15组合变形
合集下载
组合变形
§9-1 组合变形和叠加原理 说明:小变形前提
图示纵横弯曲问题,横截面上 内力为 FN P
M x ql q x x 2 Pv x 2 2
当变形较大时,弯矩中与 挠度有关的附加弯矩不能略 去.虽然梁是线弹性的,弯矩、 挠度与P的关系却是非线性的 因而不能用叠加法.除非梁的 刚度较大,挠度很小,轴力引起 的附加弯矩可以略去.
9.1.3叠加原理
构件在小变形和服从胡克定理的条件下,力的 独立性原理是成立的。即所有载荷作用下的内力、 应力、应变和位移等是各个单独载荷作用下的值的 叠加
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从胡 克定律; 2. 必须是小变形,保证能按构件初始形状或尺寸进 行分解与叠加计算,且能保证与加载次序无关.
(3) 压缩正应力 FRAx 0.866 F A A (4) 最大弯曲正应力 1.2 FR Ay 0.6 F max Wz Wz (5)危险点的应力
A D F 1.2m
30° 1.2m
B
FRAy FNAB
FRAx A F D
30°
Fy
B
c max
0.866 F 0.6 F 94.37MPa [ ] A Wz 满足强度要求。
Fy
B
AB杆为平面弯曲与轴向压缩组合变形
Fx
§9-3 拉伸(压缩)与弯曲的组合
例题9.2 悬臂吊车如图所示,横梁用20a工字钢制成. 其抗弯刚度Wz = 237cm3,横截面面积 A=35.5cm2,总荷载 F= 34kN,横梁材料的许用应力为[]=125MPa.校核横梁 AB的强度. C
(2)内力分析,确定危险截面
已知:l=4m, []=160MPa, =5°,P=60kN 求:校核梁的强度。
第八章 组合变形
例题
[ 已知: 例8.1 已知: = 15kN , e = 300mm, 许用拉应力σ 1 ] = 32 MPa, P
试设计立柱直径d 试设计立柱直径d。
解: 将力P向立柱轴线简化,立柱 向立柱轴线简化, 将力 向立柱轴线简化 承受拉伸和弯曲两种基本变 形 任意横截面上的轴力和弯矩 为:
FN = P = 15kN
cos ϕ sin ϕ + I I z y
2 2
ω= ω
2
y
+ω
2
z
Fl 3 = 3E
ωz I z tanψ = = tan ϕ ωy I y
I 一般情况下, z ≠ I y , 故 ϕ ≠ ψ ,这表明挠度所在 一般情况下, 的平面与外力作用平面并不重合。 的平面与外力作用平面并不重合。
以矩形截面的悬臂梁为例,在端部C点受力F 以矩形截面的悬臂梁为例,在端部C点受力F,F通过截面 ϕ 形心,与y轴夹角为 形心, 建立坐标系, 建立坐标系,将F分解 分解 成沿y和 的分量 成沿 和z的分量
Fy = F cosϕ
Fz = F sin ϕ
图6.4
梁的斜弯曲可看成由Fy、Fz分别产生的两个平面弯 Fy、 曲叠加而成。且危险截面均为固定端处截面。 曲叠加而成。且危险截面均为固定端处截面。其上弯矩 值为: 值为:
σ1
σw
4×15×103 32×15×103 ×300 + ≤ 32 2 3 πd πd
d = 114mm
所示起重机的最大吊重F=12kN,许用应 例8.2 图a所示起重机的最大吊重 所示起重机的最大吊重 , 试为横梁AB选择合适的工字钢 选择合适的工字钢。 力 [σ ] = 100MPa ,试为横梁 选择合适的工字钢。 的受力图, 解:根据横梁AB的受力图,由 根据横梁 的受力图 平衡方程可得: 平衡方程可得:
第8章 组合变形(土木)
F F
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
350
F
350
M
FN
y1
A 15000 mm 2 z0 75mm z1 125 mm
I y 5.31 10 7 mm 4
y
z0
z1
150 50 150
(2)立柱横截面的内力 50 FN F M F 350 75 10 3
425 F 10 3 N.m
危险点在1,2点。
max
b 9cm
h 2b 18cm
屋 顶 桁 架 结 构 的 简 化
例: 图示悬臂梁由25b工字钢制成,弹性模量 E=200GPa。荷载和几何尺寸如图所示,试求: (1) 求梁上C点的应力;
(2) 求梁内最大拉应力和最大压应力。 q q=5kN/m
C C P=2kN y
t .max 667 F t
t 30 106 F
667 667
45000 N
c.max 934F c
t .max
c.max
c 120 106 F
934 934
128500 N
许可压力为 45000N 45kN F
FN
c. max
Mz1 FN Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
F
350
t .max 667 F c.max 934 F
M
FN
(4)求压力F
说明:
1. 必须是线弹性材料,加载在弹性范围内,服从虎克定律;
2. 必须是小变形,保证能按构件初始形状或尺寸进行分解与叠 加计算,且能保证与加载次序无关. 图示纵横弯曲问题,横截面上内 力为
材料力学组合变形
第八章 组合变形
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
组合变形
M z 440 N m
M y 187 N m
T 1020 N m
合弯矩:
2 M M y M z2 4402 187 2
478N m
第四强度理论:
W
r4
1 W
M 2 0.75T 2
603 109
32
21.2110 6 m3
危险截面: B 截面
T 21.7 N m M 26.7 N m
第三强度理论:
r3
W
1 W
M 2 T 2
T图
21.7 N m
353 109
32
2
4.2110 6 m3
2
r3
8.18MPa
26.7 21.7 4.21106
第四强度理论:
式中: T
r4
危险截面上的扭矩 危险截面上的合弯矩
M
M
实心轴 W
2 2 My Mz
D3
32 D3 空心轴 W 1 4 32
,
例题 8-5 45钢的传动轴AB的直径为35mm,许用应力为 85MPa。电动机功率P = 2.2kW,由带轮C 传入。带轮C转速为 966r/min,带轮的直径为 D = 132mm,带拉力为F+F’ = 600N。齿轮E的 d 节圆直径为: 1 50mm 。
Fz Fz F sin 240 F sin 300 257 N
二、作出轴的弯矩图 和扭矩图
T图
21.7 N m
My 图
7.43N m 20.4 N m 11.4 N m 24.1N m
Mz 图
M y 187 N m
T 1020 N m
合弯矩:
2 M M y M z2 4402 187 2
478N m
第四强度理论:
W
r4
1 W
M 2 0.75T 2
603 109
32
21.2110 6 m3
危险截面: B 截面
T 21.7 N m M 26.7 N m
第三强度理论:
r3
W
1 W
M 2 T 2
T图
21.7 N m
353 109
32
2
4.2110 6 m3
2
r3
8.18MPa
26.7 21.7 4.21106
第四强度理论:
式中: T
r4
危险截面上的扭矩 危险截面上的合弯矩
M
M
实心轴 W
2 2 My Mz
D3
32 D3 空心轴 W 1 4 32
,
例题 8-5 45钢的传动轴AB的直径为35mm,许用应力为 85MPa。电动机功率P = 2.2kW,由带轮C 传入。带轮C转速为 966r/min,带轮的直径为 D = 132mm,带拉力为F+F’ = 600N。齿轮E的 d 节圆直径为: 1 50mm 。
Fz Fz F sin 240 F sin 300 257 N
二、作出轴的弯矩图 和扭矩图
T图
21.7 N m
My 图
7.43N m 20.4 N m 11.4 N m 24.1N m
Mz 图
工程力学第15章组合变形
32(1.0103)20.75(1.0103)2
M 20.010.21kNm 3 160106
max
2 2 r4M2W0.75T232M2d30.75T2
d3
32
M2 0.75T2
由内力图及强度公式可判断危险截面在E 处 ⑶ 确定AB 轴的直径 所以AB 轴的直径d = 44mm 。
例:图所示齿轮传动轴,用钢制成。在齿轮1 上作用有径
tmax
Mymax Wy
Mzmax Wz
F2l bh2 /
6
2F1l hb2 /6
90118605201109/618029082001019/6 cmax(MWymyaxMWzmzax)9.98MPa
例:图所示一矩形截面悬臂梁,截面宽度b = 90mm ,高度h = 180mm , 两在两个不同的截面处分别承受水平力F1和铅垂力F2。已知F1 = 800N , F2 = 1650N ,l = 1m ,求梁内的最大正应力并指出其作用位置。
FN
N
FN A
F S y F S z (对实心截面引起切应力很小,忽略)
M y Mz
M
My Iy
z
Mz Iz
y
T
T
IP
1
1(
2
242)
3
1(
2
242)
强度条件
弯扭组合受力的圆轴一般由塑性材料制成,采用第三或第四强度理论建立强 度条件。分析危险截面A A
3
T 410 A W
20MPa 20103 (10103)2(8103)2
6
W 20010 85104 100106
P
强度校核 由内力图及强度公式可判断危险截面距B 端2m 处, 计算危险点在横截面的应力值 所以AB 段强度满足要求。
建筑力学14-组合变形
图11.2
11.2.4 强度条件
进行强度计算,首先要确定危险截面和 危险点的位置。危险点在危险截面上离中性 轴最远的点处,对于工程上常用具有棱角的 截面,危险点一定在棱角上。图11.2(a)所示 的悬臂梁,固定端截面的弯矩值最大,为危 险截面,该截面上的B、C两点为危险点,B 点产生最大拉应力,C点产生最大压应力。
Mzmax= Pyl/4 = 29×4/4kN·m=29kN·m
该截面上由Pz在xOz平面内产生的最大弯矩为
Mymax= Pzl/4 = 7.76×4/4 kN·m=7.76kN·m
(3) 强度校核
由型钢表查得32a号工字钢的抗弯截面系数Wy和Wz分别为
Wy=70.8cm3=70.8×103mm3
mz=Pey,my=Pez
可见,双向偏心压缩就是轴向压缩和两个相互垂
直的平面弯曲的组合。
由截面法可求得任一截面ABCD上的内力为
(3) 选择截面尺寸
根据式(12.4),檩条的强度条件为
Mzmax/Wz + Mymax/Wy ≤[σ]
上式中包含有Wz和Wy两个未知数。现设 Wz/Wy = h/b=1.5,
代入上式,得
3.76×106/1.5Wy + 1.36×106/Wy ≤10
Wy≥387×103mm3
由 Wy= hb2/6 = 1.5b3/6 ≥387×103
(2) 欲使柱截面不产生拉应力,截面高度h应为多少?在确定的h尺 寸下,柱截面中的最大压应力为多少?
【解】(1)
将荷载向截面形心简化,柱的轴向压力为
N=P1+P2=(100+50)kN=150kN
图11.8
截面的弯矩为
Mz=P2e=50×0.2kN·m=10kN·m
工程力学-组合变形
s
强度条件为 nb
n
塑性材料 脆性材料
(2) 概述复杂应力状态下的强度计算:
组合变形的构件内危险点多为二向或三向应力状态。
难以用实验测定各种应力状态而建立强度条件,常常依 据部分实验结果提出假设,推测材料失效的原因,从而 建立强度理论。
5
§14.2 强度理论概论
强度理论 (theory of strength)
(1) 两种失效现象:屈服和断裂
各种材料的强度不足引起的失效现象不同,表现为屈服 和断裂两类。
(2) 衡量变形的程度:
衡量构件受力变形程度的量有应力、应变、能量等。
(3) 强度理论:
根据材料破坏现象和大量的实验资料,人们对强度的失 效提出了各种假说,称为强度理论。
不同的强度理论认为,材料按某种方式(屈服或断裂)
在二向应力状态下, 为两个非零主应力,
则在 为坐标的平面坐标系中, 当 同号时,失效准则为
当 异号时,失效准则为
28
故任意情况下失效准则在 所示。
平面中为六角形,如图
若某一平面应力状态其两个非零主应力
所在的点 M ,落在六来自形区域之内,则该应力状态不会引起屈服。
若点 M 落在六角形边界上,则该应力状态会引起材料 屈服。
本章主要内容:
(1) 介绍几种常见的强度理论; (2) 讨论工程中常见的斜弯曲、拉(压)弯、偏心拉
(压)、弯扭等组合变形形式的强度计算。
2
第14章 组合变形 (combined deformation)
§14.1 组合变形的概念与分析方法
四种基本变形
拉伸(压缩)、剪切、扭转、弯曲。
组合变形 (combined deformation)
组合变形
MT WT
在杆的根部a处取一单元体分析
y 0, x B , x T
计算主应力
1 B B 2 2 ( ) T 2 3 2
2 0
第三、第四强度理论
r 3 4
2 B 2 T
2 2 r4 B 3 T
即最大安全载荷为 790N。
r3
M 2 T2 W
(0.2Q ) 2 (0.18Q ) 2 6 80 10 0.033 32 Q 790N
例8-5 某齿轮轴,n=265r/min、NK=10kW、D1=396mm, D2=168mm, =20o , d=50mm,[]= 50MPa。校核轴的强度。
C max
N M max c A Wz
例8-1 悬臂吊车,横梁由 25 a 号工字钢制成,l=4m,电葫芦重 Q1=4kN,起重量Q2=20kN, =30º , []=100MPa,试校核强度。
(1)外力计算
取横梁AB为研究对象,受力如 图b所示。
梁 上载荷为 P =Q1+Q2 = 24kN, 斜杆的拉力S 可分解为XB和YB
f
f f
2 y
2 z
如悬臂梁自由端挠度等于P的分量 平面内挠度的几何叠加。
py , pz
在各自弯曲
pl 3 fy cos 3 EI z 3 EI z pz l 3 pl 3 fz sin 3 EI y 3 EI y
pyl 3
故自由端的总挠度:
f
f f
2 y
2 z
总挠度 f 的方向线与y轴之间的夹角 可由下式求得
如图b所示。
(2)作内力图
工程力学组合变形
取=0 ,以y0、z0代
表中性轴上任一点的坐
标,则可得中性轴方程
2024/1/28
1
zF iy2
z0
yF iz2
y0
0
23
可见,在偏心拉伸(压缩)情况下,中性轴是一条不 通过截面形心的直线。
求出中性轴在y、z两轴上的截距
ay
iz2 yF
,
az
iy2 zF
z
对于周边无棱角的截面,可作两条
D1(y1,z1)
2024/1/28
10
0.642 qa 2
0.444qa 2 0.321 qa 2
A
DC
0.617 a
A
DC
My 图 (N m) B
B Mz 图 (N m)
0.456 qa 2 0.383 qa 2
在xoz主轴平面内的 弯矩图(y轴为中性轴)
在xoy主轴平面内的 弯矩图 (z轴为中性轴)
0.266 qa 2
4.强度分析 根据危险点的应力状态和杆件的材料按强度 理论进行强度计算。
2024/1/28
3
§8-2 斜弯曲
一、概念
平面弯曲:外力施加在梁的对称面(或主平面) 内时,梁将产生平面弯曲。
即梁变形后,轴线位于外力所在的平面之内。 对称弯曲:平面弯曲的一种。
斜弯曲梁变形后,轴线位于外力所在的平面之外。
2024/1/28
F A
FzF Wy
FyF Wz
危险点处仍为单轴应力状态,其强度条件为
t,max [ t ] c,max [ c ]
2024/1/28
26
补充例题 图示矩形截面钢杆,用应变片测得杆件上、下
表面的轴向正应变分别为εa=1×10-3、 εb =0.4×10-3, 材料的弹性模量E=210GPa 。(1).试绘出横截面上的正
《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
材料力学 第十章组合变形(1,2,3)
C 10kN
1.2m
解:求支反力,由平衡方程
FB B
FA
' FA
F ' A 0,
FA FB 5kN
A
1.6m 1.6m
m g f A
10kN C
m FAy
作折杆的受力图,折杆及 受力对称,只需分析一半 即杆AC 将FA分解, 得杆的轴力 FN、弯矩M (x)
B
FAx
FN FAx 3kN
3 10 8 10 t 81.1 2 3 c d / 4 d / 32 81.9
3 3
M W
[例10-2]圆截面杆的偏心压缩时不产生拉 力的载荷作用范围
P
y
P
y
Pa
a
z
z
CL11TU12
P
y
Pa
y
P
y
Pa
z
z
z
P
y y
Pa
y
P
z
Pa
z P
y y
z
Pa
y
P
CL11TU10
解: X A 3kN, A 4kN Y
任意横截面x上的内力:
FN X A 3kN FS YA 4kN M ( x) YA x 4 x
1 1截面上危险截面, 其上:FN 3kN,M 8kN m
FN A
M W
t FN M c A W
CL11TU5
y0 Iz tg tg z0 Iz
为中性轴与z轴夹角
3.强度计算:
1)危险截面:当x=0时 M Z , M y 同时取最大,固定端处为危险面 2)危险点:危险面上 D1 , D2点 3)最大应力
1.2m
解:求支反力,由平衡方程
FB B
FA
' FA
F ' A 0,
FA FB 5kN
A
1.6m 1.6m
m g f A
10kN C
m FAy
作折杆的受力图,折杆及 受力对称,只需分析一半 即杆AC 将FA分解, 得杆的轴力 FN、弯矩M (x)
B
FAx
FN FAx 3kN
3 10 8 10 t 81.1 2 3 c d / 4 d / 32 81.9
3 3
M W
[例10-2]圆截面杆的偏心压缩时不产生拉 力的载荷作用范围
P
y
P
y
Pa
a
z
z
CL11TU12
P
y
Pa
y
P
y
Pa
z
z
z
P
y y
Pa
y
P
z
Pa
z P
y y
z
Pa
y
P
CL11TU10
解: X A 3kN, A 4kN Y
任意横截面x上的内力:
FN X A 3kN FS YA 4kN M ( x) YA x 4 x
1 1截面上危险截面, 其上:FN 3kN,M 8kN m
FN A
M W
t FN M c A W
CL11TU5
y0 Iz tg tg z0 Iz
为中性轴与z轴夹角
3.强度计算:
1)危险截面:当x=0时 M Z , M y 同时取最大,固定端处为危险面 2)危险点:危险面上 D1 , D2点 3)最大应力
第十五讲: 第十章组合变形-强度理论
50 150
FN F M F 350 75103
425F 103 N.m
50 150
A 15000 2 mm z0 75mm z1 125mm
(2)立柱横截面的内力 FN F M 425103 F N.m
t . max
Mz 0 FN Iy A
一、
斜 弯 曲
平面弯曲
斜弯曲
t ,max M y max M z max c ,max Wy Wz
D1点: t ,max [ t ] D2点: c,max [ c ]
强度条件:
挠度:
f f y2 f z2
fz
fz Iz tan tan fy Iy
2
3
2
3
结论: 代表单元体任意斜 截面上应力的点, 必定在三个应力圆 圆周上或圆内。
五、 广义胡克定律
1. 基本变形时的胡克定律
1)轴向拉压胡克定律
y x
x E x
横向变形
x
y x
2)纯剪切胡克定律
x
E
G
广义胡克定律
2、三向应力状态的广义胡克定律-叠加法
* z
(切应力强度条件)
max [ ]
max
max [ ] 满足 max [ ]
是否强度就没有问题了?
max
强度理论的概念
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出
引起破坏的主要因素,经过实践检验,不断完善,
在一定范围与实际相符合,上升为理论。 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。
FN F M F 350 75103
425F 103 N.m
50 150
A 15000 2 mm z0 75mm z1 125mm
(2)立柱横截面的内力 FN F M 425103 F N.m
t . max
Mz 0 FN Iy A
一、
斜 弯 曲
平面弯曲
斜弯曲
t ,max M y max M z max c ,max Wy Wz
D1点: t ,max [ t ] D2点: c,max [ c ]
强度条件:
挠度:
f f y2 f z2
fz
fz Iz tan tan fy Iy
2
3
2
3
结论: 代表单元体任意斜 截面上应力的点, 必定在三个应力圆 圆周上或圆内。
五、 广义胡克定律
1. 基本变形时的胡克定律
1)轴向拉压胡克定律
y x
x E x
横向变形
x
y x
2)纯剪切胡克定律
x
E
G
广义胡克定律
2、三向应力状态的广义胡克定律-叠加法
* z
(切应力强度条件)
max [ ]
max
max [ ] 满足 max [ ]
是否强度就没有问题了?
max
强度理论的概念
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出
引起破坏的主要因素,经过实践检验,不断完善,
在一定范围与实际相符合,上升为理论。 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。
第11章 组合变形精选全文
F
Fe
FN=aF
aM
b
ca P
b
bM y2 yc
a
F
aM
F A
Feyc Iz
1400103 1.8105 106
1400103 0.7 0.2 8.0109 1012
32.3MPa [t ] 35MPa
b
F
bM
F A
Fey2 Iz
1400103 1.8105 106
1400103 0.7 0.5 8.0109 1012
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所
示择D,工A字B梁为型工号字。A3钢梁,许用X应A Y力A [σ]=10T0MPa,Ty 试选
A
Tx C
B
F
A
30° C B
FN
2m
1m F
_ 52kN
20kN·m
解:(1)选工字梁为研究对
象受力如图所示:
M
-
MA 0 : T 2sin 30 3F 0
cos
Fz—变形量(挠度):
z
Fzl 3 3EI y
Fl 3 3EI y
sin
ωz
αz
则,F引起的总变形量为:
φ
2 y
z2
ω
F
ωyy
且tan z Iz tan tan
中性轴
y Iy
15
tan Iz tan tan
可见:
Iy
(1)对于矩形、工字形一类的截面 ,Iy ≠Iz,则 α = β ≠ φ ,这表示挠
=
+
31
F M
F
M
A
=
A
A
材料力学第八章-组合变形
12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
第11章 组合变形
z
c ,max
(2)若 [ t ] [ c ] [ ] ,
则
FN M max [ c ] A Wz
25
max Max { t ,max , c ,max } [ ]
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T Y Ty A 择工字梁型号。 XA D
= +
Fz
z
叠加原理
x
y
Fy
z
在线弹性范围
小变形条件下
x y
8
二、内力分析
m m x L
xy平面弯曲
y z
Mz
z
x x
Fy
m y
z
m Fz m x L
xz平面弯曲
y
z
x
My
x
m y
9
二、内力分析
m A m x L m A L 危险截面:杆件根部A截面
10
z x y
FL
弯矩:Mz Fy x
xy平面弯矩图
M
A
A
A
=
B
压弯组合 B 轴向拉压
+
B 平面弯曲
32
F F1
内力分析
M
F
A
A
M A
A
B 轴向拉压
B FN(轴力)
B 平面弯曲
B
33) M(弯矩
应力分析
FN
z
M
z
y
FN ( y, z) A
y
z
y
+
z
y
M σ(y, z) y Iz
c ,max
(2)若 [ t ] [ c ] [ ] ,
则
FN M max [ c ] A Wz
25
max Max { t ,max , c ,max } [ ]
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T Y Ty A 择工字梁型号。 XA D
= +
Fz
z
叠加原理
x
y
Fy
z
在线弹性范围
小变形条件下
x y
8
二、内力分析
m m x L
xy平面弯曲
y z
Mz
z
x x
Fy
m y
z
m Fz m x L
xz平面弯曲
y
z
x
My
x
m y
9
二、内力分析
m A m x L m A L 危险截面:杆件根部A截面
10
z x y
FL
弯矩:Mz Fy x
xy平面弯矩图
M
A
A
A
=
B
压弯组合 B 轴向拉压
+
B 平面弯曲
32
F F1
内力分析
M
F
A
A
M A
A
B 轴向拉压
B FN(轴力)
B 平面弯曲
B
33) M(弯矩
应力分析
FN
z
M
z
y
FN ( y, z) A
y
z
y
+
z
y
M σ(y, z) y Iz
第十二章 工程力学之组合变形
二、叠加原理 杆在组合变形下的应力和变形分析,一般可利用叠加原理。
叠加原理: 实践证明,在小变形和材料服从虎克定律的前提下, 杆在几个载荷共同作用下所产生的应力和变形,等于每个载荷 单独作用下所产生的应力和变形的总和。 当杆在外力作用下发生几种基本变形时,只要将载荷简化为一 系列发生基本变形的相当载荷,分别计算杆在各个基本变形下 所产生的应力和变形,然后进行叠加,就得到杆在组合变形下 的应力和变形。 另外,在组合变形情况下,一般不考虑弯曲剪应力。
(2)根部截面的内力分析
作轴的扭矩图和弯矩图如图12-6(c)所示。
根部截面上的扭矩 T m 120 N m
弯矩
M Pl 3Fl 3 960 0.12 346 N m
(3)应力分析
根部截面在弯曲、扭转基本变形下的应力分布如图12-6(d) 所示
由此可见,A点既有正应力,也有剪应力,B点只有剪应力
max N M 5.9 115 120.9MPa
最大应力几乎等于许用应力,故可安全工作。
例12-2:图12-5(a)所示为一钻床,在零件上钻孔时,钻床的 立柱受到的压力为P=15kN。已知钻床的立柱由铸铁制成,许用 拉应力,[σ拉]=35MPa,e=400mm试计算立柱所需的直径d。 解: (1)内力分析,判断变形 形式 用截面法求立柱横截面上 的内力,如图12-5(b)所 示,横截面上的内力有两 个,轴力FN和弯矩M,且 有
可见, Tx和Fcx使AC产生轴向压缩,而Ty、P和Fcy产生弯曲变 形,所以AC杆实际发生的是轴向压缩与弯曲的组合变形。 (2)作内力图,找出危险截面 AC梁的轴力图和弯矩图如图12-4(b)所示。
从图中可以看出,在梁的中间截面上有最大弯矩,而轴力在各 个截面上是相同的,所以,梁的中间截面是危险截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MPa,校核强度。
解: 偏心拉伸为纯弯曲与拉 伸组合
a
F
h
F
e
偏心距: e a 2 5 mm
b
在开槽截面上:轴力 FN = F、弯矩 M = Fe
MF
6Fe
F
N
163 MPa [ ] 140 MPa
t max
W
z
A b h a2 h ab
强度不够,可否补救? 对面开槽,只产生拉伸,无弯曲,此时
M Wz
FN A
≤[ ]
在确定工字钢型号时,可先不考虑轴力的影响,得
W
M
≥
10 103 N m 0.1103 m3 100 cm3
z [ ] 100 106 Pa
W ≥ 100 cm3 z
查型钢表,初选 No 14 工字钢,其
Wz 102 cm3
A 21.5 cm2
34.5 MPa 1.3 MPa 35.8 MPa [ t ] 35 MPa
因为
tmax [ t ] 2.3% 5% [ t ]
故立柱依然符合强度要求 即可取铸铁立柱直径为 121 mm
第三节 弯曲与扭转的组合
研究对象: 承受弯曲与扭转组合变形的塑性材料圆截面杆
F A
F
h 2ab
133
MPa
[ ] 140
MPa
强度符合要求
[例3] 图示钻床,已知 F = 15 kN,e = 0.4 m ,材料的许用拉应力
[ t ] = 35 MPa,试计算铸铁立柱所需的直径 d 。
解: 铸铁立柱承受偏心拉伸, 为纯弯曲与拉伸组合。
由截面法求得轴力、弯矩分 别为
Me
95.49
Nm
F
3FT
3
2M e D
3
2 95.49 N m 200 103 m
2865
N
A l
2)内力分析
显然,轴与电机联接端面 A 为危险截面,其上的弯矩、 扭矩分别为
M Fl 515.7 N m
T Me 95.5 N m
A
3)强度校核
l
根据第三强度理论
Me
5 kN dC 2
10 kN dD 2
1 kN m
2)内力分析 作出轴的铅垂弯矩图、水平弯矩 图和扭矩图。 可见,B 截面为危 险截面,该危险截面上的合成弯 Mz 矩、扭矩分别为
MB
M
2 B
z
M
2 By
1064 N m
My
568 N m
x 364 N m
A
l
tmax
M
Wz
FN ≤ A
t
m
t max
式中, M、FN 分别为危险截面上的弯矩、轴力。
B
F
二、弯曲与压缩组合
类似可得,弯曲与压缩组合变形 的强度条件 对于塑性材料:
max
M Wz
FN A
≤
对于脆性材料:
tmax
M
Wz
FN A
≤
t
强度条件中的弯矩应为合成弯矩 M
M
2 z
M
2 y
。
[例4] 如图传动轴由电机带动。已知电动机输出功率为 8 kW,转速 为 800 r/min;带轮直径 D = 200 mm;带的紧边拉力为松边拉力的 2
倍;传动轴直径 d = 40 mm、长度 l = 18 cm;材料的许用应力[ ] =
再代入强度条件进行校核
M
max Wz
FN A
10103 N 102 106
m m3
26 21.5
103 N 104 m2
110106 Pa 110 MPa [ ] 100 MPa
强度条件不符合要求
重选 No 16 工字钢,其
Wz 141 cm3
再代入强度条件校核
M
M
3)强度计算 按第四强度理论,得传动轴的直径
d ≥ 3 32
M 2 0.75T 2
π
32 3
1103
2
0.75
1103
2
π 160106
0.0438 m
故取该传动轴的直径 d = 44 mm
B
x x
[例6] 图示为一钢制实心圆轴,轴上的齿轮 C 上作用有铅垂切向力5
根据第三、第四强度理论,可得承
受弯扭组合变形的塑性材料圆杆的 强度条件分别为
r3
1 Wz
M 2 T 2 ≤
m
Me
A
B
n
F
l
r4
1 Wz
M 2 0.75T 2 ≤
式中,M、T 分别为危险截面上的 弯矩、扭矩。
M
Wz T
2Wz
m
说明:若危险截面上同时有铅垂弯矩 M z、水平弯矩 M y ,则上述
B Fx
Fy
F
x x
轴力: FN F sin 弯矩: M Fl cos
3. 分析危险截面上的应力
轴力 FN 引起的应力
N
FN A
N
弯矩 M 引起的应力
M
M Iz
y
M
总应力
M y FN
Iz
A
t max cmax
A FN M
M
B
l
F
FN
x
x
4. 确定危险点及其应力
第二节 弯曲与拉伸(压缩)的组合
一、弯曲与拉伸组合
A
1. 分析载荷,判断变形类型
弯曲与拉伸组合
l 2. 分析内力,确定危险截面及其
上的内力 作内力图
FN
FN
固定端 A 处截面为危险截面
在危险截面上
M
轴力: FN F sin 弯矩: M Fl cos
说明:组合变形强度计算时,弯曲
M
内力只考虑弯矩。
kN、水平径向力1.82 kN ;齿轮 D上作用有水平切向力10 kN、铅垂
径向力3.64 kN。已知齿轮 C 的节圆直径 dC = 400 mm;齿轮 D 的节
圆直径 dD = 200mm。若许用应力 [ ] =100 MPa,试按第四强度理
论确定轴的直径。
解: 1)外力分析 作出轴的受力简图
轴的 CD 段承受弯曲与扭转组 合变形。其中,将齿轮 C 上的 铅垂切向力与齿轮 D 上的水平 切向力向轴线平移,得到的附 加转矩
FT
3FT
3 2M2 D
3 21103 N m 0.300 m
20 103
N
2)内力分析 作出传动轴的扭矩图、弯矩图 可见,E 的左侧面为危险截面, 其上的弯矩、扭矩分别为
M1 A
T
C
T
M2
E F
M Fl 4 1000 N m
T M1 110 3 N m
r3
1 Wz
M2 T2
π
32 40 103
3
515.72 95.52 83.5 MPa 100 MPa
结论:该传动轴的强度符合要求
[例5] 图示传动轴由电机带动。已知电机通过联轴器作用在截面 A
上的转矩 M1 = 1 kN·m,带紧边与松边的张力分别为 FT 与FT′,且 FT = 2FT′,两轴承间的距离 l = 200 mm,带轮的直径 D = 300 mm,轴的
显然,危险截面的上边缘各点为危险点
危险点的最大拉应力
m
t max
M
Wz
FN A
A
l
m
t max
cmax
B
F
t max
M
Wz
FN A
5. 根据危险点的应力状态,建立 强度条件
危险点为单向拉伸应力状态,故得 弯曲与拉伸组合变形的强度条件
m
t max
cmax m
第十五章 组合变形
第一节 引 言
主要任务: 解决组合变形杆件的强度问题
基本假设: 在线弹性、小变形条件下,假设组合变形中的每一 种基本变形彼此独立、互不影响。
基本方法: 叠加法,即将组合变形分解为几种基本变形,分别 计算每种基本变形的内力、应力;然后进行叠加, 确定构件的危险截面、危险点以及危险点的应力状 态;最终建立组合变形杆件的强度条件。
FN F 15 kN M Fe 6 kN m
CC
FN M
FN F 15 kN M Fe 6 kN m
在强度设计时可先不考虑轴力的影响,由
t max
M
Wz
≤[ t ]
得
d≥ 3
32M 3
π[ t ]
32 6103 N m π 35106 Pa
许用应力 [ ] = 160 MPa。若不计带轮的自重,试按第四强度理论确
定该传动轴的直径。
解: 1)外力分析
将带张力向传动轴的中心
简化,得到作用在截面 E
的横向力F 与扭转外力偶
矩 M2 ,分别为
M1
M2
M2
FT
FT
D 2
FTD 2
M1
1 kN m
A
C
E
F
B
F
FT
解: 偏心拉伸为纯弯曲与拉 伸组合
a
F
h
F
e
偏心距: e a 2 5 mm
b
在开槽截面上:轴力 FN = F、弯矩 M = Fe
MF
6Fe
F
N
163 MPa [ ] 140 MPa
t max
W
z
A b h a2 h ab
强度不够,可否补救? 对面开槽,只产生拉伸,无弯曲,此时
M Wz
FN A
≤[ ]
在确定工字钢型号时,可先不考虑轴力的影响,得
W
M
≥
10 103 N m 0.1103 m3 100 cm3
z [ ] 100 106 Pa
W ≥ 100 cm3 z
查型钢表,初选 No 14 工字钢,其
Wz 102 cm3
A 21.5 cm2
34.5 MPa 1.3 MPa 35.8 MPa [ t ] 35 MPa
因为
tmax [ t ] 2.3% 5% [ t ]
故立柱依然符合强度要求 即可取铸铁立柱直径为 121 mm
第三节 弯曲与扭转的组合
研究对象: 承受弯曲与扭转组合变形的塑性材料圆截面杆
F A
F
h 2ab
133
MPa
[ ] 140
MPa
强度符合要求
[例3] 图示钻床,已知 F = 15 kN,e = 0.4 m ,材料的许用拉应力
[ t ] = 35 MPa,试计算铸铁立柱所需的直径 d 。
解: 铸铁立柱承受偏心拉伸, 为纯弯曲与拉伸组合。
由截面法求得轴力、弯矩分 别为
Me
95.49
Nm
F
3FT
3
2M e D
3
2 95.49 N m 200 103 m
2865
N
A l
2)内力分析
显然,轴与电机联接端面 A 为危险截面,其上的弯矩、 扭矩分别为
M Fl 515.7 N m
T Me 95.5 N m
A
3)强度校核
l
根据第三强度理论
Me
5 kN dC 2
10 kN dD 2
1 kN m
2)内力分析 作出轴的铅垂弯矩图、水平弯矩 图和扭矩图。 可见,B 截面为危 险截面,该危险截面上的合成弯 Mz 矩、扭矩分别为
MB
M
2 B
z
M
2 By
1064 N m
My
568 N m
x 364 N m
A
l
tmax
M
Wz
FN ≤ A
t
m
t max
式中, M、FN 分别为危险截面上的弯矩、轴力。
B
F
二、弯曲与压缩组合
类似可得,弯曲与压缩组合变形 的强度条件 对于塑性材料:
max
M Wz
FN A
≤
对于脆性材料:
tmax
M
Wz
FN A
≤
t
强度条件中的弯矩应为合成弯矩 M
M
2 z
M
2 y
。
[例4] 如图传动轴由电机带动。已知电动机输出功率为 8 kW,转速 为 800 r/min;带轮直径 D = 200 mm;带的紧边拉力为松边拉力的 2
倍;传动轴直径 d = 40 mm、长度 l = 18 cm;材料的许用应力[ ] =
再代入强度条件进行校核
M
max Wz
FN A
10103 N 102 106
m m3
26 21.5
103 N 104 m2
110106 Pa 110 MPa [ ] 100 MPa
强度条件不符合要求
重选 No 16 工字钢,其
Wz 141 cm3
再代入强度条件校核
M
M
3)强度计算 按第四强度理论,得传动轴的直径
d ≥ 3 32
M 2 0.75T 2
π
32 3
1103
2
0.75
1103
2
π 160106
0.0438 m
故取该传动轴的直径 d = 44 mm
B
x x
[例6] 图示为一钢制实心圆轴,轴上的齿轮 C 上作用有铅垂切向力5
根据第三、第四强度理论,可得承
受弯扭组合变形的塑性材料圆杆的 强度条件分别为
r3
1 Wz
M 2 T 2 ≤
m
Me
A
B
n
F
l
r4
1 Wz
M 2 0.75T 2 ≤
式中,M、T 分别为危险截面上的 弯矩、扭矩。
M
Wz T
2Wz
m
说明:若危险截面上同时有铅垂弯矩 M z、水平弯矩 M y ,则上述
B Fx
Fy
F
x x
轴力: FN F sin 弯矩: M Fl cos
3. 分析危险截面上的应力
轴力 FN 引起的应力
N
FN A
N
弯矩 M 引起的应力
M
M Iz
y
M
总应力
M y FN
Iz
A
t max cmax
A FN M
M
B
l
F
FN
x
x
4. 确定危险点及其应力
第二节 弯曲与拉伸(压缩)的组合
一、弯曲与拉伸组合
A
1. 分析载荷,判断变形类型
弯曲与拉伸组合
l 2. 分析内力,确定危险截面及其
上的内力 作内力图
FN
FN
固定端 A 处截面为危险截面
在危险截面上
M
轴力: FN F sin 弯矩: M Fl cos
说明:组合变形强度计算时,弯曲
M
内力只考虑弯矩。
kN、水平径向力1.82 kN ;齿轮 D上作用有水平切向力10 kN、铅垂
径向力3.64 kN。已知齿轮 C 的节圆直径 dC = 400 mm;齿轮 D 的节
圆直径 dD = 200mm。若许用应力 [ ] =100 MPa,试按第四强度理
论确定轴的直径。
解: 1)外力分析 作出轴的受力简图
轴的 CD 段承受弯曲与扭转组 合变形。其中,将齿轮 C 上的 铅垂切向力与齿轮 D 上的水平 切向力向轴线平移,得到的附 加转矩
FT
3FT
3 2M2 D
3 21103 N m 0.300 m
20 103
N
2)内力分析 作出传动轴的扭矩图、弯矩图 可见,E 的左侧面为危险截面, 其上的弯矩、扭矩分别为
M1 A
T
C
T
M2
E F
M Fl 4 1000 N m
T M1 110 3 N m
r3
1 Wz
M2 T2
π
32 40 103
3
515.72 95.52 83.5 MPa 100 MPa
结论:该传动轴的强度符合要求
[例5] 图示传动轴由电机带动。已知电机通过联轴器作用在截面 A
上的转矩 M1 = 1 kN·m,带紧边与松边的张力分别为 FT 与FT′,且 FT = 2FT′,两轴承间的距离 l = 200 mm,带轮的直径 D = 300 mm,轴的
显然,危险截面的上边缘各点为危险点
危险点的最大拉应力
m
t max
M
Wz
FN A
A
l
m
t max
cmax
B
F
t max
M
Wz
FN A
5. 根据危险点的应力状态,建立 强度条件
危险点为单向拉伸应力状态,故得 弯曲与拉伸组合变形的强度条件
m
t max
cmax m
第十五章 组合变形
第一节 引 言
主要任务: 解决组合变形杆件的强度问题
基本假设: 在线弹性、小变形条件下,假设组合变形中的每一 种基本变形彼此独立、互不影响。
基本方法: 叠加法,即将组合变形分解为几种基本变形,分别 计算每种基本变形的内力、应力;然后进行叠加, 确定构件的危险截面、危险点以及危险点的应力状 态;最终建立组合变形杆件的强度条件。
FN F 15 kN M Fe 6 kN m
CC
FN M
FN F 15 kN M Fe 6 kN m
在强度设计时可先不考虑轴力的影响,由
t max
M
Wz
≤[ t ]
得
d≥ 3
32M 3
π[ t ]
32 6103 N m π 35106 Pa
许用应力 [ ] = 160 MPa。若不计带轮的自重,试按第四强度理论确
定该传动轴的直径。
解: 1)外力分析
将带张力向传动轴的中心
简化,得到作用在截面 E
的横向力F 与扭转外力偶
矩 M2 ,分别为
M1
M2
M2
FT
FT
D 2
FTD 2
M1
1 kN m
A
C
E
F
B
F
FT