导数公式的证明(最全版)
导数公式的证明(最全版)之欧阳美创编
![导数公式的证明(最全版)之欧阳美创编](https://img.taocdn.com/s3/m/8db286f2e2bd960591c6773b.png)
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx=lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna)=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx)) =lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim (sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim (csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1)(15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
导数公式的证明最全版
![导数公式的证明最全版](https://img.taocdn.com/s3/m/d62877c067ec102de3bd896c.png)
导数的定义:f'(x)=lim △ y/ △ x△ X T0 (下面就不再标明△ X T0 了)用定义求导数公式(1)f(x)=x A n证法一: (n 为自然数)f'(x)=lim [(x+A x)An-xAn]/ △x=lim (x+A x-x)[(x+A X)A( n-1)+x*(x+A X)A( n-2)+…+xA(n-2)*(x+ △x)+xA(n-1)]/ △x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+…+xA(n-2)*(x+A x)+xA(n-1)] =xA(n-1)+x*xA(n-2)+xA2*xA(n-3)+ ...xA(n-2)*x+xA(n-1)=nxA(n-1)证法二:( n 为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAnf'(x)=nxA(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/ △x=lim (sin xcos^ x+cosxsin^ x-sin x)/ △x=lim (sin x+cosxsin A x-sin x)/ △x=lim cosxs 也x/ △ x=cosx(3)f(x)=cosx f'(x) =lim (cos(x+A x)-cosx)/ △x=lim (cosxcosA x-sinxsin A x-cosx)/^ x-cos)/ △x=lim (cosxs inxsin A x =lim -si nxsin A x/ △x=-s inx f(x)=a A x ) (4 证法一:f'(x)-a A x)/ △x=lim (aA(x+A x) 1)/ △x=lim aAx*(aA △x-92 /(设aA^x-1= 口,贝卩4 x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim a A x*m/[l n(m+1)/l na]=lim aAx*l na*m/ln( m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna证法二:f(x)=aAxlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=aAxlna若a=e,原函数f(x)=eAx则f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)3 / 9=lim (logaA(x+A x)-logaAx)/ △x=lim loga A[(x+A x)/x]/ △x=lim logaA(1 + △ x/x)/ △ x=lim In(〔+△ x/x)/(lna* △ x)=lim x*ln(1+ △ x/x)/(x*Ina* △ x)=lim (x/ △ x)* In (1+ △ x/x)/(x*l na)=lim ln[ (1 + △ x/x)A(x/ △ x)]/(x* In a)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (ta n(x+A x)-ta nx)/ △x=lim (sin(x+A x)/cos(x+A x)-sinx/cosx)/A x=lim (sin(x+A x)cosxsinxcos(x+A x)/( △xcosxcos(x+X x))=lim(sinxcos A xcosx+sin A xcosxcosxsinxcosxcosX x+sinxsinxsin A x)/( △xcosxcos(x+X x))=lim si n A x/( △xcosxcos(x+X x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A27)f(x)=cotx f'(x)=lim (cot(x+ A x)-cotx)/ △x=lim (cos(x+A x)/si n(x+ A x)-cosx/si nx)/A x=lim (cos(x+A x)si nx~cosxs in (x+A x))/( A xsinxsin(x+A x))=lim(cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x-cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(si nx)八2二-cscx/si nx二(secx)八2=1-(cotx)八2(8)f(x)=secxf'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=si nx/(cosx)八2二ta nx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x5 / 9=lim (1/sin(x+A x)-1/sinx)/ △x=lim (si n*si n(x+A x))/( △xsinxsin(x+A x))=lim (sin*sinxcos^ x-sin A xcosx)/(A xsinxsin(x+A x))=lim -sin △ xcosx/(A xs in xsi n(x+A x))=-cosx/(si nx)八2二cotx*cscx(10) f(x)=x A xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*xAx( 12) h(x)=f(x)g(x)h'(x)=lim (f(x+ △x)g(x+A x)-f(x)g(x))/A x=lim [(f(x+ △x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ △x =lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+A x)-g(x))*f(x)+f(x)*g(x+ △x)-f(x)*g(x+△x)]/ △x=lim (f(x+ A x)-f(x))*g(x+ △x)/ △x+(g(x+A x)-g(x))*f(x)/ △x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)6 / 9h'(x)=lim (f(x+A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+A x)-f(x)+f(x))*g(x)-(g(x+A x)-g(x)+g(x))*f(x)]/(A xg(x)g(x+A x))=lim [(f(x+A x)-f(x))*g(x)-(g(x+A x)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Axg(x)g(x+A x))=lim (f(x+A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/(Axg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+A x))-f(g(x))]/A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u,g(x+A x)-g(x)=A u) =lim (f(u+ A u)-f(u))/ △x=lim (f(u+ A u)-f(u))* A u/( A x* A u)=lim f(u)* A u/ A x=lim f'(u)*(g(x+A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1)(15)y=f(x)=arcsinx7 / 9siny二x 贝U(siny )'=cosy所以(arcsinx)'=1/(siny)'=1/cosy-(si ny )八2 =1/V 1(si ny=x)-x A2 =1/V 1-x A2 f(x)=1/ V1 即(16)y=f(x)=arcta nxtany=x贝(tany)'=1+(tany)A2=1+xA2所以(arcta nx)'=1/1+xA2f(x)= 1/1+xA2 即总结一下'二nxA(n-1) xAn) ('=cosx sin) ('=-sinx ) (cosx'=aAxlna ) (aAx'=eAx eAx) ('=1/(xlna))( logaAx8 / 9lnx) '=1/x(ta nx)'=(secx)八2=1+(ta nx)八2 (cotx)'=-(cscx)八2二1-(cotx)八2 (secx)'=tanx*secx (cscx)'=-cotx*cscx (x A x)'=(l nx+1)*x^x (arcs in x)'=1/V 1/2 (arctanx)'=1/1+xA2 [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)9 / 9。
导数公式证明大全
![导数公式证明大全](https://img.taocdn.com/s3/m/7e7b69a8988fcc22bcd126fff705cc1755275fca.png)
导数公式证明大全导数的定义是函数变化率的极限。
下面将给出导数的一些重要公式的证明。
1.常数函数的导数:设常数函数$f(x)=c$,其中$c$为常数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{c-c}{h} \\ &= \lim_{h\to 0}0 \\ &= 0\end{aligned}\]因此,常数函数的导数为0。
2.幂函数的导数:设幂函数$f(x)=x^n$,其中$n$为正整数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \end{aligned}\]将$(x+h)^n$展开为二项式,有:\[(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \ldots + \binom{n}{n-1}xh^{n-1} + h^n\]代入上式,消去$x^n$,并除以$h$,得:\[\begin{aligned} f'(x) &= \lim_{h\to0}\left(\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \ldots +\binom{n}{n-1}xh^{n-2} + h^{n-1}\right) \\ &= \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}\cdot 0 + \ldots + \binom{n}{n-1}x\cdot 0 + 0^{n-1} \\ &= n\cdot x^{n-1} \end{aligned}\]因此,幂函数的导数为$n$倍的$x$的$n-1$次方。
常用高阶导数公式证明
![常用高阶导数公式证明](https://img.taocdn.com/s3/m/e9a7c3a0112de2bd960590c69ec3d5bbfd0ada8e.png)
常用高阶导数公式证明一阶导数假设函数y=y(y)在y处可导,则函数y=y(y)在y处的导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数如果函数y=y(y)在y处可导,那么它的二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$高阶导数函数y=y(y)的y阶导数定义如下:$$ f^{(n)}(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f^{(n-1)}(x + \\Delta x) - f^{(n-1)}(x)}}{\\Delta x} $$常用高阶导数公式证明二阶导数的公式一阶导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$将一阶导数y′(y)的定义代入二阶导数公式中,得到:$$ f''(x) = \\lim_{{\\Delta x}\\to0}\\frac{{\\left(\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x}\\right)\\big|_{x+\\Delta x} - f'(x)}}{\\Delta x} $$根据导数的定义,上式可简化为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} -f'(x)}}{\\Delta x} $$由此可得到二阶导数的通用公式。
16个基本导数公式推导过程
![16个基本导数公式推导过程](https://img.taocdn.com/s3/m/06ed77246ad97f192279168884868762cbaebb75.png)
16个基本导数公式推导过程一、基本定义在微积分中,导数是用来描述函数其中一点上的变化率的数学工具。
给定一个函数y=f(x),我们可以通过求取其导数来计算在不同点的变化率。
二、导数的定义式给定一个函数y=f(x),在点x处的导数可以定义为:f'(x) = lim(h→0) ((f(x+h) - f(x))/h)三、常数导数对于一个常数c,导数恒为0。
因为对于任意的x和h,我们有:(f(x)+c)-f(x)=chh所以导数为:(f(x) + c) - f(x) = lim (h→0) = 0hh四、幂律导数对于幂函数y=x^n,其中n是一个常数,则导数可以通过幂律计算。
幂律定义如下:f(x) = x^n , f'(x) = nx^(n-1)五、指数函数的导数对于指数函数y=a^x,其中a是一个常数,则导数也可以通过指数函数的特性进行计算。
指数函数的导数定义如下:f(x) = a^x , f'(x) = ln(a) * a^x六、对数函数的导数对于对数函数y=log_a(x),其中a是一个常数,则导数也可以通过对数函数的特性进行计算。
对数函数的导数定义如下:f(x) = log_a(x) , f'(x) = 1 / (x * ln a)七、和差法则给定两个函数f(x)和g(x),如果它们的导数分别为f'(x)和g'(x),则它们的和(差)的导数可以通过和差法则计算。
根据和差法则,我们有:(f(x)±g(x))'=f'(x)±g'(x)八、积法则给定两个函数f(x)和g(x),如果它们的导数分别为f'(x)和g'(x),则它们的乘积的导数可以通过积法则计算。
根据积法则,我们有:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)九、商法则给定两个函数f(x)和g(x),如果它们的导数分别为f'(x)和g'(x),且g(x)不等于0,则它们的商的导数可以通过商法则计算。
导数求导公式运算法则证明
![导数求导公式运算法则证明](https://img.taocdn.com/s3/m/01978c06c950ad02de80d4d8d15abe23482f03d3.png)
导数求导公式运算法则证明在微积分中,导数求导是一项重要的基本运算,通过导数可以得到函数在某一点的变化率。
在求导过程中,我们可以利用一些基本的运算法则来简化计算。
本文将对导数求导公式运算法则进行证明,展示其中的数学原理和推导过程。
1. 导数定义首先,我们回顾一下导数的定义。
对于函数f(f),在点f 处的导数定义为:$$f'(x) = \\lim_{h \\to 0} \\frac{f(x + h) - f(x)}{h}$$这个定义描述了函数在点f处的变化率,也可以理解为函数在点f处的切线斜率。
2. 基本导数求导法则在实际计算导数时,我们可以利用一些基本的导数求导法则来简化计算。
常用的导数求导法则包括:2.1 常数法则如果f(f)=f,其中f为常数,则f′(f)=0。
这是因为常数函数的斜率始终为0。
证明过程:根据导数的定义,我们有:$$f'(x) = \\lim_{h \\to 0} \\frac{c - c}{h} = 0$$2.2 幂函数法则如果f(f)=f f,其中f为自然数,则f′(f)=ff f−1。
这是因为幂函数的导数可以利用差分求和公式来证明。
证明过程:根据导数的定义,我们有:$$f'(x) = \\lim_{h \\to 0} \\frac{(x + h)^n - x^n}{h}$$利用二项式定理展开(f+f)f,得到:$$(x + h)^n = x^n + nx^{n-1}h + \\frac{n(n-1)}{2!}x^{n-2}h^2 + \\ldots$$带入上式,得到:$$f'(x) = \\lim_{h \\to 0} n(x^{n-1} + \\frac{n(n-1)}{2!}x^{n-2}h + \\ldots) = nx^{n-1}$$2.3 和、差、积、商的法则对于和、差、积、商等复合函数,我们可以利用它们的导数性质进行求导。
这些法则在很多实际应用中都是非常有用的。
16个基本导数公式推导过程
![16个基本导数公式推导过程](https://img.taocdn.com/s3/m/760be4f9b8f3f90f76c66137ee06eff9aef84966.png)
16个基本导数公式推导过程1.基本定律:一个函数的导数定义为该函数的变化率,即沿着曲线上某一点的斜率。
2.链式法则:如果f(x)是另一个函数g(x)的函数,则f(x)是g(x)的函数。
3.线性和和积分法则:若f(x)和g(x)是两个可导函数,则:(1)当f(x)加g(x)时,其导数为f(x)+g(x);(2)当f(x)乘以g(x)时,其导数为f(x)g(x)+g(x)f(x); (3)f(x)是常数a乘以g(x)时,其导数为ag(x);(4)若f(x)是常数a加以g(x)时,其导数为g(x);(5)若f(x)是以g(x)的积分形式表达的,则其导数为g(x)。
二、16个基本公式的推导1.一次函数的推导:f(x)=ax+bf(x) = a2.二次函数的推导:f(x) = ax2 + bx + cf(x) = 2ax + b3.三次函数的推导:f(x) = ax3 + bx2 + cx + df(x) = 3ax2 + 2bx + c4.平方根函数的推导:f(x) =xf(x) = 1/2√x5.指数函数的推导:f(x) = a^xf(x) = a^x ln(a)6.对数函数的推导:f(x) = log_a xf(x) = 1/x ln(a)7.反正弦函数的推导:f(x) = arc sin xf(x) = 1/√(1-x^2)8.反余弦函数的推导:f(x) = arc cos xf(x) = -1/√(1-x^2)9.反正切函数的推导:f(x) = arc tan xf(x) = 1/(1+x^2)10.反双曲正弦函数的推导: f(x) = arc sinh xf(x) = 1/√(1+x^2)11.反双曲余弦函数的推导: f(x) = arc cosh xf(x) = 1/√(x^2-1)12.反双曲正切函数的推导:f(x) = arc tanh xf(x) = 1/(1-x^2)13.正弦函数的推导:f(x) = sin xf(x) = cos x14.余弦函数的推导:f(x) = cos xf(x) = -sin x15.正切函数的推导:f(x) = tan xf(x) = 1/cos2x16.双曲正弦函数的推导:f(x) = sinh xf(x) = cosh x三、结论以上推导过程表明,根据常用的16个基本函数,求解函数导数时,只需要熟悉四条基本定律和16个基本公式,即可准确求解函数的导数。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!
![高中数学导数公式、定义证明、运算法则,实用干货,收藏好!](https://img.taocdn.com/s3/m/e56da4df4128915f804d2b160b4e767f5acf8025.png)
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数公式的证明最全
![导数公式的证明最全](https://img.taocdn.com/s3/m/dccfad6ce009581b6ad9eb0a.png)
导数公式的证明(最全版)————————————————————————————————作者:————————————————————————————————日期:导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
导数公式证明大全
![导数公式证明大全](https://img.taocdn.com/s3/m/e56e86fd5727a5e9856a61e0.png)
导数的定义::(x)=lim △ y/A x△ x—0 (下面就不再标明A x—0 了)用定义求导数公式1)f(x)=x A n证法一:n为自然数)f'(x)=lim [(x+A x)An-xAn]/A x=lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)]=xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 )=nxA(n-1)证法二:n为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAn f'(x)=nxA(n -1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/A x=lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x=lim cosxsin A x/A x=cosx(3)f(x)=cosxf'(x)=lim (cos(x+A x)-cosx)/A x=lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x=lim -sinxsin A x/A x=-sinx4)f(x)=a A xf'(x) =lim (aA(x+A x)-aAx)/A x=lim a A x*(a A△ x-1)/A x设"Ax-仁m,贝U A x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim aAx*m/[ln(m+1)/lna]=lim aAx*lna*m/ln(m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna若a=e,原函数f(x)=eAx 贝f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)=lim (logaA(x+A x)-logaAx)/A x=lim logaA[(x+A x)/x]/A x=lim logaA(1+A x/x)/A x=lim ln(1+A x/x)/(lna* A x) =lim x*ln(1+ A x/x)/(x*lna* A x) =lim (x/A x)*ln(1+ △ x/x)/(x*Ina)=lim ln[(1+ A x/x)A(x/ A x)]/(x*Ina)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=Inx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+A x)-tanx)/A x=lim (sin(x+A x)/cos(x+ A x)-sinx/cosx)/A x=lim (sin(x+A x)cosx-sinxcos(x+A x)/(A xcosxcos(x+A x))=lim (sinxcos A xcosx+sin A xcosxcosx-sinxcosxcos A x+sinxsinxsin A x)/(A xcosxcos(x+A x))=lim sin A x/(A xcosxcos(x+A x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A2(7)f(x)=cotx f'(x)=lim (cot(x+ △ x)- cotx)/ △ x=lim (cos(x+A x)/sin(x+ △ x) -cosx/sinx)/A x=lim (cos(x+A x)sinx-cosxsin(x+A x))/( A xsinxsin(x+ A x)) =lim (cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x- cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(s in x)A2= -cscx/si nx=-(secxF2二1-(cotxF28)f(x)=secx f'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=sinx/(cosx)A2=tanx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x=lim (1/sin(x+ A x)-1/sinx)/A x=lim (sinx-sin(x+A x))/(A xsinxsin(x+A x))=lim (sinx-sinxcos A x-sin A xcosx)/(A xsinxsin(x+A x)) =lim -sin A xcosx/(A xsinxsin(x+A x))=-cosx/(s in x)A2=-cotx*cscx10)f(x)=x A x lnf(x)=xlnx (lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x) f'(x)=(lnx+1)*xAx(12)h(x)=f(x)g(x)h'(x)=lim (f(x+ A x)g(x+ A x)-f(x)g(x))/ A x =lim [(f(x+ A x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ A x=lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+ △ x)-g(x))*f(x)+f(x)*g(x+ △ x)-f(x)*g(x+ △ x)]/ A x=lim (f(x+ A x)-f(x))*g(x+ A x)/ A x+(g(x+ A x)-g(x))*f(x)/ A x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+ A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x)+f(x))*g(x) -(g(x+ A x) -g(x)+g(x))*f(x)]/( A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x))*g(x) -(g(x+ A x)-g(x))*f(x)+f(x)g(x) -f(x)g(x)]/(A xg(x)g(x+A x))=lim (f(x+ A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/( A xg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x)) -f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+ A x))-f(g(x))]/ A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u, g(x+A x)-g(x)= △ u)=lim (f(u+ A u)-f(u))/ A x=lim (f(u+ A u)-f(u))* A u/(A x*A u)=lim f'(u)* A u/A x=lim f'(u)*(g(x+ A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)总结一下(A n )'=nx^( n-1)(sinx) '=cosx(cosx) '=-sinx(aAx) '=aAxlna(eAx) '=eAx(logaAx) '=1/(xlna)(lnx)'=1/x(tanx)'=(secx)A2=1+(tanx)A2(cotx)'=-(cscx)A2=-1-(cotx)A2(secx)'=tanx*secx(cscx)'=-cotx*cscx(xAx)'=(lnx+1)*xAx [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)/g(x)]'=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)。
导数的公式及证明
![导数的公式及证明](https://img.taocdn.com/s3/m/6915b41f964bcf84b9d57b5a.png)
1.常函数(即常数)y=c(c为常数) y'=0 2.幂函数y=x^n,y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.指数函数(1)y=a^x,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.对数函数(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx,y'=1/x 5.正弦函数y=(sinx )y'=cosx 6.余弦函数y=(cosx) y'=-sinx 7.正切函数y=(tanx) y'=1/(cosx)^2 8.余切函数y=(cotx) y'=-1/(sinx)^2 9.反正弦函数y=(arcsinx) y'=1/√1-x^2 10.反余弦函数y=(arccosx) y'=-1/√1-x^2 11.反正切函数y=(arctanx) y'=1/(1+x^2) 12.反余切函数y=(arccotx) y'=-1/(1+x^2) 为了便于记忆,有人整理出了以下口诀: 常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’ 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算。由设的辅助函数可以知道:Δx=loga(1+β)。 所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。 可以知道,当a=e时有y=e^x y'=e^x。 4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x。 也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x。 这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。 5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx。 7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果。 对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。 y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。 x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1. 建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值。
常用的求导公式有哪些(大全)
![常用的求导公式有哪些(大全)](https://img.taocdn.com/s3/m/1f42a15253d380eb6294dd88d0d233d4b14e3f38.png)
常用的求导公式有哪些(大全)常用的求导公式有哪些1、f(x)=lim(h-0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。
其它所有基本求导公式都是由这个公式引出来的。
包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:2、f(x)=a的导数, f(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数, f(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数,指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数, f(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数, f(x)=a^xlna, a0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数, f(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数, f(x)=1/(xlna), a0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数, f(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)=cosx. 即正弦的导数是余弦.10、(cosx)=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)=(secx)^2. 即正切的导数是正割的平方.12、(cotx)=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)=1/根号(1-x^2).16、(arccosx)=-1/根号(1-x^2).17、(arctanx)=1/(1+x^2).18、(arccotx)=-1/(1+x^2).19、(f+g)=f+g. 即和的导数等于导数的和。
导数公式证明大全(最全版)
![导数公式证明大全(最全版)](https://img.taocdn.com/s3/m/da2fcc14240c844768eaee17.png)
数学导数公式大全
若 a=e,原函数 f(x)=loge^x=lnx 则 f'(x)=1/(x*lne)=1/x
(6)f(x)=tanx f'(x) =lim (tan(x+Δx)-tanx)/Δx =lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx =lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔ x+sinxsinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinΔx/(Δxcosxcos(x+Δx)) =1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2
数学导数公式大全
(3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx
(4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设 a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1)
证法二:(n 为任意实数) f(x)=x^n
lnf(x)=nlnx
数学导数公式大全
(lnf(x))'=(nlnx)'
常数和基本初等函数导数公式证明过程(完整版)
![常数和基本初等函数导数公式证明过程(完整版)](https://img.taocdn.com/s3/m/8e35cd1f591b6bd97f192279168884868762b8a7.png)
hCC limh f(x)h)f(x lim(x)f 0 )C 1.(0h 0h =-=-+='='→→ 证明:(C为常数)nxx)(lim n 0x =-+→1]1[公式:μx x1μx )(μμln e )e ()x (e )e (x 0,x μa )a x a ax (x lim ax a x lima x f(a)f(x)lim (x)f a x x f(x)μx hx h μx hlim 1)x h (1lim x lim h1)x h (1x lim h xh)(x lim h f(x)h)f(x lim (x)f 0)(x μx )x .(1μμμlnx μlnx μμlnxμlnx μ1μ1μ3μ22μ1μax μμa x a x μ1μμh μ0h μ0h μμ0h μμ0h 0h 1μμ--··· 3 2·· · 1 2=='='='==>=++++=--=--='====⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+=-+=-+='='--所以则有:设证明则有处具有导数在定义域内任意一点:设函数证明:证明----→→→→→→→→→≠1xsinx lim cos sin sin sin 0x =+-=-→222B A B A B A 公式:cosx2h 2h sin lim)2h cos(x lim 2h sin )2h cos(x 2h 1lim h sin(x)h)sin(x lim hf(x)h)f(x lim(x)f cosx )3.(sinx 0h 0h 0h 0h 0h =+=+=-+=-+='='→→→→→ · ·· 证明:x sec xcos 1 xcos xsin x cos x cos sinx )(cosx cosx )(sinx )cosx sinx ()(tanx )f(x x sec)5.(tanx 2222222==+='-'='='='='证明:sinx 2h 2h sin lim )2h sin(x lim 2hsin )2h sin(x 2h 1lim hcosx h)cos(x limhf(x)h)f(x lim(x)f sinx).(cosx 0h 0h 0h 0h 0h -=+-=+-=-+=-+='-='→→→→→ · ·· 4证明:1x sinxlim 2BA sin2B A sin 2cosB cosA 0x =-+-=-→公式:h1a lima ha a limh f(x)h)f(x lim(x)f a lna a )a .(h h 0h xxh x 0h 0h x x -=-=-+='='→+→→ 为常数)(证明:9tanxsecx cosx1cosx sinx x cos 1)(cosx cosx )(1)cosx1()(secx )f(x secxtanx)7.(secx 2· · · =='-'='='='='证明:x csc x sin 1x sin xcos x sin xsin cosx)(sinx sinx )(cosx )sinxcosx()(cotx )f(x 222222-=-=--='-'='='=' 证明:cotxcscx sinx1sinx cosx x sin 1)(sinx sinx )(1)sinx1()(cscx )f(x cscxcotx).(cscx 2· · 8-=-='-'='='='-='证明:ex)(1lim x1x =+→公式:()xx x x x xx e lne e )e (,e a a lna a )a (e )e .(=='∴='='得换成将证明: 为常数 10xlna1e log x 1)hx (1lim log x 1lim )h x (1log x 1lim )h x (1log h xx 1lim )x h x (log h 1lim hxlog h)(x log limh f(x)h)f(x lim (x)f a xlna1)x .(log a hx0h a 0h h xa 0h a 0h a 0h a a 0h 0h a ==+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=-+=-+='>='→→→→→→→ · · 0)( 11证明:ex)(1lim x1x =+→公式:x1xlne 1)(lnx )x (log e,a 0)(a xlna1)x (log x1).(lnx e a =='='∴>='='即换成将 证明:12222222y 2x -11cost 1)(arcsinx )0,cost 2πt 2π(x 1t sin 1cost cost 1)(sint 1)(arcsinx )(t )(t )(sint 1x sint x arcsinxt 2π,2πt sint,x x 11cosy 1)(arcsinx )0,cosy 2πx 2π(x 1y sin 1cosy cosy 1)(siny 1)(arcsinx 0cosy )(siny )2π,2π(I siny x arcsinx y 2π,2πy ,siny x x 1).(arcsinx =='><<--=-=='='='''===-∈=-=='><<--=-=='='-=>='-===-=-='从而所以根号前取正时,因为当又即求导,得两边分别对在函数,则:令证明从而所以根号前取正时,因为当又内有因此,在对应区间且,单调,可导在开区间又函数是它的反函数,则为直接函数,:设证明 · ][2 1,1)(I ][ 113x ∈222222y 2x 11sint 1)(arccosx )0,sint t (x 1t cos 1sint sint 1)(cost 1)(arccosx )(t )(t )(cost 1x cost x arccosxt ,t cost,x x 11siny 1)(arccosx )0,siny x (x 1y cos 1siny siny1)(cosy 1)(arccosx 0siny )(cosy ,I cosy x cosx arc y ,y ,cosy x x 1).(arccosx --=-='><<-=-=-='='='''===∈=--=-='><<-=-=-='='-=<-='====--='从而所以根号前取正时,因为当又即求导,得两边分别对在函数,则:令证明从而所以根号前取正时,因为当又内有因此,在对应区间且内单调,可导在开区间又函数是它的反函数,则为直接函数,:设证明 0 · ]0[2 0 1,1)(I ]0[ ]0[ 114x πππππ∈22222222222y 2x 11tant 1)(arctanx x 1t tan 1t sec t sec 1)(tant 1)(arctanx )(t )(t )(tant 1x tant x arctanx t 2π,2πt tant,x x 11tany 1)(arctanx x 1y tan 1y sec ysec 1)(tany 1)(arctanx ,0y sec )(tany )2π,2π(I tany x tanx arc y 2π,2πy ,tany x x 1).(arctanx +=='+=+=='='='''===-∈=+=='+=+=='='∞-∞=≠='-===-=+='从而又即求导,得两边分别对在函数,则:令证明从而但内有因此,在对应区间且内单调,可导在开区间又函数是它的反函数,则为直接函数,:设证明 · ][2 )(I )( 115x ∈2222222222222y 2x 11y csc 1)(arccotx x 1y cot 1y csc t csc 1)(cott 1)(arccotx )(t )(t )(cott 1x cott x cotxarc t 2π,2πt cott,x x 11y csc 1)(arccotx x 1y cot 1y csc y csc 1)(coty 1)(arccotx ,0y csc )(coty )2π,2π(I coty x arccotx y 2π,2πy ,coty x x 1).(arccotx +-=-='+=+=-='='='''===-∈=+-=-='+=+=-='='∞-∞=≠-='-===-=+-='从而又即求导,得两边分别对在函数,则:令证明从而但内有因此,在对应区间且内单调,可导在开区间又函数是它的反函数,则为直接函数,:设证明 · ][2 )(I )( 116x ∈。
导数公式表推导过程
![导数公式表推导过程](https://img.taocdn.com/s3/m/ee33fcb6fbb069dc5022aaea998fcc22bcd143f8.png)
导数公式表推导过程引言导数是微积分中的重要概念,它描述了一个函数在某一点上的变化率。
导数的计算可以帮助我们求解函数的极值、确定函数的凸凹性以及研究曲线的特性。
本文将从基本的导数定义出发,逐步推导常见函数的导数公式,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
通过本文的内容,读者将能够全面了解导数的计算过程及常见函数的导数公式推导。
基本导数定义设函数f(f)在f0处可导,则在该点的导数定义为:$$ f'(x_0) = \\lim_{h\\to 0} \\frac{f(x_0+h) - f(x_0)}{h} $$这个定义描述了函数在某一点的瞬时变化率,也就是导数。
接下来我们将推导常见函数的导数公式。
常数函数的导数推导首先考虑常数函数f(f)=f的导数计算。
根据导数定义,我们有:$$ f'(x) = \\lim_{h\\to 0} \\frac{c - c}{h} = 0 $$因此,常数函数的导数为 0。
幂函数的导数推导考虑幂函数f(f)=f f的导数计算。
根据导数定义,我们有:$$ \\begin{align*} f'(x) & = \\lim_{h\\to 0}\\frac{(x+h)^n - x^n}{h} \\\\ & = \\lim_{h\\to 0}\\frac{x^n + nx^{n-1}h +\\frac{n(n-1)}{2}x^{n-2}h^2 + \\cdots + h^n - x^n}{h} \\\\ &= \\lim_{h\\to 0}\\left(nx^{n-1} + \\frac{n(n-1)}{2}x^{n-2}h + \\cdots + h^{n-1}\\right) \\\\ & = nx^{n-1} \\end{align*} $$因此,幂函数f(f)=f f的导数为f′(f)=ff f−1。
指数函数的导数推导考虑指数函数f(f)=f f的导数计算。
导数公式的证明最全版
![导数公式的证明最全版](https://img.taocdn.com/s3/m/84bf47674a35eefdc8d376eeaeaad1f3469311e0.png)
导数公式的证明最全版导数的定义是函数在特定点处的变化率,即斜率。
要证明导数的定义,需要使用极限的概念和微分的概念。
假设函数f(x)在点x=a处有导数,记为f'(a)。
我们可以通过极限定义来证明导数的公式。
1.导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗2.应用极限的性质:根据极限的性质,我们可以将上述公式改写为:f'(a) = lim┬(h→0)〖f(a+h)-f(a))/lim┬(h→0)h〗3.差商:我们可以将差商(f(a+h)-f(a))/h理解为两点(x,y)间的斜率。
根据微积分的思想,我们可以通过使用两点间的切线来近似表示曲线的斜率。
4.切线近似:在点(x,y)处,我们可以使用切线来近似表示曲线的斜率,该切线与曲线相切于点(x,y)处,并且与曲线在该点的切线斜率相同。
5.切线方程:曲线在点x=a处的切线方程为:y=f(a)+f'(a)(x-a)其中,f'(a)表示导数,(x-a)表示函数的自变量变化量。
6.近似函数:对于足够小的自变量变化量h,我们可以使用切线方程近似表示函数f(x)在点x=a+h处的函数值:f(a+h)≈f(a)+f'(a)h7.导数公式推导:根据近似函数的表示,我们可以将差商(f(a+h)-f(a))/h表示为:(f(a)+f'(a)h-f(a))/h化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h8.推导细节:进一步化简上述式子,得到:f'(a) = lim┬(h→0)(f(a+h)/h - f(a)/h)根据极限的性质,推出:f'(a) = lim┬(h→0)(f(a+h)/h) - lim┬(h→0)(f(a)/h)化简得到:f'(a) = lim┬(h→0)(f(a+h)-f(a)/h)这与导数的定义一致,因此我们证明了导数的定义公式。
导数公式的证明(最全版)
![导数公式的证明(最全版)](https://img.taocdn.com/s3/m/92d8accbf7ec4afe04a1dfa6.png)
导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的定义:f'(x)=lim Δy/Δx
Δx→0(下面就不再标明Δx→0了)
用定义求导数公式
(1)f(x)=x^n
证法一:(n为自然数)
For personal use only in study and research; not for commercial use
f'(x)
=lim [(x+Δx)^n-x^n]/Δx
=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ
x)+x^(n-1)]/Δx
For personal use only in study and research; not for commercial use
=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]
=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)
=nx^(n-1)
For personal use only in study and research; not for commercial use
证法二:(n为任意实数)
f(x)=x^n
lnf(x)=nlnx
(lnf(x))'=(nlnx)'
f'(x)/f(x)=n/x
f'(x)=n/x*f(x)
f'(x)=n/x*x^n
f'(x)=nx^(n-1)
(2)f(x)=sinx
f'(x)
=lim (sin(x+Δx)-sinx)/Δx
=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx
=lim cosxsinΔx/Δx
=cosx
(3)f(x)=cosx
f'(x)
=lim (cos(x+Δx)-cosx)/Δx
=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx
=lim -sinxsinΔx/Δx
=-sinx
(4)f(x)=a^x
证法一:
f'(x)
=lim (a^(x+Δx)-a^x)/Δx
=lim a^x*(a^Δx-1)/Δx
(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)
=lim a^x*m/[ln(m+1)/lna]
=lim a^x*lna*m/ln(m+1)
=lim a^x*lna/[(1/m)*ln(m+1)]
=lim a^x*lna/ln[(m+1)^(1/m)]
=lim a^x*lna/lne
=a^x*lna
证法二:
f(x)=a^x
lnf(x)=xlna
[lnf(x)] '=[xlna] '
f' (x)/f(x)=lna
f' (x)=f(x)lna
f' (x)=a^xlna
若a=e,原函数f(x)=e^x
则f'(x)=e^x*lne=e^x
(5)f(x)=loga^x
f'(x)
=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx
=lim loga^(1+Δx/x)/Δx
=lim ln(1+Δx/x)/(lna*Δx)
=lim x*ln(1+Δx/x)/(x*lna*Δx)
=lim (x/Δx)*ln(1+Δx/x)/(x*lna)
=lim ln[(1+Δx/x)^(x/Δx)]/(x*lna)
=lim lne/(x*lna)
=1/(x*lna)
若a=e,原函数f(x)=loge^x=lnx
则f'(x)=1/(x*lne)=1/x
(6)f(x)=tanx
f'(x)
=lim (tan(x+Δx)-tanx)/Δx
=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx
=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))
=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))
=lim sinΔx/(Δxcosxcos(x+Δx))
=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2
(7)f(x)=cotx
f'(x)
=lim (cot(x+Δx)-cotx)/Δx
=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx
=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))
=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))
=lim -sinΔx/(Δxsinxsin(x+Δx))
=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2
(8)f(x)=secx
f'(x)
=lim(sec(x+Δx)-secx)/Δx
=lim (1/cos(x+Δx)-1/cosx)/Δx
=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)
=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))
=sinx/(cosx)^2=tanx*secx
(9)f(x)=cscx
f'(x)
=lim(csc(x+Δx)-cscx)/Δx
=lim (1/sin(x+Δx)-1/sinx)/Δx
=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))
=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))。