无穷级数必考经典习题(附答案).pdf
无穷级数习题课含解答
![无穷级数习题课含解答](https://img.taocdn.com/s3/m/610b382b24c52cc58bd63186bceb19e8b8f6ece8.png)
无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
高等数学无穷级数上课习题与答案
![高等数学无穷级数上课习题与答案](https://img.taocdn.com/s3/m/8cf3f53e561252d380eb6e6b.png)
第一次作业1.写出级数√x2+x2?4+x√x2?4?6+x22?4?6?8+?的一般项。
解:一般项为u n=(x12)n (2n)!!2.已知级数∑2n n! n n∞n=1收敛,试求极限limn→∞2n n!n n。
解:由级数收敛必要条件可知lim n→∞2n n!n=03.根据级数性质,判定级数∑(15n+2n)∞n=1的敛散性。
解:因为级数∑(1 5n )∞n=1收敛,级数∑(2n)发散,∞n=1所以由性质可推导出级数∑(15n+2n)发散。
∞n=14.根据级数收敛与发散定义判定级数∑(√n−1−√n)的敛散性,∞n=1若收敛,求其和。
解:设u n=√n−1−√n ,S n=√2−1+√3−√2+√4−√3+?+√n−1−√n=√n+1−1=n1+√n+1因为limn→∞S n=limn1+√n+1=∞ ,所以所求级数发散。
5.判定级数∑√n +1n∞n=1的敛散性。
解:因为lim n→∞u n =lim n→∞√n +1n=1≠0 , 所以由级数收敛的必要条件知级数∑√n +1n∞n=1发散 。
6.1√2−1−1√2+1+1√3−1−1√3+1的敛散性。
解:原式=(1√2−1−1√2+1)+(1√3−1−1√3+1)+?=12(1+12+13+?1n +?)=12∑1n∞n=1 第二次作业1.根据P—级数的敛散性,判定级数∑2n +1()2()2∞n=1 的敛散性。
解:因为2n +1(n +1)2(n +2)2<2n +2(n +1)2(n +2)2<2(n +1)3<2n 3由∑1n3∞n=1是收敛的,所以∑2n +1(n +1)2(n +2)2∞n=1收敛。
2.如果∑a n ∞n=1,∑b n ∞n=1为正项级数且收敛,试判定∑√a n b n ∞n=1的敛散性 。
解:因为√n b n ≤a n +b n2,所以由比较审敛法知∑√a n b n ∞n=1收敛。
3.根据极限审敛法,判别级数∑sin πn 的敛散性 。
第8章 无穷级数--答案
![第8章 无穷级数--答案](https://img.taocdn.com/s3/m/3e0f6bb169dc5022aaea00f3.png)
收敛,
∞
∑u
n =1
∞
2 n
和
∑v
n =1
∞
2
n
都收敛.
(C)若正项级数
∞
∑u
n =1
n
发散,则 un ≥
1 . n
(D)若级数
∑ un 收敛,且 un ≥ vn ( n = 1, 2,
n =1
) ,则 ∑ vn 2 也收敛.
n =1
∞
解,选 A, ( un + vn ) = un + 2un vn + vn ≤ 2(un + vn ) ,因为
1 1+ x ⎧ , x <1 ⎪−1 + ln 由于 S1 ( 0 ) = 0 ,故 S1 ( x ) = ⎨ 2x 1− x ⎪0, x=0 ⎩ 1 ⎧ 1 1+ x − , x <1 ⎪ ln S ( x ) = S1 ( x ) − S2 ( x ) = ⎨ 2 x 1 − x 1 − x 2 ⎪0, x=0 ⎩
7. (95)将函数 f ( x ) = ln 1 − x − 2 x 解: f ( x ) = ln 1 − x − 2 x
(
2
) 展开成 x 的幂级数,并指出其收敛区间。
(
2
) = ln (1 + x ) + ln (1 − 2 x )
4
ln (1 + x ) = ∑ ( −1)
n=0 ∞
∞
n
第8章 一、填空选择 1. (91)设 0 ≤ an < (A)
无穷级数 (答案)
1 ( n = 1, 2, n
∞
) ,则下列级数中肯定收敛的是(
无穷级数经典习题
![无穷级数经典习题](https://img.taocdn.com/s3/m/f5affe83bceb19e8b8f6ba7a.png)
一. 选择题1. 设α为常数, 则级数(A) 绝对收敛. (B) 发散. (C) 条件收敛. (D) 敛散性与α取值有关.解. 绝对收敛, 发散, 所以发散. (B)是答案2. 设, 则(A) 与都收敛. (B) 与都发散.(C) 收敛, 而发散. (D) 发散, 收敛.解. 由莱布尼兹判别法收敛, . 因为, 发散, 所以发散. ( C)是答案.3. 设函数, 而. 其中, 则等于(A) , (B) , (C) , (D)解. 是进行奇展拓后展成的富氏级数. 所以=. (B)是答案.4. 设条件收敛, 则(A) 收敛, (B) 发散, (C) 收敛,(D) 和都收敛.解. 因为条件收敛, 所以. 对于(C),所以. (C)是答案.5. 设级数收敛, 则必定收敛的级数为(A) (B) (C) (D)解. 收敛, 所以收敛. 收敛级数的和收敛. 所以(D)是答案. 对于(C)有以下反例: , , . 所以发散.6. 若在处收敛, 则此级数在处(A) 条件收敛, (B) 绝对收敛, (C) 发散, (D) 收敛性不确定.解. 因为在收敛, 所以收敛半径大于2. 幂级数在收敛半径内的任何点都绝对收敛. (B)是答案.7. 设幂级数的收敛半径为3, 则幂级数的必定收敛的区间为(A) (-2, 4) (B) [-2, 4] (C) (-3, 3) (D) (-4, 2)解. 和有相同收敛半径. 所以,在(-2, 4)中级数一定收敛, 在端点级数不一定收敛. 所以答案为(A).二. 判断下列级数的敛散性:1.解. 因为, 所以和有相同的敛散性. 又因为发散, 由积分判别法知发散. 所以原级数发散.2.解. 因为, 所以和有相同的敛散性. 收敛, 所以原级数收敛.3.解. , 所以级数发散.4.解. , 所以级数收敛.5.解. ,所以级数收敛.6.解. 拉阿伯判别法: , .> 1, 所以级数收敛.7.解. , 级数收敛.8.解. , 级数收敛.9.解. 考察极限令,=所以, 即原极限为1. 原级数和有相同的敛散性. 原级数发散.10.解. , 级数发散.三. 判断下列级数的敛散性1.解. 因为, 级数发散.2.解. , 令当x > 0时, , 所以数列单减. 根据莱布尼兹判别法级数收敛.因为, 而发散, 所以发散. 原级数条件收敛.3.解. 因为, 所以收敛, 原级数绝对收敛.4.解. 因为所以收敛, 原级数绝对收敛.5.解. =1, 收敛, 原级数绝对收敛.6.解. .因为, 又因为, 条件收敛, 所以原级数条件收敛.四. 1.设正项数列单调下降, 且发散, 证明: 级数收敛.2. 设正项数列, 满足为常数), 证明: 级数收敛.证明: 1. 因为正项数列单调下降, 且发散, 由莱布尼兹判别法,存在, 且. 容易证明:.(反设存在N, 使得. 则, 令, 得到, 矛盾). 所以. 因为收敛, 所以收敛.2. 考察数列,因为为常数), 所以, 即该数列递减有下界, 于是存在. 由此推出收敛. , 所以级数收敛.五. 求下列级数的收敛域:1.解.第一个级数的收敛半径为, 第二个级数的收敛半径为1. 所以它们的共同收敛区域为. 考察端点:当时, 得第一个级数发散, 第二个级数收敛. 所以该级数发散. 原级数的收敛区域为.2.解. , 于是.当时, 得, 收敛;当时, 得, 收敛. 于是原级数的收敛区域为[-1, 1].3.解. . 当时, 得数项级数及, 通项都不趋于0, 发散. 该级数的收敛区域为.4.解.第一个级数的收敛区域(-1, 1); 第二个级数的收敛区域. 所以公共收敛区域为.5.解. . 当时得数项级数, 发散. 该级数的收敛区域为(-2, 4).6.解. . 当时, 得收敛, 当时, 得发散敛. 该级数的收敛区域为[4, 6).。
(完整版)无穷级数习题及答案.doc
![(完整版)无穷级数习题及答案.doc](https://img.taocdn.com/s3/m/9bdcff950722192e4436f67b.png)
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
无穷级数习题及解答
![无穷级数习题及解答](https://img.taocdn.com/s3/m/4dbbca37ba1aa8114431d9af.png)
无穷级数例题选解1.判别下列级数的敛散性:2.判别下列级数是绝对收敛,条件收敛,还是发散?(1);(2);(3)。
3.求幂级数的收敛区间。
4.证明级数当时绝对收敛,当时发散。
5.在区间内求幂级数的和函数6.求级数的和。
7.把展开成的幂级数,并求级数的和8.设()证明1)存在; 2)级数收敛。
9.设,1)求的值;2)试证:对任意的常数,级数收敛。
10.设正项数列单调减少,且发散,试问是否收敛?并说明理由。
11.已知,计算。
12.计算。
参考答案:1.解:(1),而收敛,由比较审敛法知收敛。
(2),而发散,由比较审敛法的极限形式知发散。
(3),,由比值审敛法知收敛。
(4),,由根值审敛法知收敛。
2.解:(1)对于级数,由,知级数绝对收敛,易知条件收敛,故条件收敛。
(2),由,知级数收敛,故绝对收敛。
(3)记,,而发散,故发散,令,,当时,,故在区间内单调增加,由此可知,又,故收敛,但非绝对收敛,即为条件收敛。
3.解:收敛半径为,当时,得级数,发散;当时,得交错级数,收敛。
所求收敛区间为。
4.证:收敛半径,当时幂级数绝对收敛,当时幂级数发散,当时,得级数,,,因单调增加,且,故,于是得,由此,故级数发散。
5.解:设(),,,,()。
6.解:设(),则,其中,()。
设,则,于是,从而()。
因此。
7.解:(),(),因在点处连续,而在点处收敛,从而()。
于是。
8.证:1)因,,故是单调减少有下界的数列,所以存在。
2)由(1)知,记,因存在,故存在,所以收敛,由比较审敛法知收敛。
9.证:1)因为,,所以。
2)因为,所以,由知收敛,从而收敛。
10.解:级数收敛。
理由:由于正项数列单调减少有下界,故存在,记,则。
若,则由莱布尼兹定理知收敛,与题设矛盾,故。
因为,由根值审敛法知级数收敛。
11.解:由(),得。
12.解:由,得,于是,从而。
无穷级数题(含答案)
![无穷级数题(含答案)](https://img.taocdn.com/s3/m/6fb7e69126fff705cc170ad0.png)
⎛ ⎜⎝
∞ n=0
xn
⎞′′ ⎟⎠
=
1 2
(1 +
∞
x)n=2n(n− 1) x n −2
∑ ∑ = 1 ∞ n(n −1)xn−2 + 1 ∞ n(n −1)xn−1
2 n=2
2 n=2
∑ ∑ ∑ = 1
∞ (n + 2)(n +1)xn + 1
∞
(n +1)nxn =
∞
(n +1)2 xn ,
x <1
n=1
(2n)!n
∑ 27, 令 S(x) = ∞ 2n + 3 x2n , x ∈ (−∞, +∞).,则 n=0 n!
∑ ∑ ∑ S(x) =
∞
2nx2n + 3 ∞
(x2 )n
∞
=2
x2n + 3ex2
n=0 n!
n=0 n!
n=1 (n −1)!
∑∞
=2
x2 (x2 )n + 3ex2 = 2x2ex2 + 3ex2 = (2x2 + 3)ex2 .
=1 e
≠ 0 ,级数发散。
n
(6) lim un+1 = 0 , 级数收敛。 u n→∞
n
(7)因为 lim n→∞
un 1
∑ = lim n +1 = 1 , 原级数与级数 ∞
1
敛散
n→∞ n
n=1 (n +1) ln(n +1)
(n +1) ln(n +1)
性相同,故原级数发散。 18, (1)条件收敛(用莱布尼兹判别法即可);(2)条件收敛;
无穷级数习题课及答案
![无穷级数习题课及答案](https://img.taocdn.com/s3/m/be370b962cc58bd63186bdb4.png)
第十一章 无穷级数(A)用定义判断下列级数的敛散性1.()∑∞=+-+112n n n ;2.()∑∞=+12221n n n判断下列正项级数的敛散性1.∑∞=1100!n nn 2.()∑∞=++1332n n n n ;3.∑∞=14!n n n ; 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛1.()∑∞=---11121n n n n ;2.Λ+-+-0001.1001.101.11.1; 3.Λ++-+++-144133********; 求下列幂级数的收敛半径和收敛区间1.∑∞=13n nn x n;2.∑∞=1!n nx n ;3.()∑∞=-1121n nnx n;4.∑∞=+-112121n n n x;5.∑∞=123n nn x n求下列级数的和函数1.∑∞=-11n n nx;2.121121+∞=+∑n n n x ;将下列函数展开成0x x -的幂的级数1.x 2cos ,00=x ;2.()()x x ++1ln 1,00=x ;3.x1,30=x ; (B)用定义判断下列级数的敛散性()()∑∞=++043131n n n 判断下列正项级数的敛散性1.∑∞=+1n )1(1n n ;2.1131++∑∞=n n n ;3.∑∞=13n n n ;判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛1.()∑∞=-⋅-11311n n n n ;2.()∑∞=--1n1211n n ; 求下列幂级数的收敛半径、收敛区间1.()∑∞=-121n nnn x ;求下列幂级数的收敛区间、和函数与级数和 求∑∞=--11)1(n n x n 的收敛区间与和函数,并由此求数项级数∑∞=-112n n n 的和;将下列函数展开成0x x -的幂的级数1.()13212+-=x x x f ,00=x ;2.()21x x f =,10=x。
无穷级数练习及答案
![无穷级数练习及答案](https://img.taocdn.com/s3/m/a57508141a37f111f1855bc3.png)
第九章 无穷级数 测试题一、选择题(每小题4分,共24分) 1.级数∑∞=+111n na 敛散的情况是( ) A. 当0>a 时收敛 B. 当0>a 时发散C. 当10≤<a 时发散,当1>a 时收敛D.当10≤<a 时收敛,当1>a 时发散 2. 级数()∑∞=⎪⎭⎫ ⎝⎛--1cos 11n n n α (常数0>α) ( )(A )发散; (B )条件收敛;(C )绝对收敛; (D )敛散性与α有关. 3. 设0lim =∞→n n a ,则常数项级数∑∞=1n na( )(A )一定收敛且和为0 (B )一定收敛但和不一定为0(C )一定发散 (D )可能收敛也可能发散 4. 若∑∞=1n nu收敛,则下列级数中哪一个必收敛。
( )(A)∑∞=-1)1(n n nu (B)∑∞=12n nu(C)()∑∞=+-11n n nu u(D)∑∞=1n nu5、如果81lim 1=+∞→nn n a a ,则幂级数∑∞=03n n n x a ( )(A)当2<x 时收敛 (B) 当8<x 时收敛 (C) 当81>x 时发散 (D) 当21>x 时发散 6、级数 ∑∞=1!2n n n n n (1) 与级数∑∞=1!3n n n nn (2)( )(A )级数(1)(2)都收敛 (B )级数(1)(2)都发散(C )级数(1)收敛,级数(2)发散 (D )级数(1)发散,级数(2)收敛二、填空题(每小题4分,共28分) 1.已知级数∑∞=1n n u 的前n 项部分和13+=n ns n () 2, 1=n 则此级数的通项=n u .2.设幂级数∑∞=0n nnx a的收敛半径是4,则幂级数∑∞=+012n n n x a 的收敛半径是 .3. 幂级数()()()∑∞=---121311n n nn n x 的收敛域为 . 4. x ln 在10=x 处展开成的泰勒级数为x ln =_____________________ 5、如果幂级数()nn n x a 10-∑∞=的收敛半径是1,则级数在开区间 内收敛.6、幂级数nn nx n n ∑∞=12cos 的收敛域是 . 7、幂级数()∑∞=-15n n nx 的收敛半径是 ,收敛域是 .三、解答下列各题(每题12分,共48分)1. 判别级数21cos 32n n n n π∞=∑的敛散性。
高等数学B第八章无穷级数参考答案
![高等数学B第八章无穷级数参考答案](https://img.taocdn.com/s3/m/e27f7db9dc3383c4bb4cf7ec4afe04a1b071b064.png)
第八章 无穷级数 参考答案习题8-11.(1)2345611111(1ln 2)(1ln 3)(1ln 4)(1ln 5)(1ln 6)++++++++++(2)23451111155555-+-+-(3)1131351357135792242462468246810⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+++++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (4) 22222234564710131622222--+++2.(1); (2); (3);(4); (5)1(2)!n 1(1)21n n ---2246(2)n xn ⋅⋅ 11(1)n n n-+-⋅1(0.001)n3.(1);(2);2121(1)n n n ∞=-=-∑1112n n ∞==∑(3) .1[arctan arctan(1)]2n n n π∞=--=∑4. (1) 发散; (2) 收敛; (3) 发散; (4) 收敛; 5. (1) 收敛; (2) 发散; (3) 发散;(4) 发散;(5) 发散;(6) 发散; (7) 收敛 6. (1) 收敛;(2) 收敛;(3) 发散;(4) 发散 习题8-2(A)1. (1) 发散; (2) 发散;(3) 发散;(4) 收敛; (5) 发散;(6) 收敛 2. (1) 发散; (2) 收敛; (3) 收敛; (4) 收敛3. (1) 发散; (2) 收敛; (3) 收敛; (4) 收敛 4. (1) 收敛; (2) 发散; (3) 收敛; (4) 发散;(5) 收敛;(6) 收敛; (7) 收敛;(8) 收敛5.习题8-2(B)1.(1) 发散; (2) 收敛; (3)时收敛,时发散,时不定b a <b a >b a = (4) 收敛; (5)时发散,时收敛;01a <≤1a >(6) 时收敛,时发散;01a <<1a ≥(7) 时收敛,时发散;0a e <<a e ≥(8)时收敛,时发散;12q >12q ≤(9)收敛; (10)发散.习题8-3(A)(1) 绝对收敛; (2) 绝对收敛; (3)条件收敛; (4)发散;(5) 绝对收敛;(6) 绝对收敛习题8-3(B)1. (1) 绝对收敛; (2) 条件收敛; (3) 条件收敛;(4) 时绝对收敛, 时条件收敛, 时发散;01a <<12a ≤<2a ≥ (5) 绝对收敛;(6) 当时绝对收敛, 时发散, 时条件收敛1a >01a <<1a =习题8-4(A)1. (1)(2) (3) 1,[]1,1-1,[]1,1-3,[3,3)-(4)(5)(6) 0,; 111,,222⎡⎤-⎢⎥⎣⎦1,[]1,1-1x =-(7) [-4, 6 )(8) 2, [-2, 2]+2. (1) , ;(2) , []1,1-arctan x (1,1)-21(1)x -(3) , []1,1-(1)ln(1)x x x +--习题8-4(B)1. (1)(2) (3)3,(-3,3)111,(,222-111,(,)e e e-(4)(5) ,1,(1,1)-max(,)c a b =(,)c c -2. (1) ,(2) (1,1)-32(1)x -[]21,1,2arctan ln(1)x x x -+3. ,3;2222(2)x x +-4.32习题8-5 (A)1. ; n n x x n x n ))(2cos(!1000-+∑∞=π(,)-∞+∞2. (1), 211(21)!n n x n -∞=-∑(,)-∞+∞ (2) , 111ln (1)(nn n xa n a∞-=+-∑(,];a a - (3) , ;211(2)(1)2(2)!nn n x n ∞-=-⋅∑(,)-∞+∞ (4) ,;∑∞=--+2)1()1(n nn n n x x (1,1]- (5) ,;121)12(!!)2(!!)12(+∞=∑+-+n n x n n n x []1,1- (6) , ;12122()!(!)2(2)1(+∞=∑-+n n nx n n x ]1,1(-3. (1) ,(1)!n n x e n ∞=-⋅∑(,)-∞+∞ (2) , 111(1)(1)ln10n n n x n-∞=--∑(0,2]4., 1212101(1)(1)((2(21)!6(2)!6n n n n n n x x n n ππ-∞∞-==⎤---+-⎥-⎦∑(,)-∞+∞5., 10(1)(3)3nn n n x ∞+=--∑(0,6)6. , 1111(4)23n n n n x ∞++=-+∑(6,2)--习题8-5 (B)1. (1) ,111ln 22n n n x n∞=-+∑[1,1);-(2) ,220(1)(2)!(22)nn n x n n ∞+=-+∑(,)-∞+∞ (3) , 21(1)(1)n n n x n ∞=-+∑[2,0]-(4) , 3310()n n n x x ∞+=-∑(1,1)-2. ,, , ; 1013n n n x ∞+=∑(3,3)-101(1)2nn n x ∞+=-∑(1,3)-133. (1), (21)1x e x +-(,)-∞+∞(2) , 2211(1)142xe x x ++-(,)-∞+∞习题8-71. (1), 220(1)112cos nn nx nπ∞=-++∑(,)-∞+∞(2) , 22211(1)(2cos sin )44nn e e nx n nx n πππ-∞=⎡⎤--+-⎢⎥+⎣⎦∑((21),0,1,2)x n n π≠+=±± (3) ()4a b π-+211(1)()(1)()cos sin n n n b a a b nx nx n n π∞=⎧⎫⎡⎤----+⎪⎪⎣⎦+⎨⎬⎪⎪⎩⎭∑((21),0,1,2)x n n π≠+=±±, 121(1)sin 91n n nnx n -∞=--(,)ππ- (2) ,221111(1)(1)1(1)cos sin 211n n n n e e n ne nx nx n n n ππππππ---∞=⎧⎫⎡⎤+----+-+-⎪⎪+++⎨⎬⎢⎥++⎪⎪⎣⎦⎩⎭∑(,)ππ-3. , 221(1)4cos 3nn nx nπ∞=-+∑[,]ππ-5.),2,1,0,)12((,sin 2)1(2sin12112 ±±=+≠⎥⎦⎤⎢⎣⎡-+∑∞=+n n x nx n n nn n ππππ6. , ;11sin n nx n∞=∑(0,]π7. , 2331422(1)()sin n n nx n n n ππ∞=⎡⎤-+--⎢⎥⎣⎦∑[0,)π , 223π+21(1)8cos n n nx n∞=-∑[0,]π3. ,11(1)sin 2n n nx n -∞=-∑[0,)π4. , 3181sin(21)(21)n n n ππ∞=⋅--∑[0,]π11., 12sin cos n hnhnx nππ∞=+∑[0,)(,]h h π ()0()12f x x x hS x x hπ≤≤≠⎧⎪=⎨=⎪⎩且12. (1) , 212(1)1cos 2()nn l l n x n lππ∞=⎡⎤--⎣⎦+∑[,]l l -(2) 14-+212sin 12cos 1(1)22cos sin ()n n n n n x n x n n n πππππππ∞=⎧⎫⎡⎤-⎪⎪⎢⎥--⎪⎪++⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭∑1(2,2,0,1,2)2x k k k ≠+=±± (3), 221(12cos)sin 633sin 3n n n n x n ππππ∞=+∑[0,3]13. (1) ,12214(1)(21)sin (21)n n ln xn lππ-∞=---∑[0,]l, 221212(21)cos 4(21)n l l n xn lππ∞=---∑[0,]l(2) [])2,0[,2sin 1)1(2)1(81231x n n n n n n πππ∑∞=+⎭⎬⎫⎩⎨⎧--+-]2,0[,2cos )1(1634122x n n n nππ∑∞=-+14*. ,21(1)(1)11()n in xn in sh e n πππ∞=-∞--⋅+∑(21,0,1,2)x k k ≠+=±± 15*., 1212sin cos n h hn n tn ττππτπττ∞=+∑(,)-∞+∞总复习题八一、B C B C D C C D二、(1)(2) ;(3) 发散,收敛; (4) cos1,2R [0,2](6)(7) (8)[1,1)-32(ln 2)!nn (9)(10) ;22ln 3-3,p >03p <≤三、1. 收敛;2. 收敛;3. ;4. ;[0,6)(1,1)- 5., 6.,;21(1)xx +-(1,1)-32(1)x x +8278. (1) 1;9. , 2222arctan ln(1)1x x x x x +-++(1,1)-10. ,111(1)(2)2n n n n n x -∞+=--∑(0,4)11. ,210(1)(21)(21)!nn n x n n ∞+=-++∑(,)-∞+∞。
第十一章-无穷级数(习题及解答)
![第十一章-无穷级数(习题及解答)](https://img.taocdn.com/s3/m/0f90c9e443323968001c923e.png)
2.若 ,则下列级数中肯定收敛的是( ).
; ;
; .答 .
3.设级数(1) 与(2) ,则( ).
级数(1)、(2)都收敛; 级数(1)、(2)都发散;
级数(1)收敛,级数(2)发散; 级数(1)发散,级数(2)收敛.答 .
4.设级数(1) 与(2) ,则( ).
; ;
; .答 .
二、填空题
1. 是以 为周期的函数, 傅里叶级数为 .
答: 其中
2. 是以 为周期的偶函数, 傅里叶级数为 .
答:
3. 是以 为周期的奇函数, 傅里叶级数为 .
答:
4.在 的傅里叶级数中, 的系数为.答:
5.在 的傅里叶级数中, 的系数为.答:
6.在 的傅里叶级数中, 的系数为.答:
在区间 上正交; 以上结论都不对.答 .
2.函数系
在区间 上正交; 在区间 上不正交;
不是周期函数; 以上结论都不对.答 .
3.下列结论不正确的是( ).
; ;
; .答 .
4. 是以 为周期的函数,当 是奇函数时,其傅里叶系数为( ).
; ;
; .答 .
5. 是以 为周期的函数,当 是偶函数时,其傅里叶系数为( ).
一、单项选择题
1.级数 与 满足 ,则( ).
若 收敛,则 发散; 若 发散,则 发散;
若 收敛,则 发散; 若 收敛,则 未必收敛.答 .
2.下列结论正确的是( ).
收敛,必条件收敛; 收敛,必绝对收敛;
发散,则 必条件收敛;
收敛,则 收敛.答 .
2.下列级数中,绝对收敛的是( ).
; ;
; .答 .
无穷级数 期末复习题 高等数学下册 (上海电机学院)
![无穷级数 期末复习题 高等数学下册 (上海电机学院)](https://img.taocdn.com/s3/m/7c052baa0029bd64783e2cda.png)
第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1nnn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()nn n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n nnC .∑∞=-1321)1(n n nD .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )+++++321161814121(C ) +++3001.0001.0001.0(D )()()()+-+-5353535343217.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C )(A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n nnB .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n nn19.幂级数∑∞=++11)21(n nnx 的收敛区间是( C )A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n nn n(B)()n n n111∑-∞=(C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫ ⎝⎛∞=+1152n n 的和S=( D )(A )23(B) 35(C) 52(D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=n a [D]A. 1)1(2+-n nB.nn)1(2- C.1)1(1+-n nD. 023. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++10)sin cos (2n n nnx b nx aa ,则=nb [A]A. 0B.nn)1(4- C.1)1(2+-n nD. 1)1(4+-n n二、填空题1.幂级数()∑∞=-02!1n nnn x 的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。
(完整版)无穷级数习题及答案.doc
![(完整版)无穷级数习题及答案.doc](https://img.taocdn.com/s3/m/9bdcff950722192e4436f67b.png)
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
九 无穷级数(1-4)节习题及答案
![九 无穷级数(1-4)节习题及答案](https://img.taocdn.com/s3/m/7d180388ec3a87c24028c426.png)
九 无穷级数(一)常数项级数的概念及性质1. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6)0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则li m l i m(11)n nnS n =+-=+ ,级数发散。
(2)由于14113n n n nゥ===+邋,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnn k k n S n n n n n ====-+=-+=-++邋,则l i m l i m [l n (n nnS n =-+=- ,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2n n k S k n k ì-=-ïï==íï=ïîL 因而lim n n S 不存在,级数发散。
(5)级数通项为1n nu n =+,由于1lim10n n n += ,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n n nu n -=+,而lim n n u 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nnnn k k kk n nn n k k k S ===骣÷ç=+=+=-+-=-- ÷ç÷ç桫邋所以该级数的和为31113lim lim(),22232n n n n n S S ==--? 即1113.232n n k ¥=骣÷ç+=÷ç÷ç桫å (2)由于1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnn k k S k k k k k k k n n ====-=-+++++++邋所以该级数的和为 1111lim lim [],22(1)(2)4n n n S S n n ==-=++即111.(1)(2)4n n n n ¥==++å(3)级数的通项为sin 2n u n n p =,由于sin2lim sin lim()02222n n n n n np p ppp =? ,不满足级数收敛的必要条件,所以原级数发散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷级数同步测试一、单项选择题1.下列结论中,错误的是( )()A 若lim 0→∞≠n n u ,则级数21∞=∑n n u 发散.()B 若级数1∞=∑n n u 绝对收敛,则21∞=∑n n u 收敛.()C 若级数1∞=∑n n u 收敛,则21∞=∑n n u 收敛.()D 若级数21∞=∑n n u 收敛,则lim 0→∞=n n u 收敛.2.已知幂级数1(1)∞=−∑nn n a x 在0=x 处收敛,在2=x 处发散,则该级数的收敛域( )()[0,2)()(0,2]()(0,2)()[0,2]A B C D3.已知幂级数1∞=∑nn n a x 的收敛半径1=R ,则幂级数0!∞=∑n n n a x n 的收敛域为( )()(1,1)()[1,1)()(1,1]()(,)−−−−∞+∞A B C D4. 设常数0>x ,则级数11(1)sin ∞−=−∑n n x n ( ). ()A 发散 ()B 条件收敛 ()C 绝对收敛 ()D 收敛性与x 有关二、填空题5. 级数11()2∞=∑nn n 的和为 .6.2!lim(!)→∞=n n n .7.已知级数22116π∞==∑n n ,则级数211(1)∞=−=∑n n n .8.幂级数2101!∞+=∑n n x n 的和函数()=S x . 三、解答题9.判断下列运算过程是否正确,若不正确,指出错误所在,并给出正确解法.级数∞=n n .又由于0=n,但=n u 不是单调递减的,由此得出该级数不满足莱布尼茨定理的第二个条件,故级数发散.10.讨论级数21(0)(1)(1)(1)∞=≥+++∑nn n x x x x x 的敛散性.11.求级数11(21)2∞=+∑nn n n 的和. 12.将2()ln(3)=−f x x x 展开为1−x 的幂级数. 13.求极限2313521lim()2222→∞−++++nn n . 14.验证函数3693()1()3!6!9!(3)!=++++++−∞<<+∞n x x x x y x x n 满足微分方程()()()'''++=xy x y x y x e ,并求幂级数30(3)!∞=∑nn x n 的和函数.第九章 多元函数微分法及其应用同步测试B 答案及解析一、单项选择题答案详细解析1. 解 利用级数的性质.若lim 0→∞≠n n u ,则2lim 0→∞≠nn u ,因此级数21∞=∑n n u 发散, ()A 正确;若1∞=∑n n u 绝对收敛,即1∞=∑n n u 收敛,则lim 0→∞=n n u ,2lim lim 01→∞→∞==<nn n n nu u u根据正项级数的比较审敛法知21∞=∑n n u 收敛,()B 正确;若级数21∞=∑n n u 收敛,则2lim 0lim 0→∞→∞=⇒=nn n n u u ,()D 正确; 故选()C .事实上,令(1)=−nn u ,则1∞=∑n n u 收敛,但2111∞∞===∑∑n n n u n发散. 『方法技巧』 本题考查级数收敛的必要条件及正项级数的比较审敛法. 『特别提醒』 比较审敛法只限于正项级数使用.2.解 由于幂级数1(1)∞=−∑n n n a x 在0=x 处收敛,则该级数在以1为中心,以0和1之间的距离1为半径的开区间11−<x ,即02<<x 内,级数绝对收敛.又级数在2=x 处发散,则在以1为中心,以1和2之间的距离1为半径的区间外11−>x ,即0<x 或2>x 内,级数发散.因此级数的收敛区间(不含端点)为(0,2),则收敛域为[0,2),故选()A .『方法技巧』 本题考查幂级数的阿贝尔定理.『特别提醒』 阿贝尔定理经常出现在各类考试的选择题或填空题中,要求大家熟练掌握它.3. 解 由于1∞=∑n n n a x 的收敛半径1=R ,则有1lim1→∞+=nn n a a . 幂级数0!∞=∑nn n a x n 的收敛半径为 11!lim lim (1)(1)!→∞→∞++'==+=+∞+nn n n n n a an R n a a n ,因此收敛域为(,)−∞+∞,故选()D .『方法技巧』 本题考查幂级数的收敛半径和收敛域. 由于级数是标准的幂级数,直接代入公式即可求出收敛半径=+∞R .4. 解 由于存在充分大的n ,有,sin 02π<>x xn n,所以从某时刻开始,级数1(1)sin ∞−=−∑k k nxk 是交错级数,且满足 sin sin ,limsin 01→∞≤=+k x x x k k k ,即满足莱布尼茨定理的条件,所以此交错级数收敛,而前有限项(1−n 项)不影响级数的敛散性,因此原级数11(1)sin ∞−=−∑n n xn 收敛.又由于sinlim 01→∞=>n xn x n,因此级数111(1)sin sin ∞∞−==−=∑∑n n n x x n n 发散,所以原级数11(1)sin ∞−=−∑n n xn 条件收敛,故选()B .『方法技巧』 本题考查正项项级数的比较审敛法及绝对收敛、条件收敛的概念和级数的性质.『特别提醒』 解题中需要说明,此级数可能不是从第一项就是交错级数,从某项以后为交错级数,而前有限项不影响级数的敛散性. 二、填空题 5. 2 6. 0 7. 212π− 8. 2x xe答案详细解析5. 解 考查幂级数1∞=∑n n nx ,其收敛域为(1,1)−.由111∞∞−===∑∑nn n n nx x nx,令11()∞−==∑n n f x nx ,则111()1∞∞−=====−∑∑⎰⎰xxn n n n x f x dx nx dx x x因此21()()1(1)'==−−x f x x x ,故21()(1)∞===−∑nn x nx xf x x ,所以 2111112()()21222(1)2∞====−∑n n n f 『方法技巧』 本题考查幂级数的收敛域及和函数.求常数项级数的和经常转化为讨论幂级数的和函数在确定点的值.『特别提醒』 在幂级数求和时,经常使用逐项积分和逐项求导的方法,将其转化为熟悉的幂级数(如等比级数),注意级数的第一项(0=n 或1=n ).6. 解 考虑级数21!(!)∞=∑n n n ,由比值审敛法 212(1)!(!)1lim lim lim 01![(1)!]1+→∞→∞→∞+===<++n n n n nu n n u n n n 因此级数21!(!)∞=∑n n n 收敛,由收敛级数的必要条件得2!lim 0(!)→∞=n n n . 『方法技巧』 本题考查利用收敛级数的必要条件求极限.这是求数列极限的一种方法,有些数列变形十分复杂,可考虑将其作为级数的一般项讨论.7. 解 由题设 222211111236π∞==+++=∑n n,则2222222111111111(2)42464624ππ∞∞====++=⨯=∑∑n n n n 22222222111111111(21)35(2)6248πππ∞∞∞====+++=−=−=−∑∑∑n n n n n n 故 222222222111111111(1)122234(21)6812πππ∞∞∞===−=−+−+−=−=−⨯=−−∑∑∑nn n n n n n 『方法技巧』 本题考查收敛级数的性质——收敛级数的代数和仍收敛(此性质只适用于收敛级数).『特别提醒』 一些同学不熟悉符号∑,可以将其写成普通和的形式,看起来会方便一些.8. 解 由于函数xe 的幂级数展开式为 01()!∞==−∞<<+∞∑xnn e x x n ,而 2122000111()!!!∞∞∞+=====∑∑∑n n n n n n x x x x x n n n 因此 22120011()()!!∞∞+=====∑∑n n x n n S x x x x xe n n .『方法技巧』 本题考查指数函数()=x f x e 的幂级数展开式01()!∞==−∞<<+∞∑xnn e x x n 一般而言,若幂级数的系数为1!n 时,求和时可能与指数函数x e 有关;若幂级数的系数为1(21)!−n 或1(2)!n 时,求和时可能与三角函数sin x 或cos x 有关.三、解答题9. 解 判断条件收敛的运算过程是错误的.由于lim11→∞→∞===n n n n u ,因此由比较审敛法知,级数∞=n2∞=n n 不是绝对收敛的.错误在于:莱布尼茨定理是判断交错级数收敛的一个充分条件,不是必要的,因此并不能说明不满足莱布尼茨定理的第二个条件,级数就一定不收敛.本题的正确解法要用级数收敛的充分必要条件,即研究lim →∞n n S 是否存在.正确解法:212⎛=+++ ⎝n S n由于每个括号均为负数,因此2n S 单调递减,且有212⎛=+++⎝n S n12⎛>+++⎝n=> 因此2lim →∞n n S 存在,不妨设2lim →∞=n n S S ,而21221221lim lim()lim lim 0+++→∞→∞→∞→∞=+=+=+=+=n n n n n n n n n n S S u S u S S S从而得到lim →∞=n n S S ,即级数∞=n n .『方法技巧』 本题考查绝对收敛和条件收敛的概念、莱布尼茨定理的应用及级数收敛的充分必要条件.1∞=∑nn u收敛⇔部分和n S 的极限存在,即lim →∞=n n S S『特别提醒』 莱布尼茨定理是判断交错级数收敛的充分非必要条件,即使不满足莱布尼茨定理,级数也可能收敛.10. 解 由于级数的一般项中含有连乘的形式,所以用比值审敛法1111lim 0 111limlim0111 12→∞+++→∞→∞⎧⎪=>⎪⎪+⎪⎪==≤<⎨+⎪⎪=⎪⎪⎪⎩n n n n n n n nx x x u xx x u x x 故对任意的0≥x ,原级数均收敛.『方法技巧』 本题考查正项级数的比值审敛法.若正项级数的一般项中含有连乘(包括阶乘!n )时,一般考虑用比值审敛法判断级数的敛散性.『特别提醒』 由于x 的范围不同,1lim+→∞n n nu u 不同,故需要分别进行讨论,但不论什么情况,极限值均小于1,因此级数收敛.11. 解 考虑幂级数21(21)∞=+∑nn x n n由于2211(1)(23)limlim 1(21)+→∞→∞++==+n n n nu n n x x u n n ,故其收敛半径为1=R ,而当1=±x 时,级数11(21)∞=+∑n n n 均收敛,因此幂级数的收敛域为[1,1]−.令 22111()(1)(21)(21)+∞∞====<++∑∑n n n n x x S x x x n n n n则 2212112(),()21∞∞−=='''===−∑∑n n n n x xS x S x x n x 因此 22002()(0)()ln(1)1''''−===−−−⎰⎰xxxS x S S x dx dx x x又 (0)0'=S ,则 2()ln(1)'=−−S x x ,同理2201()(0)()ln(1)ln(1)2ln1+'−==−−=−−+−−⎰⎰xxxS x S S x dx x dx x x x x而 (0)0=S ,则 21()ln(1)2ln1+=−−+−−xS x x x x x,故1111)](21)22∞====+−+∑nn n n2ln 21)=++『方法技巧』 本题考查利用幂级数求常数项级数的和,这是一种常用方法,关键要做出合适的幂级数.本题由于级数一般项的分母中含有因式21+n ,故所做级数为21(21)∞=+∑n n x n n,此时只要令=x ,即为所求的常数项级数.『特别提醒』 在求幂级数的和时,不要忽略了收敛域的讨论,要保证常数项级数是幂级数取收敛域内的点.12. 解 2()ln(3)ln ln(3)=−=+−f x x x x x1ln[1(1)]ln[2(1)]ln[1(1)]ln 2ln[1()]2−=+−++−=+−+++xx x x 由于 234111ln(1)(1)(1)(11)234∞−−=+=−+−++−+=−−<≤∑nnn n n x x x x x x x x nn则 11111()(1)2()ln 2(1)(1)∞∞−−==−−=+−+−∑∑n nn n n n x x f x n n12111(1)(1)ln 2(1)(1)2∞∞−−==−−=+−+−∑∑n nn n nn n x x n n 111(1)ln 2[(1)]2∞−=−=+−−∑nn n n x n且满足1111112−<−≤⎧⎪⎨−−<≤⎪⎩x x,即 02<≤x . 『方法技巧』 本题考查形如()ln(1)=+f x x 的函数展开式及收敛域11−<≤x .首先将2()ln(3)=−f x x x 化为1()ln[1(1)]ln 2ln[1()]2−=+−+++xf x x ,将第一项中的1−x 看成标准形中的x ,第二项中的12−x看成标准形中的x ,再展开. 『特别提醒』 ()ln(1)=+f x x 的展开式可以用如下方法记忆:由于 231111111(1)(1)1∞−−−−==−+−++−+=−+∑n n n n n x x x xx x两边积分得11234011111(1)(1)ln(1)1234−−∞=−−+==−+−+++=+∑⎰n n xnnn x dx x x x x x x x n n13. 解 所求极限实际上是级数1212∞=−∑nn n 的和,因此可考虑幂级数 221(21)∞−=−∑n n n x令 22221222111()(21)()()1(1)∞∞−−==+''=−===−−∑∑n n n n x x S x n xxx x故2321113521112lim()31222222(1)2→∞+−++++===−n n n S 『方法技巧』 本题考查利用级数的和求其部分和的极限.关键是找到一个适当的幂级数,利用它求出常数项级数的和,再利用级数收敛的充要条件求极限.『特别提醒』 1212∞=−∑nn n 不刚好等于S ,而是相差12倍. 14. 解 当(,)∈−∞+∞x 时,3693()13!6!9!(3)!=++++++n x x x x y x n ,(0)1=y则 25831()2!5!8!(31)!−'=+++++−n x x x x y x n ,(0)0'=y4732()4!7!(32)!−''=+++++−n x x x y x x n ,故4732258314!7!(32)!2!5!8!(31)!−−'''++=+++++++++++−−n n x x x x x x x y y y x n n369313!6!9!(3)!+++++++n x x x x n2345612!3!4!5!6!!=++++++++++=n x x x x x x x x e n所以()y x 满足方程'''++=x y y y e .由于幂级数30(3)!∞=∑nn x n 的和函数为()y x ,因此所要求的是二阶常系数非齐次线性微分方程 '''++=x y y y e 的满足条件(0)1,(0)0'==y y 的特解()y x .其特征方程为210++=r r ,特征根为1,2122=−±r i ,对应的齐次方程的通解为212(cossin )22−=+x Y e C x C x ,又因1λ=不是特征根,则其特解形式为*=x y Ae ,代入原方程,解得13=A ,故微分方程的通解为11 2121(cos sin )223−=++x x y e C x C x e ,将(0)1,(0)0'==y y 代入得122,03==C C ,所求微分方程的特解为221cos 323−=+x x y e x e 因此32021cos (3)!323∞−==+∑x n x n x e x e n 『方法技巧』 本题考查幂级数逐项求导及二阶常系数非齐次线性微分方程的求通解和特解.。