参赛人员需具备高中以上学历二、判断题判断以下叙述是否正确。
1. 华杯赛是一项全球性的竞赛活动。
()2. 参加华杯赛无需经过选拔。
()3. 华杯赛16的题目难度与往年相比有所降低。
()4. 华杯赛16的获奖者将获得奖金和荣誉证书。
()5. 华杯赛16的比赛结果将在赛后一周内公布。
()请回答以下问题。
1. 华杯赛16的目的是什么?2. 参加华杯赛16有什么好处?3. 描述华杯赛16的评分方式。
四、解答题请用文字简要描述华杯赛16的赛程安排。
答案解析:一、选择题1. 答案:D。
根据题干所述,“下面哪个选项不属于华杯赛的赛事项目”,可知D项为正确答案。
2. 答案:C。
根据题干所述,“华杯赛16的主办城市是?”,可知答案为广州。
3. 答案:B。
根据题干所述,“华杯赛16的比赛日期是?”,可知答案为8月。
4. 答案:A。
根据题干所述,“参加华杯赛16需要缴纳的报名费用是多少?”,可知答案为免费。
5. 答案:C。
根据题干所述,“以下哪个选项是关于华杯赛16比赛规则的描述?”,可知答案为比赛共分为三个阶段。
1. 正确。
华杯赛是一项全球性的竞赛活动。
2. 错误。
参加华杯赛需要经过选拔。
3. 错误。
华杯赛16的题目难度并未有所降低。
4. 正确。
获奖者将获得奖金和荣誉证书。
5. 错误。
比赛结果将在赛后一周内公布。
三、简答题1. 华杯赛16的目的是促进学生的学科兴趣与综合素质发展,提高学生的学术竞争力。
华杯赛试题及答案六年级
华杯赛试题及答案六年级华杯赛试题及答案(六年级)一、选择题(每题5分,共20分)1. 一个数的1/3等于另一个数的1/4,那么这个数与另一个数的比是:A. 3:4B. 4:3C. 1:1D. 无法确定答案:B2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,那么它的体积是:A. 480立方厘米B. 400立方厘米C. 360立方厘米D. 480立方厘米答案:C3. 一个数的1/2与另一个数的1/3相等,这两个数的比是:A. 2:3B. 3:2C. 1:1D. 无法确定答案:B4. 一个数的3倍加上这个数的2倍等于45,这个数是多少?A. 9B. 15C. 10D. 5答案:B二、填空题(每题5分,共30分)5. 一个圆的半径是5厘米,那么它的周长是________厘米。
答案:31.46. 一个数的5倍是30,那么这个数是________。
答案:67. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是________平方厘米。
答案:2368. 一个数的3/4等于另一个数的1/2,那么这个数与另一个数的比是________。
答案:2:39. 一个数的2/3等于24,那么这个数是________。
答案:3610. 一个数的4倍减去这个数等于36,那么这个数是________。
答案:12三、解答题(每题15分,共45分)11. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的体积和表面积。
解答:长方体的体积 = 长 ×宽 ×高 = 12 × 10 × 8 = 960立方厘米。
长方体的表面积 = 2 ×(长 ×宽 + 长 ×高 + 宽 ×高) = 2 ×(12 × 10 + 12 × 8 + 10 × 8) = 2 × (120 + 96 + 80) = 2 × 296 = 592平方厘米。
16届华杯赛试题与解答
解析:若 2a 天的行程结束后,乙距 B 地的路程是甲距 B 地的路程的二倍,则有 2×(500-30 ×2a)=500-50×a,a 无整数解;若 2b-1 天的行程结束后,乙距 B 地的路程是甲距 B 地的 路程的二倍, 则有 2×[500-30×(2b-1)]=500-50×b, 解得 b=8.所以第 15 天的行程结束后, 乙距 B 地的路程是甲距 B 地的路程的二倍.
测
试
版
本
4、三个牧人在一起,甲对乙说: “如果把你的羊给我一只,然后把我的羊的总数的五分之一 给你,我们两个的羊就一样多了.”甲对丙说: “如果把你的羊给我两只,然后把我的羊总 数的七分之二给你,我们两个的羊就一样多了.”那么三个人羊的总数最少是.
1 4 解析: 设甲、 乙、 丙分别有 a、 b、 c 只羊, 根据题意, 可列出如下等式: (b 1) (a 1) (a 1) , 5 5 2 5 3 8 3 20 (c 2) (a 2) (a 2) .化简后得:b a , c a .所以三个人的羊的总数为 7 7 5 5 7 7 3 8 3 20 a 16 为整数,所以 a 取最小可能值 19 时,三 abc a a a 2a 4 5 5 7 7 35
学习改变命运
第十六届罗庚金杯少年数学邀请赛 决赛试题 B(小学组)
(时间:2011 年 4 月 16 日 10:00~11:30)
一、填空题(每小题 10 分,共 80 分)
3 5 7 9 1、 3 5 7 9 . 4 6 8 10 1 1 1 1 30 20 15 12 43 解析:原式= 4 6 8 10 28 . 27 4 6 8 10 120 120
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“华杯赛”官方网站
第十六届华罗庚金杯少年数学邀请赛初赛试卷(小学组)
“华杯赛”组委会办公室 咨询电话:4006500888
第十六届华罗庚金杯少年数学邀请赛
初赛试卷(小学组)
( 时间: 2011 年 3 月19 日 10:00 ~ 11:00 )
一、选择题 (每小题10分. 以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文
字母写在每题的圆括号内.)
1. 若连续的四个自然数都为合数,那么这四个数之和的最小值为( ).
(A )100 (B ) 101 (C )102 (D )103
2. 用火柴棍摆放数字0~9的方式如下:
现在,去掉“”的左下侧一根,就成了数字“
”,我们称“”对应1;去掉“”的上下两根和左下角一根,就成了数字“”,我们称“”对应3.
规定“”本身对应0,按照这样的规则,可以对应出( )个不同的数字.
(A )10 (B ) 8 (C )6 (D )5
3. 两数之和与两数之商都为6,那么这两数之积减这两数之差(大减小)等于( ).
(A )74
26 (B ) 715
(C )7
6
(D )496
4. 老师问学生:“昨天你们有几个人复习数学了?”
张:“没有人.”
李:“一个人.” 王:“二个人.”
赵:“三个人.” 刘:“四个人.”
老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这5个人中复习数学的有( )个人. (A )0 (B ) 1 (C )2 (D )3
装
订
线
“华杯赛”官方网站
第十六届华罗庚金杯少年数学邀请赛初赛试卷(小学组)
“华杯赛”组委会办公室 咨询电话:4006500888
5. 如右图所示,在77⨯方格的格点上,有7只机器小蚂蚁, 它们以相同
的速度沿格线爬行到格点M 、N 、P 、Q (图中空心圆圈所表示的四个位置)中的某个上聚会. 所用时间总和最小的格点是( ). (A )M (B )N (C )P (D )Q
6. 用若干台计算机同时录入一部书稿,计划若干小时完成. 如果增加3台计算机,则只需原定时
间的75%;如果减少3台计算机,则比原定时间多用6
5
小时. 那么原定完成录入这部书稿的时间是( )小时. (A )
35
(B )310 (C )65 (D )611
二、填空题(每小题 10 分,满分40分.)
7. 右图由4个正六边形组成,每个面积是6,以这4个正六边形的顶点为顶点,
可以连接面积为4的等边三角形有 个.
8. 甲、乙两车分别从A ,B 两地同时出发,相向而行,3小时相遇后,甲掉头返回A 地,乙继续前
行. 甲到达A 地后掉头往B 行驶,半小时后和乙相遇.那么乙从A 到B 共需 小时.
9. 如右图所示,梯形ABCD 的面积为117平方厘米.
AD ∥BC ,13EF =厘米,4MN =厘米,又已知
EF MN ⊥于.O 那么阴影部分的总面积为
平方厘米.
10. 在右面的加法竖式中,如果不同的汉字代表不同的数字,使得算
式成立,那么四位数华杯初赛的最大值是 .
“华杯赛”官方网站
第十六届全国华罗庚金杯少年数学邀请赛
初赛试题(小学组)答案
一、选择题(每小题10 分,满分60 分)
二、填空题(每小题10 分,满分40 分.)。