2018年云南省高中毕业生复习统一检测
云南省2018年高三统测理科综合试题化学试题及答案
![云南省2018年高三统测理科综合试题化学试题及答案](https://img.taocdn.com/s3/m/e79088ab65ce050877321300.png)
2018年云南省高中毕业生复习统一检测理科综合能力测试(化学)可能用到的相对原子质量H:1 C:12 N:14 O:16 S:32 Fe:56 Ba:1377.党的十九大报告中多次提到“生态文明”,下列做法不符合生态文明理念的是A.发展新能源汽车,实现低碳出行B.用氯乙烯生产快餐盒,降低白色污染C.用地沟油制生物柴油,回收利用资源D.科学开发利用自然资源,维护生态平衡8.下列关于有机物的说法错误的是A.C(CH3)4的名称为新戊烷B.CH3-CH=C H-C≡CH分子中最多有9个原子共面C.石油裂解和油脂皂化都是高分子化合物生成小分子化合物的过程D.甲苯分子中苯环上的一个氢原子被一C2H4Cl取代后可得6种同分异构体9.N A为阿伏加德罗常数的值。
下列说法正确的是A.1.4gC2H4、C3H6的混合气体中,所含碳原子总数为0.lN AB.在0.1 mo l·L Na2S溶液中,S2-、HS-、H2S微粒总数为0.1N AC.标准状况下,22.4LC2H6中所含极性共价键的数目为7N AD.50mL l2mo l·L的浓盐酸与足量MnO2反应,转移电子总数为0.3N A10.实验是探究化学过程的重要途径,有关下列各实验装置图的叙述正确的是A.图I可用于探究NaHCO3固体的热稳定性B.图Ⅱ用于从氯化钠溶液中获得晶体C.图III中b口进气可收集Cl2、CO2等气体D.图Ⅳ中若X为NaOH溶液,则可完成SO2的喷泉实验11.短周期元素W、X、Y、Z在元素周期表中的相对位置如下图所示,其中W的最高正价和最低负价的代数和为2。
下列判断正确的是A.最高价氧化物对应水化物的酸性:Y>WB.最简单气态氢化物的稳定性:Z>YC.元素W 与元素Y 形成的化合物Y 3W 4是一种新型有机材料D.X 的单质能与W 的最高价氧化物对应水化物的浓溶液反应产生氢气12.科学家研发出了一种新材料,其工作原理如下图所示。
2018年云南省高中毕业生复习统一检测语文试题.doc
![2018年云南省高中毕业生复习统一检测语文试题.doc](https://img.taocdn.com/s3/m/e224864125c52cc58bd6be84.png)
2018年云南省高中毕业生复习统一检测语文试题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
当今世界,各国经济发展深度融合,单一国家已经难以独自面对全球性经济问题的挑战。
改革开放以来,中国经济快速发展,为世界经济发展注入了强劲动力和活力。
应对当前经济全球化面临的问题和挑战,需要中国智慧、中国方案。
在世界格局大变革大调整的关键时期,中国倡导和推动“一带一路”建设。
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称。
“一带一路”贯穿欧亚大陆,东边连接亚太经济圈,西边进入欧洲经济图。
无论是发展经济、改善民生,还是应对危机、加快调整,许多沿线国家同我国有着共同利益。
历史上,陆上丝绸之路和海上丝绸之路就是我国同中亚、东南亚、南亚、西亚、东非、欧洲经贸和文化交流的大通道,“一带一路”是对古丝绸之路的传承和提升,获得了国际社会的广泛认同。
“一带一路”建设不是为了另起炉灶,更不是为了针对谁,而是对现有国际机制的有益补充和完善,目标是实现合作共赢、共同发展。
中国推进“一带一路”建设,不是要一家唱独角戏,而是欢迎各方共同参与;不是要谋求势力范围,而是支持各国共同发展;不是要营造自己的后花园,而是建设各国共享的百花园。
“一带一路”建设的实践表明,这一伟大创举是对传统区域经济一体化模式的超越与创新。
它致力于推动基础设施建设和互联互通,加强经济政策协调和发展战略对接,促进协同联动发展,实现共同繁荣。
它坚持共商共建共享原则,开创发展新机遇、谋求发展新动力、拓展发展新空间,帮助各参与国打破发展瓶颈、缩小发展差距、共享发展成果。
各参与国是平等贡献者、受益者,甘苦与共、命运相连,携手应对经济全球化面临的问题和挑战。
“一带一路”建设有利于构建相互尊重、公平正义、合作共赢的新型国际关系,打造对话不对抗、结伴不结盟的伙伴关系。
中国愿在和平共处五项原则基础上,发展同所有“一带一路”建设参与国的友好合作关系,中国愿同世界各国分享发展经验,但不会干涉他国内政,不会输出社会制度和发展模式,更不会强加于人。
2017-2018届云南省高三第二次高中毕业生复习统一检测政治试题及答案
![2017-2018届云南省高三第二次高中毕业生复习统一检测政治试题及答案](https://img.taocdn.com/s3/m/aa8ad407a300a6c30c229ffb.png)
2017-2018年云南省第二次高中毕业生复习统一检测文科综合政治能力测试注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答第 I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干挣后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题,共140分)本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一个是最符合题目要求的。
12.2017-2018年10月31日,人民币对美元的汇率中间价为614.61,2017-2018年3月27日,人民币对美元的汇率中间价为613.97。
在只考虑汇率变动,不考虑其他因素的条件下,下列图示中能反映国内某企业从美国进口玉米的需求变动的是13.自2017-2018年3月民营银行试点启动以来,我国首批5家民营银行正在筹建。
民营银行的设立①体现了坚持和完善我国的基本经济制度②拓宽了民间资本平等参与市场竞争的渠道③解决了中小型企业在发展中融资难的问题④说明非公有制经济在国民经济中地位平等A.①② B.①③ C.②④ D.③④14.2017-2018 年中国出境游突破1亿人次,境外消费已超过10000亿元人民币,中国出境游客的购买力己跃居全球第一。
下列措施有助于引导境外消费回流的有①降低部分商品消费税,消除国内外价格差②提高物流效率,降低物流成本③加强国内自贸区建设,限制境外购物消费④改变消费观念,完善购物环境A.①② B.①③ C.②④ D.③④15.当经济增长滞缓、经济运行主要受需求不足制约时,政府可以采取扩张性财政政策和货币政策以拉动经济增长。
云南省2018届高三毕业生复习统一检测理综物理试题(解析版)
![云南省2018届高三毕业生复习统一检测理综物理试题(解析版)](https://img.taocdn.com/s3/m/223222b2998fcc22bcd10d6d.png)
云南省2018届高三毕业生复习统一检测理综物理试题一、选择题1.一物体做加速度为-1 m/s 2的直线运动,t =0时速度为-5 m/s ,下列说法正确的是( ) A. 初速度为-5 m/s 说明物体在做减速运动 B. 加速度-1 m/s 2说明物体在做减速运动C. t =1 s 时物体的速度为-4 m/sD. 初速度和加速度方向相同,物体在做加速运动 【答案】D 【解析】当速度与加速度方向相同时,物体做加速运动,根据速度公式0v v at =+,得5v t =--,经过1 s ,速度为15m/s 1m/s 6m/s v =--=-,故ABC 错误,D 正确,故选D 。
2.如图所示,细线一端固定,另一端栓一小球,小球处于静止状态。
现用一始终与细线垂直的力F 缓慢拉着小球沿圆弧运动,直到细线水平,在小球运动的整个过程中,F 和细线拉力的变化情况为:A. F 先增大后减小B. F 不断增大C. 细线的拉力先增大后减小D. 细线的拉力不断增大【答案】B 【解析】对小球受力分析,如图所示:由上图可知,F 和T 的合力与重力大小相等,方向相反,故可以将这三个力放在一个闭合的矢量三角形内进行分析,如图所示:在缓慢变化的过程,重力保持不变,F 与T 的方向始终垂直,且三个力始终构成一个闭合的矢量三角形,故由图可知,F 的大小不断增大,拉力T 的大小不断减小,故ACD 错误,B 正确,故选B.3.如图所示,两个质量均为m 的物体A 、B 叠放在光滑水平面上,A 与B 间的动摩擦因数为μ.现用水平外力F 拉物体A ,要将A 拉离物体B ,则F 至少大于( )A. 0.5μmgB. μmgC. 2μmgD. 3μmg【答案】C 【解析】拉力F 作用在A 上,B 产生的最大加速度为m a g μ=,对A 由牛顿第二定律得:m F mg ma μ-=,解得:2F mg μ=,故选C.4.一半径为R 的圆形区域内有垂直于纸面的匀强磁场,从圆周上P 点向纸面内各方向发射质量、电量、速率均相同的带电粒子,这些粒子均从四分之一圆周磁场边界PQ 上射出,忽略粒子之间的相互作用。
最新-云南省2018届高三下学期第一次高中毕业生复习统一测试文科数学试题及答案 精品
![最新-云南省2018届高三下学期第一次高中毕业生复习统一测试文科数学试题及答案 精品](https://img.taocdn.com/s3/m/6af40394680203d8ce2f2435.png)
2018年云南省第一次高中毕业生复习统一检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,,2,3,4,S a T b ==,若{}1,2,3ST =,则a b -=( )A .2B .1C .-1D .-2 2. 已知i 为虚数单位,则复数1ii+=( ) A .1i + B .1i - C .12i +D .12i - 3. 已知平面向量()(),1,2,3a x b ==-,如果//a b ,那么x =( ) A .32 B .32- C .23 D .23- 4函数2sin 22sin 1y x x =-+的最大值为( )A .2BC .3D 5. 若运行如图所示程序框图,则输出结果S 的值为( ) A .94 B .86 C .73 D .566. 下图是底面半径为1,高为2的圆柱被削掉一部分后剩下的几何体的三视图(注:正视图也称主视图,俯视图也称左视图),则被削掉的那部分的体积为( ) A .23π+ B .523π- C .53-2π D .223π-8. 为得到sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需要将sin 2y x =的图象( ) A .向左平移3π个单位 B .向左平移6π个单位 C .向右平移3π个单位 D .向右平移6π个单位9. 在数列{}n a 中,12211,,123n n a a a a +===,则20162017a a +=( ) A .56 B .52 C .72D .510. 在长为3m 的线段AB 上任取一点P ,则点P 与线段AB 两端点的距离都大于1m 的概率等于( ) A .12 B .14 C .23 D .1311. 设12,F F 是双曲线22:19x y C m-=的两个焦点,点P 在C 上,且120PF PF ⋅=,若抛物线216y x =的准线经过双曲线C 的一个焦点,则12||||PF PF ⋅的值等于( ) A. B .6 C .14 D .16 12. 已知函数()f x 的定义域为实数集R ,()lg ,0,90,0x x x R f x x x >⎧∀∈-=⎨-≤⎩,则()()10100f f --的值为( )A .-8B .-16C .55D .101第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线()2x f x xe =-在点(0,2)处的切线方程为 .14. 若,x y 满足约束条件001x y x y ≥⎧⎪≥⎨⎪+≤⎩,则32+z x y =+的最大值为 .15. 已知三棱锥P ABC -的顶点、、B 、C P A 在球O 的表面上,ABC ∆的等边三角形,如果球O 的表面积为36π,那么P 到平面ABC 距离的最大值为 . 16. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,如果ABC ∆的面积等于8,5a =,4tan 3B =-,那么sin sin sin a b cA B C++++= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)设数列{}n a 的前n 项和为n S ,123626,728a a a S ++==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:21243n n n n S S S ++-<⨯.18. (本小题满分12分)某校高二年级共有1600名学生,其中男生960名, 640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,下图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2X2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++.19. (本小题满分12分)如图,在三棱锥A BCD -中,,,CD BD AB AD E ⊥=为BC 的中点. (Ⅰ)求证:AE BD ⊥;(Ⅱ)设平面ABD ⊥平面,2,4BCD AD CD BC ===,求三棱锥D ABC -的体积.20. (本小题满分12分)已知焦点在y 轴上的椭圆E 的中心是原点O ,以椭圆E 的长轴和短轴为对角线的四边形的周长为:l y kx m =+与y 轴交于点P ,与椭圆E 交于、A B 两个相异点,且AP PB λ=.(Ⅰ) 求椭圆E 的方程;(Ⅱ)若3AP PB =,求2m 的取值范围.21. (本小题满分12分)已知()0,ln 2a f x a x x ≠=+. (Ⅰ)当 4a =-时,求()f x 的极值;(Ⅱ)当()f x 的最小值不小于a -时,求实数a 的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分) 选修4-1:几何证明选讲如图,BC 是⊙O 的直径,EC 与⊙O 相切于,C AB 是⊙O 的弦,D 是AC 弧的中点,BD 的延长线与CE 交于E .(Ⅰ)求证: BC CD BD CE ⋅=⋅;(Ⅱ)若93,5CE DE ==,求AB .23. (本小题满分10分) 选修4-4:坐标系与参数方程 在直角坐标系xoy 中,直线l 的参数方程为12x t y t =-⎧⎨=+⎩,(t 为参数),在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=.(Ⅰ)直接写出直线l 、曲线C 的直角坐标方程;(Ⅱ)设曲线C 上的点到与直线l 的距离为d ,求d 的取值范围.24. (本小题满分10分) 选修4-5:不等式选讲已知()2122f x x x x =-++++. (Ⅰ)求证:()5f x ≥;(Ⅱ)若对任意实数()229,1521x f x a a -<++都成立,求实数a 的取值范围.。
云南省2018年高中毕业生复习统一检测(理科)数学试卷及答案
![云南省2018年高中毕业生复习统一检测(理科)数学试卷及答案](https://img.taocdn.com/s3/m/7722481902768e9951e7389c.png)
1 3n
,
3
∴
1 a1
1 a2
1 a3
1 an
13 12
1 3n
.
18.解:(1)由茎叶图可知,评分在 65 分以下的用户有 10 个,其中甲小区 4 个,乙小区有 6 个,
∴随机抽取
3
个用户,求这
3
个用户来自同一小区的概率为
P=
C
3 4
C63
C130
1 5
;
(2)Y 的分布列为:
i A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知平面向量 a =(1,x), b =(﹣2,1),若 a ⊥ b ,则| a + b |=( )
A. 3
B.3
C. 10
D.10
4.已知直线 y=mx﹣2 与圆 x2+y2﹣2x﹣4y﹣4=0 相交于 A、B 两点, 若|AB|=6,则 m=( )
14.若 sin(α﹣ )= 2 cosα,则 sin2α= 4
. .
15.已知双曲线
M:
x2 a2
y2 b2
1 (a>0,b>0)的渐近线与圆
x2+(y﹣2b)2=a2 相切,则双曲
第2页共8页
线 M 的离心率为
.
16.下列结论:
①设命题 p:a=2:命题 q:f(x)=sinax 的最小正周期为π,则 p 是 q 的充要条件;
1 an
13 12
1 3n
.
18.(本小题满分 12 分) 某共享单车公司为了解用户对其产品的满意度,从甲、乙两个小区分别随机调查了 20 个用 户,得到用户对其产品满意度评分的茎叶图如下:
云南省2018届高中毕业生复习统一检测英语试卷(含答案)
![云南省2018届高中毕业生复习统一检测英语试卷(含答案)](https://img.taocdn.com/s3/m/4a946459a5e9856a5712602c.png)
云南省2018届高三毕业班复习统一检测英语试题第I卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AA woman from Australia has found the world’s oldest known message in a bottle nearly 132 years after it was cast into the sea.Tonya Illman discovered the drift (漂流) bottle half-buried in the sand on a beach in Western Australia, 180 kilometers north of the state capital Perth.The message, dated 12 June 1886, was thrown into the Indian Ocean from the German ship Paula, which was en route from Cardiff, Wales, to its destination of Dutch East Indies (now Indonesia). The bottle was one of the thousands thrown into oceans as part of a 69-year-long German experiment on global currents (洋流) to find faster shipping routes.Until now, the previous world record for the oldest message in a bottle was 108 years, 4 months and 18 days from the time it was cast until its discovery.Illman found the bottle near her son’s car in the beach’s soft sand.“I was walking across when I saw something st icking out of the sand, so I went to take a closer look,” Illman was quoted as saying.“It just looked like a lovely old bottle, so I picked it up thinking it might look good in my bookcase. My son’s girlfriend was the one who discovered the note when she went to tip the sand out.“The note was damp, rolled tightly and tied with a string. We took it home and dried it out, and when we opened it, we saw it was in German, with very faint German handwriting on it.”The Illmans took their find to the local museum which established that the bottle was a 19th Century Dutch gin bottle, and the German ship Paula sailed from Cardiff to Makassar (Indonesia) in 1886.1. What can we learn about the newly-found bottle?A. It was thrown overboard near Germany.B. It was brought to a university for consultation.C. It was one of the bottles cast into the ocean in 1886.D. It was used for sending a message to today’s Indonesia.2. What do the underlined words “en route” in Paragraph 3 mean?A. On the way.B. Off the course.C. In the center.D. At the end.3. Which of the following can be the best title for the text?A. 19th Century Dutch Gin Bottle Returned to GermanyB. Oldest Message in a Bottle Found on Australian BeachC. German Ship Paula Sailed Across the Indian Ocean in 1886D. 69-year-long German Experiment on Global Currents EndedBStudents at the Florida high school where 17 people were shot dead in February of 2018 are being asked to wear clear backpacks.School officials have written to families of Marjory Stoneman Douglas High pupils outlining the plans as part of new security measures, They say any student without a clear backpack will be given one at no cost. As well as introducing the transparent backpacks for quicker safety checks, there will also be airport-style metal detectors and school visitors will pass through special gates.“We’re going to man every gate at the school during school hours and for after-school activities,” said the superintendent of Broward County Public Schools, Robert W. Runcie.Since the shooting when Nikolas Cruz opened fire killing 17 people, students there have been leading calls for gun reform.Donald Trump has told US politicians he wants tougher laws with “really strong background checks”, while he’s faced anger from anti-gun groups for suggesting training school staff to use firearms.In the last few days, safety at Marjory Stoneman Douglas High has been called into question again after several security breaches (违反). Three students were arrested on Tuesday, two for carrying knives andone for making threats on Snapchat. Some parents have become so worried that they’ve been keeping their children off school.“We’ve got to put things into place now,” Mr Runcie said.4. Which is a new security measure of the school?A. Teachers are trained to use firearms.B. Guards are hired to monitor the students.C. Visitors are forbidden to enter the school.D. Students are required to wear clear backpacks.5. What can we know about the school shooting from the text?A. The gunman was a school staff member.B. One of the victims was named Nikolas Cruz.C. Seventeen people were shot dead on campus.D. Someone unknown broke in and opened fire.6. Some parents have become worried because .A. three students were badly hurtB. the school takes few safety measuresC. they received a letter from the teacherD. there are still safety problems at the school7. What is the students’ attitude toward firea rms?A. They call for changes of gun laws.B. They are against the school’s stricter rules.C. They defend their right to possess weapons.D. They approve of Donald Trump’s suggestion.CAs a gesture of friendship, Mayor Yukio Ozaki of Tokyo, Japan gave Washington, DC a gift of more than 3,000 Japanese cherry trees on March 17, 1912. Every spring, the cherry trees in Washington, DC take bloom, beginning one of the country’s loveliest celebrations, the National Cherry Blossom Festival (March 17-April 15). Book your trip now to see this vibrant display of pink and white in this city full of history!Washington, DC Cherry Blossom In-Depth TourPrice: $45Available: Mar 25-Apr 15Duration: 1 DayHighlights: Visit Washington, DC; experience the peak period of cherry blossom (April 8-12)Itinerary:Guests would start to celebrate the National Cherry Blossom Festival and discover the beauty of cherry blossoms. Next, we will begin our sightseeing city tour including Lincoln Memorial, White House, US Capitol, Madame Tussauds Wax Museum, Washington Monument and International Spy Museum. Then visit the Jefferson Memorial, the best location to view the cherry blossoms. Finally, guests may board a Potomac River cruise to see the city from the water. Then tour ends.Price Includes: Ground TransportationService fee for the tour guide: $ 10/personAdmission Fees:Note: If you would like to join in the optional activities, please pay the fee in cash to the tour guide. You cannot buy the tickets on your own or use City Passes. The tour guide will arrange the tickets for the group.8. On March 25, tourists can enjoy .A. the cherry blossoms in full bloomB. the National Cherry Blossom FestivalC. a discounted tour of a city foil of historyD. the anniversary celebration of the gift of trees9. The tour covers tourist spots without admission fees.A. fourB. fiveC. sevenD. eight10. Tourists are supposed to .A. pay the service fee for the tour guideB. take care of the ground transportationC. show the City Pass at the ticket officeD. choose at least one optional destination11. It costs for you and your grandpa (aged 67) to go on the tour, with the wax museum included.A. $156B. $143C.$153D. $108DAmyotrophic lateral sclerosis, more commonly known as ALS, affects the nerve cells in the brain and spinal cord (脊髓) that make the muscles of both the upper and lower body work.Those nerve cells lose their ability to control muscle movement, which leads to paralysis (瘫痪) and death. Its most famous sufferer was famed physicist Stephen Hawking, who died on March 14, 2018 at the age of 76.Hawking, diagnosed with the condition in 1963, lived with it for more than 50 years — a remarkably long time for an ALS sufferer. The disease left him paralyzed and completely dependent on others and technology for everything: bathing, dressing, eating, mobility and speech. He was able to move only a few fingers on one hand.“I try to lead as normal a life as possible, and not think about my condition, or regret the th ings it prevents me from doing, which are not that many,” he wrote on his website.“I have been lucky that my condition has progressed more slowly than is often the case. But it shows that one need not lose hope.”Hawking’s life, including his battle with ALS, was made into a 2014 biopic, The Theory of Everything, starring Eddie Redmayne.The US Centers for Disease Control and Prevention says that 20,000 to 30,000 people have ALS in the United States, with about 5,000 new cases diagnosed every year. People usually find out that they have it between 55 and 75 years of age. On average, patients live two to five years after symptoms develop.For reasons not yet understood, military veterans are twice as likely to be diagnosed with ALS as the general public, according to the ALS Association. Scientists have been studying many factors that could be linked with ALS, such as heredity (遗传) and environmental exposures.12. According to the text, ALS .A. is linked with climate changesB. leads to death in one or two yearsC. affects the nerve cells all over the bodyD. makes people lose control of muscle movement13. From the text we can infer that Hawking .A. died of an unknown diseaseB. lived with ALS for 55 yearsC. felt desperate in his last yearsD. was paralyzed due to poor treatment14. What is the situation of ALS in the US?A. Over 30,000 people suffer from ALS.B. ALS is usually found among the elderly people.C. Patients often enjoy a long lifespan despite ALS.D. More and more new cases are reported every year.15. What is the text mainly about?A. The symptoms and possible cures of ALS.B. A biographical film about Stephen Hawking.C. A general introduction of the disease of ALS.D. Life of the famous physicist, Stephen Hawking.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
【数学】云南省2018届高中毕业生复习统一检测数学(文) 含答案
![【数学】云南省2018届高中毕业生复习统一检测数学(文) 含答案](https://img.taocdn.com/s3/m/cbae369c71fe910ef12df8e0.png)
2018年云南省高中毕业生复习统一检测文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =>,()(){}130B x x x =--<,则AB =( )A .∅B .{}23x x << C .{}2x x > D .{}3x x ≥ 2.已知复数()()221z i i =-+,其中i 是虚数单位,则z 的模z =( ) A.3 C .4 D .53.若x ,y 满足30,20,0.x x y x y -≤⎧⎪+-≥⎨⎪-≥⎩则2z y x =-的最大值为( )A .5B .1-C .3-D .7- 4.已知,2παπ⎛⎫∈⎪⎝⎭,tan 2α=-,则cos α=( ) A .35-B .25-C.. 5.已知函数()2sin 6f x x π⎛⎫=-⎪⎝⎭,则下列结论中正确的是( ) A .()y f x =的一个周期为πB .()y f x =的图像关于点,26π⎛⎫⎪⎝⎭对称 C. ()y f x =的图像关于直线6x π=对称 D .()y f x =在区间2,63ππ⎛⎫⎪⎝⎭上单调递增 6.执行下图所示的程序框图,为使输出M 的值大于9,则输入的正整数t 的最小值为( )A .2B .3 C.4 D .57.在我国古代数学名著《九章算术》中,“堑堵”指的是底面为直角三角形,且侧棱垂直于底面的三棱柱.如图,网络图中小正方形的边长为1,图中粗实线画出的是某堑堵的正视图与俯视图,则该堑堵的表面积为( )A .2+B .6 C.6+.108.在正方体1111ABCD A BC D -中,点P 是线段1BC 上任意一点,则下列结论中正确的是( )A .1AD DP ⊥B .1AP BC ⊥ C. 1AC DP ⊥D .11A P B C ⊥ 9.平面内到两个定点的距离之比为常数()1k k ≠的点的轨迹是阿波罗尼斯圆.已知曲线C 是平面内到两个定点()11,0F -和()21,0F 的距离之比等于常数()1a a >的阿波罗尼斯圆,则下列结论中正确的是( )A .曲线C 关于x 轴对称B .曲线C 关于y 轴对称 C. 曲线C 关于坐标原点对称D .曲线C 经过坐标原点 10.已知函数()ln 1f x x =-,则下列结论中正确的是( )A .()()10f f f e e ⎛⎫<< ⎪⎝⎭B .()()10f e f f e ⎛⎫<< ⎪⎝⎭C. ()()10f f e f e ⎛⎫<< ⎪⎝⎭ D .()()10f f f e e ⎛⎫<< ⎪⎝⎭11.定义:{},,min ,,.a a b a b b a b ≤⎧=⎨>⎩在区域02,0 3.x y ≤≤⎧⎨≤≤⎩内任取一点(),P x y ,则点(),P x y 满足{}min 21,11x y x y x y -++-=+-的概率为( )A .12 B .16 C.18 D .11212.已知定义在R 的函数()f x 满足()()22f x f x -=--,且当2x ≥-时,()23xf x =-.若函数()f x 在区间(),1k k +()k Z ∈上有零点,则k 的值为( ) A .1或6- B .0或5- C. 0或6- D .1或5-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()2,1a =-,()3,b m =,若向量a b +与a 垂直,则m = .14.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知cos sin bC C a=-,a =1c =,则角C = .15.设椭圆()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,过焦点2F 的直线交椭圆于()11,A x y ,()22,B x y 两点.若1AF B ∆内切圆的面积为2π,且124y y -=,则该椭圆的离心率是 .16.已知函数()()2221,0,log 1,0,x x x f x x x ⎧+->⎪=⎨⎪+<⎩若()()2f f a ≤,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设数列{}n a 满足12a =,12n n n a a +-=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .18. 某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(Ⅰ)求频率分布直方图中a 的值; (Ⅱ)求这50名问卷评分数据的中位数;(Ⅲ)从评分在[)40,60的问卷者中,随机抽取2人,求此2人评分都在[)50,60的概率. 19. 如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA AB ⊥,1AD AF FE ===,2AB =,AD BE ⊥.(Ⅰ)求证:BE DE ⊥; (Ⅱ)求点F 到平面CBE 的距离.20. 已知分别过抛物线()220x py p =>上点A 、B 的两条切线交于点M ,直线AB 与x 轴不平行,线段AB 的中点为N ,抛物线的焦点为F . (Ⅰ)求证:直线MN 与y 轴平行;(Ⅱ)若点F 线段AB 上,点N 的坐标为⎫⎪⎪⎝⎭,求抛物线的方程. 21. 设函数()()223x f x e ax a a R =-+∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当0a >时,对于x R ∀∈,都有()5f x a ≥成立. (ⅰ)求a 的取值范围; (ⅱ)证明:()()*1111ln 123n n N n++++>+∈. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程是3cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若A ,B 分别为曲线C 上的两点,且OA OB ⊥,求证:2211OAOB+为定值.23.选修4-5:不等式选讲 已知函数()121f x x x =-++. (Ⅰ)求不等式()5f x ≤的解集;(Ⅱ)若不等式()f x x m ≥-的解集为R ,求m 的取值范围.试卷答案一、选择题1-5:BDBCD 6-10:CCBAD 11、12:AA 二、填空题13.1 14.6π 15.216.[]112⎡⎤-⎣⎦,三、解答题17.解:(Ⅰ)∵()1122n n a a a n ---=≥,∴()12222222n n nn a n --⎡⎤=++++=≥⎣⎦.当1n =时,12a =.∴数列{}n a 的通项公式为2n n a =. (Ⅱ)∵()212221log log log 122n n n n b a a a n +=+++=+++=, ∴()1211211n b n n n n ⎛⎫==- ⎪++⎝⎭. ∴11111122121223111n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.解:(Ⅰ)由频率分布直方图,可得()0.0040.01560.02320.02320.028101a +++++⨯=,解得0.006a =.(Ⅱ)由频率分布直方图,可设中位数为m ,则有()()0.0040.0060.023210700.0280.5m ++⨯+-⨯=, 解得中位数76m =.(Ⅲ)由频率分布直方图,可知在[)40,50内的人数:0.00410502⨯⨯=, 在[)50,60内的人数:0.00610503⨯⨯=. 设在[)40,50内的2人分别为1a ,2a ,在[)50,60内的3人分别为1B ,2B ,3B ,则从[)40,60的问卷者中随机抽取2人,基本事件有()12,a a ,()11,a B ,()12,a B ,()13,a B ,()21,a B ,()22,a B ,()23,a B ,()12,B B ,()13,B B ,()23,B B ,共10种;其中2人评分都在[)50,60内的基本事件有()12,B B ,()13,B B ,()23,B B 共3种, 故所求概率为310P =.19.解:(Ⅰ)证明:如图,连接AE .由题设可知,AE BE ==.∵222AE BE AB +=, ∴AE BE ⊥. 而AD BE ⊥,AE AD A =,∴BE ⊥平面ADE . ∵DE ⊂平面ADE , ∴BE DE ⊥.(Ⅱ)如图,连接CF ,BF .∵CB AB ⊥,又AD BE ⊥,//AD CB , ∴CB BE ⊥. 又ABBE B =,∴CB ⊥平面ABE ,即CB ⊥平面BEF .∴111113326C BEF BEF V S CB -∆=⨯=⨯⨯=,1122CBE S ∆=⨯=. 设点F 到平面CBE 的距离为d ,由C BEF F CBE V V --=,得1163CBE S d ∆=⨯⨯,解得2d =.∴点F 到平面CBE 的距离为2.20.解:(Ⅰ)证明:设(),M x y ,()00,N x y ,()11,A x y ,()22,B x y ,∵A 、B 两点在抛物线上,故2112x py =,2222x py =, 两式相减得22121222x x py py -=-.化简得1212122y y x x p x x -+=⋅-,即0AB x p k =⋅.①∵切线MA 的斜率为1MA x k p=, ∴切线MA 的方程为()111x y y x x p-=-.② 同理得切线MB 的方程为()222x y y x x p-=-.③ 由②-③,化简得()2112211y y x x x x x p--=---,即()012AB k x x p -=-.④由①,④求解得0x x =,故直线MN 与y 轴平行. (Ⅱ)由点0,2p F ⎛⎫⎪⎝⎭在线段AB 上,N 为AB 中点, 则F 、A 、B 、N 四点共线,故AB FN k k =.由①知0AB x k p=,则0002FN py x k x p -==,22002p x y p =-.又2N ⎛⎫ ⎪ ⎪⎝⎭,则2222p p ⎛=- ⎝⎭,解得1p =.∴抛物线的方程为22x y =. 21.解:(Ⅰ)∵()()'22x fx e a x R =-∈,∴当0a ≤时,易知()'0fx >.∴()f x 的(),-∞+∞上单调递增.∴当0a >时,由()'0f x >,得ln x a >,由()'0f x <,得ln x a <, ∴()f x 在()ln ,a +∞上单调递增, 在(),ln a -∞上单调递减.(Ⅱ)(ⅰ)∵x R ∀∈,()5f x a ≥都成立, ∴()min 5f x a ≥.由(Ⅰ)知,当0a >时,()()min ln 2ln 5f x f a a a a ==-+, 由2ln 55a a a a -+≥,得ln 0a a -≥. ∴01a <≤.∴a 的取值范围是(]0,1.(ⅱ)由(ⅰ)知,当1a =时,()5f x a ≥,即2235xe x -+≥.∴1xe x ≥+.∴当1x >-时,()ln 1x x ≥+. 令()*1x n N n =∈,则11ln n n n +⎛⎫≥ ⎪⎝⎭. 且1n =时,1ln 2>. ∴11123411ln ln ln ln 23123n n n +⎛⎫⎛⎫⎛⎫⎛⎫++++>++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2341ln 123n n +⎛⎫=⨯⨯⨯⨯ ⎪⎝⎭()ln 1n =+,∴()1111ln 123n n++++>+. 22.解:(Ⅰ)由曲线C 的参数方程3cos ,2sin .x y ϕϕ=⎧⎨=⎩(ϕ为参数)消去参数ϕ后得曲线C 的直角坐标方程为22194x y +=.将cos ,sin .x y ρθρθ=⎧⎨=⎩代入后化简,得曲线C 的极坐标方程为222364cos 9sin ρθθ=+. (Ⅱ)由于OA OB ⊥,可设()11,A ρθ,21,2B πρθ⎛⎫+⎪⎝⎭. 则212211364cos 9sin ρθθ=+,222211364sin 9cos ρθθ=+. 于是22221211111336OA OB ρρ+=+=. ∴2211OAOB+为定值.23.解:(1)由已知得()31,1,3,11,31, 1.x x f x x x x x +>⎧⎪=+-≤≤⎨⎪--<-⎩①1141431533x x x x x >⎧>⎧⎪⇒⇒<≤⎨⎨+≤≤⎩⎪⎩; ②111111352x x x x x -≤≤-≤≤⎧⎧⇒⇒-≤≤⎨⎨+≤≤⎩⎩;③11213152x x x x x <-<-⎧⎧⇒⇒-≤<-⎨⎨--≤≥-⎩⎩;∵{}{}44|1|11|21|233x x x x x x x x ⎧⎫⎧⎫<≤-≤≤-≤<-=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭, ∴不等式()5f x ≤的解集为4|23x x ⎧⎫-≤≤⎨⎬⎩⎭. (Ⅱ)不等式()f x x m ≥-解集为()R m f x x ⇔-≤-恒成立,设()()g x f x x =-,则()21,1,3,11,41, 1.x x g x x x x +>⎧⎪=-≤≤⎨⎪--<-⎩①当1x >时,()213g x x =+>;②当11x -≤≤时,()3g x =;③当1x <-时,()413g x x =-->. ∴()min 3g x =.∵()m g x -≤恒成立()min m g x ⇔-≤, 由3m -≤,得3m ≥-.∴m 的取值范围是[)3,-+∞.。
最新-2018年云南省第一次高中毕业生复习统一检测 精品
![最新-2018年云南省第一次高中毕业生复习统一检测 精品](https://img.taocdn.com/s3/m/1a144c42804d2b160b4ec05f.png)
绝密★启用前【考试时间:2月26日9:00一11:30】2018年云南省第一次高中毕业生复习统一检测理科综合能力测试(物理部分)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第1 卷1页至6页,第Ⅰ卷7 页至14 页。
考试结束,将试题卷和答题卡一并交回。
满分300 分,考试时间150 分钟。
第I 卷(选择题共21 题共126 分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上。
二、选择题(本题包括8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得满分,选不全的得3分,有选错或不选的得0分)14.氘和氚发生聚变反应的方程式是:2341112017.6VH H He n Me+→++,若有2g氘和3g氚全部发生聚变反应,N A为阿伏加德罗常数,则释放出的能量是A.N A×17.6MeVB.2N A× 17.6 MeVC.3N A×17.6MeVD.5 N A×x17.6MeV15.关于光电效应,下列说法正确的是A.发生光电效应时,一般来说,照射光频率一定,被照射的金属不同,则逸出的光电子的最大初动能不同B.发生光电效应时,不同频率的单色光照射同一种金属表面,逸出的光电子的最大初动能并不相同C.发生光电效应时,逸出的光电子的最大初动能的最小值等于金属的逸出功D .用某单色光照射某金属表面时,没发生光电效应.若用多束这样的单色光同时照射该金属表面,可能发生光电效应16.如图所示,闭合金属导线框水平放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度增加时,则A .线框中的感应电流一定增大B .线框中的感应电流可能减小C .线框中的感应电流方向从上向下看一定沿顺时针方向D .线框中的感应电流方向从上向下看可能沿逆时针方向17.一列简谐波沿x 轴传播,某时刻的波形如图所示.关于波的传播方向与质点a 、b 、c 、d 、e 、f 的运动情况,下列说法正确的是A .若波沿x 轴正方向传播,则质点a 此时的速度方向与加速度方向相同B .若波沿x 轴正方向传播,再过半个周期,质点b 将运动到质点。
最新-2018年云南省第二次高中毕业生复习统一检测(理综) 精品
![最新-2018年云南省第二次高中毕业生复习统一检测(理综) 精品](https://img.taocdn.com/s3/m/2ee9eb11ba1aa8114431d95f.png)
2018 年云南省第二次高中毕业生复习统一检测理科综合能力测试1.下列有关细胞结构和功能的叙述,不正确的是A.真核细胞内丰富的生物膜是新陈代谢高效有序的原因之一B.蓝藻、乳酸菌、酵母菌都含细胞膜、核糖体和DNAC.细胞分裂使细胞的数量增加,细胞分化使细胞的种类增加D.能进行光合作用的细胞都有叶绿体,有叶绿体的细胞都能合成淀粉2.下图表示油菜种子成熟过程中各种有机物的含量变化。
分析该图,下列表述正确的是A.油菜种子中的粗脂肪主要由种子成熟过程中糖类转化而来B.油菜种子中的粗脂肪主要由种子成熟过程中蛋白质转化而来C.油菜通过光合作用合成的有机物主要是粗脂肪D.种子成熟过程中千粒重的增加主要是种子含水量增加的结果3.豌豆的一个豆英内含有3 粒种子。
下列表述正确的是A.该豆英及种子的发育至少需要3 个雌蕊、6 个精子B.该豆英内种子的种皮颜色相同,但子叶的颜色有可能不同C.利用豌豆进行杂交实验时,需要在开花后去雄D.该豆英内种子积累的有机物主要来自果实的光合作用4.荷兰科学家温特利用胚芽鞘进行实验研究的部分图解如下。
下列表述不正确的是A.温特的研究能说明胚芽鞘顶端确实合成了一种促进生长的物质B.该图解没有显示温特进行该实验研究的对照实验组C.该图解说明琼脂块中生长素浓度和胚芽鞘尖端的数量成正比D.该实验没说明向光生长与植物体内的生长抑制物质的关系5.下列有关基因的表述正确的是A.等位基因的显隐性取决于他们是来自父方还是来自母方B .减数第一次分裂后期同源染色体的分离,决定了非等位基因的分离 C.种群基因库间出现差异是产生生殖隔离的根本原因D .真核细胞基因的编码区比其mRNA 长的原因是其含有多个外显子6. 向三份0.1L 0.3/mol L 的NaOH 溶液中分别加入氢氟酸\浓硫酸和盐酸,恰好完全反应的热效应分别为1H V 、2H V 、3H V 、,则三者的关系正确的是A .123H H H >>V V VB .321H H H >>V V VC .231H H H >>V V VD .132H H H >>V V V7.根据下表数据可以得出在相同温度下,HX 、HY 和HZ 三种酸的相对强弱顺序是酸HXHY HZ 浓度(mol/L ) 0.1 0.5 0.9 1 1 电离度(%) 0.3 0.150.10.31A .HX HY HZ >>B .HZ HX HY >>C .HY HZ HX >>D .HZ HY HX >>(已知:电离度=已电离的电解质分子数溶液中原有电解质的分子总数×100%)8.阿伏加德罗常数的近似值为2316.0210mol -⨯,下列说法正确的是A .18℃,101kPa 下 48 gO3气体含有的原子数约为3×6.02×1023个B .1mol Cu 与足量的稀硝酸完全反应转移的电子数约为6.02×1023个C .1000mL 、0.1 mol /L 醋酸溶液中含有的醋酸根离子数约为0.1 ×6.02×1023个D .标准状况下,33.6 LH2O 含有的H2O 分子数约为1.5×6.02×1023个9.实验装置如下图,A 为石墨材料,B 为金属铜材料。
云南省2018届高中毕业生复习统一检测理综试卷(word版,含答案)
![云南省2018届高中毕业生复习统一检测理综试卷(word版,含答案)](https://img.taocdn.com/s3/m/4200015fa8114431b90dd857.png)
2018年云南省高中毕业生复习统一检测理科综合能力测试可能用到的相对原子质量H:1 C:12 N:14 O:16 S:32 Fe:56 Ba:137第I卷(选择题,共126分)一、选择题:本大题共13小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列事实不能支持“结构与功能相统一”观点的是A.太阳能的固定离不开有机物的合成B.生态系统中的组分越多,食物越复杂,抵抗力稳定性就越强C.过酸、过碱或温度过高,都会破坏酶的空间结构,使酶永久失活D.线粒体能定向地运动到细胞代谢旺盛的部位,有利于细胞的能量供应2.在健康人体的条件反射活动中会出现A.兴奋在神经纤维上双向传导B.高级中枢对低级中枢的分级调节C.神经递质使突触后膜抑制时,突触后膜的膜电位无变化D.神经元由相对静止状态变为显著活跃状态的主要原因是K+内流3.20l1~2015年,我国15~24岁大、中学生艾滋病感染者净年均增长率达35%,且仅有54%的感染者知晓其感染情况。
下列关于艾滋病的叙述,错误的是A.艾滋病主要通过性接触、血液和母婴三条途径传播B.由人类免疫缺陷病毒(HIV)引起,HIV与人的关系是寄生C.HIV最初入侵人体时,免疫系统可以摧毁大多数病毒D.艾滋病病人死亡均是由免疫系统的防卫功能丧失引起的4.下列关于植物生命活动的叙述,错误的是A.保留有芽和幼叶的插条容易成活,主要是因为芽和幼叶能迅速生长B.外界环境因素会引起植物激素合成、分布等方面的变化C.脱落酸和细胞分裂素在对细胞分裂的影响中存在拮抗作用D.激素调节在植物对环境的适应过程中发挥着重要作用5.下列关于提出假说的叙述,错误的是A.孟德尔在对豌豆杂交实验结果的观察和统计分析基础上,提出有关遗传因子的假说B.萨顿通过对基因与染色体行为的类比推理,提出基因在染色体上的假说C.欧文顿在实验中发现脂溶性物质更易进入细胞,提出膜由脂质组成的假说D.格里菲思发现S型死菌使R型活菌转化为S型活菌,提出DNA是遗传物质的假说6.滇池沿湖滨浅水区种植了香浦、水竹、水葱、芦苇等植物。
云南省2018届高三毕业生复习统一检测理科
![云南省2018届高三毕业生复习统一检测理科](https://img.taocdn.com/s3/m/aecf6bdeba1aa8114431d9e8.png)
2018年云南省高中毕业生复习统一检测理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)己知集合S={x|x+9>0},T={x| x2 <5 x},则S∩Y=A.(-9,5)B.(一∞,5)C.(-9,0)D. (0,5)(2)已知i为虚数单位,设z=3- ,则复数z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限(3)已知平面向量=(1,x),=(一2,1),若,则A. B. C. D.10(4)已知直线y=mx+2 与圆x2+y2 -2x一4y -4=0相交于A、B两点,若=6,则m=A.4 B.5 C.6 D.7(5)已知函数f(x)的定义域为(-∞,0],若g(x)=是奇函数,则f(一2)=A.一7 B.一3C.3 D.7(6)执行右面的程序框图,若输入的a=2,b=l,则输出的n=A.7 B.6 C.5 D.4(7)由圆锥与半球组合而成的几何体的三视图如图所示,其中俯视图是直径为6的圆.若该几何体的体积为30π,则其表面积为A.30πB.(18+9)π C.33π D. (18+12)π(8)已知=2, =2,与的夹角等于则A. -6B. -4C.4D.6(9)己知x l、x2是关于x的方程x2+ ax+ 2b=O的实数根,若-l<x1 <1,1<x2 <2,设c=a-4b+3,则c的取值范围为A.(-4,5)B.(-4,6) C.[-4,5] D. [-4,6](10)己知正三棱柱ABC – A1B1C1的底面边长为2,P、M、N分别是三侧棱AA1、BB1、CC1上的点,它们到平面ABC的距离分别是1、2、3,正三棱柱ABC - A1B l C1被平面PMN分成两个几何体,则其中以A、B、C、P、M、N为顶点的几何体的体积为A. B. C. D.(11)《九章算术>是我国古代数学成就的杰出代表,是“算经十书”中最重要的一种,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系.第九章“勾股”中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何?”其意思是,“今有直角三角形,短的直角边长为8步,长的直角边长为15步,问该直角三角形能容纳圆的直径最大是多少?”我们知道,当圆的直径最大时,该圆为直角三角形的内切圆,若往该直角三角形中随机投掷一个点,则该点落在此三角形内切圆内的概率为A. B. C. D.(12)已知A,B,C是锐角AABC的三个内角,B的对边为b,若数列A,B,C是等差数列,b= 2,则△ABC面积的取值范围是A.(2,3] B. (2,3] C.[2,3] D.[2,3]第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)(13)在的二项展开式中,x3的系数为____(14)若,则sin 2α=(15)已知双曲线M: 的渐近线与圆x2 +(y一2b)2 =a2相切,则双曲线M的离心率为____.(16)下列结论:①设命题p:a=2:命题q:f(x)=sinax的最小正周期为π,则p是q的充要条件;②设f(x)=sin|x|,则f(x)的最小正周期为2π;⑨设f(x):cos|x|,则f(x)的最小正周期为2π;④已知f(x)的定义域为实数集R,若,f(x+1)=f(x+6)+f(x—4),则30 是f(x)的一个周期;⑤己知f(x)的定义域为实数集R,若,f(x+1)=f(x+6)+f(x—4),则120是f(x)的一个周期;其中正确的结论是(填写所有正确结论的编号).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(17)已知数列的前n项和为Sn,,设.(Ⅰ)求数列的通项公式;(Ⅱ)求证:(18)(本小题满分12分)某共享单车公司为了解用户对其产品的满意度,从甲、乙两个小区分别随机调查了20个用户,得到用户对其产品满意度评分的茎叶图如下:(I)从满意度评分在65分以下的用户中,随机抽取3个用户,求这3个用户来自同一小区的概率尸;(Ⅱ)本次调查还统计了40人一星期使用共享单车的次数X,具体情况如下:该公司将一星期使用共享单车次数超过6次的称为稳定消费者,不超过6次的称为潜在消费者,为了鼓励消费者使用该公司的共享单车,公司对稳定消费者每人发放10元代金券,对潜在消费者每人发放15元代金券.为进一步研究,有关部门根据上述一星期使用共享单车次数统计情况,按稳定消费者和潜在消费者分层,采用分层抽样方法从上述40人中随机抽取8人,并在这8人中再随机抽取3人进行回访,求这三人获得代金券总和Y(单位:元)的分布列与均值.(19)(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,APBD为等边三角形,AC=2,PA=(I)求证:平面PBD上平面ABCD:(II)若E为线段PD上一点,DE =2PE,求二面角B-AE-C的余弦值.(20)(本小题满分12分)已知椭圆E的中心在原点,焦点在x轴上,离心率为,抛物线y2=-4x的准线被椭圆E截得的线段长为3.(I)求椭圆E的方程:(II)设m、n是经过E的右焦点且互相垂直的两条直线,m与E交于A、B两点,n与E交于C、D两点,求的最小值.(21)(本小题满分12分)已知f(x):a(x2-x)+lnx+b的图象在点(1,f(1))处的切线方程为3x- y-3=0,(I)求a,b的值:(II)如果对任何x>0,都有f(x)≤kx·[f'(x)-3],求所有k的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线,的参数方程为(t为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,点E的直角坐标为(2,2),直线,与曲线C交于A、B两点.(I)写出点E的极坐标和曲线C的普通方程;( II)当tana= 2时,求点E到A,B两点的距离之积.(23)(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x+1|,g(x)=f(x)+|x-l|,b≥ -l.(I)解不等式f(x≥|2x-3|+1;(II)若函数g(x)的最小值是a,求证:。
云南省2018届高中毕业生复习统一检测英语试卷(带答案)
![云南省2018届高中毕业生复习统一检测英语试卷(带答案)](https://img.taocdn.com/s3/m/14bf543b01f69e3142329406.png)
云南省2018届高三毕业班复习统一检测英语试题第I卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AA woman from Australia has found the world’s oldest known message in a bottle nearly 132 yea rs after it was cast into the sea.Tonya Illman discovered the drift (漂流) bottle half-buried in the sand on a beach in Western Australia, 180 kilometers north of the state capital Perth.The message, dated 12 June 1886, was thrown into the Indian Ocean from the German ship Paula, which was en route from Cardiff, Wales, to its destination of Dutch East Indies (now Indonesia). The bottle was one of the thousands thrown into oceans as part of a 69-year-long German experiment on global currents (洋流) to find faster shipping routes.Until now, the previous world record for the oldest message in a bottle was 108 years, 4 months and 18 days from the time it was cast until its discovery.Illman found the bottle near her son’s car in the beach’s soft sand.“I was wal king across when I saw something sticking out of the sand, so I went to take a closer look,” Illman was quoted as saying.“It just looked like a lovely old bottle, so I picked it up thinking it might look good in my bookcase. My son’s girlfriend was the on e who discovered the note when she went to tip the sand out.“The note was damp, rolled tightly and tied with a string. We took it home and dried it out, and when we opened it, we saw it was in German, with very faint German handwriting on it.”The Illmans took their find to the local museum which established that the bottle was a 19th Century Dutch gin bottle, and the German ship Paula sailed from Cardiff to Makassar (Indonesia) in 1886.1. What can we learn about the newly-found bottle?A. It was thrown overboard near Germany.B. It was brought to a university for consultation.C. It was one of the bottles cast into the ocean in 1886.D. It was used for sending a message to today’s Indonesia.2. What do the underlined words “en route” in Paragraph 3 mean?A. On the way.B. Off the course.C. In the center.D. At the end.3. Which of the following can be the best title for the text?A. 19th Century Dutch Gin Bottle Returned to GermanyB. Oldest Message in a Bottle Found on Australian BeachC. German Ship Paula Sailed Across the Indian Ocean in 1886D. 69-year-long German Experiment on Global Currents EndedBStudents at the Florida high school where 17 people were shot dead in February of 2018 are being asked to wear clear backpacks.School officials have written to families of Marjory Stoneman Douglas High pupils outlining the plans as part of new security measures, They say any student without a clear backpack will be given one at no cost. As well as introducing the transparent backpacks for quicker safety checks, there will also be airport-style metal detectors and school visitors will pass through special gates.“We’re going to man every gate at the school during school hours and for after-school activities,” said the superintendent of Broward County Public Schools, Robert W. Runcie.Since the shooting when Nikolas Cruz opened fire killing 17 people, students there have been leading calls for gun reform.Donald Trump has told US politicians he wants tougher laws with “really strong background checks”, while he’s faced anger from anti-gun groups for suggesting training school staff to use firearms.In the last few days, safety at Marjory Stoneman Douglas High has been called into question again after several security breaches (违反). Three students were arrested on Tuesday, two for carrying knivesand one for making threats on Snapchat. Some parents have become so worried that they’ve been keeping their children off school.“We’ve got to put things into place now,” Mr Runcie said.4. Which is a new security measure of the school?A. Teachers are trained to use firearms.B. Guards are hired to monitor the students.C. Visitors are forbidden to enter the school.D. Students are required to wear clear backpacks.5. What can we know about the school shooting from the text?A. The gunman was a school staff member.B. One of the victims was named Nikolas Cruz.C. Seventeen people were shot dead on campus.D. Someone unknown broke in and opened fire.6. Some parents have become worried because .A. three students were badly hurtB. the school takes few safety measuresC. they received a letter from the teacherD. there are still safety problems at the school7. What is the students’ attitude toward firea rms?A. They call for changes of gun laws.B. T hey are against the school’s stricter rules.C. They defend their right to possess weapons.D. They approve of Donald Trump’s suggestion.CAs a gesture of friendship, Mayor Yukio Ozaki of Tokyo, Japan gave Washington, DC a gift of more than 3,000 Japanese cherry trees on March 17, 1912. Every spring, the cherry trees in Washington, DC take bloom, beginning one of the country’s loveliest celebrations, the National Cherry Blossom Festival (March 17-April 15). Book your trip now to see this vibrant display of pink and white in this city full of history!Washington, DC Cherry Blossom In-Depth TourPrice: $45Available: Mar 25-Apr 15Duration: 1 DayHighlights: Visit Washington, DC; experience the peak period of cherry blossom (April 8-12)Itinerary:Guests would start to celebrate the National Cherry Blossom Festival and discover the beauty of cherry blossoms. Next, we will begin our sightseeing city tour including Lincoln Memorial, White House, US Capitol, Madame Tussauds Wax Museum, Washington Monument and International Spy Museum. Then visit the Jefferson Memorial, the best location to view the cherry blossoms. Finally, guestsmay board a Potomac River cruise to see the city from the water. Then tour ends.Price Includes: Ground TransportationService fee for the tour guide: $ 10/personAdmission Fees:Destination Adult Child Senior International Spy Museum$21.95 $14.95(3-12 yrs) $19.95 (Over 65 yrs) (Optional)Madame Tussauds Wax Museum$23 $17 (3-12yrs) $20 (Over 65 yrs) (Optional)Potomac River Cruise$26 $18 (3-12 yrs) $23 (Over 65 yrs) (Optional)Note: If you would like to join in the optional activities, please pay the fee in cash to the tour guide.You cannot buy the tickets on your own or use City Passes. The tour guide will arrange the tickets for the group.8. On March 25, tourists can enjoy .A. the cherry blossoms in full bloomB. the National Cherry Blossom FestivalC. a discounted tour of a city foil of historyD. the anniversary celebration of the gift of trees9. The tour covers tourist spots without admission fees.A. fourB. fiveC. sevenD. eight10. Tourists are supposed to .A. pay the service fee for the tour guideB. take care of the ground transportationC. show the City Pass at the ticket officeD. choose at least one optional destination11. It costs for you and your grandpa (aged 67) to go on the tour, with the wax museum included.A. $156B. $143C.$153D. $108DAmyotrophic lateral sclerosis, more commonly known as ALS, affects the nerve cells in the brain and spinal cord (脊髓) that make the muscles of both the upper and lower body work.Those nerve cells lose their ability to control muscle movement, which leads to paralysis (瘫痪) and death. Its most famous sufferer was famed physicist Stephen Hawking, who died on March 14, 2018 at the age of 76.Hawking, diagnosed with the condition in 1963, lived with it for more than 50 years — a remarkably long time for an ALS sufferer. The disease left him paralyzed and completely dependent on others and technology for everything: bathing, dressing, eating, mobility and speech. He was able to move only a few fingers on one hand.“I try to lead as normal a life as possible, and not think about my condition, or regret the things it prevents me fr om doing, which are not that many,” he wrote on his website.“I have been lucky that my condition has progressed more slowly than is often the case. But it shows that one need not lose hope.”Hawking’s life, including his battle with ALS, was made into a 2014 biopic, The Theory of Everything, starring Eddie Redmayne.The US Centers for Disease Control and Prevention says that 20,000 to 30,000 people have ALS in the United States, with about 5,000 new cases diagnosed every year. People usually find out that they have it between 55 and 75 years of age. On average, patients live two to five years after symptoms develop.For reasons not yet understood, military veterans are twice as likely to be diagnosed with ALS as the general public, according to the ALS Association. Scientists have been studying many factors that could be linked with ALS, such as heredity (遗传) and environmental exposures.12. According to the text, ALS .A. is linked with climate changesB. leads to death in one or two yearsC. affects the nerve cells all over the bodyD. makes people lose control of muscle movement13. From the text we can infer that Hawking .A. died of an unknown diseaseB. lived with ALS for 55 yearsC. felt desperate in his last yearsD. was paralyzed due to poor treatment14. What is the situation of ALS in the US?A. Over 30,000 people suffer from ALS.B. ALS is usually found among the elderly people.C. Patients often enjoy a long lifespan despite ALS.D. More and more new cases are reported every year.15. What is the text mainly about?A. The symptoms and possible cures of ALS.B. A biographical film about Stephen Hawking.C. A general introduction of the disease of ALS.D. Life of the famous physicist, Stephen Hawking.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年云南省高中毕业生复习统一检测文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =>,()(){}130B x x x =--<,则AB =( )A .∅B .{}23x x << C .{}2x x > D .{}3x x ≥ 2.已知复数()()221z i i =-+,其中i 是虚数单位,则z 的模z =( ) A.3 C .4 D .53.若x ,y 满足30,20,0.x x y x y -≤⎧⎪+-≥⎨⎪-≥⎩则2z y x =-的最大值为( )A .5B .1-C .3-D .7- 4.已知,2παπ⎛⎫∈⎪⎝⎭,tan 2α=-,则cos α=( ) A .35-B .25-C.. 5.已知函数()2sin 6f x x π⎛⎫=-⎪⎝⎭,则下列结论中正确的是( ) A .()y f x =的一个周期为πB .()y f x =的图像关于点,26π⎛⎫⎪⎝⎭对称 C. ()y f x =的图像关于直线6x π=对称 D .()y f x =在区间2,63ππ⎛⎫⎪⎝⎭上单调递增 6.执行下图所示的程序框图,为使输出M 的值大于9,则输入的正整数t 的最小值为( )A .2B .3 C.4 D .57.在我国古代数学名著《九章算术》中,“堑堵”指的是底面为直角三角形,且侧棱垂直于底面的三棱柱.如图,网络图中小正方形的边长为1,图中粗实线画出的是某堑堵的正视图与俯视图,则该堑堵的表面积为( )A .2+B .6 C.6+.108.在正方体1111ABCD A BC D -中,点P 是线段1BC 上任意一点,则下列结论中正确的是( ) A .1AD DP ⊥ B .1AP B C ⊥ C. 1AC DP ⊥ D .11A P B C ⊥ 9.平面内到两个定点的距离之比为常数()1k k ≠的点的轨迹是阿波罗尼斯圆.已知曲线C 是平面内到两个定点()11,0F -和()21,0F 的距离之比等于常数()1a a >的阿波罗尼斯圆,则下列结论中正确的是( )A .曲线C 关于x 轴对称B .曲线C 关于y 轴对称 C. 曲线C 关于坐标原点对称D .曲线C 经过坐标原点 10.已知函数()ln 1f x x =-,则下列结论中正确的是( )A .()()10f f f e e ⎛⎫<< ⎪⎝⎭B .()()10f e f f e ⎛⎫<< ⎪⎝⎭C. ()()10f f e f e ⎛⎫<< ⎪⎝⎭ D .()()10f f f e e ⎛⎫<< ⎪⎝⎭11.定义:{},,min ,,.a a b a b b a b ≤⎧=⎨>⎩在区域02,0 3.x y ≤≤⎧⎨≤≤⎩内任取一点(),P x y ,则点(),P x y 满足{}min 21,11x y x y x y -++-=+-的概率为( )A .12 B .16 C.18 D .11212.已知定义在R 的函数()f x 满足()()22f x f x -=--,且当2x ≥-时,()23xf x =-.若函数()f x 在区间(),1k k +()k Z ∈上有零点,则k 的值为( ) A .1或6- B .0或5- C. 0或6- D .1或5-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()2,1a =-,()3,b m =,若向量a b +与a 垂直,则m = .14.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知cos sin bC C a=-,a =1c =,则角C = .15.设椭圆()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,过焦点2F 的直线交椭圆于()11,A x y ,()22,B x y 两点.若1AF B ∆内切圆的面积为2π,且124y y -=,则该椭圆的离心率是 .16.已知函数()()2221,0,log 1,0,x x x f x x x ⎧+->⎪=⎨⎪+<⎩若()()2f f a ≤,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设数列{}n a 满足12a =,12n n n a a +-=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .18. 某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.(Ⅰ)求频率分布直方图中a 的值; (Ⅱ)求这50名问卷评分数据的中位数;(Ⅲ)从评分在[)40,60的问卷者中,随机抽取2人,求此2人评分都在[)50,60的概率. 19. 如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA AB ⊥,1AD AF FE ===,2AB =,AD BE ⊥.(Ⅰ)求证:BE DE ⊥; (Ⅱ)求点F 到平面CBE 的距离.20. 已知分别过抛物线()220x py p =>上点A 、B 的两条切线交于点M ,直线AB 与x 轴不平行,线段AB 的中点为N ,抛物线的焦点为F . (Ⅰ)求证:直线MN 与y 轴平行;(Ⅱ)若点F 线段AB 上,点N 的坐标为⎫⎪⎪⎝⎭,求抛物线的方程. 21. 设函数()()223x f x e ax a a R =-+∈. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当0a >时,对于x R ∀∈,都有()5f x a ≥成立. (ⅰ)求a 的取值范围; (ⅱ)证明:()()*1111ln 123n n N n++++>+∈. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程是3cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若A ,B 分别为曲线C 上的两点,且OA OB ⊥,求证:2211OAOB+为定值.23.选修4-5:不等式选讲 已知函数()121f x x x =-++. (Ⅰ)求不等式()5f x ≤的解集;(Ⅱ)若不等式()f x x m ≥-的解集为R ,求m 的取值范围.试卷答案一、选择题1-5:BDBCD 6-10:CCBAD 11、12:AA 二、填空题13.1 14.6π 15.216.[]112⎡⎤-⎣⎦,三、解答题17.解:(Ⅰ)∵()1122n n a a a n ---=≥,∴()12222222n n nn a n --⎡⎤=++++=≥⎣⎦.当1n =时,12a =.∴数列{}n a 的通项公式为2n n a =. (Ⅱ)∵()212221log log log 122n n n n b a a a n +=+++=+++=, ∴()1211211n b n n n n ⎛⎫==- ⎪++⎝⎭. ∴11111122121223111n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.解:(Ⅰ)由频率分布直方图,可得()0.0040.01560.02320.02320.028101a +++++⨯=, 解得0.006a =.(Ⅱ)由频率分布直方图,可设中位数为m ,则有()()0.0040.0060.023210700.0280.5m ++⨯+-⨯=, 解得中位数76m =.(Ⅲ)由频率分布直方图,可知在[)40,50内的人数:0.00410502⨯⨯=, 在[)50,60内的人数:0.00610503⨯⨯=. 设在[)40,50内的2人分别为1a ,2a ,在[)50,60内的3人分别为1B ,2B ,3B ,则从[)40,60的问卷者中随机抽取2人,基本事件有()12,a a ,()11,a B ,()12,a B ,()13,a B ,()21,a B ,()22,a B ,()23,a B ,()12,B B ,()13,B B ,()23,B B ,共10种;其中2人评分都在[)50,60内的基本事件有()12,B B ,()13,B B ,()23,B B 共3种, 故所求概率为310P =.19.解:(Ⅰ)证明:如图,连接AE .由题设可知,AE BE ==.∵222AE BE AB +=, ∴AE BE ⊥. 而AD BE ⊥,AE AD A =,∴BE ⊥平面ADE . ∵DE ⊂平面ADE , ∴BE DE ⊥.(Ⅱ)如图,连接CF ,BF .∵CB AB ⊥,又AD BE ⊥,//AD CB , ∴CB BE ⊥. 又ABBE B =,∴CB ⊥平面ABE ,即CB ⊥平面BEF .∴111113326C BEF BEF V S CB -∆=⨯=⨯⨯=,1122CBE S ∆=⨯=. 设点F 到平面CBE 的距离为d ,由C BEF F CBE V V --=,得1163CBE S d ∆=⨯⨯,解得2d =.∴点F 到平面CBE 20.解:(Ⅰ)证明:设(),M x y ,()00,N x y ,()11,A x y ,()22,B x y ,∵A 、B 两点在抛物线上,故2112x py =,2222x py =, 两式相减得22121222x x py py -=-.化简得1212122y y x x p x x -+=⋅-,即0AB x p k =⋅.①∵切线MA 的斜率为1MA x k p=, ∴切线MA 的方程为()111x y y x x p-=-.② 同理得切线MB 的方程为()222x y y x x p-=-.③ 由②-③,化简得()2112211y y x x x x x p--=---,即()012AB k x x p -=-.④由①,④求解得0x x =,故直线MN 与y 轴平行. (Ⅱ)由点0,2p F ⎛⎫⎪⎝⎭在线段AB 上,N 为AB 中点, 则F 、A 、B 、N 四点共线,故AB FN k k =.由①知0AB x k p=,则0002FN py x k x p -==,22002p x y p =-.又2N ⎛⎫ ⎪ ⎪⎝⎭,则222p p =-⎝⎭,解得1p =.∴抛物线的方程为22x y =. 21.解:(Ⅰ)∵()()'22x fx e a x R =-∈,∴当0a ≤时,易知()'0fx >.∴()f x 的(),-∞+∞上单调递增.∴当0a >时,由()'0f x >,得ln x a >,由()'0fx <,得ln x a <,∴()f x 在()ln ,a +∞上单调递增, 在(),ln a -∞上单调递减.(Ⅱ)(ⅰ)∵x R ∀∈,()5f x a ≥都成立, ∴()min 5f x a ≥.由(Ⅰ)知,当0a >时,()()min ln 2ln 5f x f a a a a ==-+, 由2ln 55a a a a -+≥,得ln 0a a -≥. ∴01a <≤.∴a 的取值范围是(]0,1.(ⅱ)由(ⅰ)知,当1a =时,()5f x a ≥,即2235xe x -+≥.∴1xe x ≥+.∴当1x >-时,()ln 1x x ≥+. 令()*1x n N n =∈,则11ln n n n +⎛⎫≥ ⎪⎝⎭. 且1n =时,1ln 2>. ∴11123411ln ln ln ln 23123n n n +⎛⎫⎛⎫⎛⎫⎛⎫++++>++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2341ln 123n n +⎛⎫=⨯⨯⨯⨯ ⎪⎝⎭()ln 1n =+,∴()1111ln 123n n++++>+. 22.解:(Ⅰ)由曲线C 的参数方程3cos ,2sin .x y ϕϕ=⎧⎨=⎩(ϕ为参数)消去参数ϕ后得曲线C 的直角坐标方程为22194x y +=. 将cos ,sin .x y ρθρθ=⎧⎨=⎩代入后化简,得曲线C 的极坐标方程为222364cos 9sin ρθθ=+.(Ⅱ)由于OA OB ⊥,可设()11,A ρθ,21,2B πρθ⎛⎫+⎪⎝⎭. 则212211364cos 9sin ρθθ=+,222211364sin 9cos ρθθ=+. 于是22221211111336OA OB ρρ+=+=. ∴2211OAOB+为定值.23.解:(1)由已知得()31,1,3,11,31, 1.x x f x x x x x +>⎧⎪=+-≤≤⎨⎪--<-⎩①1141431533x x x x x >⎧>⎧⎪⇒⇒<≤⎨⎨+≤≤⎩⎪⎩;②111111352x x x x x -≤≤-≤≤⎧⎧⇒⇒-≤≤⎨⎨+≤≤⎩⎩;③11213152x x x x x <-<-⎧⎧⇒⇒-≤<-⎨⎨--≤≥-⎩⎩;∵{}{}44|1|11|21|233x x x x x x x x ⎧⎫⎧⎫<≤-≤≤-≤<-=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭, ∴不等式()5f x ≤的解集为4|23x x ⎧⎫-≤≤⎨⎬⎩⎭. (Ⅱ)不等式()f x x m ≥-解集为()R m f x x ⇔-≤-恒成立,设()()g x f x x =-,则()21,1,3,11,41, 1.x x g x x x x +>⎧⎪=-≤≤⎨⎪--<-⎩①当1x >时,()213g x x =+>; ②当11x -≤≤时,()3g x =;- 11 - ③当1x <-时,()413g x x =-->.∴()min 3g x =.∵()m g x -≤恒成立()min m g x ⇔-≤,由3m -≤,得3m ≥-.∴m 的取值范围是[)3,-+∞.。