武汉二中广雅中学八年级数学下册第二单元《勾股定理》检测题(答案解析)
2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)

2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)一、选择题(共10小题,每小题3分,共30分)1.(3分)下列式子中一定是二次根式的是()A.B.C.D.2.(3分)下列计算结果,正确的是()A.=﹣3B.=C.2﹣=1D.()2=5 3.(3分)下列二次根式中,能与合并的二次根式的是()A.B.C.D.4.(3分)下列四组数据不能作为直角三角形的三边长的是()A.3、4、5B.1、、2C.13、14、15D.8、15、17 5.(3分)若,则x的取值范围是()A.x≥1B.x>2C.1≤x<2D.x≥1且x≠2 6.(3分)如图是一圆柱玻璃杯,从内部测得底面半径为6cm,高为16cm,现有一根长为25cm的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A.6cm B.5cm C.9cm D.25﹣2cm 7.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.同位角相等,两直线平行8.(3分)如图所示,以C为圆心,BC为半径的圆与数轴上交于点A,则点A所表示的数为a,则a的值是()A.+2B.﹣2C.﹣+2D.﹣﹣2 9.(3分)如图,将一块含的直角三角板ABC的边AC放在直线l上,∠ACB=90°,BC=2AC=2.将三角板ABC绕点A沿直线l顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角板绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;再将位置②的三角板绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转三角板,直至得到点P40,则AP40的长为()A.39+13B.39+14C.40+13D.40+1410.(3分)如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G 落在HI上.若AC+BC=6,空白部分面积为13.5,则AB=()A.2B.C.2D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简=;=;=.12.(3分)在平面直角坐标系中,O为原点,点M(﹣4,3)到原点的距离是.13.(3分)在Rt△ABC中,∠A、∠B、∠C、分别对应边a、b、c,其中a、b满足b=+4,则斜边c的高为.14.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=10,BC=20,则AD=.15.(3分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).当t =时,△PQB是以PQ为腰的等腰三角形.16.(3分)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.三、解答题(共8题,共72分)17.(8分)计算:(1);(2)2.18.(8分)化简并求值:,其中x=3,y=2.19.(8分)已知Rt△ABC中,∠C=90°,AH=3,CH=4,AC=5,求BH的长.20.(8分)如图,在7×7网格中,每个小正方形的边长都为1(1)图中格点△ABC的面积为;(2)若AD=,BD=,请在图中找出格点D;(3)CD所在的直线上有一点P,使得P A+PB最小,则P A+PB的最小值是(保留作图痕迹).21.(8分)如图,四边形ABCD中,AB∥CD,AB=2CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于点F.(1)求证:点F是BC的中点;(2)连CE,若CE=6,EF=3,求DE的长.22.(10分)如图,一辆火车在铁路MN上自西向东行驶,铁路有关部门规定MN路段限速180km/h,A处有一测速仪,已知B、C在MN上,AB=300m,∠ABC=45°,∠ACB =120°,请解决以下问题:(1)如图1,测速仪测得该火车从B点行驶至C点用时2秒,该火车超速了吗?请说明理由;(2)如图2,若MN上有一点D,且CD=2BC,若火车从C点行驶至D点,求A处测速仪探头旋转角∠CAD的度数.23.(10分)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,BC=.以AB为边作△ABD,AD=,BD=.(1)求四边形ADBC的面积;(2)如图2,若DE平分∠ADB交BC于点E,求证:BE=CE;(3)如图3,点F在BC上,CF=CA,点M为BC上一动点,将线段MA绕点M逆时针旋转90°得到线段MN,连接FN,直接写出FN最小时线段CM的长度.24.(12分)如图,在平面直角坐标系中,点A、B、C在坐标轴上,点A(0,),∠ABC =60°.(1)求AB的长;(2)如图1,∠ACB=∠ABC,∠BAC、∠ACB的角平分线AD、CE交于点F,求CF 的长;(3)如图2,∠ACB=∠ABC,AM=BN,CM与AN交于点P.若BP⊥CM,求BP的长.2020-2021学年湖北省武汉二中广雅中学八年级(下)测试数学试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列式子中一定是二次根式的是()A.B.C.D.【解答】解:A.,是二次根式;B.中,根指数为3,故不是二次根式;C.中,﹣2<0,故不是二次根式;D.中,x不一定是非负数,故不是二次根式;故选:A.2.(3分)下列计算结果,正确的是()A.=﹣3B.=C.2﹣=1D.()2=5【解答】解:A、原式=3,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项错误;D、原式=5,所以D选项正确.故选:D.3.(3分)下列二次根式中,能与合并的二次根式的是()A.B.C.D.【解答】解:A、=2,和不能合并,故本选项不符合题意;B、=3,和不能合并,故本选项不符合题意;C、和不能合并,故本选项不符合题意;D、=,和能合并,故本选项符合题意;故选:D.4.(3分)下列四组数据不能作为直角三角形的三边长的是()A.3、4、5B.1、、2C.13、14、15D.8、15、17【解答】解:A、32+42=52,此时三角形是直角三角形,故本选项不符合题意;B、12+()2=22,此时三角形是直角三角形,故本选项不符合题意;C、132+142≠152,此时三角形不是直角三角形,故本选项符合题意;D、82+152=172,此时三角形是直角三角形,故本选项不符合题意;故选:C.5.(3分)若,则x的取值范围是()A.x≥1B.x>2C.1≤x<2D.x≥1且x≠2【解答】解:由题意可知:,∴x>2,故选:B.6.(3分)如图是一圆柱玻璃杯,从内部测得底面半径为6cm,高为16cm,现有一根长为25cm的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A.6cm B.5cm C.9cm D.25﹣2cm 【解答】解:∵底面半径为半径为6cm,高为16cm,∴吸管露在杯口外的长度最少为:25﹣=25﹣20=5(厘米).故选:B.7.(3分)下列命题的逆命题是正确的是()A.若a=b,则a2=b2B.若a>0,b>0,则ab>0C.等边三角形是锐角三角形D.同位角相等,两直线平行【解答】解:A、若a=b,则a2=b2,逆命题不成立,a,b可能互为相反数.B、若a>0,b>0,则ab>0,逆命题不成立,a,b可能是负数.C、等边三角形是锐角三角形,逆命题不成立,锐角三角形不一定是等边三角形.D、两直线平行,同位角相等,逆命题成立.故选:D.8.(3分)如图所示,以C为圆心,BC为半径的圆与数轴上交于点A,则点A所表示的数为a,则a的值是()A.+2B.﹣2C.﹣+2D.﹣﹣2【解答】解:由题意得:BC=,即AC=BC=,∵点C表示的数为2,∴点A表示的数为2﹣.故选:C.9.(3分)如图,将一块含的直角三角板ABC的边AC放在直线l上,∠ACB=90°,BC=2AC=2.将三角板ABC绕点A沿直线l顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角板绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;再将位置②的三角板绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转三角板,直至得到点P40,则AP40的长为()A.39+13B.39+14C.40+13D.40+14【解答】解:由图可知,每旋转3次为一个循环组依次循环,∵40÷3=13…1,∵AP3=3+,∴AP40=13•AP3+AP1=13×(3+)+=39+14.故选:B.10.(3分)如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G 落在HI上.若AC+BC=6,空白部分面积为13.5,则AB=()A.2B.C.2D.【解答】解:∵四边形ABGF是正方形,∴∠F AB=∠F=90°,∵∠ACB=90°,∴∠F AC+∠BAC=∠BAC+∠ABC=90°,∴∠F AC=∠ABC,在△F AM与△ABN中,,∴△F AM≌△ABN(AAS),∴S△F AM=S△ABN,∴S△ABC=S四边形FNCM,在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=13.5,∴AB2﹣AC•BC=13.5,∴3AB2=63,解得AB=或﹣(负值舍去).故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简=5;=4;=.【解答】解:=5;=4;=.故答案为:5;4;.12.(3分)在平面直角坐标系中,O为原点,点M(﹣4,3)到原点的距离是5.【解答】解:点M(﹣4,3)到原点的距离为:==5.故答案为:5.13.(3分)在Rt△ABC中,∠A、∠B、∠C、分别对应边a、b、c,其中a、b满足b=+4,则斜边c的高为 2.4.【解答】解:设斜边c的高为h,由题意得,a﹣3≥0,3﹣a≥0,解得,a=3,则b=4,由勾股定理得,c==5,由三角形的面积公式可知,×3×4=×5×h,解得,h=2.4,故答案为:2.4.14.(3分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=10,BC=20,则AD=.【解答】解:连接AE,∵DE垂直平分AC,∴EA=EC,又EO⊥AC,∴∠AEO=∠CEO,∵AD∥BC,∴∠ADE=∠CEO,∴∠AEO=∠ADE,∴AD=AE,在Rt△ABE中,AB2+BE2=AE2,即102+(20﹣AE)2=AE2,∴AE=,∴AD=AE=,故答案为:.15.(3分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<4).当t =或3时,△PQB是以PQ为腰的等腰三角形.【解答】解:连接PB,过点Q作QE⊥CD,若△PQB是以PQ为腰的等腰三角形,则有两种情况:①当PQ=PB时,∵四边形ABCD是矩形,∴AD=BC=EQ,∴△PEQ≌△PCB(HL),∴PE=PC.由题意得:PD=2t,AQ=t,四边形ADEQ是矩形,∴PE=2t﹣t=t,PC=t,∵PD+PC=8,∴2t+t=8,解得t=.②当PQ=QB时,PQ=QB=8﹣t,Rt△PQE中,PQ=8﹣t,PE=t,EQ=4,∴(8﹣t)2=t2+42,解得t=3.故答案为:或3.16.(3分)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是4.【解答】解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.三、解答题(共8题,共72分)17.(8分)计算:(1);(2)2.【解答】解:(1)原式=﹣(2﹣)=﹣2+=﹣2;(2)原式=4×÷4=3÷4=.18.(8分)化简并求值:,其中x=3,y=2.【解答】解:原式=+﹣+5=6,当x=3,y=2,原式=6=6.19.(8分)已知Rt△ABC中,∠C=90°,AH=3,CH=4,AC=5,求BH的长.【解答】解:∵AH=3,CH=4,AC=5,∴AH2+CH2=AC2,∴△ACH是直角三角形,∴∠AHC=90°,∠CHB=90°,∴BC2=CH2+BH2,∵∠BCA=90°,∴AB2﹣AC2=BC2,∴AB2﹣AC2=CH2+BH2,∴(AH+BH)2﹣AC2=CH2+BH2,∵AH=3,CH=4,AC=5,∴(3+BH)2﹣52=42+BH2,解得BH=,即BH的长是.20.(8分)如图,在7×7网格中,每个小正方形的边长都为1(1)图中格点△ABC的面积为5;(2)若AD=,BD=,请在图中找出格点D;(3)CD所在的直线上有一点P,使得P A+PB最小,则P A+PB的最小值是5(保留作图痕迹).【解答】解:(1)S△ACB=4×4﹣×3×4﹣×2×4﹣×1×2=5.故答案为:5.(2)如图,点D即为所求作.(3)如图,点P即为所求作.最小值==.21.(8分)如图,四边形ABCD中,AB∥CD,AB=2CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于点F.(1)求证:点F是BC的中点;(2)连CE,若CE=6,EF=3,求DE的长.【解答】证明:(1)∵AB⊥BC,AE⊥BD,∴∠ABC=∠AEB=90°,∴∠ABD+∠DBC=90°=∠ABD+∠BAF,∴∠BAF=∠DBC,∵AB∥CD,∴∠ABC=∠DCB=90°,在△ABF和△BCD中,,∴△ABF≌△BCD(ASA),∴BF=CD,∵AB=BC,AB=2CD,∴BC=2CD=2BF,∴BF=FC,∴点F是BC的中点;(2)如图,过点C作CH⊥AF,交AF的延长线于H,在△BEF和△CHF中,,∴△BEF≌△CHF(AAS),∴EF=FH=3,BE=CH,∴EH=6,∵CE=6,∴CH===6,∴BE=6,∴BF===3,∴BC=6,CD=3,∴BD===15,∴DE=BD﹣BE=15﹣6=9.22.(10分)如图,一辆火车在铁路MN上自西向东行驶,铁路有关部门规定MN路段限速180km/h,A处有一测速仪,已知B、C在MN上,AB=300m,∠ABC=45°,∠ACB =120°,请解决以下问题:(1)如图1,测速仪测得该火车从B点行驶至C点用时2秒,该火车超速了吗?请说明理由;(2)如图2,若MN上有一点D,且CD=2BC,若火车从C点行驶至D点,求A处测速仪探头旋转角∠CAD的度数.【解答】解:(1)火车限速为180km/h,则每秒限速为180000÷3600=50m/s,过A作AE⊥MN于E,∵∠ABC=45°,∠AEB=90°,∴∠BAE=∠ABE=45°,∴AE=BE=AB=300m,在Rt△ACE中,∠ACE=180°﹣∠ACB=60°,∴CE=AE=100m,∴BC=(300﹣100)m,则该火车速度为(300﹣100)÷2=150﹣50(m/s),∵150﹣50>50,∴该火车超速了;(2)作DF⊥AC于F,由(1)知,△ACE中,CE=100m,∠CAE=30°,∴AC=2CE=200(m),在Rt△CDF中,CD=2BC=600﹣200(m),∴∠CDF=30°,∴CF=300﹣100(m),∴DF=CF=300﹣300(m),∴AF=AC﹣CF=200﹣(300﹣100)=300﹣300(m),∴AF=DF,∵∠AFD=90°,∴∠CAD=∠ADF=45°.23.(10分)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,BC=.以AB为边作△ABD,AD=,BD=.(1)求四边形ADBC的面积;(2)如图2,若DE平分∠ADB交BC于点E,求证:BE=CE;(3)如图3,点F在BC上,CF=CA,点M为BC上一动点,将线段MA绕点M逆时针旋转90°得到线段MN,连接FN,直接写出FN最小时线段CM的长度10﹣5..【解答】解:(1)在等腰直角三角形ABC中,AB=BC=10=AC,∵AD2+BD2=(2)2+(4)2=100=AB2,故△ABD为直角三角形,则四边形ADBC的面积=AD•BD+AB•AC=×2×4+×10×10=70;(2)如图2,设AB交DE于点O,过点O作作OH⊥BC交CB于点H,作OG⊥BD于点G,∵DE平分∠ADB,则∠BDE=∠AED=45°,则设OD=GD=x,则OD=x,则BG=4﹣x,∵∠ADB=90°,故OD∥AD,∴△BGD∽△BDA,∴,即,解得x=,则OG=GD=x=,OD=x=,则BG=BD﹣x=,BO==,则OA=AB﹣OB=;∵∠ABC=∠ADE=45°,∠AOD=∠BOE,∴△DOA∽△BOE,∴,即,解得OE=,在等腰三角形BOH中,BH=OH=OB=,则HE===在BE=BH+HE=+=5=BC,∴BE=CE;(3)当FN⊥BC时,FN最小,过点A作AD⊥BC于点D,∵∠FMN+∠AMF=90°,∠AMF+∠DAM=90°,∴∠FMN=∠DAM,∵∠MFN=∠ADM=90°,AM=MN,∴△MFN≌△ADM(AAS),∴FM=AD=AC=5,而CF=AC=10,∴CM=CF﹣FM=10﹣5.故答案为:10﹣5.24.(12分)如图,在平面直角坐标系中,点A、B、C在坐标轴上,点A(0,),∠ABC =60°.(1)求AB的长;(2)如图1,∠ACB=∠ABC,∠BAC、∠ACB的角平分线AD、CE交于点F,求CF 的长;(3)如图2,∠ACB=∠ABC,AM=BN,CM与AN交于点P.若BP⊥CM,求BP的长.【解答】解:(1)∵点A(0,),∴OA=,在Rt△AOB中,OA=,∠ABC=60°,∴AB=2OB,∴AB2=OB2+OA2,即(2OB)2=OB2+OA2,解得:OB=1,∴AB=2;(2)过点C作CM⊥AD于点M,∵∠ABC=60°,∠ACB=∠ABC,∴∠ACB=40°,∴∠BAC=80°,∵CE平分∠ACB,AD平分∠BAC,∴∠ACE=20°,∠F AC=40°,∴∠AFC=180°﹣∠F AC﹣∠ACE=120°,∴∠MFC=60°,在Rt△AOB中,sin∠ABC=,∴OA=AB•sin60°,在Rt△AOC中,OA=AC•sin∠ACB=AC•sin40°,∴AB•sin60°=AC•sin40°,∴AC=,在Rt△AMC中,MC=AC•sin∠F AC=AC•sin40°,在Rt△FMC中,MC=CF•sin∠MFC=CF•sin60°,∴AC•sin40°=CF•sin60°,∴AC=,∴=,∴CF=2;(3)过点C作CH⊥AN于点H,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴AB=BC=AC=2,∴∠BAC=∠BCA=60°,在△AMC和△BNA中,,∴△AMC≌△BNA(SAS),∴∠ACM=∠BAN,∵∠BAN+∠NAC=∠BAC=60°,∴∠ACM+∠NAC=60°,∴∠HPC=∠ACM+∠NAC=60°,又∵∠ACM+∠NCP=60°,∴∠NAC=∠NCP,在Rt△ACH中,HC=AC•sin∠NAC,在Rt△PCH中,HC=CP•sin∠HPC=CP•sin60°,∴AC•sin∠NAC=CP•sin60°,∵在Rt△BPC中,sin∠BCP==,在Rt△ACH中,sin∠NAC==,∵∠NAC=∠NCP,∴=,∵CP=,∴=,解得:BP=.。
初中数学八年级下册《勾股定理》测试卷(附参考答案解析)

八年级数学下册《勾股定理》测试卷班级考号姓名总分一、选择题1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.正方形的面积是4,则它的对角线长是()A.2 B.C.D.44.如果直角三角形两直角边为5:12,则斜边上的高与斜边的比为()A.60:13 B.5:12 C.12:13 D.60:1695.如下图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()5题图 6题图 8题图A.6 B.C.D.46.已知,如上图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B.30海里 C.35海里 D.40海里7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形8.如上图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.6二、填空题9.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为().10.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2=().11.正方形的对角线为4,则它的边长AB=().12.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为().13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有()米.三、解答题14.如图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,并写出这两条线段的长度.15.如图:带阴影部分的半圆的面积是多少?(π取3)16.如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a; (2)已知a=,∠A=60°,求b、c.18.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?19.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.20.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?附:参考答案解析1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【考点】勾股定理的逆定理.【专题】选择题.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.【点评】本题利用了分类讨论思想,是数学中常用的一种解题方法.3.正方形的面积是4,则它的对角线长是()A.2 B.C.D.4【考点】勾股定理.【专题】选择题.【分析】设正方形的对角线为x,然后根据勾股定理列式计算即可得解.【解答】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.【点评】本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测卷(包含答案解析)(4)

一、选择题1.如图,在ABC ∆中,5,60AC C =∠=︒,点D E 、分别在BC AC 、上,且2,CD CE ==将CDE ∆沿DE 所在的直线折叠得到FDE ∆(点F 在四边形ABDE 内),连接,AF 则2AF =( )A .7B .8C .9D .102.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 3.如图,等腰直角三角形纸片ABC 中,∠C =90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE =1,AC =4,则下列结论一定正确的个数是( )①BC =2CD ;②BD >CE ;③∠CED +∠DFB =2∠EDF ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个4.下列四组线段中,能构成直角三角形的是( )A .2cm 、4cm 、5cmB .15cm 、20cm 、25cmC .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm5.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =- 6.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .87.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 8.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =,则△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm 10.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .16911.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形12.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.15.如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若∠APB =α,则∠BPC 的度数为 ____(用含α的式子表示).16.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.17.已知一个三角形三边的长分别为5,10,15,则这个三角形的面积是_________________.18.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 19.如图,△DEF 为等边三角形,点D 、E 、F 分别为边AB 、BC 、AC 上一点,且∠C =60°,AD 3BD 5=,AE =7,则AC 的长为_________.20.如图,在平面直角坐标系中,点A 的坐标是(2,4),点B 的坐标是(6,2),在y 轴和x轴上分别有两点P 、Q ,则A ,B ,P ,Q 四点组成的四边形的最小周长为__.三、解答题21.在△ABC 中,AB =AC =10, AD 是BC 边上的高,点E 在边BC 上,连接AE .(1)当AD =6时,①求△ABC 的面积.②若AE 平分∠BAD ,求CE 的长.(2)探求三条线段AE , BE ,CE 之间的等量关系.22.已知:如图,ABC 中,90C ∠=︒,BC AC >,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ DP ⊥交直线AC 于点Q .(1)如图,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .①求证:PG PQ =;②若12BC =,9AC =,设BP x =,CQ y =,求y 关于x 的函数表达式.(2)当点P 在线段CB 的延长线上时,依据题意补全下图,用等式表示线段BP 、PQ 、AQ 之间的数量关系,并说明理由.23.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?24.如图①,在ABC 中,90,ACB AC BC ∠=︒=,以C 为顶点作45DCE ∠=︒,且CD CE 、分别与AB 相交于D E 、两点,将ACD △绕点C 逆时针旋转90︒得到BCF △.(1)若64AD EB ==,,求DE 的长;(2)若将DCA ∠绕点C 逆时针旋转使CD 与AB 相交于点D ,边CE 与AB 的延长线相交于点E ,而其他条件不变,如图②所示,猜想DE 与AD EB 、之间有何数量关系?证明你的猜想.25.本题分为A ,B 两题,可以自由选择一题,你选择 题A :如图,小明想知道学校旗杆的高度,他将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m 处,发现此时绳子底端距离打结处2m ,则旗杆的高度为多少米?B:如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两只猴子所经路程都是16m,求树高AB.26.如图,长方体的长AB=5cm,宽BC=4cm,高AE=6cm,三只蚂蚁沿长方体的表面同时以相同的速度从点A出发到点G处.蚂蚁甲的行走路径S甲为:翻过棱EH后到达G处(即A→P→G),蚂蚁乙的行走路径S乙为:翻过棱EF后到达G处(即A→M→G),蚂蚁丙的行走路径S丙为:翻过棱BF后到达G处(即A→N→G).(1)求三只蚂蚁的行走路径S甲,S乙,S丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据折叠的性质和勾股定理可以得到解答.【详解】解:如图,过F 作FG ⊥AC 于G ,则在RT △EGF 中,∠GEF=180°-2∠CED=60°,∴∠GFE=90°-∠GEF=30°,∴GE=112EF =,33GE = ∴AG=AC-CE-GE=5-2-1=2, ∴在RT △AGF 中,22222237AF AG FG =+=+=,故选A .【点睛】本题考查三角形的折叠,熟练掌握折叠和直角三角形的性质及勾股定理的应用是解题关键.2.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、222123+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、222264+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 3.D解析:D【分析】利用等腰直角三角形的相关性质结合勾股定理以及对角度关系的推导证明对应选项的结论.【详解】解:∵4AC =,1CE =,∴413AE AC CE =-=-=,∵折叠,∴3DE AE ==,根据勾股定理,CD === ∴BC =,故①正确;4BD CB CD =-=- ∵41->,∴BD CE >,故②正确;∵45A EDF ∠=∠=︒,∴290EDF ∠=︒,∵()()9090451351354590CED CDE CDF CDF DFB DFB ∠=︒-∠=︒-∠-︒=︒-∠=︒-∠+︒=︒-∠,∴902CED DFB EDF ∠+∠=︒=∠,故③正确;∵4DCE C CD CE DE =++=,44BDF C BD DF BF BD AB =++=+=-=,∴DCE BDF C C =,故④正确.故选:D .【点睛】本题考查等腰直角三角形的性质和勾股定理的运用,解题的关键是掌握这些性质定理进行证明求解.4.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A :2222+45≠ ,不符合题意;B :22215+20=25 ,符合题意;C :2220.2+0.30.4≠ ,不符合题意;D :2221+23≠ ,不符合题意;故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.5.A解析:A【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论.【详解】Rt △ABC 中,∵AB 2+AC 2=BC 2∴S 2=222111*********ABC AB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BCS π∆+-+=S 1.故选A .【点睛】 本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键. 6.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键. 7.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.8.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出=163DAB S ④错误.【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅, ∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒, ∴3122BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒, ∴343AC CD ==,∴11==843=16322DAB S BD AC ⨯⨯,故④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.9.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm 和5cm ,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm 和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm ⨯故选:C .【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.10.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】解:由条件可得:2213 113124a baba b⎧+=⎪-⎪=⎨⎪>>⎪⎩,解之得:32ab=⎧⎨=⎩.所以2()25a b+=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.11.B解析:B【分析】直接根据梯形ABCD的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCDS S S S++=△△△四边形故答案为B.【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.12.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228BD DC BC+=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.【分析】作E 关于AD 的对称点M 连接CM 交AD 于F 连接EF 过C 作CN ⊥AB 于N 再求出BD 的长根据三角形面积公式求出CN 根据对称性得CF +EF =CM 根据垂线段最短得出CF +EF≥CM 即可得出答案【详解】 解析:12013【分析】作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,再求出BD 的长,根据三角形面积公式求出CN ,根据对称性得CF +EF =CM ,根据垂线段最短得出CF +EF≥CM ,即可得出答案.【详解】作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,∵AB=AC=13,BC=10,AD是BC边上的高,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,∴S△ABC=12×BC×AD=12×AB×CN,∴CN=BC×AD÷AB=10×12÷13=12013,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥120 13,即CF+EF的最小值是120 13,故答案为:120 13.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,掌握“点与直线上的所有点的连线中,垂线段最短”,是一道比较好的题目.15.【分析】由图可知AC的长根据勾股定理可以求得PAPC的长再利用勾股定理的逆定理可以判断△PAC的形状从而可以得到∠CPA的度数然后即可得到∠BPC=∠CPA−∠APB的度数【详解】设网格的长度为1则解析:90-α︒【分析】由图可知AC的长,根据勾股定理可以求得PA、PC的长,再利用勾股定理的逆定理可以判断△PAC的形状,从而可以得到∠CPA的度数,然后即可得到∠BPC=∠CPA−∠APB的度数.【详解】设网格的长度为1,则==,AC=6222AP PC AC+=∴△PAC为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠C PA−∠APB=90-α︒故答案为:90-α︒【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.16.①②③④【分析】设BE=x则=8-x利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE即可证出∠AEP=∠CPE从而判断②;过点E 作EH⊥AD于H利用勾股定理求出PE从而得出PA=PE解析:①②③④【分析】设BE=x,则AE EC==8-x,利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE,即可证出∠AEP=∠CPE,从而判断②;过点E作EH⊥AD于H,利用勾股定理求出PE,从而得出PA=PE,利用等边对等角可得∠PAE=∠PEA,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP -AH=76∴22PH HE +256∴PA=PE∴∠PAE=∠PEA∵AD ∥BC∴∠AEB=∠PAE ,∴∠AEB=∠PEA ∴EA 平分BEP ∠,故③正确;∵∠BPC=180°-∠PCB -∠PBE∠PEC=180°-∠PCB -∠EPC∵PBE EPC ∠=∠∴BPC PEC ∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.17.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理 522【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵2215))015+=,2(15)15=, ∴222(5)()10()15+=,∴该三角形为直角三角形,∴其面积为12=【点睛】 本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键.18.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125 【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长5==∴斜边上的高为341255⨯=; ②斜边是4有一条直角边是3,由勾股定理得:第三边长=,∴=故答案为:125或4. 【点睛】本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用. 19.8【分析】以CE 为边作等边△CEH 证明△CEF ≌△HED 可得∠DHE=60°DH ∥BC 则设AH=3xCH=5x 过点E 作EM ⊥AC 于点M 在△AEM 中解得x=1则答案得出【详解】解:以CE 为边作等边△C解析:8【分析】以CE 为边作等边△CEH ,证明△CEF ≌△HED ,可得∠DHE=60°,DH ∥BC ,则AH 3CH 5=,设AH=3x ,CH=5x ,过点E 作EM ⊥AC 于点M ,在△AEM 中,22253117(x)(x)22=+,解得x=1,则答案得出.【详解】解:以CE 为边作等边△CEH ,连接DH ,∴CE=EH ,∠EHC=60°,∵△DEF 为等边三角形,∴∠DEF=60°,DE=EF ,∴∠DEH=∠CEF ,在△CEF 和△HED 中 ∵CE HE CEF HED EF ED =⎧⎪∠=∠⎨⎪=⎩∴△CEF ≌△HED (SAS ),∴∠DHE =∠FCE =60°,∴∠DHE =∠HEC =60°,∴DH//BC , ∴AD AH BD CH =, ∵AD 3BD 5=, ∴AH 3CH 5=, 过点E 作EM ⊥AC 于点M ,设AH =3x ,CH =5x ,则EC=5x ,22155311,,2222x x MC EC ME EC MC AM AC MC x ===-==-=, 在△AEM 中,22253117(x)(x)22=+, ∴x =1,∴AC =8.故答案为:8.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,勾股定理,掌握全等三角形的判定方法能正确作出辅助线是解题的关键.20.【分析】作点A关于y轴的对称点C点B关于x轴的对称点D连接CD交y 轴于P交x轴于Q则此时四边形APQB的周长最小且四边形的最小周长=AB+CD 根据两点间的距离公式即可得到结论【详解】解:作点关于轴的+.解析:1025【分析】作点A关于y轴的对称点C,点B关于x轴的对称点D,连接CD交y轴于P,交x轴于Q,则此时,四边形APQB的周长最小,且四边形的最小周长=AB+CD,根据两点间的距离公式即可得到结论.【详解】解:作点A关于y轴的对称点C,点B关于x轴的对称点D,连接CD交y轴于P,交x 轴于Q,=+,则此时,四边形APQB的周长最小,且四边形的最小周长AB CD点A的坐标是(2,4),点B的坐标是(6,2),D-,∴-,(6,2)(2,4)C22CD=--++=,(26)(42)10AB=-+-,22(26)(42)25∴四边形APQB的最小周长1025=+,+.故答案为:1025【点睛】本题考查了坐标与图形性质,轴对称-最短路径问题,两点间的距离公式,正确的确定点P 和点Q的位置是解题的关键.三、解答题21.(1)①△ABC的面积=48;②CE=11;(2)2100=-⋅.AE BE CE【分析】(1)①利用等腰三角形三线合一和勾股定理可求得BC=16,再计算面积即可;②作EF⊥AB,与AB相交于F,根据角平分线的性质可得EF=ED,利用等面积法即可求得ED,从而求得EC;(2)在Rt△AED和Rt△ADC利用勾股定理可得等量关系式,再借助线段的和差和等量代换即可得出AE , BE ,CE 之间的等量关系.【详解】解:(1)①∵AB =AC =10, AD 是BC 边上的高,∴DC=BC=2BD,AD ⊥BC ,∵AD =6,在Rt △ABD 中,根据勾股定理 22221068BD AB AD =-=-=,∴BC=16,△ABC 的面积=111664822BC AD ⋅=⨯⨯=; ②作EF ⊥AB ,与AB 相交于F ,∵AD ⊥BC ,AE 平分∠BAD ,∴EF=ED ,∵AD =6,AB=10,∴111()8222ABD S AB FE AD ED ED AB AD ED =⋅+⋅=⋅+=, 11862422ABD S BD AD =⋅=⨯⨯=, ∴3ED =, ∴CE=DC+ED=8+3=11;(2)在Rt △AED 中222AE AD ED =+,在Rt △ADC 中,222221()2AD AC DC AC BC =-=-, 12DE BD BE BC BE =-=-, ∴222211()()22AE AC BC BC BE =-+-=22221144AC BC BC BC BE BE -+-⋅+=22AC BC BE BE -⋅+=2()AC BE BC BE --=2AC BE CE -⋅=100BE CE -⋅,故2100AE BE CE =-⋅.【点睛】本题考查勾股定理,等腰三角形的性质,角平分线的性质.(1)中掌握等面积法是解题关键;(2)中能借助勾股定理列出等量关系式建立线段之间的联系是解题关键. 22.(1)①见解析;②4732y x =-;(2)图见解析,222BP AQ PQ +=,理由见解析【分析】(1)①先通过证ADQ BDG △≌△得到GD=DQ ,又因为PD ⊥DQ 便可证得PG=PQ ; ②由ADQ BDG △≌△证得AQ=BG ,因为CQ=y ,则AQ=BG=9-y ,BP=x ,则PC=12-x ,由PG=PQ ,根据勾股定理可列方程:()()2222912y x x y -+=-+,化简后不能得出y 与x 的函数关系;(2)依据题意画出图形,过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,先证ADQ BDE △≌△,得出EB=AQ ,ED=DQ ,因为PD DQ ⊥,所以EP PQ =,再根据勾股定理得出222EB PB EP +=,不难推出线段BP 、PQ 、AQ 之间的数量关系【详解】解:(1)①//BG AC ,A GBA ∴∠=∠, AD=DB GDB=ADQ ∠∠,,()ASA ADQ BDG ∴△≌△,GD=QD ∴,又PD GQ ⊥,PG=PQ ∴; ②ADQ BDG △≌△∴AQ=BG ,12BC =,9AC =, BP x =,CQ y =,∴ AQ=BG=9-y ,PC=12-x ,在Rt GBP △中,222B PB =GP G + ,在PCQ Rt △中, 222P QC =PQ C + GP PQ =,∴ 2222B PB =P QC G C ++,∴ ()()22229x =12y y x -+-+, 整理,得4732y x =-; (2)依据题意画出图形,当点P 在线段CB 的延长线上时,222AQ PB PQ += ,理由如下:过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,//EB AC ,EBD A ∴∠=∠ ,又EDB ADQ AD DB ∠=∠=, , ∴ ()ASA ADQ BDE △≌△,∴ EB=AQ ,ED=DQ ,PD DQ ⊥,∴ EP PQ =,在EBP Rt △中,222EB PB EP +=,222A Q PB PQ ∴+=.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,线段垂直平分线的性质及勾股定理,构造全等三角形是解决本题的关键.23.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 24.(1)213DE =;(2)222DE AD BE =+,证明见解析.【分析】(1)证明△ECD ≌△ECF (SAS ),然后证明∠EBF=90°,利用全等三角形的性质以及勾股定理解决问题即可.(2)利用全等三角形的性质以及勾股定理解决问题即可.【详解】解:如图①中,∵ACD △绕点C 逆时针旋转90︒得到BCF △∴90ACD BCF ACB DCF ∠=∠=︒≌, ∴6ACD BCF A CBF CD CF AD BF ∠=∠∠=∠===,,, ∵45DCE ∠=︒ ∴45DCE ECF ∠=∠=︒ ∵CE CE = ∴ECD ECF ≌ ∴DE EF = ∵90AC BC ACB =∠=︒, ∴45A ABC CBF ∠=∠=∠=︒ ∴90EBF ∠=︒∴222246213DE EF BE BF ==+=+=(2)解:222DE AD BE =+理由:如图②中,连接EF∵CBF 是由CAD ∠旋转得到∴45ACD BCF CD CF AD BF A CBF ∠=∠==∠=∠=︒,,,∴90ACB DCF ∠=∠=︒∵45DCE ∠=︒∴45ECF ECD ∠=∠=︒∵CE CE =∴ECD ECF ≌∴DE EF =∵4545ABC CBF ∠=︒∠=︒,∴90ABF EBF ∠=∠=︒∴222BF BE EF +=∵BF AD EF DE ==,∴222DE AD BE =+【点睛】 本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 25.A 题:8米;B 题:41213m 【分析】A 题:设出旗杆的高度,利用勾股定理解答即可;B 题:根据题意表示出AD 、AC 、BC 的长,进而利用勾股定理求出AD 的长,即可得出答案.【详解】解:A 题:设旗杆的高度为x 米,则绳子长为(x+2)米,由勾股定理得:()22226x x +=+,解得:8x =,答:旗杆的高度为8米;B 题:由题意可得:BD=10m ,BC=6m ,设AD=xm ,则有:AC=()16x -m ,在Rt △ABC 中,222AB BC AC +=,即()()22210616x x ++=-, 解得:3013x =, 故AB=30410121313+=m , 答:树高AB 为41213m . 【点睛】本题考察勾股定理的应用,善于观察题目的信息是解题的关键.26.(1)三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)蚂蚁丙最先到达,蚂蚁甲最后到达【分析】(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,根据勾股定理分别求出S 甲,S 乙,S 丙的值即可;(2)比较S 甲,S 乙,S 丙的值即可得到答案.【详解】解:(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,∵长AB =5cm ,宽BC =4cm ,高AE =6cm ,∴EF =AB =5cm ,GF =BC =EH =4cm ,AE =BF =CG =6cm ,∴图1:S 甲=2222()114137AE EF G F '''++=+=(cm )图2:S 乙=2222()10555AE EH G H '''++=+=(cm ),图3:S 丙=2222()96117AB BC C G '''++=+=(cm ),答:三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)由(1)知,S 甲137cm ),S 乙5125cm ),S 丙117cm ).∵∴蚂蚁丙最先到达,蚂蚁甲最后到达.【点睛】此题考查勾股定理的实际应用,立方体的平面展开图,正确理解题意,确定每只蚂蚁所走的路径构建直角三角形是解题的关键.。
(人教版)武汉市八年级数学下册第二单元《勾股定理》检测(答案解析)

一、选择题1.如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是()A .CD 、EF 、GHB .AB 、EF 、GHC .AB 、CD 、GH D .AB 、CD 、EF 2.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC === 3.下列条件不能判定一个三角形为直角三角形的是( ) A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、4.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .455.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .156.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE 上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个7.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.88.已知实数a ,b 为ABC 的两边,且满足2a 1b 4b 40-+-+=,第三边c 5=,则第三边c 上的高的值是( )A .554B .455C .55D .2559.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 10.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 311.如图,在Rt △ABC 中,∠C =90°,DE 是斜边AB 的垂直平分线,与BC 相交于点D 连接AD ,若AC =5,△ACD 的周长为17,则斜边AB 的长为( )A .11B .12C .13D .1412.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.14.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.15.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.16.如图,△DEF 为等边三角形,点D 、E 、F 分别为边AB 、BC 、AC 上一点,且∠C =60°,AD 3BD 5=,AE =7,则AC 的长为_________.17.直角三角形两边长分别为3和4,则它的周长为__________.18.如图,以Rt ABC △的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为1S 、2S , Rt ABC △的面积3S .若14S =, 28S =,则 3S 的值为 ________ .19.已知:直角三角形两直角边a ,b 满足a+b=17,ab=60,则此直角三角形斜边上的高为__________;20.在直角三角形中,其中两边分别为3,4,则第三边是______.三、解答题21.如图,平面直角坐标系中,横、纵坐标均为整数的点称为“格点”,如:点A 、点B .请利用图中..的“格点”完成下列作图或解答. (1)点A 的坐标为 ;(2)在第三象限内标出“格点”C ,使得CA =CB ;(3)在(2)的基础上,标出“格点”D ,使得△DCB ≌△ABC ;(4)点E 是y 轴上一点,连接AE 、BE ,当AE +BE 取最小值时,点E 的坐标为 .22.已知:如图,AB =12cm ,AD =13cm ,CD =4cm ,BC =3cm ,∠C =90°.求△ABD 的面积.23.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.24.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.25.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.26.如图,已知等腰△ABC的腰AB=13cm,D是腰AB上一点,且CD=12cm,AD=5cm.(1)求证:△BDC是直角三角形;(2)求△BDC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【详解】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点睛】本题考查了勾股定理逆定理的应用;解题的关键是解出AB 、CD 、EF 、GH 各自的长度. 2.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.3.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意;三边长的关系为()()()()222222220m n m n mn m n +=-+>>,故D 不符合题意;故选:C.【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键.4.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.5.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤O D+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D 是AB 边中点,∴BD=12AB=6,CD ⊥AB , ∴8==,连接OD ,OC ,有OC≤OD+DC ,当O 、D 、C 共线时,OC 有最大值,最大值=OD+CD ,∵△AOB 为直角三角形,D 为斜边AB 的中点,∴OD=12AB=6 ∴OD+CD=6+8=14,即OC 的最大值=14,故选:C .【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.6.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴AB =2AC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中, 45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 7.B解析:B【分析】 先根据勾股定理求得A 点坐标,再利用二分法估算即可得出13比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴223213OA OB =+=∴A 所表示的数为13-∵23.612.9613=<,23.713.6913=>,∴13-3.6和-3.7之间,∵23.6513.322513=>,∴13-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.8.D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可.【详解】()2b20-=,所以a10b20-=-=,,解得a1b2==,;因为2222a b125+=+=,22c5==,所以222a b c+=,所以ABC是直角三角形,C90∠=︒,设第三边c上的高的值是h,则ABC的面积111222==⨯⨯,所以h=故选:D.【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A.222b a c=-,即222b c a+=,根据勾股定理逆定理可知ABC是直角三角形,故A 不符合题意.B.根据三角形内角和180A B C∠+∠+∠=︒与C A B∠=∠+∠,得出2180C∠=︒,即90C∠=︒,所以ABC是直角三角形,故B不符合题意.C.设3A x∠=,则4B x∠=,5C x∠=,根据三角形内角和180A B C∠+∠+∠=︒,即345180x x x++=︒,解得15x=︒,即45A∠=︒、60B∠=︒、75C∠=︒.所以ABC不是直角三角形,故C符合题意.D.设5a x=,则12b x=,13c x=,由222(5)(12)(13)x x x+=可知222+=a b c,根据勾股定理逆定理可知ABC是直角三角形,故D不符合题意.故选:C.【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键.10.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.11.C解析:C【分析】=,根据三角形的周长公式计算,得到答案.根据线段的垂直平分线的性质得到DA DB【详解】解:DE是AB的垂直平分线,∴=,DA DBACD∆的周长为17,∴++=,17AC CD AD∴++=+=,17AC CD DB AC BCAC=,5BC∴=-=,17512由勾股定理得,13AB==,故选:C.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.B解析:B【分析】直接根据梯形ABCD的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.①②③④【分析】设BE=x 则=8-x 利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE 即可证出∠AEP=∠CPE 从而判断②;过点E 作EH ⊥AD 于H 利用勾股定理求出PE 从而得出PA=PE解析:①②③④【分析】设BE=x ,则AE EC ==8-x ,利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE ,即可证出∠AEP=∠CPE ,从而判断②;过点E 作EH ⊥AD 于H ,利用勾股定理求出PE ,从而得出PA=PE ,利用等边对等角可得∠PAE=∠PEA ,再根据平行线的性质可得∠AEB=∠PAE ,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x ,则AE EC ==8-x ,在Rt △ABE 中,AB 2+BE 2=AE 2∴42+x 2=(8-x )2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP =∴AP=CE ,∵四边形ABCD 为长方形∴AD ∥BC∴∠APE=∠CEP∵PE=EP∴△AEP ≌△CPE∴∠AEP=∠CPE∴//AE CP ,故②正确; 当256AP =时,过点E 作EH ⊥AD 于H ,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA平分BEP∠,故③正确;∵∠BPC=180°-∠PCB-∠PBE∠PEC=180°-∠PCB-∠EPC∵PBE EPC∠=∠∴BPC PEC∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.14.8【分析】过B点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B点作于点与交于点作点E关于AM的对称点G连结GD则ED=GD当点BDG三点在解析:8【分析】过B 点作BF AC⊥于点F,BF与AM交于D点,根据三角形两边之和小于第三边,可知BD DE+的最小值是线段BF的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC⊥于点F,BF与AM交于D点,作点E关于AM的对称点G,连结GD,则ED=GD,当点B 、D、G三点在一直线上时较短,BG BF>,当线段BG与BF重合时最短,BD+BE=BD+DG=BF,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.15.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC 解析:214+24【分析】连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒, ∴22BD AD AB =+ ∵22AD =,27AB = ∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD 2+CD 2=BC 2,∴∠BDC=90°,S △ABD =122272142⨯=,S △BDC =168242⨯⨯=, 四边形ABCD 的面积是= S △ABD + S △BDC =214+24故答案为:214+24.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.8【分析】以CE 为边作等边△CEH 证明△CEF ≌△HED 可得∠DHE=60°DH ∥BC 则设AH=3xCH=5x 过点E 作EM ⊥AC 于点M 在△AEM 中解得x=1则答案得出【详解】解:以CE 为边作等边△C解析:8【分析】以CE 为边作等边△CEH ,证明△CEF ≌△HED ,可得∠DHE=60°,DH ∥BC ,则AH 3CH 5=,设AH=3x ,CH=5x ,过点E 作EM ⊥AC 于点M ,在△AEM 中,22253117(x)(x)22=+,解得x=1,则答案得出.【详解】解:以CE 为边作等边△CEH ,连接DH ,∴CE=EH ,∠EHC=60°,∵△DEF 为等边三角形,∴∠DEF=60°,DE=EF ,∴∠DEH=∠CEF ,在△CEF 和△HED 中∵CE HECEF HED EF ED=⎧⎪∠=∠⎨⎪=⎩∴△CEF≌△HED(SAS),∴∠DHE=∠FCE=60°,∴∠DHE=∠HEC=60°,∴DH//BC,∴AD AHBD CH=,∵AD3BD5=,∴AH3CH5=,过点E作EM⊥AC于点M,设AH=3x,CH=5x,则EC=5x,1511,,2222xMC EC ME AM AC MC x =====-=,在△AEM中,222117(x)(x)22=+,∴x=1,∴AC=8.故答案为:8.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,勾股定理,掌握全等三角形的判定方法能正确作出辅助线是解题的关键.17.12或7+【分析】分两种情况求出第三边即可求出周长【详解】分两种情况:①当3和4都是直角边时第三边长==5故三角形的周长=3+4+5=12;②当3是直角边4是斜边时第三边长故三角形的周长=3+4+=解析:12或【分析】分两种情况求出第三边,即可求出周长.【详解】分两种情况:①当3和4都是直角边时,第三边长,故三角形的周长=3+4+5=12;②当3是直角边,4是斜边时,第三边长==,故三角形的周长,故答案为:12或.【点睛】此题考查勾股定理的应用,题中不明确所给边长为直角三角形的直角边或是斜边时,应分情况讨论求解.18.12【分析】根据勾股定理和圆的面积公式即可求得的值【详解】解:设Rt △ABC 的三边分别为abc 则观察图形可得:即∵∴=∴=4+8=12故答案为:12【点睛】本题考查了勾股定理圆的面积熟记圆的面积公式解析:12【分析】根据勾股定理和圆的面积公式即可求得3S 的值.【详解】解:设Rt △ABC 的三边分别为a 、b 、c ,则222+=a b c ,观察图形可得:222312111111()()()222222a b S S S c πππ⋅+⋅+=++⋅, 即222312111888a b S S S c πππ⋅+⋅+=++⋅,∵222+=a b c , ∴221188a b ππ⋅+⋅=218c π⋅, ∴312S S S =+=4+8=12,故答案为:12.【点睛】本题考查了勾股定理、圆的面积,熟记圆的面积公式,利用等面积法得出等量关系是解答的关键.19.【分析】设此直角三角形的斜边为c 斜边上的高为h 先根据勾股定理和完全平方公式的变形求出c 再利用三角形的面积求解即可【详解】解:设此直角三角形的斜边为c 斜边上的高为h 则因为此直角三角形的面积=所以故答案 解析:6013【分析】设此直角三角形的斜边为c ,斜边上的高为h ,先根据勾股定理和完全平方公式的变形求出c ,再利用三角形的面积求解即可.【详解】解:设此直角三角形的斜边为c ,斜边上的高为h ,则13c =====,因为此直角三角形的面积=1122ab ch =,所以6013abhc==.故答案为:60 13.【点睛】本题考查了勾股定理和完全平方公式等知识,正确变形、掌握解答的方法是关键.20.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5解析:5【分析】从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,,当此直角三角形的一个直角边为3,斜边为4时,故答案为:5.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.三、解答题21.(1)(1,3);(2)图见解析;(3)图见解析;(4)(0,2)【分析】(1)通过点A的位置,直接写出坐标,即可;(2)利用勾股定理和“格点”的定义,直接画出图形即可;(3)根据全等三角形的判定定理,直接作图,即可;(4)作点A关于y轴的对称点A′,连接BA′,交y轴于点E,即可求解.【详解】(1)由点A在平面直角坐标系中的位置,可知:点A的坐标为(1,3),故答案是:(1,3);(2)如图所示:CB=5,5=,故点C即为所求点;(3)如图所示:点D即为所求点;(4)作点A 关于y 轴的对称点A′,连接BA′,交y 轴于点E ,此时AE +BE 取最小值,点E 的坐标为(0,2).故答案是:(0,2).【点睛】本题主要考查坐标与图形,熟练掌握勾股定理,轴对称的性质,全等三角形的判定定理,是解题的关键.22.230cm【分析】先利用勾股定理,求得BD=5;再利用勾股定理的逆定理,证明三角形ABD 是直角三角形,利用面积公式计算即可.【详解】4CD cm =,3BC cm =,90C ∠=︒,22435BD cm ∴=+=,12AB cm =,13AD cm =,222BD AB AD ∴+=,90ABD ∴∠=︒, ∴211·1253022ABD S AB BD cm ∆==⨯⨯=. 【点睛】本题考查了勾股定理及其逆定理的应用,熟练掌握两个定理是解题的关键.23.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==2213514412AD ∴=-=在Rt ADB 中,20,12,AB AD ==22201225616BD ∴=-==16521,BC BD CD ∴=+=+=11211212622ABCS BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE ,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.24.(1)9米;(2)365米. 【分析】 (1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,,22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,9.BD ∴====BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯, 36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.25.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键.26.(1)证明见解析;(2)48cm 2.【分析】(1)由AB=AC=13cm ,CD=12cm ,AD=5cm ,知道AC 2=AD 2+CD 2,所以△BDC 为直角三角形,(2)根据三角形面积公式解答.【详解】证明:(1)∵AB =AC =13cm ,CD =12cm ,AD =5cm ,∴AC 2=AD 2+CD 2,∴∠ADC =90°,∴∠BDC =90°,∴△BDC 为直角三角形;(2)∵AB =13cm ,AD =5cm ,∴BD =13﹣5=8cm .∵CD =12cm , ∴281248()2BDC S cm ∆⨯==. 【点睛】本题考查勾股定理逆定理的应用.理解如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形是解题关键.。
(2021年整理)八年级数学下勾股定理-单元测试题(带答案)

(完整版)八年级数学下勾股定理-单元测试题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)八年级数学下勾股定理-单元测试题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)八年级数学下勾股定理-单元测试题(带答案)的全部内容。
(完整版)八年级数学下勾股定理—单元测试题(带答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)八年级数学下勾股定理—单元测试题(带答案) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)八年级数学下勾股定理—单元测试题(带答案)> 这篇文档的全部内容.八年级下勾股定理(复习巩固16单元(共6小题)满分:150分,考试时间:120分____班姓名__________ 座号___ 分数__________一、精心选一选(每小题3分,共21分)1、下列各组数据为边的三角形中,是直角三角形的是()A、错误!、错误!、7B、5、4、8C、错误!、2、1D、错误!、3、错误!2、正方形ABCD中,AC=4,则正方形ABCD面积为()A、 4B、8C、 16D、323、已知Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=90○,则( )A、b2=a2+c2;B、c2=a2+b2;C、a2+b2=c2;D、a+b=c4、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C.7D.5或75、将Rt△ABC的三边都扩大为原来的2倍,得△A’B’C’,则△A’B'C’为( )A、直角三角形B、锐角三角形C、钝角三角形D、无法确定6、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A、 12米B、 13米C、 14米D、15米二、耐心填一填(每小题3分,共36分)7、(2012,黔东南州,6)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M是表示_________点8、在△ABC中,∠C=90°,若c=10,a∶b=3∶4,则ab=.9、如图,在等腰△ABC中,AB=AC=10,BC=12,则高AD=________;A(第12题)307米5米10、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________; 11、当x___________时,x 63 在实数范围内有意义. 12、ba ab 182____________; 222425__________. 13、计算:把aba 123分母有理化后得=________________14、等腰△ABC 的面积为12cm 2,底上的高AD =3cm , 则它的周长为________.15、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.16、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米. 17、一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是________. 18、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美"袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米,则这棵大树折断前有__________米(保留到0。
最新人教版初中数学八年级数学下册第二单元《勾股定理》检测题(含答案解析)(1)

一、选择题1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .8,12,13C .5,9,13D .3,4,6 2.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .453.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .5D .24.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =,2BD =,则线段DF 的长度为( )A .2B .2C 3D .15.已知实数a ,b 为ABC 2a 1b 4b 40--+=,第三边c 5=第三边c 上的高的值是( )A .554B .455C .552D .2556.如图,90ABC ︒∠=,//AD BC ,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过点C 作CF BE ⊥,垂足为F .若6AB =,10BC =,则EF 的长为( )A .1B .2C .3D .47.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .228.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm10.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .16911.已知ABC ∆的三边a ,b ,c 满足:23|4|10250a b c c -+-+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.812.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,数轴上点C 表示的数的平方为______.14.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.15.公园3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图” .如图,设49a =,小正方形ABCD 的面积是9,则弦c 长为_______.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠BAC ,AB =10,AD =5,AC =4,则△ABD 的面积为 ____________.17.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.18.如图,在四边形ABCD 中,22AD =,27AB =,10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.19.如图,在ABC 中,5AB AC ==,8BC =,D 是线段BC 上的动点(不含端点B 、C ),若线段AD 的长是正整数,则点D 的个数共有______个.20.已知ABC 为等边三角形,且边长为4,P 为BC 上一动点,且PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E 两点,则PD +PE =______________.三、解答题21.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.22.如图,为了测量湖泊两侧点A 和点B 间的距离,数学活动小组的同学过点A 作了一条AB 的垂线,并在这条垂线的点C 处设立了一根标杆(即AC AB ⊥).量得160m AC =,200m BC =,求点A 和点B 间的距离.23.在等腰直角△ABC 中,AB = AC ,∠BAC =90°,过点B 作BC 的垂线l .点P 为直线AB 上的一个动点(不与点A ,B 重合),将射线PC 绕点P 顺时针旋转90°交直线l 于点D . (1)如图1,点P 在线段AB 上,依题意补全图形;①求证:∠BDP =∠PCB ;②用等式表示线段BC ,BD ,BP 之间的数量关系,并证明.(2)点P 在线段AB 的延长线上,直接写出线段BC ,BD ,BP 之间的数量关系.24.本题分为A ,B 两题,可以自由选择一题,你选择 题A :如图,小明想知道学校旗杆的高度,他将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m 处,发现此时绳子底端距离打结处2m ,则旗杆的高度为多少米?B :如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两只猴子所经路程都是16m ,求树高AB .25.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()1,4A -,()4,1B --,()1,1C .将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度得到三角形111A B C .(1)画出平移后的三角形;(2)直接写出点1A ,1B ,1C 的坐标:1A (______,______),1B (______,______),1C (______,______);(3)请直接写出三角形ABC 的面积为_________.26.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点(与点B 不重合),连接AD ,以AD 始边作()0180DAE αα∠=︒<<︒.(1)如图一,当90α=︒且AE AD =时,试说明CE 和BD 的位置关系和数量关系; (2)如图二,当45α=︒且点E 在边BC 上时,求证:222BD CE DE +=.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确; B 、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.3.B解析:B【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+=∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.4.D解析:D【分析】先证明△BDF ≌△ADC ,得到5【详解】解:∵AD 和BE 是△ABC 的高线,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠CAD+∠C=90°,∴∠DBF=∠CAD ,∵45ABC ∠=︒,∴∠BAD=45°,∴BD=AD,∴△BDF≌△ADC,∴在Rt△BDF中,1==.故选:D【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF≌△ADC是解题关键.5.D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可.【详解】()2b20-=,所以a10b20-=-=,,解得a1b2==,;因为2222a b125+=+=,22c5==,所以222a b c+=,所以ABC是直角三角形,C90∠=︒,设第三边c上的高的值是h,则ABC的面积111222==⨯⨯,所以h=故选:D.【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.B解析:B【分析】根据题意结合勾股定理可求出AE长,再根据//AD BC,可证明AEB CBF∠=∠,即可证明()ABE FCB AAS≅,得出结论BF=AE,即可求出EF.根据题意可知BC=BE=10,90BAE BFC ∠=∠=︒.在Rt ABE △中,22221068AEBE AB . ∵//AD BC ,∴AEB CBF ∠=∠,∴()ABE FCB AAS ≅,∴BF=AE=8,∴EF=BE-BF=10-8=2.故选:B . 【点睛】本题考查三角形全等的判定和性质,平行线的性质以及勾股定理.利用“角角边”证明ABE FCB ≅是解答本题的关键.7.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 8.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.9.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm 和5cm ,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm 和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm ⨯故选:C .【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.10.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力. 11.C解析:C【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可.2|4|10250b c c -+-+=()2|4|50b c -+-=,()2|4|50b c -+-=,30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =,22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形,设C 边上的高为h ,由直角三角形ABC 的面积为:1122c h a b =, 整理得3412===2.455a b h c ⨯=, c ∴边上的高为:2.4,故选择:C .【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a 、b 、c 的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.15.【分析】应用勾股定理和正方形的面积公式可求解【详解】解:∵小正方形的面积是9∴AD=CD=3∴a=b-3∵4∴∴∵∴∴故答案为:【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学解析:4【分析】应用勾股定理和正方形的面积公式可求解.【详解】解:∵小正方形ABCD 的面积是9,∴AD=CD=3,∴a=b-3,∵49a =, ∴94a =, ∴214b =, ∵222+=a b c , ∴222921+=44c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, ∴358c =, 故答案为:3584. 【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 16.15【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=3然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵∠C=90°∴在Rt △ACD 中∵∠C=90°DE ⊥A解析:15【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=3,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵∠C=90°,∴在Rt △ACD 中,2222543CD AD AC =-=-=, ∵∠C=90°,DE ⊥AB ,AD 平分∠BAC , ∴DE=CD=3,∴△ABD 的面积为111031522AB DE ⨯⨯=⨯⨯=.故答案为:15.【点睛】本题主要考查了角平分线的性质定理,勾股定理,正确作出辅助线是解答本题的关键. 17.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.18.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC解析:+24【分析】连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒,∴BD =∵AD =,AB =∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=122272142⨯⨯=,S△BDC=16824 2⨯⨯=,四边形ABCD的面积是= S△ABD+ S△BDC=214+24故答案为:214+24.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.3【分析】首先过A作AE⊥BC当D与E重合时AD最短首先利用等腰三角形的性质可得BE=EC进而可得BE的长利用勾股定理计算出AE长然后可得AD 的取值范围进而可得答案【详解】解:过A作AE⊥BC∵AB解析:3【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【详解】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=12BC=4,∴2254-,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故答案为:3.【点睛】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.20.【分析】作出底边上的高AF连接AP分等边三角形为△APB和△APC根据三角形的面积不变可求得PD+PE的值【详解】连接AP作AF⊥BC于点F∵AB =ACAF⊥BC∴CF=BF=2AF=∵∴∴故填:【解析:23【分析】作出底边上的高AF,连接AP,分等边三角形为△APB和△APC,根据三角形的面积不变可求得PD+PE的值.【详解】连接AP,作AF⊥BC于点F,∵AB=AC,AF⊥BC,∴CF=BF=2,AF22AB BF=23-ABC 11S=BC AF=423=4322⋅⨯⨯,∵ABC ABP ACPS=S+S,∴11AB PD+AC PE=4322⋅⋅,∴PD+PE=23故填:23【点睛】本题考查等边三角形的性质,勾股定理,解题的关键是“等面积法”.三、解答题21.(1)1;(2)12或77+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,5=,∴Rt △ABC 的周长=3+4+5=12;当a 为直角边,b 为斜边时,=,∴Rt △ABC 的周长=7【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.22.点A 和点B 间的距离为120m【分析】在Rt △ABC 中利用勾股定理计算出AB 长即可.【详解】解:∵AC AB ⊥.∴90BAC ︒∠=,∴在Rt ABC △中,222AB AC BC +=.∵160AC =,200BC =,∴120(m)AB ==.答:点A 和点B 间的距离为120m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.23.(1)见解析;①见解析;②BC -BD ;见解析;(2)BD -BC BP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P作PF⊥BP交BC于点F.证明△BPD≌△FPC,即可得到结论;(2)过点P作PH⊥BP交CB的延长线于点H,证明△HPC≌△BPD即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD ≌△FPC .∴BD =FC .∵BF =2BP ,∴BC -BD =2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BCBP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.24.A 题:8米;B 题:41213m 【分析】A 题:设出旗杆的高度,利用勾股定理解答即可;B 题:根据题意表示出AD 、AC 、BC 的长,进而利用勾股定理求出AD 的长,即可得出答案.【详解】解:A 题:设旗杆的高度为x 米,则绳子长为(x+2)米,由勾股定理得:()22226x x +=+,解得:8x =,答:旗杆的高度为8米;B 题:由题意可得:BD=10m ,BC=6m ,设AD=xm ,则有:AC=()16x -m ,在Rt △ABC 中,222AB BC AC +=,即()()22210616x x ++=-, 解得:3013x =, 故AB=30410121313+=m , 答:树高AB 为41213m . 【点睛】本题考察勾股定理的应用,善于观察题目的信息是解题的关键.25.(1)见解析;(2)()12,2A ,()11,3B --,()14,1C -;(3)192【分析】(1)作出A 、B 、C 的对应点111,,A B C 并两两相连即可;(2)根据图形得出坐标即可;(3)根据割补法得出面积即可.【详解】解:(1)如图所示,111A B C 即为所求.(2)根据图形可得:()12,2A ,()11,3B --,()14,1C -(3)△ABC 的面积=5×5−12×3×5−12×2×3−12×2×5=192. 【点睛】本题考查作图-平移变换,熟练掌握由平移方式确定坐标的方法及由直角三角形的边所围成的图形面积的算法是解题关键.26.(1)CE BD ⊥,CE BD =,理由见解析;(2)见解析【分析】(1)利用等腰直角三角形的性质证明:ABD △≌ACE △,利用全等三角形的性质可得答案;(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG , 同(1)理证明:90GCB ∠=︒,CG BD =,再证明:ADE ≌AGE ,可得:ED GE =,由勾股定理可得:222CG CE EG +=,等量代换后可得结论.【详解】解:(1)∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠.又BA CA =,AD AE =,∴ABD △≌ACE △(SAS ),∴CE BD =,45ACE B ∠=∠=︒.90BAC ∠=︒,AB AC =,∴ 45ACB B ∠=∠=︒,∴454590ECB ∠=︒+︒=︒,∴CE BD ⊥.∴CE 与BD 位置关系是CE BD ⊥,数量关系是CE BD =.(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG ,如图二,同(1)理:可得90GCB ∠=︒,CG BD =.∵90DAG =︒∠,45DAE ∠=︒,∴45GAE DAE ∠=∠=︒,∵AD AG =,AE AE =,∴ADE ≌AGE (SAS ).∴ED GE =,又∵90GCB ∠=︒, ∴222CG CE EG +=,∴222BD EC DE +=.【点睛】本题考查的是等腰直角三角形的性质,三角形全等的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.。
八年级数学下册第二单元《勾股定理》检测题(包含答案解析)

一、选择题1.以下列各组数为三边的三角形中不是直角三角形的是 ( ) A .1,2,5B .3,5,4C .5,12,13D .1,3,72.下列条件中不能确定ABC 为直角三角形的是( ). A .ABC 中,三边长的平方之比为1:2:3 B .ABC 中,222AB BC AC += C .ABC 中,::3:4:5A B C ∠∠∠= D .ABC 中,1,2,3AB BC AC ===3.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AEAC的值为( )A .352B .51- C .5﹣1D .51+ 4.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .455.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .86.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:257.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm8.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( ) A .222(6)10x x ++= B .222(6)10x x -+= C .222(6)10x x +-=D .222610x +=9.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .4810.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm11.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( ) A .3 B .6 C .12 D .10 12.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( )A .296cmB .248cmC .224cmD .232cm二、填空题13.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.14.在Rt ABC 中,90C ∠=︒,9cm BC =,12cm AC =,15cm AB =;在DEF 中,90E ∠=︒,4cm DE =,5cm DF =,A D ∠=∠.现有两个动点P 和Q .同时从点A 出发,P 沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为3cm/s ;Q 沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ 与DEF 全等,则点Q 的运动速度为__________.15.如图,在Rt ABC △中,90C ∠=︒,10cm AB =,8cm BC =,BD 平分ABC ∠,DE AB ⊥,垂足为E ,则DE =__________cm .16.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.17.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.18.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.19.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长; (2)求小路DE 的长. 22.已知,等腰,,在直角边的左侧直线,点关于直线的对称点为,连接,,其中交直线于点.(1)依题意,在图1中补全示意图:当时,求的度数;(2)当且时,求的度数;(3)如图2,若,用等式表示线段,,之间的数量关系,并证明.23.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.24.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.⨯的方格内作出边长为13的正方形;(1)请在图中的55-+.(2)请在数轴上表示出11325.如图,长方体的长AB=5cm,宽BC=4cm,高AE=6cm,三只蚂蚁沿长方体的表面同时以相同的速度从点A出发到点G处.蚂蚁甲的行走路径S甲为:翻过棱EH后到达G处(即A→P→G),蚂蚁乙的行走路径S乙为:翻过棱EF后到达G处(即A→M→G),蚂蚁丙的行走路径S丙为:翻过棱BF后到达G处(即A→N→G).(1)求三只蚂蚁的行走路径S甲,S乙,S丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?26.在△ABC中,AB=AC,∠BAC=90°,点D是线段BC上的动点(BD>CD),作射线AD,点B关于射线AD的对称点为E,作直线CE,交射线AD于点F.连接AE,BF.(1)依题意补全图形,直接写出∠AFE的度数;(2)用等式表示线段AF,CF,BF之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A、∵2221255+==,∴以1、25为三边的三角形是直角三角形,A不符合题意;B、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B不符合题意;C、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C不符合题意;D、∵22213107+=≠,∴以1、37为三边的三角形不是直角三角形,D符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.2.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A选项:ABC中,三边长的平方之比为1:2:3,ABC∴是直角三角形.B选项:∵在ABC中,222AB BC AC+=,ABC∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=, 345x ︒=,460x ︒=, 575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形. 故选C . 【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.3.B解析:B 【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论. 【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴AE AC =, 故选B . 【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键.4.D解析:D 【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果. 【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2, 在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2, ∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2) =AC 2−AB 2 =45. 故选:D . 【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.5.C解析:C 【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可. 【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ==== 又∵四边形ACFD 是菱形 ∴设AC DF CF AD x ==== 又∵4EC =∴4BC EF CF CE x ==+=+ 又∵∠90BAC ︒= ∴222AB AC BC += ∴2228(4)x x +=+ 解得,6x =即6AD DF CF AC ==== 故平移的距离为:6AD = 故选:C . 【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.6.D解析:D 【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比. 【详解】 解:6BC =,8AC =,10AB ∴=, 折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-, 74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D . 【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.7.A解析:A 【分析】由已知可得DF ⊥AB ,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF 的值. 【详解】解:∵AB=AC,∠A=60°, ∴ΔABC 为等边三角形, ∴∠ACB=60°, ∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°,∴∠AFE=180°-∠A-∠AEF=90°, ∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=, ∴∴AF AE == ∴2BF AB AF AE AF =-=-=∵∠D=30°, ∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A .【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键. 8.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 9.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴2x ,∴S 2=122x x ⨯⨯2AB ,同理:S 12AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6, ∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.10.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 11.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.【详解】解:∵2(3)450a b c -+-+-=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==,∴△ABC 为直角三角形,∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 12.B解析:B【分析】如图:作AD ⊥BC 于D ,先根据等腰三角形的性质求得BD ,然后运用勾股定理求得AD ,最后运用三角形的面积公式解答即可 .【详解】解:如图:作AD ⊥BC 于D ,∵AB=AC=10,∴BD=DC=12BC=8cm , ∴AD=22221086AC CD -=-= ∴S △ABC =12BC·AD=48cm 2. 故答案为B .【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.二、填空题13.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt△ACB≌Rt△EFA∴AF=BC=6EF=A解析:217【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=22221068AB BC-=-=,∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=222282217EF FC+=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.14.cm/s或cm/s或cm/s或cm/s【分析】当点P在边AC运动点Q在边AB运动有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动点Q在边CA运动有△APQ≌△DEF或△APQ≌△DFE分解析:154cm/s或125cm/s或9332cm/s或9631cm/s【分析】当点P在边AC运动,点Q在边AB运动,有△APQ≌△DEF或△APQ≌△DFE;当点P在边BA运动,点Q在边CA运动,有△APQ≌△DEF或△APQ≌△DFE,分别利用路程=速度×时间计算.【详解】解:在△DEF中,DE=4,DF=5,∠E=90°,∴22DF DE-,当点P在边AC运动,点Q在边AB运动,△APQ≌△DEF时,AP=DE=4,AQ=DF=5,则点P 的运动时间为4÷3=43(s ), ∴点Q 的运动速度为5÷43=154cm/s ; △APQ ≌△DFE 时,AP=DF=5,AQ=DE=4,则点P 的运动时间为5÷3=53(s ), ∴点Q 的运动速度为4÷53=125cm/s ; 当点P 在边BA 运动,点Q 在边CA 运动,△APQ ≌△DEF 时,AP=DE=4,AQ=DF=5,则点P 的运动时间为(12+9+15-4)÷3=323(s ), ∴点Q 的运动速度为(12+9+15-5)÷323=9332cm/s ; △APQ ≌△DFE 时,AP=DF=5,AQ=DE=4,则点P 的运动时间为(12+9+15-5)÷3=313(s ), ∴点Q 的运动速度为(12+9+15-4)÷313=9631cm/s ; 故答案为:154cm/s 或125cm/s 或9332cm/s 或9631cm/s .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.15.【分析】先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设从而可得最后在中利用勾股定理即可得【详解】在中平分在和中设则在中即解得即故答案为:【点睛】本题考解析:83【分析】先利用勾股定理可得6AC cm =,再根据角平分线的性质可得DE DC =,然后根据直角三角形全等的判定定理与性质可得8BE BC cm ==,从而可得2AE cm =,设DE DC xcm ==,从而可得(6)AD x cm =-,最后在Rt ADE △中,利用勾股定理即可得.【详解】在Rt ABC 中,90C ∠=︒,10AB cm =,8BC cm =,6AC cm ∴==, BD 平分ABC ∠,,DE AB AC BC ⊥⊥,DE DC ∴=,在Rt BDE 和Rt BDC 中,DE DC BD BD =⎧⎨=⎩, ()Rt BDE Rt BDC HL ∴≅,8BE BC cm ∴==,2AE AB BE cm ∴=-=,设DE DC xcm ==,则(6)AD AC DC x cm =-=-,在Rt ADE △中,222AE DE AD +=,即2222(6)x x +=-, 解得83x =, 即83DE cm =, 故答案为:83. 【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.16.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE 根据线段的和差关系可得CD 的长设CE=x 则DE=8-x 利用勾股定理列方程求出x 的值即可得答案【详解】∵∠ACB =90°BC =解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB ,DE=AE ,根据线段的和差关系可得CD 的长,设CE=x ,则DE=8-x ,利用勾股定理列方程求出x 的值即可得答案.【详解】∵∠ACB =90°,BC =6,AB =10,∴,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x,则DE=AE=AC-CE=8-x,∴在Rt△DCE中,DE2=CE2+CD2,即(8-x)2=x2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键.17.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x,当第三边是斜边时,则x2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.18.【分析】可将教室的墙面ADEF与地面ABCD展开连接PB根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P作PG⊥BF于G连接PB∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程解析:【分析】可将教室的墙面ADEF与地面ABCD展开,连接PB,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作PG⊥BF于G,连接PB,∵AG=3,AP=AB=5, ∴224PG AP AG ==-,∴BG=8, ∴2245P GB GP B +=故这只蚂蚁的最短行程应该是5故答案为:5【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决. 19.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S S S =-即可求解.【详解】解:连接AC ,,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =, ∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒, ∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,, 22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,22221512273819.BD AB AD ∴=-=-⨯==BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴==,AB DE AD BD ∴=15129DE ∴=⨯,36.5DE ∴= DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.22.(1);(2)或;(3),证明见解析 【分析】(1)由轴对称的性质和等腰三角形的性质得出,得出,证出AE=AC ,由等腰三角形的性质和三角形内角和定理即可得出结果 (2)分两种情况:当时,当时分别求解即可 (3)作CG ⊥AP 于G ,由AAS 证明,得出CG=AM ,证出点A 是的外接圆的圆心,,得出和是等腰直角三角形,由勾股定理即可得出结论【详解】解:(1)补全示意图如图所示连接AE ,设AP 与BE 交于点M ,如图:由轴对称的性质得AE=AB ,BM=EM ,AM ⊥BE ,∵是等腰直角三角形∴AB=AC∴AE=AC∴(2)当时,如图:由(1)得,,在中∴∴∴∵AE=AB,AF=AF,FE=FB∴∴当时,如图:∵AE=AB,AF=AF,FE=FB∴∴∵AE=AB=AC∴∴即在与中,∴∴由上可知,的度数为或(3),理由如下: 由(2)得:FE=FB ,∴∴∵在中 ∴【点睛】 本题考查了轴对称的性质,三角形全等的判定及性质,等腰直角三角形的性质,勾股定理等内容,熟练运用这些性质进行推理是解本题的关键23.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)根据勾股定理可知,作13的长的线段时,可以作一个直角边分别为2和3的直角三角形,它的斜边长即所求;(2)先作出边长是13的线段,再以原点为圆心,13为半径画弧,与数轴的正半轴相交于点A,再以A为圆心,1为半径画弧,与OA相交于点B,则OB为所求.【详解】解:(1)如图所示,ABCD为所求作正方形.-+为所求.(2)如图所示,OB=113.【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.25.(1)三只蚂蚁的行走路径S甲,S乙,S丙137cm,5,117cm;(2)蚂蚁丙最先到达,蚂蚁甲最后到达【分析】(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,根据勾股定理分别求出S,S乙,S丙的值即可;甲(2)比较S 甲,S 乙,S 丙的值即可得到答案.【详解】解:(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,∵长AB =5cm ,宽BC =4cm ,高AE =6cm ,∴EF =AB =5cm ,GF =BC =EH =4cm ,AE =BF =CG =6cm ,∴图1:S 甲=2222()114137AE EF G F '''++=+=(cm )图2:S 乙=2222()10555AE EH G H '''++=+=(cm ),图3:S 丙=2222()96117AB BC C G '''++=+=(cm ),答:三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)由(1)知,S 甲137cm ),S 乙5125cm ),S 丙117cm ). ∵137125117∴蚂蚁丙最先到达,蚂蚁甲最后到达.【点睛】此题考查勾股定理的实际应用,立方体的平面展开图,正确理解题意,确定每只蚂蚁所走的路径构建直角三角形是解题的关键.26.(1)作图见解析;45°;(2)2AF ,证明见解析【分析】(1)根据轴对称即可补全图形,延长FB 至点M 使MB=CF ,通过ABM ACF △≌△,进而证得△MAF 是等腰直角三角形,问题即可解决;(2)由(1)知△MAF 是等腰直角三角形及CF=BF ,再根据勾股定理问题即可解决;【详解】(1)补全图形,如图所示:∠AFE=45°理由如下:延长FB 至点M 使MB=CF ,∵点B 、E 关于AF 对称,∴AB=AE ,∠ABF=∠AEC ,∠AFB=∠AFE∵AB=AC ,∴AC=AE ,∴∠ACE=∠AEC‘∴180180ACE ABF ︒-∠=︒-∠ ∠ACE=∠ABF ,即:ABM ACF ∠=∠,()ABM ACF SAS ∴△≌△,,CAF AM AF MAB ∴=∠=∠,AMF=AFM MAF=BAC=90∴∠∠∠∠︒,,AFM=45∴∠︒,AFE=45∴∠︒(2)2AF理由如下:由(1)知AM=AF ,CF=MB ,MAF=90∠︒2222AF +AM =MF =2AF ∴∴2AFMF=MB BF +即AF∴,【点睛】本题考查了轴对称的性质,全等三角形的判定和性质,直角三角形的判定和性质,等腰三角形的判定和性质,构造全等三角形是解决本题的关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测题(含答案解析)(2)

一、选择题1.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC ===2.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .43.下列四组线段中,能构成直角三角形的是( )A .2cm 、4cm 、5cmB .15cm 、20cm 、25cmC .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm4.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .85.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 6.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 7.如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .2220202D .2,20192 8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 9.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm10.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG =GE ,AF =3,FD =1,△ADG 的面积为2,则点D 到AB 的距离为( )A .41313B .81313C .2D .412.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( ) A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=二、填空题13.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.14.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)15.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.16.如图,ABC 中,17AB =,10BC =,21CA =,AM 平分BAC ∠,点D .E 分别为AM 、AB 上的动点,则BD DE +的最小值是__________.17.如图所示的网格是正方形网格,点A 、B 、C 、D 均在格点上,则∠CAB +∠CBA =____°.18.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.19.已知直角坐标平面内的Rt △ABC 三个顶点的坐标分别为A (4,3)、B (1,2)、C (3,-4),则直角顶点是_________.20.在直角三角形中,其中两边分别为3,4,则第三边是______.三、解答题21.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.22.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边交点为勾股顶点.(1)特例感知①等腰直角三角形_________勾股高三角形(请填写“是”或者“不是”);②如图1,已知ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若AD=,试求线段CD的长度.BD=,15(2)深入探究>,CD是AB边上如图2,已知ABC为勾股高三角形,其中C为勾股顶点且CA CB试探究线段AD与CB的数量关系,并给予证明;24.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)在直线l上找一点P,使PB+PC的和最小,并算出这个最小值.25.如图:AB=AC,AD⊥BC于D,AE=DE.求证:(1)DE∥AB;(2)若∠B=60°,DE=2,求AD的长.26.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB=4,AD=8,求BE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=,又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.2.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC === ∴2222345CD DE EC =+=+=∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误; ∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD =∴5BD CD AD ===∵DF AB ⊥∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 3.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A :2222+45≠ ,不符合题意;B :22215+20=25 ,符合题意;C :2220.2+0.30.4≠ ,不符合题意;D :2221+23≠ ,不符合题意;故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.4.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.5.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.6.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD ,因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 7.A解析:A【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【详解】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系”,∴根据题意可得:111OA A B ==∴212OB OA ==∴22222OA A B ===,,∴总结出()2n n OA =, ∵111122△OAB S =⨯⨯=,1112212△OA B S =⨯⨯=,2212222△OA B S =⨯⨯=, ∴归纳得出一般规律:()()112222n n n n n OA B S-=⨯⨯=, ∴2021202120202OA B S =,故选:A .【点睛】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键. 8.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出. 【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°,∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°,∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.9.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm 和5cm ,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm 和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm ⨯故选:C .【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.10.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 11.B解析:B【分析】根据中线的性质,得S ∆ADG = S ∆AEG ,从而求出S ∆ADE =4,结合折叠的性质,得S ∆ABD = S ∆ADE =4,BE ⊥AD ,根据勾股定理以及等积法,即可得到答案.【详解】∵DG =GE ,∴S ∆ADG = S ∆AEG =2,∴S ∆ADE =4,由折叠的性质可知:∆ABD ≅∆ADE ,BE ⊥AD , ∴S ∆ABD = S ∆ADE =4,∠AFB=90°, ∴1()=42AF DF BF +⋅, ∴BF=2,∴==设点D 到AB 的距离为h ,则142AB h ⋅=,∴故选B .【点睛】 本题主要考查折叠的性质以及勾股定理,熟练掌握“等积法”求三角形的高,是解题的关键.12.B解析:B【分析】根据三角形三边关系可分析出A 的正误;根据勾股定理逆定理可分析出B 的正误;根据三角形内角和定理可分析出C 、D 的正误;【详解】解:A 、a b c +=,不能组成三角形,不是直角三角形;B 、222a c b +=,符合勾股定理的逆定理,是直角三角形;C 、由∠A+∠B=2∠C ,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D 、由∠A :∠B :∠C=5:12:13,可得最大角131807830C ∠=︒⨯=︒,不是直角三角形. 故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理. 二、填空题13.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】 解:由图可知,22125OB =+=, ∴5OA OB ==,则点A 表示的数为5-, ∵225(5)()2<,∴552<, ∴552->-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.14.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB= 解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a.【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 15.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.16.8【分析】过B 点作于点与交于点根据三角形两边之和小于第三边可知的最小值是线段的长根据勾股定理列出方程组即可求解【详解】过B 点作于点与交于点作点E 关于AM 的对称点G 连结GD 则ED=GD 当点BDG 三点在解析:8【分析】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知 BD DE +的最小值是线段BF 的长,根据勾股定理列出方程组即可求解.【详解】过B 点作BF AC ⊥于点 F , BF 与AM 交于D 点,作点E 关于AM 的对称点G ,连结GD ,当点B 、D 、G 三点在一直线上时较短,BG BF >,当线段BG 与BF 重合时最短,BD+BE=BD+DG=BF ,设AF=x ,CF-21-x ,根据题意列方程组:()222222172110BF x BF x ⎧+=⎪⎨+-=⎪⎩, 解得:158x BF =⎧⎨=⎩,158x BF =⎧⎨=-⎩(负值舍去). 故BD +DE 的值是8,故答案为8,【点睛】本题考查轴对称的应用,角平分线的性质,点到直线的距离,勾股定理的应用,掌握轴对称的性质,角平分线的性质,点到直线的距离,勾股定理的应用,会利用轴对称找出最短路径,再利用勾股定理构造方程是解题关键.17.45【分析】设每个小格边长为1可以算得ADCDAC 的边长并求得∠ACD 的度数根据三角形外角性质即可得到∠CAB+∠CBA 的值【详解】解:设每个小格边长为1则由图可知:∴∴△ADC 是等腰直角三角形∴∠解析:45【分析】设每个小格边长为1,可以算得AD 、CD 、AC 的边长并求得∠ACD 的度数,根据三角形外角性质即可得到∠CAB+∠CBA 的值.【详解】解:设每个小格边长为1,则由图可知:2222125,1310,AD CD AC ==+==+=∴222AD CD AC +=,∴△ADC 是等腰直角三角形,∴∠ACD=45°,又∠ACD=∠CAB+∠CBA ,∴∠CAB+∠CBA=45°,【点睛】本题考查勾股定理逆定理的应用,熟练掌握勾股定理的逆定理及三角形的外角性质是解题关键.18.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =, ∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.19.B 【分析】先根据两点间的距离公式得到AB2BC2AC2的值然后根据勾股定理的逆定理即可解答【详解】解:∵A (43)B (12)C (3-4)∴AB2=(4-1)2+(3-2)2=10AC2=(3-4)2解析:B【分析】先根据两点间的距离公式得到AB 2、BC 2、AC 2的值,然后根据勾股定理的逆定理即可解答.【详解】解:∵A (4,3)、B (1,2)、C (3,-4),∴AB 2=(4-1)2+(3-2)2=10,AC 2=(3-4)2+(-4-3)2=50,BC 2=(3-1)2+(-4-2)2=40, ∴AC 2=AB 2+BC 2,∴△ABC 为直角三角形,∴∠B=90°,即该直角三角形的直角顶点为B.故答案为B.【点睛】本题主要考查勾股定理的逆定理、两点间的距离公式,正确的运用相关的定理、公式成为解答本题的关键.20.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5解析:5【分析】从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,,当此直角三角形的一个直角边为3,斜边为4时,故答案为:5.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.三、解答题21.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×12ab=13﹣3=10,∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.22.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.23.(1)①是;②2CD =;(2)证明见解析.【分析】(1)①设等腰直角三角形的直角边长为a ,由)222,a a -=结合勾股高三角形的定义可得答案; ②根据勾股定理得到22225,1,CB CD CA CD =+=+根据勾股高三角形的定义得到222CD BC AC =-,再列方程,解方程可得答案;(2)由△ABC 为勾股高三角形,C 为勾股顶点且CA >CB ,CD 是AB 边上的高,可得:222,CA CD CB -= 再由勾股定理可得:222CA CD AD -=,从而可得结论.【详解】解:(1)①设等腰直角三角形的直角边长为a ,则斜边长==,∵)222,a a -=等腰直角三角形的一条直角边可以看作另一条直角边上的高, ∴等腰直角三角形是勾股高三角形,故答案为:是;②,CD AB ⊥ BD =,1AD =,由勾股定理可得:222222225,1,CB CD BD CD CA CD AD CD =+=+=+=+∵△ABC 为勾股高三角形,C 为勾股顶点,CD 是AB 边上的高,∴222CD BC AC =-,∴()()22251CD CD CD =+-+,24CD ∴=,解得,2CD =(负根舍去);(2)AD=CB ,证明如下:∵△ABC 为勾股高三角形,C 为勾股顶点且CA >CB ,CD 是AB 边上的高, ∴222CD CA CB =-, 222,CA CD CB ∴-=,CD AB ⊥∴222CA CD AD -=∴22CB AD =,,CB AD 都为线段,∴AD CB =.【点睛】本题考查的是勾股定理,勾股高三角形的定义,利用平方根的含义解方程,等腰直角三角形的定义,正确理解勾股高三角形的定义,灵活运用勾股定理是解题的关键.24.(1)图见解析;(2)图见解析,25 【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P 点位置,然后根据勾股定理求解.【详解】解:(1)如图所示:△A ′B′C′,即为所求;(2)如图所示:点P 即为所求.PB+PC=''B P PC B C +==222425+=.【点睛】此题主要考查了轴对称变换,最短路径求法,以及勾股定理等知识,正确得出对应点位置是解题关键.25.(1)证明见解析;(2)【分析】(1)根据三线合一得BAD =∠CAD ,由AE =DE ,得∠CAD =∠EDA ,从而∠BAD =∠EDA ,所以DE ∥AB ;(2)由AB =AC ,∠B =60°,DE ∥AB ,得∠C =60°,∠EDC =∠B =60°,从而△DEC 为等边三角形, DE =DC =EC =AE =2,最后在Rt △ADC 中,由勾股定理求AD .【详解】解:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD ,∵AE =DE ,∴∠CAD =∠EDA ,∴∠BAD =∠EDA ,∴DE ∥AB(2)∵AB =AC ,∠B =60°,∴∠C =60°∵DE ∥AB ,∴∠EDC =∠B =60°,∴△DEC 为等边三角形,∴DE =DC =EC =AE =2在Rt △ADC 中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测卷(包含答案解析)

一、选择题1.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB 边上的高长为( )A .355B .25C .3510D .3222.如图,△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,△ABC 的面积为120,则△BCD 的面积为( )A .20B .24C .30D .40 3.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .154.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 5.如图,平面直角坐标系中,点A 在第一象限,点B 、C 的坐标分别为3,02⎛⎫ ⎪⎝⎭、1,02⎛⎫- ⎪⎝⎭.若ABC ∆是等边三角形,则点A 的坐标为( )A .1,32⎛⎫ ⎪⎝⎭B .1,22⎛⎫ ⎪⎝⎭C .13,2⎛⎫ ⎪⎝⎭ D .()1,3 6.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.87.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,3AC =,2AD =,则ABD △的面积为( )A 3B .2C .23D .38.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .189.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .2510.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④ 11.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.14.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.15.如图,在直角ABC 中,90B ∠=︒,AE 平分BAC ∠,交BC 边于点E ,若5BC =,13AC =,则AEC 的面积是________.16.在平面直角坐标系中,点A(0,-3),B(4a +4,-3a),则线段AB 的最小值为 ___________.17.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.18.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 19.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是______cm .20.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.三、解答题21.在锐角ABC ∆中,∠BAC =45°.(1)如图1,BD ⊥AC 于D ,在BD 上取点E ,使DE =CD ,连结AE ,F 为AC 的中点,连结EF 并延长至点M ,使FM =EF ,连结CM 、BM .①求证:△AEF ≌△CMF ;②若BC =2,求线段BM 的长.(2)如图2,P 是△ABC 内的一点,22AB = (即28AB =),AC =3,求2PA +PB +PC 的最小值,并求此时∠APC 的度数.22.如图,在直角坐标系内.(1)作出ABC ,其中(3,1)A ,(1,2)B ,(4,3)C ; (2)作ABC 关于x 轴的轴对称图形DEF ;(3)求ABC 的周长和面积,23.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =50c =. (1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长. 24.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >. (1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP是等腰三角形时t的值.25.本题分为A,B两题,可以自由选择一题,你选择题A:如图,小明想知道学校旗杆的高度,他将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m处,发现此时绳子底端距离打结处2m,则旗杆的高度为多少米?B:如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两只猴子所经路程都是16m,求树高AB.26.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形ABC,使∠ACB=90°,三边中有两边边长都是无理数;(2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标;'''.(不要求写作法).(3)作ABC关于y轴的轴对称图形A B C【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△, ∵22125AB =+= ∴1322AB CD ⋅=, 则355CD ==, 故选:A .【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.2.C解析:C【分析】根据已知条件可知∠A =∠BCD =30°,在Rt △BCD 中设BD =x ,则BC =2x ,由勾股定理求得CD ,在Rt △ACD 中,AC =2BC =,根据△ABC 的面积为120,即11202AC BC ⨯=,求得2x 的值,用三角形的面积公式即可得出△BCD 的面积. 【详解】解:∵△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,∴在Rt △ABC 中,∠A =30°,在Rt △BCD 中,∠BCD =30°,∴ 设BD =x ,则BC =2BD =2x ,CD ==,∴ 在Rt △ACD 中,∠A =30°,∴AC =2BC =,∵△ABC 的面积为120,∴11212022ABC S AC BC x =⨯⨯=⨯⨯=,解得:2x∵211=2222BCD S BD CD x x =⨯⨯=⨯=⨯, 故选:C .【点睛】本题考查了直角三角形中,30°所对的直角边是斜边的一半和勾股定理.熟练掌握各定理所示解题的关键.3.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x .4.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.5.A解析:A【分析】先过点A 作AD ⊥OB ,根据△ABC 是等边三角形,求出AC=BC ,CD=BD ,∠ACB=60°,再根据点B 、C 的坐标,求出CB 的长,再根据勾股定理求出AD 的值,从而得出点A 的坐标.【详解】过点A 作AD ⊥OB ,∵△ABC是等边三角形,∴AC=BC,CD=BD,∠ACB=60°,∵点B的坐标为3,02⎛⎫⎪⎝⎭,点C的坐标为1,02⎛⎫- ⎪⎝⎭∴BC=2,OC=12∴CA=2,∴CD=1,∴2222=1=32CA CD--∵OD=CD-CO∴OD=1-12= 1 2∴点A的坐标是132⎛⎝.故选A.【点睛】此题考查了等边三角形的性质,用到的知识点是勾股定理,关键是作出辅助线,求出点A 的坐标.6.B解析:B【分析】先根据勾股定理求得A点坐标,再利用二分法估算即可得出13比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴223213OA OB=+=∴A所表示的数为13-∵23.612.9613=<,23.713.6913=>,∴13-3.6和-3.7之间,∵23.6513.322513=>,∴13-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.7.A解析:A【分析】根据含30度角的直角三角形性质可求出CD=1,过点D 作DE ⊥AB ,证明Rt △ACD ≌Rt △AED ,得AE=AC=3,再证明Rt △BED ≌Rt △AED ,得BE=AE=3,最后利用三角形面积公式即可求出答案.【详解】解:∵30B ∠=︒,90C ∠=︒,∴∠BAC=90゜-30゜=60゜∵AD 平分BAC ∠,∴∠BAD=∠CAD=1302BAC ∠=︒ 在Rt △ACD 中,由AD=2∴CD=1;过点D 作DE ⊥AB ,如图,∵AD 平分BAC ∠,90C ∠=︒,∴DE=DC=1又AD=AD∴Rt △ACD ≌Rt △AED ,∴3在Rt △ADE 和Rt △BDE 中DAE DBE AED BED DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴Rt △BED ≌Rt △AED∴3∴3∴11122ABD S AB DE ∆=⨯=⨯⨯= 故选:A .【点睛】 此题主要考查了角平分线的性质、含30度角的直角三角形的性质以及勾股定理,熟练掌握相关定理、性质是解答此题的关键.8.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.9.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 10.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确; 由图可知42x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯+=, 即2449xy +=,故③正确; 由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=, 949x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.14.【分析】运用勾股定理可求出平面直角坐标系中AB 的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB 的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC =+∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键. 15.【分析】如图(见解析)先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设在中利用勾股定理可求出x 的值最后利用三角形的面积公式即可得【详解】如图过点E 作于点解析:785【分析】如图(见解析),先利用勾股定理可得12AB =,再根据角平分线的性质可得BE DE =,然后根据直角三角形全等的判定定理与性质可得12AD AB ==,从而可得1CD =,设DE BE x ==,在Rt CDE △中,利用勾股定理可求出x 的值,最后利用三角形的面积公式即可得.【详解】如图,过点E 作ED AC ⊥于点D ,在Rt ABC 中,90,5,13B BC AC ∠=︒==,2212AB AC BC ∴=-=,AE ∵平分BAC ∠,且,90ED AC B ⊥∠=︒,BE DE ∴=,在Rt ABE △和Rt ADE △中,BE DE AE AE =⎧⎨=⎩, ()Rt ABE Rt ADE HL ∴≅,12AD AB ∴==,1CD AC AD ∴=-=,设DE BE x ==,则5CE BC BE x =-=-,在Rt CDE △中,222CD DE CE +=,即2221(5)x x +=-, 解得125x =, 即125DE =, 则AEC 的面积是111278132255AC DE ⋅=⨯⨯=, 故答案为:785. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.16.【分析】根据勾股定理可得整理配方即可求解【详解】解:根据勾股定理可得:∵∴线段AB 的最小值为故答案为:【点睛】本题考查勾股定理的应用完全平方公式的应用根据勾股定理表示出是解题的关键 解析:245【分析】 根据勾股定理可得()()2224433AB a a =++-,整理配方即可求解.【详解】解:根据勾股定理可得:()()22222757644332514255525AB a a a a a ⎛⎫=++-=++=++ ⎪⎝⎭, ∵27576576552525a ⎛⎫++≥ ⎪⎝⎭, ∴线段AB 的最小值为245, 故答案为:245. 【点睛】本题考查勾股定理的应用、完全平方公式的应用,根据勾股定理表示出2AB 是解题的关键.17.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC ⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.18.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 19.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.20.【分析】设OA=OB=BC=CD=a 可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD ∴设OA=OB=BC=CD=a ∵∠AOD=90°∴AC===∴∵AC==3 解析:32【分析】设OA=OB=BC=CD=a ,可知2a ,5a ,10a ,由题意知AC=3,即可求出AD 的长;【详解】∵ OA=OB=BC=CD ,∴ 设OA=OB=BC=CD=a ,∵∠AOD=90°,∴,∴AD ===,∵=3,∴∴5 =故答案为:【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;三、解答题21.(1)①见解析;②2,此时∠APC =90°【分析】(1)①根据SAS 证明△AEF ≌△CMF 即可;②证明△BCM 是等腰直角三角形,由勾股定理求解即可;(2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,推荐FP =,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于H ,求得EH =AH =2,CH =5,在Rt△EHC 中,可得CE C 、P 、F 、E PA +PB +PC 的最小值为CE ,故可得结论.【详解】(1)①∵F 为AC 的中点,∴AF =CF在△AEF 和△CMF 中EF FM AFE CFM AF CF =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△CMF②由(1)得△AEF ≌△CMF ,∴AE =CM ,∠DAE =∠FCM ,∵BD ⊥AC ,∠BAC =45°,∴AD =BD在△AED 和△BCD 中90DE DC ADE BDC AD BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△AED ≌△BCD ,.∴AE =BC ,∠DAE =∠DBC ,∴BC =CM ,∠FCM =∠DBC ,∵∠BCF +∠DBC =90°,∴∠BCF +∠FCM =90°,∴△BCM 是等腰直角三角形, 由勾股定理得,22448(22)BM BC CM =+=+=或 (2)将△APB 绕点A 逆时针旋转 90°得到△AFE ,连接FP 、CE ,易知△AFP 是等腰直角三角形,∴2FP AP ,∠EAC =135°,作 EH ⊥CA 交 CA 的延长线于 H .在Rt △ EAH 中,228AE AB == ,∵∠H =90° , ∠EAH =45°, ∵222EH AH AE +==8,∴EH =AH =2,∴CH =5,在 Rt △EHC 中,2242529CE EH CH =+=+∵2+PC =FP +EF +PC ≥CE ,∴点C 、P 、F 、E 2PA +PB +PC 的最小值为CE ,此时,∠AFP+∠AFE=90°,∠BPC +∠APF=180°, ∵∠AFP=∠APF=45°,∴∠AFE=∠BPC=135°,∴∠APB=∠BPC=135°∴∠APC =360°-135°-135°=90°∴2+PB +PC 29,此时∠APC =90°【点睛】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,中点的性质,勾股定理,判断出两对三角形全等是解本题的关键.22.(1)图见解析;(2)图见解析;(3)ABC 的周长为2510+,面积为52. 【分析】 (1)利用A ,B ,C 各点坐标在平面坐标系中描出即可;(2)分别作出点A 、B 、C 关于x 轴的对称点,再顺次连接可得; (3)利用割补法求解可得到面积,借助网格利用勾股定理分别求出三边即可求得周长.【详解】解:(1)ABC 如图所示;(2)DEF 如图所示;(3)1115231212132222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=, ABC 的周长=2222221212132510AB AC BC ++=+++++=+.【点睛】本题考查坐标与图形变换——轴对称,勾股定理.熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(1)ABC 是直角三角形,理由见解析;(2)3【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程2118322x =,解之即可. 【详解】解:(1)在ABC 1850<3250<2222(18)32)50a b +=+=,2250)50c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴212x =,解得:x =±0x ,x ∴=答:这个正方形的边长为x =【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC 的面积相等构造方程解决问题是关键. 24.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3. 【分析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高; (2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,4AC ===.∴AC 的长为4.设斜边AB 上的高为h . ∵1122AB h AC BC ⨯⨯=⨯⨯, ∴1153422h ⨯⨯=⨯⨯, ∴125h =. ∴斜边AB 上的高为125. (2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动, ①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩, ∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=- 解得:83t =, 故答案为:83; (3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P 在线段AB 上时,若BC=BP ,则点P 运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC ,如图2,过点C 作CH ⊥AB 于点H ,则BP=2BH ,在△ABC 中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC ,∴5CH=4×3, ∴125CH =, 在Rt △BCH 中,由勾股定理得:22123() 1.85BH =-=, ∴BP=3.6, ∴点P 运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB ,如图3所示,过点P 作PQ ⊥BC 于点Q ,则30.52BQ CQ BC ==⨯=,∠PQB=90°, ∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2, 在Rt △BPQ 中,由勾股定理得:223()2 2.52BP =+=, 点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.25.A 题:8米;B 题:41213m 【分析】 A 题:设出旗杆的高度,利用勾股定理解答即可;B 题:根据题意表示出AD 、AC 、BC 的长,进而利用勾股定理求出AD 的长,即可得出答案.【详解】解:A 题:设旗杆的高度为x 米,则绳子长为(x+2)米,由勾股定理得:()22226x x +=+,解得:8x =,答:旗杆的高度为8米;B 题:由题意可得:BD=10m ,BC=6m ,设AD=xm ,则有:AC=()16x -m ,在Rt △ABC 中,222AB BC AC +=,即()()22210616x x ++=-, 解得:3013x =, 故AB=30410121313+=m , 答:树高AB 为41213m . 【点睛】 本题考察勾股定理的应用,善于观察题目的信息是解题的关键.26.(1)见解析;(2)见解析,A(0,0),B(﹣5,0),C(﹣4,2);(3)见解析【分析】(1)每个小正方形的边长为1,对角线就是无理数,根据要求画出图形(答案不唯一).(2)构建平面直角坐标系,写出坐标即可;(3)分别作出 A ,B ,C 的对应点 A ',B ',C'即可.【详解】解:(1)如图,△ABC 即为所求(答案不唯一).(2)平面直角坐标系如图所示,A (0,0),B (﹣5,0),C (﹣4,2).(3)如图,△A′B′C′即为所求.【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
(常考题)人教版初中数学八年级数学下册第二单元《勾股定理》检测(含答案解析)(3)

一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.以下列各组数为三边的三角形中不是直角三角形的是 ( )A .1,2,5B .3,5,4C .5,12,13D .1,3,7 3.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .44.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =155.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352B .512-C .5﹣1D .512+ 6.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .157.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 8.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .310.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .1311.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,数轴上点A 表示的数是__________.15.已知△ABC 中,AB=AC=5,BC=6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.16.如图,已知点A ,点B 分别为y 轴和x 轴正半轴上两点,以AB 为斜边作等腰直角三角形ABC ,点A ,点B ,点C 按顺时针方向排列,若4,AB AOB =∆的面积为3,则点C 的坐标为_________.17.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.18.如图所示的正方形网格中,A,B,C,D,P是网格线交点.若∠APB=α,则∠BPC的度数为 ____(用含α的式子表示).19.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.20.如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则△ABC最小周长为 ________ .三、解答题21.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一=,E是AC上的一点,块三角形空地将进行绿化,如图,在ABC中,AB ACBC=,12CE=,135BE=.(1)判断ABE △的形状,并说明理由.(2)求线段AB 的长.22.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.23.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,3,5,22;(2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形使这个三角形的面积为6(要求至少画出3个);(3)在图3中,MNP △的顶点M ,N 在格点上,P 在小正方形的边上,问这个三角形的面积相当于多少个小方格的面积?24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.如图,△ABC 中,AB =6cm ,AC =42cm ,BC =25cm ,点P 以1cm/s 的速度从点B 出发沿边BA→AC 运动到点C 停止,运动时间为ts ,点Q 是线段BP 的中点. (1)若CP ⊥AB 时,求t 的值;(2)若△BCQ 是直角三角形时,求t 的值;26.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC 中,两边长分别是52a =10c =,这个三角形是否是奇异三角形?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-,∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A 、∵222125+==, ∴以1、2为三边的三角形是直角三角形,A 不符合题意;B 、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B 不符合题意;C 、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C 不符合题意;D 、∵2221310+=≠,∴以1、3为三边的三角形不是直角三角形,D 符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键. 3.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC ===∴5CD ===∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误;∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD = ∴5BD CD AD ===∵DF AB ⊥ ∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 4.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A 、72+242=52,能构成直角三角形,不符合题意;B 、112+402≠412,不能构成直角三角形,符合题意;C 、52+122=132,能构成直角三角形,不符合题意;D 、82+152=172,能构成直角三角形,不符合题意.故选:B .【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.5.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴12AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 6.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 7.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.8.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;()221433130-+=,不需调整; ()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.9.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.10.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×1ab=102∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A 表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A 表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键. 15.4【分析】过A 作AP ⊥BC 于P 根据勾股定理以及垂线段最短即可得到结论【详解】解:过A 作AP ⊥BC 于P ∵AB=AC=5∴BP=BC=3在Rt △ABP 中由勾股定理得AP=4∵点P 是线段BC 上一动点∴AP解析:4【分析】过A 作AP ⊥BC 于P ,根据勾股定理以及垂线段最短即可得到结论.【详解】解:过A 作AP ⊥BC 于P ,∵AB=AC=5,∴BP=12BC=3, 在Rt △ABP 中,由勾股定理得,AP=4∵点P 是线段BC 上一动点,∴AP≥4所以,AP 的最小值为4故答案为:4.【点睛】本题考查了等腰三角形的性质以及勾股定理,求出AP=4是解题的关键.16.或【分析】过点C 作交x 轴于点N 延长NC 至点M 使根据勾股定理解得ACBC 的长再证明由全等三角形对应边相等解得再根据设用加减消元法解得x 的值最终得到点C 的坐标【详解】解:过点C 作交x 轴于点N 延长NC 至点 解析:()1,1-或()1,1-【分析】过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,根据勾股定理解得AC 、BC 的长,再证明()NAC BCM AAS ≅,由全等三角形对应边相等解得NC BM =,再根据3AOB S =△,设=,NC BM x ON AN CM y ====,用加减消元法解得x 的值,最终得到点C 的坐标.【详解】解:过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,Rt ABC 为等腰直角三角形,222AC BC AB ∴+=22AC BC ∴==90NAC ACN ∠+∠=︒90BCM ACN ∠+∠=︒NAC MCB ∴∠=∠()NAC MCB AAS ∴≅NC BM ∴=设=,NC BM x ON AN CM y ====AO y x ∴=-在t R CMB 中,2228x y BC +==① 3AOB S =1()()32x y y x ∴+-= 226y x -=②①-②得,21x =1x ∴=±(1,1)C ∴-或(1,1)C -故答案为:()1,1-或()1,1-.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定与性质,其中涉及勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.18.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒ 【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则223332+=223332+= ,AC=6222AP PC AC +=∴ △PAC 为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒故答案为:90-α︒【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.20.4【分析】作A 关于OM 的对称点A´A 关于ON 的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:42【分析】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´2244+2(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´2(cm )即△ABC 的周长最小值为2故答案为:2【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键. 22.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.23.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为32,宽为1的矩形的对角线,是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP 的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP 的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)2;(2)4或6+42﹣25【分析】(1)如图1中,作CH ⊥AB 于H .设BH =x ,利用勾股定理构建方程求出x ,当点P 与H 重合时,CP ⊥AB ,此时t =2;(2)由题意易知分两种情形①如图2中,当点Q 与H 重合时,BP =2BQ =4,②如图3中,当CP =CB =25时,CQ ⊥PB ,然后根据题意求解即可解决问题.【详解】解:(1)如图1中,作CH ⊥AB 于H .设BH =x ,∵CH ⊥AB ,∴∠CHB =∠CHA =90°,∴AC 2﹣AH 2=BC 2﹣BH 2,∴(42)2﹣(6﹣x )2=(25)2﹣x 2,解得x =2,∴当点P 与H 重合时,CP ⊥AB ,此时t =2.(2)由(1)可得:BH=2,CH=4,∴点P 的运动路程为1×t=t ,∴如图2中,当点Q 与H 重合时,则有BP =2BQ =4,此时t =4;如图3中,当CP =CB =5CQ ⊥PB ,此时t =6+(2﹣56+2﹣5+,△BCQ是直角三角形.综上所述:当t=4或64225【点睛】本题主要考查等腰三角形的性质及勾股定理,熟练掌握等腰三角形的性质及勾股定理是解题的关键.26.(1)是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形.【分析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.【详解】解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形;理由如下,分两种情况:①当c为斜边时,2252c a-=∴a=b,∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形;②当b为斜边时,22c a=,+56∵a2+b2=200,∴2c2=200,∴a2+b2=2c2,∴Rt△ABC是奇异三角形.【点睛】本题考查的是勾股定理的应用,需要熟练掌握勾股定理的公式,运用分类讨论的思想是解决第(2)问的关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测题(包含答案解析)(4)

一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .4 3.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm4.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .155.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.86.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .488.若实数m 、n 满足|m ﹣3|+4n -=0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .5或7C .12D .12或7+7 9.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .610.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm 11.已知ABC ∆的三边a ,b ,c 23|4|10250a b c c --+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.812.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,在ABC 中,90A ∠=,AB AC =,点E ,点F 为BC 边上的三等分点,且12BC =,点P 在AB 边上运动(包括A 、B 两点),连结PE 、 PF ,若设PE PF a +=,则a 的取值范围为______.15.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.16.已知一个直角三角形的两边长分别是a ,b ,且a ,b 340a b --=.则斜边长是____________17.如图,A 点坐标为(3,0),C 点坐标为(0,1),将OAC 沿AC 翻折得ACP △,则P 点坐标为_________.18.如图,△DEF 为等边三角形,点D 、E 、F 分别为边AB 、BC 、AC 上一点,且∠C =60°,AD 3BD 5=,AE =7,则AC 的长为_________.19.在直角三角形中,其中两边分别为3,4,则第三边是______.20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.如图,ABF 中,E 是边AF 的中点,点C 在BF 上,作//AD BF 交CE 的延长线于点D .(1)求证:ADE ≌FCE △.(2)若90CEF ∠=︒,5AD =,4CE =,求点E 到BF 的距离.22.有一块四边形草地ABCD (如图),测得10AB AD ==m ,26CD =m ,24BC =m ,60A ∠=︒.(1)求ABC ∠的度数;(2)求四边形草地ABCD 的面积.23.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.24.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?25.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.(1)请在图中的55⨯的方格内作出边长为13的正方形;(2)请在数轴上表示出113-+.26.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC ;(2)在图2中画出一个面积为13的格点正方形DEFG ;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1H ;(4)在图4中画出一个周长为的格点直角三角形JKL .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ',∴224ACB CDB S S ''==⨯=△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.2.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC=== ∴2222345CD DE EC =+=+=∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误; ∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD =∴5BD CD AD ===∵DF AB ⊥∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 3.C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A的高将圆柱侧面展开,再过点B作高线BC,如图:则,∠ACB=90°,AC=12⨯12=6(cm),BC=8cm,由“两点之间,线段最短”可知:线段AB的长为蚂蚁爬行的最短路程,在Rt ABC∆中,()22226810AB AC BC cm=+=+=,故选C.【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.4.C解析:C【分析】设AE=x,由折叠BE=ED=9-x,再在Rt△ABE中使用勾股定理即可求出x,进而求出△ABE的面积.【详解】解:设AE=x,由折叠可知:BE=ED=9-x,在Rt△ABE中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯= ABES AE AB,故选:C.【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x,在一个直角三角形中,其余边用x的代数式表示,利用勾股定理建立方程求解x.5.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴OA OB ==∴A 所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.6.A解析:A【分析】由已知可得DF ⊥AB ,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF 的值.【详解】解:∵AB=AC,∠A=60°,∴ΔABC 为等边三角形,∴∠ACB=60°,∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°, ∴∠AFE=180°-∠A-∠AEF=90°,∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=,∴∴AF AE == ∴2BF AB AF AE AF =-=-=∵∠D=30°,∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A .【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键. 7.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴,∴S 2=122x x ⨯⨯=24AB ,同理:S 1=24AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1, 如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣4n-0,n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S1,S2,S3,大小正方形重叠部分的面积为S,则由勾股定理可得:S1+S2=S3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.10.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm 和5cm ,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm 和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm ⨯故选:C .【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.11.C解析:C【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可.【详解】 23|4|10250a b c c -+-+-+=()23|4|50a b c -+-+-=,()23|4|50a b c -+-+-=,30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =,22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形,设C 边上的高为h ,由直角三角形ABC 的面积为:1122c h a b =, 整理得3412===2.455a b h c ⨯=, c ∴边上的高为:2.4,故选择:C .【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a 、b 、c 的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.≤a≤【分析】根据已知条件首先求出BEEFCF 的值再分别求出点P 与点A 重合时点P 与点B 重合时PE+PF 的值再根据对称性求出PE+PF 的最小值综合比较即可【详解】解:∵∠A=90°AB=ACBC=12解析:45≤a≤410【分析】根据已知条件首先求出BE 、EF 、CF 的值,再分别求出点P 与点A 重合时,点P 与点B 重合时PE+PF 的值,再根据对称性求出PE+PF 的最小值,综合比较即可.【详解】解:∵∠A=90°,AB=AC ,BC=12,E 、F 是BC 的三等分点,∴BE=EF=CF=4,当点P 与点A 重合时,如图,过点A 作BC 的垂线,垂足为Q ,∴BQ=CQ=AQ=6,∴EQ=FQ=2,∴PE=PF=2262+=210,∴PE+PF=410;当点P 与点B 重合时,PE+PF=4+8=12;作点E 关于AB 的对称点E′,连接E′F ,与AB 交于点P ,此时PE+PF 最短,即为E′F 的长,∵△ABC 是等腰直角三角形,∴∠ABC=45°,∵E 和E′关于AB 对称,∴∠ABC=∠ABE′=45°,∴∠E′BE=90°,BE′=BE=4,∴E′F=22E B BF '+=45,∵410=160>144=12,∴PE+PF 的最大值为410,最小值为45,∴a 的取值范围是45≤a≤410,故答案为:45≤a≤410.【点睛】本题考查了等腰直角三角形的判定和性质,无理数的估算,最短路径问题,勾股定理,知识点较多,解题的关键是求出a 的最小值和特殊值.15.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =,∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.16.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 40b -=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边,5=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.17.【分析】在Rt △COA 中根据OA=和OC=1根据勾股定理可得AC=2得到根据翻折性质可得继而可得在Rt △PAG 中根据所对直角边等于斜边的一半可以求出AG 的长利用勾股定理可求出PG 的长从而得到P 点坐标解析:32⎫⎪⎪⎝⎭【分析】在Rt △COA 中,根据和OC=1,根据勾股定理可得AC=2,得到30CAO ∠=︒,根据翻折性质可得CAO PAC ∠=∠,继而可得60PAO ∠=︒,30GPA ∠=︒,在Rt △PAG中,根据30所对直角边等于斜边的一半可以求出AG 的长,利用勾股定理可求出PG 的长,从而得到P 点坐标.【详解】如下图,过点P 作PG x ⊥轴于点G ,∵3,OC=1,∴22+2OA OC =, ∴12OC AC =, ∴30CAO ∠=︒, ∵△AOC 沿AC 翻折得到△APC ,∴CAO PAC ∠=∠,∴=60PAO ∠︒,=30GPA ∠︒,3, ∴132AG AP ==,2232PG PA GA =-=, ∴333 ∴点P 的坐标为3322⎛⎫ ⎪ ⎪⎝⎭,, 故答案为:3322⎛⎫ ⎪⎪⎝⎭,. 【点睛】本题考查折叠的性质、含30︒角的直角三角形及勾股定理,熟练掌握含30︒角的直角三角形及勾股定理是解题的关键. 18.8【分析】以CE 为边作等边△CEH 证明△CEF ≌△HED 可得∠DHE=60°DH ∥BC 则设AH=3xCH=5x 过点E 作EM ⊥AC 于点M 在△AEM 中解得x=1则答案得出【详解】解:以CE 为边作等边△C解析:8【分析】以CE为边作等边△CEH,证明△CEF≌△HED,可得∠DHE=60°,DH∥BC,则AH3 CH5=,设AH=3x,CH=5x,过点E作EM⊥AC于点M,在△AEM中,22253117(x)(x)22=+,解得x=1,则答案得出.【详解】解:以CE为边作等边△CEH,连接DH,∴CE=EH,∠EHC=60°,∵△DEF为等边三角形,∴∠DEF=60°,DE=EF,∴∠DEH=∠CEF,在△CEF和△HED中∵CE HECEF HEDEF ED=⎧⎪∠=∠⎨⎪=⎩∴△CEF≌△HED(SAS),∴∠DHE=∠FCE=60°,∴∠DHE=∠HEC=60°,∴DH//BC,∴AD AHBD CH=,∵AD3BD5=,∴AH3CH5=,过点E作EM⊥AC于点M,设AH=3x,CH=5x,则EC=5x,22155311,222x xMC EC ME EC MC AM AC MC x ===-==-=,在△AEM中,22253117x)(x)2=+,∴x=1,∴AC=8.故答案为:8.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,勾股定理,掌握全等三角形的判定方法能正确作出辅助线是解题的关键.19.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5 解析:5或7 【分析】 从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,则第三边为2234+=5,当此直角三角形的一个直角边为3,斜边为4时,则第三边为2243=7-.故答案为:5或7.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC , ,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =,∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒, ∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)见解析;(2)125【分析】(1)根据平行线的性质可得D FCE ∠=∠,结合中点定义可证AE EF =,利用AAS 即可证明三角形全等;(2)利用全等三角形的性质求出CF ,再利用勾股定理求出EF ,再利用等面积法求解即可.【详解】(1)证明:∵//AD CF ,∴D FCE ∠=∠.∵E 是AF 的中点,∴AE EF =. 在ADE 或FCE △中,D FCE AED FEC AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ≌FCE △(AAS ).(2)解:如图,过点E 作EH BF ⊥于H .∵ADE ≌FCE △(ASA ),∴5CF AD ==. ∵90CEF ∠=︒,∴2222543EF CF CE =--=.∵1122ECF S CF EH EC EF =⋅⋅=⋅⋅△,∴341255EH ⨯==. 【点睛】 本题考查全等三角形的判定和性质、勾股定理、三角形的面积计算等知识,解题的关键是熟练掌握三角形全等的判定与性质,并能利用等面积法进行求解.22.(1)150°;(2)253+120(m 2)【分析】(1)连接BD ,可得∆ABD 是等边三角形,利用勾股定理的逆定理得∠DBC=90°,进而即可求解;(2)过点A 作AP ⊥BD 于点P ,可得AP=53,结合三角形的面积公式,即可求解.【详解】(1)连接BD ,∵10AB AD ==m ,∠A=60°∴∆ABD 是等边三角形,∴∠ABD=∠A=60°,BD=10AB AD ==m ,∵26CD =m ,24BC =m ,∴BD 2+BC 2=CD 2,∴∠DBC=90°,∴∠ABC=90°+60°=150°;(2)过点A 作AP ⊥BD 于点P ,则BP=DP=12BD=5m ,AP=2253AD DP -=, ∴四边形草地ABCD 的面积=S ∆ABD +S ∆CBD =12BD∙AP+12BC∙BD=12×10×53+12×10×24=253+120(m 2).【点睛】本题主要考查等边三角形的判定和性质以及勾股定理的逆定理,添加辅助线,构造直角三角形和等边三角形,是解题的关键.23.(1)1;(2)12或77+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,c=2222435b a +=+=,∴Rt △ABC 的周长=3+4+5=12; 当a 为直角边,b 为斜边时,c=2222437b a -=-=,∴Rt △ABC 的周长=77+.【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.24.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 25.(1)见解析;(2)见解析.【分析】(1)根据勾股定理可知,作13的长的线段时,可以作一个直角边分别为2和3的直角三角形,它的斜边长即所求;(2)先作出边长是13的线段,再以原点为圆心,13为半径画弧,与数轴的正半轴相交于点A,再以A为圆心,1为半径画弧,与OA相交于点B,则OB为所求.【详解】解:(1)如图所示,ABCD为所求作正方形.-+为所求.(2)如图所示,OB=113.【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.26.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(42,210的三角形,即可.【详解】S=⨯÷=,(1)∵2121ABC∴ABC即为所求;(2)∵22+=2313∴正方形DEFG的面积为13;(3)22+=;345(4)∵KL=22112+=,JL=222222+=,JK=221310+=, 且222(2)(22)(10)+= ∴JKL 是直角三角形,且周长为3210+.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测题(答案解析)

一、选择题1.下列条件不能判定一个三角形为直角三角形的是( )A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、2.如图,在ABC 中,2,30,105AC ABC BAC =∠=︒∠=︒,D 为AB 边上一点,连接CD ,15ACD =︒∠,把ACD △沿直线AC 翻折,得到ACD '△,CD '与BA 延长线交于点E ,则D E '的长为( )A .333+B .333-C .336+D .336- 3.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm 4.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1545.如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .156.如图,平面直角坐标系中,点A 在第一象限,点B 、C 的坐标分别为3,02⎛⎫ ⎪⎝⎭、1,02⎛⎫- ⎪⎝⎭.若ABC ∆是等边三角形,则点A 的坐标为( )A .132⎛ ⎝B .1,22⎛⎫ ⎪⎝⎭C .13,2⎫⎪⎭D .(3 7.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 8.在ABC 中,10AB =,40AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或10 9.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =,2BD =,则线段DF 的长度为( )A .22B .2C .3D .110.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 11.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个12.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④二、填空题13.如图,数轴上点C 表示的数的平方为______.14.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .15.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.16.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______. 17.已知:如图,ABC 中,∠ACB=90°,AC=BC=2,ABD 是等边三角形,则CD 的长度为______.18.已知一个直角三角形的两边长分别是a ,b ,且a ,b 满足340a b -+-=.则斜边长是____________19.如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A 、B 、C 、D 各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD 中6AB =,15CD =,那么BC =_____,AD =_______才能实现上述的折叠变化.20.如图是放在地面上的一个长方体盒子,其中AB =24cm ,BC =12cm ,BF =7cm ,点M 在棱AB 上,且AM =6cm ,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为_______.三、解答题21.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命器(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”. 命题①是_______命题,命题②是______命题;(2)如图2, Rt ABC .90︒∠=C ,30B ,3AC =,试探索Rt ABC 是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度:若不存在,请说明理由. 22.如图,已知△ABC 是等腰直角三角形,动点 P 在斜边 AB 所在的直线上,以 PC 为直角边作等腰直角△PCQ ,其中∠PCQ =90°,探究并解决下列问题:(1)如图 1,若点 P 为线段 AB 上一动点时, ①求证:△ACP ≌△BCQ ;②试求线段 PA ,PB ,PQ 三者之间的数量关系;(2)如图 2,若点 P 在 AB 的延长线上,求证:BQ ⊥AP ;(3)若动点 P 满足13PA PB =,请直接写出PC AC的值. 23.在等腰直角△ABC 中,AB = AC ,∠BAC =90°,过点B 作BC 的垂线l .点P 为直线AB上的一个动点(不与点A ,B 重合),将射线PC 绕点P 顺时针旋转90°交直线l 于点D . (1)如图1,点P 在线段AB 上,依题意补全图形;①求证:∠BDP =∠PCB ;②用等式表示线段BC ,BD ,BP 之间的数量关系,并证明.(2)点P 在线段AB 的延长线上,直接写出线段BC ,BD ,BP 之间的数量关系.24.如图,ABC ∆三个顶点的坐标分别是(1,1)A ,(4,2)B ,(3,4)C .(1)画出ABC ∆关于y 轴对称的111A B C ∆.(2)ABC ∆的面积是___________.(3)在x 轴上求作一点P ,使PAB ∆的周长最小,并求出PAB ∆周长的最小值. 25.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.(1)请在图中的55⨯13(2)请在数轴上表示出113-+.26.已知长方形纸片ABCD ,将长方形纸片按如图所示的方式折叠,使点D 与点B 重合,折痕为EF .(1)△BEF 是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意; 三边长的关系为()()()()222222220mn m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键. 2.D解析:D【分析】先根据三角形的内角和定理60CDE ∠=︒,再根据翻折的性质可得,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒,从而可得90,30CED D AE '∠=︒∠=︒,设D E x '=,然后利用直角三角形的性质、勾股定理可得(,3AE CE x ==+,最后在Rt ACE △中,利用勾股定理即可得.【详解】 3150,105,ABC B D A AC C ∠=︒∠=∠=︒︒,30018BCD ABC BAC ACD ∴∠=︒-∠-∠-∠=︒,60ABC BC CDE D ∴∠=∠+∠=︒,由翻折的性质得:,60,15AD AD D CDE ACD ACD '''=∠=∠=︒∠=∠=︒, 30DCE ACD ACD '∴∠=∠+∠=︒,90,9030CED D AE D ''∴∠=︒∠=︒-∠=︒,设D E x '=,则2,AD AD x AE '===,(2DE AD AE x ∴=+=,在Rt CDE △中,((222,3CD DE x CE x ==+==+,在Rt ACE △中,222AE CE AC +=,即)(2223x ⎡⎤++=⎣⎦,解得36x =或306x -+=<(不符题意,舍去),即36D E '= 故选:D .【点睛】本题考查了翻折的性质、直角三角形的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.3.C解析:C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A 的高将圆柱侧面展开,再过点B 作高线BC ,如图:则,∠ACB=90°,AC=12⨯12=6(cm ),BC=8cm , 由“两点之间,线段最短”可知:线段AB 的长为蚂蚁爬行的最短路程,在Rt ABC ∆中,()10AB cm ===,故选C .【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.4.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.5.C解析:C【分析】取AB的中点D,连接CD,根据三角形的边角关系得到OC≤OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,根据D为AB中点,得到BD=3,根据三线合一得到CD垂直于AB,在Rt△BCD中,根据勾股定理求出CD的长,在Rt△AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD的值,进而求出DC+OD,即为OC的最大值.【详解】解:如图,取AB的中点D,连接CD,∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=1AB=6,CD⊥AB,2∴2222BC BD-=-=,1068连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=1AB=62∴OD+CD=6+8=14,即OC的最大值=14,故选:C.【点睛】本题主要考查等腰三角形的性质,直角三角形的性质以及三角形三边之间的关系,掌握三角形任意两边之和大于第三边,是解题的关键.6.A解析:A【分析】先过点A作AD⊥OB,根据△ABC是等边三角形,求出AC=BC,CD=BD,∠ACB=60°,再根据点B、C的坐标,求出CB的长,再根据勾股定理求出AD的值,从而得出点A的坐标.【详解】过点A作AD⊥OB,∵△ABC 是等边三角形,∴AC=BC ,CD=BD ,∠ACB=60°,∵点B 的坐标为3,02⎛⎫⎪⎝⎭,点C 的坐标为1,02⎛⎫- ⎪⎝⎭ ∴BC=2,OC=12 ∴CA=2,∴CD=1,∴2222=1=32CA CD --∵OD=CD-CO∴OD=1-12=12∴点A 的坐标是132⎛ ⎝. 故选A .【点睛】此题考查了等边三角形的性质,用到的知识点是勾股定理,关键是作出辅助线,求出点A 的坐标.7.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 8.C解析:C【分析】分两种情况分类讨论,如图所示,分别在Rt ABD △与Rt ACD △中,利用勾股定理求出BD 与CD 的长,即可求出BC 的长.【详解】根据题意画出图形,如图所示,AD 是ABC 的高,∴90ADB ADC ∠=∠=︒,如图1,10AB =,40AC ,6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=, ∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=, ∴()22224062CD AC AD =-=-=,∴10BC BD CD =+=;如图2,10AB =,40AC 6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=, ∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=,∴()22224062CD AC AD =-=-=,∴6BC BD CD =-=,∴BC 的长度为:6或10.故选:C .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.9.D解析:D【分析】先证明△BDF ≌△ADC ,得到5【详解】解:∵AD 和BE 是△ABC 的高线,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠CAD+∠C=90°,∴∠DBF=∠CAD ,∵45ABC ∠=︒,∴∠BAD=45°,∴BD=AD ,∴△BDF ≌△ADC ,∴在Rt △BDF 中,1==.故选:D【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键. 10.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=- 1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=, ,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.11.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整; CP=()221433130-+=>10m ,不需调整; DP=()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.12.D解析:D【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可.【详解】①∵ABC 为直角三角形,∴22225x y AB +==,故①正确;②由图可知:11x y CE -===,故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积,由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=,故7x y +=,故④正确;故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M 解析:262【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,222214341352262()MN ON OM mm =+=+== 故答案为:262.【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 15.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.16.cm2【分析】设BC=acmAC=bcm 则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm 则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c 解析:12cm 2 【分析】设BC=acm ,AC=bcm ,则,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =, ∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.17.【分析】由勾股定理求出AB 根据等边三角形的性质得出AB=AD=BD=2∠DAB=∠ABD=60°证出AB ⊥CD 于E 且AE=BE=1求出AE=CE=1由勾股定理求出DE 即可得出结果【详解】解:∵∠AC1【分析】由勾股定理求出AB ,根据等边三角形的性质得出AB=AD=BD=2,∠DAB=∠ABD=60°,证出AB ⊥CD 于E ,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE ,即可得出结果.【详解】解:∵∠ACB=90°,,∴AB=()()2222222AC BC +=+=,∠CAB=∠CBA=45°, ∵ABD 是等边三角形,∴AB=AD=BD=2,∠DAB=∠ABD=60°,∵AC=BC ,AD=BD ,∴AB ⊥CD 于E ,且AE=BE=1,在Rt △AEC 中,∠AEC=90°,∠EAC=45°,∴∠EAC=∠ACE=45°,∴AE=CE=1,在Rt △AED 中,∠AED=90°,AD=2,AE=1,∴DE=223AD AE -=,∴CD=31+.31.【点睛】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识.运用勾股定理求出DE 是解决本题的关键.18.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 340a b --=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边,22345+=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.39【分析】根据已知得出图形得出AC2+CD2=AD2以及AB+AD=CD+BC 进而组成方程组求出即可【详解】解:由图2的第一个图形得:AC2+CD2=AD2即(6+BC )2+152=AD2①又由图解析:39【分析】根据已知得出图形得出AC 2+CD 2=AD 2,以及AB+AD=CD+BC ,进而组成方程组求出即可.【详解】解:由图2的第一个图形得:AC 2+CD 2=AD 2,即(6+BC )2+152=AD 2①,又由图2的第三和第四个图形得:AB+AD=CD+BC ,即6+AD=15+BC②,联立①②组成方程组得:()222615615BC AD AD BC⎧++=⎪⎨+=+⎪⎩, 解得:3039BC AD =⎧⎨=⎩, 故BC ,AD 分别取30和39时,才能实现上述变化,故答案为:30,39.【点睛】此题主要考查了翻折变换的性质以及勾股定理和二元二次方程组的解法,得出正确的等量关系是解题关键.20.cm 【分析】利用平面展开图有两种情况画出图形利用勾股定理求出MN 的长即可【详解】解:如图1∵AB=24cmAM =6cm ∴BM=18cm ∵BC=GF=12cm 点N 是FG 的中点∴FN=6cm ∵BF=7c【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN 的长即可.【详解】解:如图1,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴FN=6cm,∵BF=7cm,∴BN=7+6=13cm,∴MN=22+=493cm;1813如图2,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴BP=FN=6cm,∴MP=18+6=24cm,∵PN= BF=7cm,∴22+==cm.24762525∵49325,∴蚂蚁沿长方体表面爬到N493.493.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.三、解答题21.(1)假,真;(2)2【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并求AD的长;【详解】解:(1)①从等边三角形一个顶点出发,所分成的两个三角形必定不是等边三角形,不与原三角形的三个内角分别相等,故等边三角形不存在“和谐分割线”,是假命题;②如图,△ABC中,∠ACB=2∠ABC,CD平分∠ACB,则∠B=∠BCD=∠ACD,即△BCD是等腰三角形,在△ACD和△ABC中,∠A=∠A,∠ACD=∠B,∠ADC=∠ACB=2∠B,故△ABC必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴∠DAB=∠B=∠CAD=30°,又∠C=∠C,∠ADC=∠CAB=60°,∴△ADB是等腰三角形,且△ACD和△ABC三个内角相等,∴线段AD是△ABC的“和谐分割线”,∴3=2.【点睛】本题考查三角形综合题、等腰三角形的判定和性质、三角形内角和、“和谐分割线”的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.22.(1)①见解析;②PA2+PB2=PQ2;(2)见解析;(3)104或102.【分析】(1)①在Rt△ABC和Rt△PCQ中,可证得∠ACP=∠BCQ,从而证明全等;②把PA2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)连接BQ,由(1)中①的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用PAPB=13,可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得PCAC的值.【详解】解:(1)①∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∠ACB-∠PCB=∠PCQ-∠PCB,∴∠ACP=∠BCQ,∴△ACP≌△BCQ;②连接BQ,∵△ACP≌△BCQ,∴AP=BQ,∠CBE=∠A=45°,∴∠PBQ=90°,∴PB2+BQ2=PQ2,即PA2+PB2=PQ2;(2)证明:连接BQ,∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∵∠ACP=∠ACB+∠BCP,∠BCQ=∠PCQ+∠BCP,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠A=45°,∵∠ABQ=∠ABC+∠CBQ=90°,∴BQ⊥AP;(3)过点C作CD⊥AB于点D,∵PAPB =13,∴点P只能在线段AB上或在线段BA的延长线上,①如图3,当点P在线段AB上时,∵PAPB =13,∴PA=14AB=12CD=PD,在Rt△CPD中,由勾股定理可得CP22CD DP+2212CD CD⎛⎫+ ⎪⎝⎭5CD,在Rt△ACD中,由勾股定理可得AC22AD CD+22CD2,∴PC AC=522CD CD =104; ②如图4,当点P 在线段BA 的延长上时,∵ PA PB =13, ∴PA =12AB =CD , 在Rt △CPD 中,由勾股定理可得CP 22CD DP +()222CD CD +5,在Rt △ACD 中,由勾股定理可得AC 22AD CD +22CD 2CD , ∴PC AC 52CD CD10 综上可知PC AC 的值为104或102. 【点睛】 本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理的应用,注意分类思想的理解与运用.23.(1)见解析;①见解析;②BC -BD 2;见解析;(2)BD -BC 2BP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.24.(1)△A 1B 1C 1见详解 ;(2)72;(3)点P 见详解, 10+32. 【分析】(1)先在坐标系中分别画出点A ,B ,C 关于y 轴的对称点,再连线,得到111A B C ∆即可 ;(2)利用割补法,将三角形ABC 补成正方形ADEF ,减去△AFC 、△BEC 、△ADB 三个三角形的面积计算即可(3)先画出点B 关于x 轴的对称点B′,再连接B′A 交x 轴于点P ,即为所求.求出B′点坐标,利用勾股定理求两点距离AB 与AB′,再求和即可【详解】(1)如图所示:△A 1B 1C 1即为所求;(2)将图形补成如图所示四边形ADEF 是正方形∵ABC ∆的面积=正方形ADEF 的面积-△AFC 的面积-△BEC 的面积-△ADB 的面积 ∴S △ABC =2111373-32-12-31=9-3-1-=22222(3)如图所示,画出点B 关于x 轴的对称点B′,连接B′A 交x 轴于点P ,∴PB=PB′,∴AB′=AP+PB′=PA PB +,两点之间线段最短,此时PA PB +的值最小,即△PAB 的周长最小,()()224-1+2-1=10 B′(4,-2), ()()224-1+1+2=9+9=32∴PAB ∆的周长=AB+AP+BP=AB+AB′=10+32∴PAB ∆周长的最小值为10+32.【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,割补法求三角形面积,通过点的轴对称,利用勾股定理求两线段和的最小值是解题的关键.25.(1)见解析;(2)见解析.【分析】(1)根据勾股定理可知,作13的长的线段时,可以作一个直角边分别为2和3的直角三角形,它的斜边长即所求;(2)先作出边长是13的线段,再以原点为圆心,13为半径画弧,与数轴的正半轴相交于点A ,再以A 为圆心,1为半径画弧,与OA 相交于点B ,则OB 为所求.【详解】解:(1)如图所示,ABCD 为所求作正方形.(2)如图所示,OB=113-+为所求..【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测(包含答案解析)

一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.以下列各组数为三边的三角形中不是直角三角形的是 ( )A .1,2,5B .3,5,4C .5,12,13D .1,3,7 3.下列条件不能判定一个三角形为直角三角形的是( )A .三个内角之比为1︰2︰3B .一边上的中线等于该边的一半C .三边为111,,12135D .三边长为()222220m n m n mn m n +->>、、4.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 5.下列四组线段中,能构成直角三角形的是( ) A .2cm 、4cm 、5cmB .15cm 、20cm 、25cmC .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm6.ABC 中,A ∠,B ,C ∠的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .ABC =+∠∠∠B .::1:1:2A BC ∠∠∠= C .222b a c =+D .::1:1:2a b c = 7.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE上.下列结论:其中正确的有( ) ①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个8.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 9.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .710.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个 11.()224129x x ++-+ ) A .12 B .13C .14D .11 12.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④二、填空题13.如图,数轴上点C 表示的数的平方为______.14.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.15.如图,△ABC 中,∠ACB =90°,分别以AC 、BC 为斜边作等腰直角三角形 S 1、S 2,以AB 为边作正方形S .若S 1与S 2的面积和为9,则正方形S 的边长等于_______.16.在Rt ABC 中,90,8cm,4cm C BC AC ∠=︒==,在射线BC 上一动点D ,从点B 出发,以1厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为_____________秒.17.平面直角坐标系中,点()()4,2,2,4A B -,点(),0Px 在x 轴上运动,则AP BP +的最小值是_________. 18.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______. 19.如图,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为____.20.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影的部分是一个小正方形EFGH ,这样就组成了一个“赵爽弦图”.若AB =13,AE =12,则正方形EFGH 的面积为___________.三、解答题21.在△ABC 中,D 是BC 上一点,AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.22.如图,ABF 中,E 是边AF 的中点,点C 在BF 上,作//AD BF 交CE 的延长线于点D .(1)求证:ADE ≌FCE △.(2)若90CEF ∠=︒,5AD =,4CE =,求点E 到BF 的距离.23.在ABC 中,90,6,10C AC AB ∠===,小明用尺规作图的方法作AB 的垂直平分线与BC 的交点P ,请你根据如图所示作图方法求出图中线段PC 的长.24.如图,已知△ABC 是等腰直角三角形,动点 P 在斜边 AB 所在的直线上,以 PC 为直角边作等腰直角△PCQ ,其中∠PCQ =90°,探究并解决下列问题:(1)如图 1,若点 P 为线段 AB 上一动点时,①求证:△ACP ≌△BCQ ;②试求线段 PA ,PB ,PQ 三者之间的数量关系;(2)如图 2,若点 P 在 AB 的延长线上,求证:BQ ⊥AP ;(3)若动点 P 满足13PA PB =,请直接写出PC AC的值. 25.如图,某人为了测量小山顶上的塔顶离地面的高度CD ,他在山下的点A 处测得塔尖点D 的仰角为45︒,再沿AC 方向前进60m 到达山脚点B ,测得塔尖点D 的仰角为60︒,求CD 的高度(结果保留根号)26.如图,每个小正方形的边长均为1可以得到每个小正方形的面积为1.(1)请在图中的55⨯13(2)请在数轴上表示出113-+【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形,∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒,∴120ADB ADB '∠=∠=︒,∴60ADC CDB '∠=∠=︒,∴ADC DCB '∠=∠,∴//AD CB ',∴22ACB CDB S S ''===△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题. 2.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A 、∵222125+==, ∴以1、2为三边的三角形是直角三角形,A 不符合题意;B 、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B 不符合题意;C 、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C 不符合题意;D 、∵2221310+=≠,∴以1、3为三边的三角形不是直角三角形,D 符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键. 3.C解析:C【分析】根据直角三角形的判定条件分别判断即可;【详解】三个内角之比为1︰2︰3,三角形有一个内角为90︒,故A 不符合题意;直角三角形中,斜边上的中线等于斜边的一半,故B 不符合题意;22211112135⎛⎫⎛⎫⎛⎫=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 符合题意;三边长的关系为()()()()222222220m n m n mn m n +=-+>>,故D 不符合题意;故选:C .【点睛】 本题主要考查了勾股定理逆定理和三角形内角和定理,准确分析判断是解题的关键. 4.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 5.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A :2222+45≠ ,不符合题意;B :22215+20=25 ,符合题意;C :2220.2+0.30.4≠ ,不符合题意;D :2221+23≠ ,不符合题意;故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.6.D解析:D【分析】根据三角形内角和定理可判断A 和B ,根据勾股定理可判断C 和D .【详解】A.A B C ∠=∠+∠,180A B C ∠+∠+∠=︒,2180A ∴∠=︒,∴90A ∠=︒,ABC ∴为直角三角形,不符合题意,故A 错误;B.::1:1:2A B C ∠∠∠=,A B ∴∠=∠,2C A ∠=∠,又∵180A B C ∠+∠+∠=︒,2180A A A ∴∠+∠+∠=︒,45A ∠=︒,290C A ∴∠=∠=︒,ABC ∴为直角三角形,不符合题意,故B 错误;C.222b a c =+,ABC ∴是直角三角形,不符合题意,故C 错误;D.::1:1:2a b c =, b a ∴=,2c a =,222a b c ∴+≠,ABC ∴不是直角三角形,符合题意,故D 正确.故选D .【点睛】本题考查了三角形内角和定理,以及勾股定理的逆定理,熟练掌握各知识点是解答本题的关键.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中.7.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴AB =2AC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中, 45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 8.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =,22BC CE BE +=2, 2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.9.B解析:B【分析】由勾股定理求出AC =10,求出BE =4,设DE =x ,则BD =8−x ,得出(8−x )2+42=x 2,解方程求出x 即可得解.【详解】∵AB =6,BC =8,∠ABC =90°,∴10=,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.10.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;CP=()221433130-+=>10m ,不需调整; DP=()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.11.B解析:B【分析】建立直角坐标系,设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,则AB 的长即为代数式()224129x x ++-+ 的最小值,然后根据Rt △ABC ,利用直角三角形的性质可求得AB 的值.【详解】解:如图所示:设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,∴BC=3-(-2)=5,AC=12()()()()2222002203x x ⎡⎤+--+-+-⎣⎦-1, ()()22002x ⎡⎤+--⎣⎦-AP ()()22203x -+-1BP ,∴()224129x x +-+=AP +BP 根据两点之间线段最短AB ()224129x x +-+ 的最小值 ∴AB 22BC AC +13.()224129x x +-+的最小值为13.故选:B .【点睛】 本题主要考查了最短路线问题以及勾股定理的应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键.12.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确; 由图可知42x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯+=, 即2449xy +=,故③正确; 由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=, 949x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB ⊥OBOC=OA ∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答 .【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB ⊥OB ,OC=OA ,∴由勾股定理可知:222222215OC OA OB AB ==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.15.6【分析】过D 作DE ⊥AC 于E 根据等腰直角三角形的性质推出DE=AE=CE=AC 求得同理:求出=36根据勾股定理得求出S==36即可得到答案【详解】如图:过D 作DE ⊥AC 于E ∵△ACD 是等腰直角三角解析:6【分析】过D 作DE ⊥AC 于E ,根据等腰直角三角形的性质推出DE=AE=CE=12AC ,求得21111224S AC AC AC =⋅=,同理:2214S BC =,求出22AC BC +=36,根据勾股定理得222AC BC AB +=,求出S=2AB =36,即可得到答案.【详解】如图:过D 作DE ⊥AC 于E ,∵△ACD 是等腰直角三角形,∴AD=CD ,90D ∠=︒,45CAD ACD ∠=∠=︒,∴AE=CE ,45ADE CDE ∠=∠=︒,∴CAD ACD ADE CDE ∠=∠=∠=∠,∴DE=AE=CE=12AC , ∴21111224S AC AC AC =⋅=, 同理:2214S BC =, ∴221211944S S AC BC +=+=, ∴22AC BC +=36,在△ABC 中,∠ACB =90°,222AC BC AB +=,∴S=2AB =36,∴正方形S 的边长等于6,故答案为:6..【点睛】此题考查等腰直角三角形的性质,勾股定理,正确掌握与运用等腰直角三角形的性质是解题的关键.16.10和16【分析】求出当△ADB 是等腰三角形时BD 的长用其除以点D 运动的速度即可注意分情况讨论【详解】解:分三种情况如下图1所示当AD=DB 时∵BC=8∴CD=8-BD 又AC=6在RT △ACD 中由勾解析:254、10和16 【分析】 求出当△ADB 是等腰三角形时BD 的长,用其除以点D 运动的速度即可,注意分情况讨论.【详解】解:分三种情况如下图1所示,当AD=DB时.∵BC=8,∴CD=8-BD又AC=6在RT△ACD中,由勾股定理得2226(8)BD BD+-=解得254 BD=除以点D运动的速度得所用时间t为254秒;如下图2所示,当AB=DB时.由勾股定理得DB=AB=22226810AC BC+=+=,除以点D运动的速度得t为10秒;如下图3所示,当AD=AB时.∵AC⊥BC∴CD=BC=8∴BD=16除以点D运动的速度得t为16秒.综上所述,以A、D、B为顶点的三角形恰为等腰三角形,D所用时间t为254秒、10秒或16秒. 故答案为:254、10或16. 【点睛】此题考查等腰三角形的定义和性质,分情况讨论和用勾股定理列方程是关键. 17.【分析】根据题意先做点A 关于x 轴的对称点求出坐标连结A′B 交x 轴于C 用勾股定理求出A′B 即可【详解】解:如图根据题意做A 点关于x 轴的对称点A '连结A′B 交x 轴于C=A′P+BP≥A′B 得到A '(-4解析:62.【分析】根据题意先做点A 关于x 轴的对称点'A ,求出'A 坐标,连结A′B ,交x 轴于C ,用勾股定理求出A′B 即可.【详解】解:如图根据题意做A 点关于x 轴的对称点A ',连结A′B ,交x 轴于C ,AP BP +=A′P+BP≥A′B ,得到A '(-4,-2),当点P 与C 点重合时,PA+PB 最短,点B (2,4)由勾股定理()()222+4+4+2=62AP BP +的最小值为:62故答案为: 2【点睛】本题主要考查了点关于直线的对称,两点之间线段最短,勾股定理的应用,正确转化AP BP +的值最小是解题的关键.18.①②③④【分析】设BE=x 则=8-x 利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE即可证出∠AEP=∠CPE从而判断②;过点E 作EH⊥AD于H利用勾股定理求出PE从而得出PA=PE解析:①②③④【分析】设BE=x,则AE EC==8-x,利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE,即可证出∠AEP=∠CPE,从而判断②;过点E作EH⊥AD于H,利用勾股定理求出PE,从而得出PA=PE,利用等边对等角可得∠PAE=∠PEA,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA ∵AD∥BC∴∠AEB=∠PAE ,∴∠AEB=∠PEA∴EA 平分BEP ∠,故③正确;∵∠BPC=180°-∠PCB -∠PBE∠PEC=180°-∠PCB -∠EPC∵PBE EPC ∠=∠∴BPC PEC ∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.19.8【分析】如图(见解析)先根据正方形的面积公式可得再根据勾股定理可得然后根据正方形的面积公式可得最后又利用勾股定理可得的值由此即可得出答案【详解】如图正方形ACD 的面积依次为4618在中四边形MNG解析:8【分析】如图(见解析),先根据正方形的面积公式可得2226,18,4EF EG ON ===,再根据勾股定理可得212FG =,然后根据正方形的面积公式可得2212MN FG ==,最后又利用勾股定理可得2OM 的值,由此即可得出答案.【详解】 如图,正方形A 、C 、D 的面积依次为4、6、18, 2226,18,4EF EG ON ∴===,在Rt EFG 中,22212FG EG EF =-=,四边形MNGF 是正方形,∴由正方形的面积公式得:2212MN FG ==,在Rt MON 中,2221248OM MN ON =-=-=,则正方形B 的面积为28OM =,故答案为:8.【点睛】本题考查了正方形的面积公式、勾股定理,熟练掌握勾股定理是解题关键.20.49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积【详解】直角三角形直角边的较短边为=5正方形EFGH 的面积=13×13﹣4×=169﹣120=49故解析:49【分析】根据正方形EFGH 的面积=大正方形面积﹣4个直角三角形面积即可求得正方形EFGH 的面积.【详解】,正方形EFGH 的面积=13×13﹣4×5122⨯=169﹣120=49. 故答案为:49.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键. 三、解答题21.△ABC 的面积为84.【分析】先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.【详解】∵BD 2+AD 2=62+82=102=AB 2,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,,∴BC=BD+CD=6+15=21,∴S △ABC =12BC•AD=12×21×8=84. ∴△ABC 的面积为84.【点睛】 此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD 是直角三角形.22.(1)见解析;(2)125 【分析】(1)根据平行线的性质可得D FCE ∠=∠,结合中点定义可证AE EF =,利用AAS 即可证明三角形全等;(2)利用全等三角形的性质求出CF ,再利用勾股定理求出EF ,再利用等面积法求解即可.【详解】(1)证明:∵//AD CF ,∴D FCE ∠=∠.∵E 是AF 的中点,∴AE EF =.在ADE 或FCE △中,D FCE AED FEC AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ≌FCE △(AAS ).(2)解:如图,过点E 作EH BF ⊥于H .∵ADE ≌FCE △(ASA ),∴5CF AD ==. ∵90CEF ∠=︒, ∴2222543EF CF CE =--=. ∵1122ECF S CF EH EC EF =⋅⋅=⋅⋅△, ∴341255EH ⨯==. 【点睛】本题考查全等三角形的判定和性质、勾股定理、三角形的面积计算等知识,解题的关键是熟练掌握三角形全等的判定与性质,并能利用等面积法进行求解.23.74【分析】连接AP ,根据作图痕迹得到PQ 垂直平分AB ,继而得到AP=BP ,设PC=x ,表示出BP 即为AP ,在直角三角形ACP 中,利用勾股定理列出关于x 的方程,求出方程的解即可得到结果.【详解】解:如图,连接AP ,∵由作图痕迹可得:直线PQ 垂直平分AB ,∴AP=BP ,∵90,6,10C AC AB ∠=︒==,∴BC=22106=8,设PC=x,则有AP=BP=BC-PC=8-x,在Rt△ACP中,AC=6,根据勾股定理得:(8-x)2=x2+62,整理得:64-16x+x2=x2+36,解得:x=74,则PC=74.【点睛】此题考查了勾股定理,线段垂直平分线定理,熟练掌握各自的定理是解本题的关键.24.(1)①见解析;②PA2+PB2=PQ2;(2)见解析;(31010【分析】(1)①在Rt△ABC和Rt△PCQ中,可证得∠ACP=∠BCQ,从而证明全等;②把PA2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)连接BQ,由(1)中①的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用PAPB=13,可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得PCAC的值.【详解】解:(1)①∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∠ACB-∠PCB=∠PCQ-∠PCB,∴∠ACP=∠BCQ,∴△ACP≌△BCQ;②连接BQ,∵△ACP≌△BCQ,∴AP=BQ,∠CBE=∠A=45°,∴∠PBQ=90°,∴PB2+BQ2=PQ2,即PA2+PB2=PQ2;(2)证明:连接BQ,∵△ABC和△PCQ是等腰直角三角形,∠ACB=∠PCQ=90°,∴AC=BC,CP=CQ,∠A=∠ABC=45°,∵∠ACP=∠ACB+∠BCP,∠BCQ=∠PCQ+∠BCP,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴∠CBQ=∠A=45°,∵∠ABQ=∠ABC+∠CBQ=90°,∴BQ⊥AP;(3)过点C作CD⊥AB于点D,∵PA PB =13, ∴点P 只能在线段AB 上或在线段BA的延长线上,①如图3,当点P 在线段AB 上时,∵ PA PB =13, ∴PA =14AB =12CD =PD , 在Rt △CPD 中,由勾股定理可得CP =22CD DP += 2212CD CD ⎛⎫+ ⎪⎝⎭=5CD , 在Rt △ACD 中,由勾股定理可得AC = 22AD CD +=22CD =2CD ,∴PC AC =522CD CD=104; ②如图4,当点P 在线段BA 的延长上时,∵ PA PB =13, ∴PA =12AB =CD , 在Rt △CPD 中,由勾股定理可得CP 22CD DP +()222CD CD +5,在Rt △ACD 中,由勾股定理可得AC 22AD CD +22CD 2CD ,∴PCAC =52CDCD=10;综上可知PCAC的值为104或102.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理的应用,注意分类思想的理解与运用.25.(90303)m+【分析】由题意得出∠DAC=45°,∠DBC=60°,∠DCA=90°,设BC=x,表示出BD,CD和AC的长,利用AB=60得到方程,求出x,最后根据DC=3x得到结果.【详解】解:由题知,∠DAC=45°,∠DBC=60°,∠DCA=90°,∴∠BDC=30°,△ACD是等腰直角三角形,设BC=x,∴BD=2x,∴CD=22BD BC-=3x=AC,∴AB=AC-BC=3x-x=(3-1)x=60,解得:x=31-=() 3031+,∴DC=3x=90303+,答:塔高约为(90303)m+.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用勾股定理的知识求解,难度一般.26.(1)见解析;(2)见解析.【分析】(1132和3的直角三角形,它的斜边长即所求;(21313交于点A,再以A为圆心,1为半径画弧,与OA相交于点B,则OB为所求.【详解】解:(1)如图所示,ABCD为所求作正方形.-+为所求.(2)如图所示,OB=113.【点睛】本题考查了勾股定理,利用勾股定理作图时找出相应线段是解题的关键.。
八年级下勾股定理试题及答案word版本

八年级下勾股定理试题及答案章勾股定理综合检测题检测题C姓名:____________ 班级:__________ 得分:_____________一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A . 4B . 8C . 10D . 12 2.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )A. 小丰认为指的是屏幕的长度B. 小丰的妈妈认为指的是屏幕的宽度C. 小丰的爸爸认为指的是屏幕的周长D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )A. 18cmB. 20 cmC. 24 cmD. 25cm6. 适合下列条件的△ABC 中, 直角三角形的个数为( )(图1)①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )A. 15°B. 30°C. 45°D. 60°9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .6cm 2 B .8cm 2 C .10cm 2D .12cm 210.已知,如图3,,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里 B .30海里 C .35海里D .40海里(图北 南A 东(图3)二﹑填空题 (每小题3分, 共24分)11. (2008年湖州市)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________.13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m.14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________ AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形. 16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面(填”合格”或”不合格”).(图4) ( 图5) AB C200m520mDCBA (图6)DC B AO17. 直角三角形一直角边为cm13,则它的面积12,斜边长为cm为.18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.三、解答题 (共46分)19. (6分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (6分)如图, 在△ABC中, AD⊥BC于D, AB=3, BD=2, DC=1, 求AC2的值.ABD C21. (8分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?小汽车22. (8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?23.(8分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识解答这个问题.24.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间? 附加题四、创新探索题一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.八年级勾股定理单元检测题参考答案EAB一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D二11、勾股定理,222a b c += ;12、10;13、480; 14、15;15、直角;16、合格;17、30;18、25. 三19、13米 20、AC 2=621、20=v 米/秒=72千米/时>70千米/时,超速。
(人教版)武汉市八年级数学下册第二单元《勾股定理》检测题(答案解析)

一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8 3.在ABC 中,10AB =,40AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或104.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm 5.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 6.如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .22,20202D .2,20192 7.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 8.如图,90ABC ︒∠=,//AD BC ,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过点C 作CF BE ⊥,垂足为F .若6AB =,10BC =,则EF 的长为( )A .1B .2C .3D .49.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .1210.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =11.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④12.给出下列说法: ①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a b c 、、满足222+=a b c ,则90︒∠=C ;③ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆是直角三角形;④ABC ∆中,若::1:2:3a b c =其中,错误的说法的个数为( )A .1B .2C .3D .4二、填空题13.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.14.如图,△ABC 中,∠ACB =90°,分别以AC 、BC 为斜边作等腰直角三角形 S 1、S 2,以AB 为边作正方形S .若S 1与S 2的面积和为9,则正方形S 的边长等于_______.15.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.16.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B '(示意图如图,则水深为__尺.17.已知一个三角形三边的长分别为5,10,15,则这个三角形的面积是_________________.18.如图,在边长为23的等边三角形ABC 中,过点C 作垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为_________.19.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.20.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.三、解答题21.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.22.如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm ,30cm ,在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,有无数种走法,则最短路程是多少?23.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如下图,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 、试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出_________(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如下图,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)﹒如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如下图,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠.①试判断DEF 的形状,并说明理由.②直接写出DEF 的面积.24.如图,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,CBE 45∠=︒,BE 分别交AC ,AD 于点E 、F ,若AB 13,BC 10==,求AF 的长度.25.学校操场边上一块空地(阴影部分)需要绿化,测出3m CD =,4m AD =,12m BC =,13m AB =,AD CD ⊥.(1)求证:90ACB ∠=︒.(2)求需要绿化部分的面积.26.如图:AB =AC ,AD ⊥BC 于D ,AE =DE .求证:(1)DE ∥AB ;(2)若∠B =60°,DE =2,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-, ∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出13比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴223213OA OB ==+=,∴A 所表示的数为13-,∵23.612.9613=<,23.713.6913=>,∴13-介于-3.6和-3.7之间,∵23.6513.322513=>, ∴13-比较接近-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.3.C解析:C【分析】分两种情况分类讨论,如图所示,分别在Rt ABD △与Rt ACD △中,利用勾股定理求出BD 与CD 的长,即可求出BC 的长.【详解】根据题意画出图形,如图所示,AD 是ABC 的高,∴90ADB ADC ∠=∠=︒,如图1,10AB =,40AC ,6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=,∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=,∴()22224062CD AC AD =-=-=,∴10BC BD CD =+=;如图2,10AB =,40AC 6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=,∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=,∴()22224062CD AC AD =-=-=,∴6BC BD CD =-=,∴BC 的长度为:6或10.故选:C .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.4.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即AB=222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 5.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 6.A解析:A【分析】根据题意结合等腰直角三角形的性质,即可判断出22A B 的长,再进一步推出一般规律,利用规律求解20212021OA B 的面积即可.【详解】由题意可得:11OA AB AB ===,12OB =,∵11OA B 为等腰直角三角形,且“直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系”,∴根据题意可得:1112OA A B ==, ∴21222OB OA ==, ∴()222222OA A B ===, ,∴总结出()2n n OA =, ∵111122△OAB S =⨯⨯=,1112212△OA B S =⨯⨯=,2212222△OA B S =⨯⨯=, ∴归纳得出一般规律:()()112222n n n n n OA B S-=⨯⨯=, ∴2021202120202OA B S =,故选:A .【点睛】本题考查等腰直角三角形的性质,图形变化类的规律探究问题,立即题意并灵活运用等腰直角三角形的性质归纳一般规律是解题关键.7.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.【详解】解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键. 8.B解析:B【分析】根据题意结合勾股定理可求出AE 长,再根据//AD BC ,可证明AEB CBF ∠=∠,即可证明()ABE FCB AAS ≅,得出结论BF=AE ,即可求出EF . 【详解】根据题意可知BC=BE=10,90BAE BFC ∠=∠=︒.在Rt ABE △中,22221068AEBE AB . ∵//AD BC ,∴AEB CBF ∠=∠,∴()ABE FCB AAS ≅,∴BF=AE=8,∴EF=BE-BF=10-8=2.故选:B .【点睛】本题考查三角形全等的判定和性质,平行线的性质以及勾股定理.利用“角角边”证明ABE FCB ≅是解答本题的关键.9.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:2222121620AB AC BC =+=+=,∵AD=BD ,DE 平分∠ADB 交AB 于点E .∴1102AE BE AB ===, 故选:C .【点睛】 本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 11.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯+=, 即2449xy +=,故③正确; 由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.12.A解析:A【分析】分4为直角三角形的直角边和斜边两种情况,根据勾股定理即可判断①;根据勾股定理的逆定理即可判断②④;根据三角形的内角和定理即可求出三角形的三个内角,进而可判断③;从而可得答案.【详解】解:若4为直角三角形ABC 5=,若4为直角三角形ABC=,故①错误;三角形的三边a b c 、、满足222+=a b c ,则90C ∠=︒,故②正确;△ABC 中,若::1:5:6A B C ∠∠∠=,所以11801512A ∠=︒⨯=︒,51807512B ∠=︒⨯=︒,61809012C ∠=︒⨯=︒,所以ABC 是直角三角形,故③正确;△ABC 中,若::1:2a b c =,2,a k b k c ===,因为)()222222242a c k k k b +=+===,所以这个三角形是直角三角形,故④正确.综上,错误的说法是①,有1个.故选:A .【点睛】本题考查了三角形的内角和、勾股定理及其逆定理等知识,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt △ACB ≌Rt △EFA ∴AF =BC =6EF =A 解析:217 【分析】 根据勾股定理求出AC ,根据全等三角形的性质得到AF =BC =6,EF =AC =8,求出FC ,根据勾股定理计算,得到答案.【详解】解:在Rt △ABC 中,AC =22221068AB BC -=-=,∵Rt △ACB ≌Rt △EFA ,∴AF =BC =6,EF =AC =8,∴FC =AC ﹣AF =2,∴CE =222282217EF FC +=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.14.6【分析】过D 作DE ⊥AC 于E 根据等腰直角三角形的性质推出DE=AE=CE=AC 求得同理:求出=36根据勾股定理得求出S==36即可得到答案【详解】如图:过D 作DE ⊥AC 于E ∵△ACD 是等腰直角三角解析:6【分析】过D 作DE ⊥AC 于E ,根据等腰直角三角形的性质推出DE=AE=CE=12AC ,求得21111224S AC AC AC =⋅=,同理:2214S BC =,求出22AC BC +=36,根据勾股定理得222AC BC AB +=,求出S=2AB =36,即可得到答案.【详解】如图:过D 作DE ⊥AC 于E ,∵△ACD 是等腰直角三角形,∴AD=CD ,90D ∠=︒,45CAD ACD ∠=∠=︒,∴AE=CE ,45ADE CDE ∠=∠=︒,∴CAD ACD ADE CDE ∠=∠=∠=∠,∴DE=AE=CE=12AC , ∴21111224S AC AC AC =⋅=, 同理:2214S BC =, ∴221211944S S AC BC +=+=, ∴22AC BC +=36,在△ABC 中,∠ACB =90°,222AC BC AB +=,∴S=2AB =36,∴正方形S 的边长等于6,故答案为:6..【点睛】此题考查等腰直角三角形的性质,勾股定理,正确掌握与运用等腰直角三角形的性质是解题的关键.15.①②③④【分析】设BE=x 则=8-x 利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE 即可证出∠AEP=∠CPE 从而判断②;过点E 作EH ⊥AD 于H 利用勾股定理求出PE 从而得出PA=PE解析:①②③④【分析】设BE=x ,则AE EC ==8-x ,利用勾股定理列出方程即可判断①;利用SAS 证出△AEP ≌△CPE ,即可证出∠AEP=∠CPE ,从而判断②;过点E 作EH ⊥AD 于H ,利用勾股定理求出PE ,从而得出PA=PE ,利用等边对等角可得∠PAE=∠PEA ,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA平分BEP∠,故③正确;∵∠BPC=180°-∠PCB-∠PBE∠PEC=180°-∠PCB-∠EPC∵PBE EPC∠=∠∴BPC PEC∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.16.12【分析】依题意画出图形设芦苇长AB=AB=x尺则水深AC=(x﹣1)尺因为BE=10尺所以BC=5尺利用勾股定理求出x的值即可得到答案【详解】解:依题意画出图形设芦苇长AB=AB=x尺则水深AC解析:12【分析】依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,利用勾股定理求出x的值即可得到答案.【详解】解:依题意画出图形,设芦苇长AB=AB'=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故答案为:12..【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.17.【分析】根据勾股定理的逆定理判断这是一个直角三角形再结合面积公式求解【详解】解:∵∴∴该三角形为直角三角形∴其面积为故答案为:【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则熟练掌握勾股定理522【分析】根据勾股定理的逆定理,判断这是一个直角三角形,再结合面积公式求解.【详解】解:∵2215+=,215=, ∴222+=,∴该三角形为直角三角形,∴其面积为12=【点睛】本题考查了勾股定理的逆定理以及二次根式的乘法法则,熟练掌握勾股定理的逆定理是解决本题的关键. 18.2【分析】根据△ABC 为等边三角形BP 平分∠ABC 得到∠PBC=30°利用PC ⊥BC 所以∠PCB=90°根据含30°直角三角形边的特殊关系和勾股定理即可解答【详解】解:∵△ABC 为等边三角形BP 平分解析:2【分析】根据△ABC 为等边三角形,BP 平分∠ABC ,得到∠PBC=30°,利用PC ⊥BC ,所以∠PCB=90°,根据含30°直角三角形边的特殊关系和勾股定理即可解答.【详解】解:∵△ABC 为等边三角形,BP 平分∠ABC , ∴1302PBC ABC ∠=∠=︒ , ∵PC ⊥BC ,∴∠PCB=90°,在Rt △PCB 中,设PC x =,则 2PB x =,根据勾股定理可得:(()2222x x +=,且0x >, 解得:2x =,∵∠ABC 的平分线是PB ,∴点P 到边AB 所在直线的距离与点P 到边BC 所在直线的距离相等.故答案为:2.【点睛】本题考查了等边三角形的性质、角平分线的性质、利用勾股定理求值,解决本题的关键是等边三角形的性质. 19.【分析】可将教室的墙面ADEF 与地面ABCD 展开连接PB 根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P 作PG ⊥BF 于G 连接PB ∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程解析:【分析】可将教室的墙面ADEF与地面ABCD展开,连接PB,根据两点之间线段最短,利用勾股定理求解即可.【详解】解:如图,过P作PG⊥BF于G,连接PB,∵AG=3,AP=AB=5,∴224-,==PG AP AG∴BG=8,∴2245B+=P GB GP故这只蚂蚁的最短行程应该是5故答案为:5【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE垂直平分AB∴AE=BE∴∠EAB=∠B=225°∴∠AEC=∠EAB+∠B=45°∵∠C=90°∴AC=CE=2A解析:2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴AC=CE=2,AE2=AC2+CE2,∴AE2CE=2,∴BE=AE=2.故答案为:2【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键.22.25cm【分析】根据题意易知可分三种情况进行展开,如图所示,然后根据勾股定理求出最短路程,最后比较即可.【详解】解:由题意分三种情况:①如图展开,连接DC ,则DC 的长就是从点D 爬到C 处的最短路程,在Rt △ADC 中,AD=12+8=20cm ,130152AC =⨯=cm , ∴由勾股定理得:2225DC AD AC =+=cm ,②如图所示:在Rt △DFC 中,DF=12cm ,FC=8+15=23cm ,∴根据勾股定理得:2267325DC DF FC cm cm =+=>,因为长方体盒子是无盖的,所以这种情况不符合题意;③把长方体盒子按照正面、底面、背面进行展开,如图所示:∴DF=12cm ,FC=30+8+15=53cm ,∴在Rt △DFC 中,22295325DC DF FC cm cm +=>, 综上所述:从点D 爬到C 处的最段路程是25cm . 【点睛】本题主要考查几何图形的展开图及勾股定理,熟练掌握几何图形的展开图及勾股定理是解题的关键.23.(1)DE BD CE =+;(2)结论DE BD CE =+成立,证明见解析;(3)①DFE △为等边三角形,证明见解析.23. 【分析】(1)由题意可知90ADB CEA ∠=∠=︒,又可推出ABD CAE ∠=∠,即可证明(AAS)ADB CEA ≌,得出BD AE =,AD CE =.即推出DE AD AE BD CE =+=+.(2)由题意易证ABD CAE ∠=∠,即证明(AAS)ADB CEA ≌,同理即DE AD AE BD CE =+=+.(3)①由(2)知(AAS)ADB CEA ≌,得出BD AE =,由ABD CAE ∠=∠,易证FBD FAE ∠=∠,又由题意可知FB=FA ,即证明出(SAS)FBD FAE ≌,得出结论FD FE =,BFD AFE ∠=∠,即可求出60DFE ∠=︒,即证明DEF 为等边三角形. ②由DE n =,DEF 为等边三角形,即可求出DEF 的面积.【详解】(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴(AAS)ADB CEA ≌, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+.故答案为:DE BD CE =+.(2)结论DE BD CE =+成立;理由如下:∵180BAD CAE BAC ∠+∠=︒-∠,180BAD ABD ADB ∠+∠=︒-∠,BDA BAC ∠=∠,∴ABD CAE ∠=∠,在BAD 和ACE △中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴(AAS)BAD ACE ≌, ∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+.(3)①DEF 为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,∵ABD CAE ∠=∠,∴ABD FBA CAE FEC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE ∠中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)FBD FAE ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒,∴DEF 为等边三角形.②∵DEF 为等边三角形.∴DEF 的高为2DE .∴2132DFE S DE DE ==. 【点睛】本题考查三角形全等的判定和性质,等边三角形的判定和性质以及勾股定理.熟练掌握判定三角形全等的方法是解答本题的关键.24.7AF =【分析】根据点D 是BC 的中点得到BD=5 ,由勾股定理计算可得AD 的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论.【详解】解:AB AC AD BC =⊥,,BD CD ∴=,10BC =, 5BD ∴=,Rt ABD 中,13AB =,12AD ∴===,Rt BDF 中,45CBE ∠=,BDF ∴是等腰直角三角形,5DF BD ∴==,1257AF AD DF ∴=-=-=.【点睛】本题主要考查的是等腰三角形的性质,勾股定理,等腰直角三角形,结合题干中条件找出对应量是关键.25.(1)证明见解析;(2)224m【分析】(1)由AD ⊥CD ,可得△ACD 是直角三角形,根据勾股定理可求出AC=5,在△ABC 中,AB=13,BC=12,AC=5,可知222AB BC AC =+ ,继而证得∠ACB= 90︒;(2)根据S 阴影=ABC ACD SS -计算即可. 【详解】(1)证明:∵AD CD ⊥,∴ACD 为直角三角形,由勾股定理得:222AC CD AD =+,∵3m CD =,4m AD =,∴5m AC =,在ABC 中,2213169AB ==,2212144BC ==,22525AC ==,∴222AB BC AC =+,∴ACB △为直角三角形,∴90ACB ∠=︒.(2)ABC ACD S S S =-阴1122AC BC CD AD =⋅-⋅ 111253422=⨯⨯-⨯⨯ 306=-()224m =答:需要绿化的面积为224m .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.26.(1)证明见解析;(2)【分析】(1)根据三线合一得BAD =∠CAD ,由AE =DE ,得∠CAD =∠EDA ,从而∠BAD =∠EDA ,所以DE ∥AB ;(2)由AB =AC ,∠B =60°,DE ∥AB ,得∠C =60°,∠EDC =∠B =60°,从而△DEC 为等边三角形, DE =DC =EC =AE =2,最后在Rt △ADC 中,由勾股定理求AD .【详解】解:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD ,∵AE =DE ,∴∠CAD =∠EDA ,∴∠BAD =∠EDA ,∴DE ∥AB(2)∵AB =AC ,∠B =60°,∴∠C =60°∵DE ∥AB ,∴∠EDC =∠B =60°,∴△DEC 为等边三角形,∴DE =DC =EC =AE =2在Rt △ADC 中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.。
最新人教版初中数学八年级数学下册第二单元《勾股定理》检测卷(有答案解析)(2)

一、选择题1.下列四组线段中,能构成直角三角形的是( ) A .2cm 、4cm 、5cm B .15cm 、20cm 、25cm C .0.2cm 、0.3cm 、0.4cm D .1cm 、2cm 、2.5cm 2.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =153.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:254.已知实数a ,b 为ABC 的两边,且满足2a 1b 4b 40-+-+=,第三边c 5=,则第三边c 上的高的值是( ) A .554B .455C .55D .2555.已知ABC 中,a 、b 、c 分别是A ∠、B 、C ∠的对边,下列条件中不能判断ABC 是直角三角形的是( ) A .::3:4:5A B C ∠∠∠=B .C A B ∠=∠-∠ C .222+=a b cD .::6:8:10a b c =6.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④7.已知ABC ∆的三边a ,b ,c 23|4|10250a b c c -+-+-+=,则c 边上的高为( ) A .1.2B .2C .2.4D .4.88.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .39.代数式()224129x x ++-+的最小值为( )A .12B .13C .14D .11 10.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( )A .296cmB .248cmC .224cmD .232cm11.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△ B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形12.给出下列说法:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5; ②三角形的三边a b c 、、满足222+=a b c ,则90︒∠=C ; ③ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆是直角三角形; ④ABC ∆中,若::1:2:3a b c =,则这个三角形是直角三角形. 其中,错误的说法的个数为( ) A .1B .2C .3D .4二、填空题13.如图,圆柱形玻璃杯的高为12cm ,底面圆的周长为10cm ,在杯内离底4cm 的点N 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上2cm 与蜂蜜相对的点M 处,则蚂蚁到达蜂蜜所爬行的最短路程为________cm .14.已知在ABC 中,45ABC ︒∠=,32AB =1BC =,且以AB 为边作等腰Rt ABD ,90ABD ︒∠=,连结CD ,则CD 的长为________.15.在平面直角坐标系中,点A(0,-3),B(4a +4,-3a),则线段AB 的最小值为 ___________.16.已知:如图,ABC 中,∠ACB=90°,AC=BC=2,ABD 是等边三角形,则CD 的长度为______.17.如图所示的网格是正方形网格,点A 、B 、C 、D 均在格点上,则∠CAB +∠CBA =____°.18.如图,以Rt ABC △的三边为直径,分别向外作半圆,构成的两个月牙形面积分别为1S 、2S , Rt ABC △的面积3S .若14S =, 28S =,则 3S 的值为 ________ .19.如图,Rt ABC △,90ACB ∠=︒,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则线段B F '的长为________.20.如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为﹣1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为___________.三、解答题21.已知ABC 的三边长分别为a 、b 、c ,且18a =,32b =,50c =. (1)判断ABC 的形状,并说明理由;(2)如果一个正方形的面积与ABC 的面积相等时,求这个正方形的边长. 22.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?23.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如下图,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 、试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出_________(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如下图,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)﹒如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如下图,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠.①试判断DEF 的形状,并说明理由. ②直接写出DEF 的面积.24.如图,已知长方形ABCD 中,AB =8cm ,BC =10cm ,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求EF 的长.25.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC ; (2)在图2中画出一个面积为13的格点正方形DEFG ;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1H ; (4)在图4中画出一个周长为3210的格点直角三角形JKL . 26.如图,在ABC 中,90C ∠=︒.(1)尺规作图:在BC 上作点D ,使得DA DB =;(保留作图痕迹,不写作法) (2)若3AC =,15B ∠=︒,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据勾股定理逆定理逐项分析即可.【详解】A:2222+45≠,不符合题意;B:22215+20=25,符合题意;C:222≠,不符合题意;0.2+0.30.4D:222≠,不符合题意;1+23故选B【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.2.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A、72+242=52,能构成直角三角形,不符合题意;B、112+402≠412,不能构成直角三角形,符合题意;C、52+122=132,能构成直角三角形,不符合题意;D、82+152=172,能构成直角三角形,不符合题意.故选:B.【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.3.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比. 【详解】解:6BC =,8AC =, 10AB ∴=, 折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-, 74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D . 【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.4.D解析:D 【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a 、b 的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c 边上高即可. 【详解】()2b 20-=, 所以a 10b 20-=-=,, 解得a 1b 2==,; 因为2222a b 125+=+=,22c 5==,所以222a b c +=,所以ABC 是直角三角形,C 90∠=︒, 设第三边c 上的高的值是h ,则ABC 的面积111222==⨯⨯,所以h 5=. 故选:D . 【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.A解析:A 【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可. 【详解】解:A 、∠A :∠B :∠C=3:4:5,且∠A+∠B+∠C=180°,所以∠C=75°≠90°,故△ABC 不是直角三角形;B 、因为∠C=∠A-∠B ,且∠A+∠B+∠C=180°,所以∠A=90°,故△ABC 是直角三角形; C 、因为a 2+b 2=c 2,故△ABC 是直角三角形;D 、因为a :b :c=6:8:10,设a=6x ,b=8x ,c=10x ,(6x )2+(8x )2=(10x )2,故△ABC 是直角三角形. 故选:A . 【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.6.D解析:D 【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可. 【详解】 ①∵ABC 为直角三角形,∴22225x y AB +==, 故①正确;②由图可知:1x y CE -===, 故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积, 由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=, 故7x y +=, 故④正确; 故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.7.C解析:C 【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可. 【详解】23|4|10250a b c c -+-+-+=()23|4|50a b c -+-+-=,()23|4|50a b c -+-+-=,30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =, 22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形, 设C 边上的高为h ,由直角三角形ABC 的面积为:1122c h a b =, 整理得3412===2.455a b h c ⨯=, c ∴边上的高为:2.4,故选择:C . 【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a 、b 、c 的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.8.C解析:C 【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC . 【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4, ∴AD=BD=4, ∴22224223AC AD CD ;故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.9.B解析:B 【分析】建立直角坐标系,设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,则AB 的长即为代数式()224129x x ++-+ 的最小值,然后根据Rt △ABC ,利用直角三角形的性质可求得AB 的值. 【详解】解:如图所示:设P 点坐标为P (x ,0),设A (0,-2),B (12,3),过点B 作BC ⊥x 轴,交AC 于点C ,∴BC=3-(-2)=5,AC=12 ()()()()2222002203x x ⎡⎤+--+-+-⎣⎦-1,()()22002x ⎡⎤+--⎣⎦-AP ()()22203x -+-1BP ,∴()224129x x +-+=AP +BP根据两点之间线段最短AB ()224129x x +-+ 的最小值∴AB 22BC AC +13. ()224129x x +-+的最小值为13.【点睛】本题主要考查了最短路线问题以及勾股定理的应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键.10.B解析:B【分析】如图:作AD ⊥BC 于D ,先根据等腰三角形的性质求得BD ,然后运用勾股定理求得AD ,最后运用三角形的面积公式解答即可 .【详解】解:如图:作AD ⊥BC 于D ,∵AB=AC=10,∴BD=DC=12BC=8cm , ∴AD=22221086AC CD -=-= ∴S △ABC =12BC·AD=48cm 2. 故答案为B .【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.11.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.12.A解析:A分4为直角三角形的直角边和斜边两种情况,根据勾股定理即可判断①;根据勾股定理的逆定理即可判断②④;根据三角形的内角和定理即可求出三角形的三个内角,进而可判断③;从而可得答案.【详解】解:若4为直角三角形ABC 5=,若4为直角三角形ABC=,故①错误;三角形的三边a b c 、、满足222+=a b c ,则90C ∠=︒,故②正确;△ABC 中,若::1:5:6A B C ∠∠∠=,所以11801512A ∠=︒⨯=︒,51807512B ∠=︒⨯=︒,61809012C ∠=︒⨯=︒,所以ABC 是直角三角形,故③正确;△ABC 中,若::1:2a b c =,2,a k b k c ===,因为)()222222242a c k k k b +=+===,所以这个三角形是直角三角形,故④正确.综上,错误的说法是①,有1个.故选:A .【点睛】 本题考查了三角形的内角和、勾股定理及其逆定理等知识,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.【分析】过N 作NQ ⊥EF 于Q 作M 关于EH 的对称点M′连接M ′N 交EH 于P 连接MP 则MP+PN 就是蚂蚁到达蜂蜜的最短距离求出M′QNQ 根据勾股定理求出M′N 即可【详解】解:如图:沿过A 的圆柱的高剪开得解析:.【分析】过N 作NQ ⊥EF 于Q ,作M 关于EH 的对称点M′,连接M′N 交EH 于P ,连接MP ,则MP+PN 就是蚂蚁到达蜂蜜的最短距离,求出M′Q ,NQ ,根据勾股定理求出M′N 即可.【详解】解:如图:沿过A 的圆柱的高剪开,得出矩形EFGH ,过N 作NQ ⊥EF 于Q ,作M 关于EH 的对称点M′,连接M′N 交EH 于P ,连接MP ,则MP+PN 就是蚂蚁到达蜂蜜的最短距离,∵ME=M′E ,M′P=MP ,∴MP+PN=M′P+PN=M′N ,∵NQ=12×10cm=5cm ,M′Q=12cm -4cm+2cm=10cm , 在Rt △M′QN 中,由勾股定理得:M′N=2251055+=cm .故答案为:55. 【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.14.或5【分析】根据点C 和点D 与AB 的位置关系分类讨论分别画出对应的图形根据等腰直角三角形的性质勾股定理分别求解即可【详解】解:若点C 和点D 在AB 的同侧时如下图所示延长BC 交AD 于E ∵△ABD 为等腰直角 解析:13或5【分析】根据点C 和点D 与AB 的位置关系分类讨论,分别画出对应的图形,根据等腰直角三角形的性质、勾股定理分别求解即可.【详解】解:若点C 和点D 在AB 的同侧时,如下图所示,延长BC 交AD 于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =∠DBC=∠ABD -∠ABC=45°∴226AB BD +=,∠DBC=∠ABC∴BE ⊥AD ,BE 是AD 的中线 ∴BE=DE=12AD=3∴CE=BE -BC=2在Rt △CDE 中,CD=2213CE DE +=;若点C 和点D 在AB 的两侧时,如下图所示,过点D 作DE ⊥CB 交CB 延长线于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =∠DBE=180°-∠ABD -∠ABC=45°∴△EDB 为等腰直角三角形,DE=BE∵DE 2+BE 2=BD 2∴2DE 2=(232 解得:DE=3∴BE=3∴CE=BE +BC=4在Rt △CDE 中,225CE DE +=;综上:135. 135.【点睛】此题考查的是等腰直角三角形的性质及判定和勾股定理,掌握等腰直角三角形的性质及判定、勾股定理和分类讨论的数学思想是解题关键.15.【分析】根据勾股定理可得整理配方即可求解【详解】解:根据勾股定理可得:∵∴线段AB 的最小值为故答案为:【点睛】本题考查勾股定理的应用完全平方公式的应用根据勾股定理表示出是解题的关键解析:245【分析】 根据勾股定理可得()()2224433AB a a =++-,整理配方即可求解.【详解】解:根据勾股定理可得:()()22222757644332514255525AB a a a a a ⎛⎫=++-=++=++ ⎪⎝⎭, ∵27576576552525a ⎛⎫++≥ ⎪⎝⎭, ∴线段AB 的最小值为245,故答案为:245. 【点睛】 本题考查勾股定理的应用、完全平方公式的应用,根据勾股定理表示出2AB 是解题的关键.16.【分析】由勾股定理求出AB 根据等边三角形的性质得出AB=AD=BD=2∠DAB=∠ABD=60°证出AB ⊥CD 于E 且AE=BE=1求出AE=CE=1由勾股定理求出DE 即可得出结果【详解】解:∵∠AC解析:31+【分析】由勾股定理求出AB ,根据等边三角形的性质得出AB=AD=BD=2,∠DAB=∠ABD=60°,证出AB ⊥CD 于E ,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE ,即可得出结果.【详解】解:∵∠ACB=90°,AC=BC=2,∴AB=()()2222222AC BC +=+=,∠CAB=∠CBA=45°, ∵ABD 是等边三角形,∴AB=AD=BD=2,∠DAB=∠ABD=60°,∵AC=BC ,AD=BD ,∴AB ⊥CD 于E ,且AE=BE=1,在Rt △AEC 中,∠AEC=90°,∠EAC=45°,∴∠EAC=∠ACE=45°,∴AE=CE=1,在Rt △AED 中,∠AED=90°,AD=2,AE=1,∴DE=223AD AE -=,∴CD=31+.31.【点睛】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识.运用勾股定理求出DE 是解决本题的关键.17.45【分析】设每个小格边长为1可以算得ADCDAC 的边长并求得∠ACD 的度数根据三角形外角性质即可得到∠CAB+∠CBA 的值【详解】解:设每个小格边长为1则由图可知:∴∴△ADC 是等腰直角三角形∴∠解析:45【分析】设每个小格边长为1,可以算得AD 、CD 、AC 的边长并求得∠ACD 的度数,根据三角形外角性质即可得到∠CAB+∠CBA 的值.【详解】解:设每个小格边长为1,则由图可知:AD CD AC =====∴222AD CD AC +=,∴△ADC 是等腰直角三角形,∴∠ACD=45°,又∠ACD=∠CAB+∠CBA ,∴∠CAB+∠CBA=45°,故答案为45.【点睛】本题考查勾股定理逆定理的应用,熟练掌握勾股定理的逆定理及三角形的外角性质是解题关键.18.12【分析】根据勾股定理和圆的面积公式即可求得的值【详解】解:设Rt △ABC 的三边分别为abc 则观察图形可得:即∵∴=∴=4+8=12故答案为:12【点睛】本题考查了勾股定理圆的面积熟记圆的面积公式解析:12【分析】根据勾股定理和圆的面积公式即可求得3S 的值.【详解】解:设Rt △ABC 的三边分别为a 、b 、c ,则222+=a b c ,观察图形可得:222312111111()()()222222a b S S S c πππ⋅+⋅+=++⋅, 即222312111888a b S S S c πππ⋅+⋅+=++⋅,∵222+=a b c , ∴221188a b ππ⋅+⋅=218c π⋅, ∴312S S S =+=4+8=12,故答案为:12.【点睛】本题考查了勾股定理、圆的面积,熟记圆的面积公式,利用等面积法得出等量关系是解答的关键.19.【分析】根据折叠性质和余角定理可知是等腰直角三角形是直角三角形运用勾股定理求出DF 的值最后用勾股定理得出的值【详解】解:根据折叠的性质可知∴;∵(三角形外角定理)(都是的余角同角的余角相等)∴∵在中 解析:45【分析】根据折叠性质和余角定理可知CEF △是等腰直角三角形,B FD '是直角三角形,运用勾股定理求出DF 的值,最后用勾股定理得出B F '的值.【详解】解:根据折叠的性质可知3CD AC ==,4B C BC '==,∠=∠ACE DCE ,BCF B CF '∠=∠,CE AB ⊥,∴431B D B C CD '-=-'==;∵ECF DCE B CF ∠=∠+∠',EFC B BCF ∠=∠+∠(三角形外角定理),B ACE ∠=∠(B 、ACE ∠都是A ∠的余角,同角的余角相等),∴ECF EFC ∠=∠,∵在Rt ECF △中,90ECF EFC ∠+∠=︒,∴=45ECF EFC ∠∠=︒,∴ECF △是等腰直角三角形,EF CE =,∵EFC ∠和BFC ∠互为补角,∴135BFC B FC '∠=∠=︒,∴==1354590B FD B FC EFC ''∠∠-∠︒-︒=︒,B FD '为直角三角形, ∵1122ABC S AC BC AB CE =⋅=⋅△, ∴AC BC AB CE ⋅=⋅,∵根据勾股定理求得5AB =, ∴125CE =,∴125EF =,95ED AE === ∴35DF EF ED =-=,∴45B F '==. 故答案为:45. 【点睛】 本题考查折叠性质与勾股定理的应用,掌握折叠性质及勾股定理,运用等面积法求出CE 的值是解题关键.20.【分析】根据勾股定理求出PB 的长即PD 的长再根据两点间的距离公式求出点D 对应的数【详解】由勾股定理知:PB ===∴PD =∴点D 表示的数为﹣1故答案是:﹣1【点睛】此题考查勾股定理及圆的半径数轴等知识1【分析】根据勾股定理求出PB 的长,即PD 的长,再根据两点间的距离公式求出点D 对应的数.【详解】由勾股定理知:PB∴PD∴点D ﹣1.1.【点睛】此题考查勾股定理及圆的半径、数轴等知识,结合各知识点熟练运用是解题关键.三、解答题21.(1)ABC 是直角三角形,理由见解析;(2)【分析】(1)先比较根式的大小,再计算较小的两个边的平方和,与最大的平方比较,得出结论即可;(2)设这个正方形的边长为x ,由一个正方形的面积与ABC 的面积相等,构造方程212x =,解之即可. 【详解】解:(1)在ABC <<222250a b +=+=,2250c ==,222a b c ∴+=,ABC ∴是直角三角形;(2)设这个正方形的边长为x ,∵一个正方形的面积与ABC 的面积相等,∴212x =,解得:x =±0x ,x ∴=答:这个正方形的边长为x =【点睛】本题考查勾股定理的逆定理,以及利用面积列方程解应用题,掌握勾股定理逆定理的应用条件与方法,会利用正方形的面积与ABC 的面积相等构造方程解决问题是关键. 22.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 23.(1)DE BD CE =+;(2)结论DE BD CE =+成立,证明见解析;(3)①DFE △为等边三角形,证明见解析.②234n . 【分析】(1)由题意可知90ADB CEA ∠=∠=︒,又可推出ABD CAE ∠=∠,即可证明(AAS)ADB CEA ≌,得出BD AE =,AD CE =.即推出DE AD AE BD CE =+=+.(2)由题意易证ABD CAE ∠=∠,即证明(AAS)ADB CEA ≌,同理即DE AD AE BD CE =+=+.(3)①由(2)知(AAS)ADB CEA ≌,得出BD AE =,由ABD CAE ∠=∠,易证FBD FAE ∠=∠,又由题意可知FB=FA ,即证明出(SAS)FBD FAE ≌,得出结论FD FE =,BFD AFE ∠=∠,即可求出60DFE ∠=︒,即证明DEF 为等边三角形. ②由DE n =,DEF 为等边三角形,即可求出DEF 的面积.【详解】(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴(AAS)ADB CEA ≌, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+.故答案为:DE BD CE =+.(2)结论DE BD CE =+成立;理由如下:∵180BAD CAE BAC ∠+∠=︒-∠, 180BAD ABD ADB ∠+∠=︒-∠,BDA BAC ∠=∠, ∴ABD CAE ∠=∠,在BAD 和ACE △中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴(AAS)BAD ACE ≌, ∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+.(3)①DEF 为等边三角形,理由:由(2)得,BAD ACE ≌△△, ∴BD AE =,∵ABD CAE ∠=∠,∴ABD FBA CAE FEC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE ∠中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)FBD FAE ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒,∴DEF 为等边三角形.②∵DEF 为等边三角形.∴DEF 的高为32DE . ∴21332DFE S DE DE n ==. 【点睛】本题考查三角形全等的判定和性质,等边三角形的判定和性质以及勾股定理.熟练掌握判定三角形全等的方法是解答本题的关键.24.5cm【分析】先根据折叠求出AF =10,进而用勾股定理求出BF ,即可求出CF ,最后用勾股定理即可得出结论.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =10cm ,CD =AB =8cm ,由折叠可知:Rt △ADE ≌Rt △AFE ,∴∠AFE =90°,AF =10cm ,EF =DE ,设EF =xcm ,则DE =EF =xcm ,CE =CD ﹣CE =(8﹣x )cm ,在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即82+BF 2=102,∴BF =6cm ,∴CF =BC ﹣BF =10﹣6=4(cm ),在Rt △ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即x 2=(8﹣x )2+42, ∴x =5即:EF 的长为5cm .【点睛】本题考查勾股定理、图形的翻折变换、全等三角形,方程思想等知识点,关键是熟练掌握勾股定理,运用方程求解.25.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(42,210的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵EF=FG=GD=DE=222313+=, ∴正方形DEFG 的面积为13;(3)HI=22345+=;(4)∵KL=22112+=,JL=222222+=,JK=221310+=,且222(2)(22)(10)+=∴JKL 是直角三角形,且周长为3210+.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.26.(1)见详解;(2)6+33【分析】(1)利用尺规作出AB 的中垂线,中垂线与BC 的交点,即为所求;(2)连接AD ,先求出∠ADC=30°,根据直角三角形的性质以及勾股定理,即可求解.【详解】(1)如图,点D 即为所求;(2)连接AD ,∵DE 垂直平分AB ,∴DA=DB ,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=15°+15°=30°,在Rt∆ADC 中,DA=2AC=6,∴DB=6,∵222AD DC AC =+,∴DC=∴BC=DB+DC=6+【点睛】本题主要考查尺规作图以及直角三角形的性质和勾股定理,熟练掌握直角三角形中,30°角所对的直角边等于斜边的一半,是解题的关键.。
(人教版)武汉市八年级数学下册第二单元《勾股定理》检测卷(有答案解析)

一、选择题1.如图,在四边形ABCD 中,∠A =∠C =90°,AB =A D .若这个四边形的面积为16,求BC +CD 的值是( )A .6B .8C .42D .43 2.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .33B .23C .3D .23.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 4.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .85.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .5D .26.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8 7.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .648.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .79.如图,四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,8AB =,13BD =,12BC =,则四边形ABCD 的面积为( )A .50B .56C .60D .7210.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .311.如图,在Rt △ABC 中,∠C =90°,DE 是斜边AB 的垂直平分线,与BC 相交于点D 连接AD ,若AC =5,△ACD 的周长为17,则斜边AB 的长为( )A .11B .12C .13D .1412.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.如图,在钝角ABC 中,已知A ∠为钝角,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,若222BD CE DE +=,则A ∠的度数为________.14.如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.15.在平面直角坐标系中,点A(0,-3),B(4a +4,-3a),则线段AB 的最小值为 ___________.16.如图所示的网格是正方形网格,点A 、B 、C 、D 均在格点上,则∠CAB +∠CBA =____°.17.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 18.如图,教室的墙面ADEF 与地面ABCD 垂直,点P 在墙面上.若5PA AB ==米,点P 到AD 的距离是3米,有一只蚂蚁要从点P 爬到点B ,它的最短行程是______米.19.如图是放在地面上的一个长方体盒子,其中AB =24cm ,BC =12cm ,BF =7cm ,点M 在棱AB 上,且AM =6cm ,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为_______.20.如图,点A 是∠MON=45°内部一点,且OA=4cm ,分别在边OM ,ON 上各取一点B ,C ,分别连接A ,B ,C 三点组成三角形,则△ABC 最小周长为 ________ .三、解答题21.已知:如图,AB =12cm ,AD =13cm ,CD =4cm ,BC =3cm ,∠C =90°.求△ABD 的面积.22.如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交AC 于点E ,垂足是D ,F 是BC 上一点,EF 平分∠AFC ,EG ⊥AF 于点G .(1)试判断EC 与EG ,CF 与GF 是否相等;(直接写出结果,不要求证明) (2)求证:AG =BC ;(3)若AB =10,AF +BF =12,求EG 的长.23.如图,AC 与BD 相交于点O ,AB //CD , OA =OC .(1)求证: △AOB ≌△COD .(2)若∠A +∠D =90°, AB =AC =2,求BD 的长.24.已知:如图,ABC 中,90C ∠=︒,BC AC >,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ DP ⊥交直线AC 于点Q .(1)如图,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .①求证:PG PQ =;②若12BC =,9AC =,设BP x =,CQ y =,求y 关于x 的函数表达式. (2)当点P 在线段CB 的延长线上时,依据题意补全下图,用等式表示线段BP 、PQ 、AQ 之间的数量关系,并说明理由.25.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?26.在△ABC 中,AB =AC ,∠BAC =90°,点D 是线段BC 上的动点(BD >CD ),作射线AD ,点B 关于射线AD 的对称点为E ,作直线CE ,交射线AD 于点F .连接AE ,BF . (1)依题意补全图形,直接写出∠AFE 的度数;(2)用等式表示线段AF ,CF ,BF 之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题可通过作辅助线进行解决,延长CB 到E ,使BE=DC ,连接AE ,AC ,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.【详解】解:延长CB 到E ,使BE=DC ,连接AE ,AC ,∵∠ABE=∠BAC+∠ACB ,∠D=180°-∠DAC-∠DCA ,∵∠BAD=90°,∠BCD=90°,∴∠BAC+∠ACB=90°-∠DAC+90°-∠DCA=180°-∠DAC-∠DCA ,∴∠ABE=∠D ,在△ABE 和△ADC 中,BE DC ABE D AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC(SAS),∴AE=AC ,∠EAB=∠DAC ,∴∠EAC=90°,∴S △AEC =12AE 2=14CE 2, ∵S △AEC =S 四边形ABCD =16, ∴14CE 2=16, ∴CE=8, ∴BC+CD=BC+BE=CE=8,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.2.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ',∴224ACB CDB S S ''==⨯=△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.3.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 4.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.5.B解析:B【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,5AC ==∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.6.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴OA OB ==∴A 所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.7.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a+=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a、b、c,由题意得222a b c,+=∴2225289a+=,∴字母A所代表的正方形的面积264a=,故选:D..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.8.B解析:B【分析】由勾股定理求出AC=10,求出BE=4,设DE=x,则BD=8−x,得出(8−x)2+42=x2,解方程求出x即可得解.【详解】∵AB=6,BC=8,∠ABC=90°,∴2222+,AB BC+=6810∵将△ADC沿直线AD翻折得△ADE,∴AC=AE=10,DC=DE,∴BE=AE−AB=10−6=4,在Rt△BDE中,设DE=x,则BD=8−x,∵BD2+BE2=DE2,∴(8−x)2+42=x2,解得:x=5,∴DE=5.故选B.【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.9.A解析:A【分析】据勾股定理求出DC,根据角平分线的性质得出DE=DC=5,根据勾股定理求出BE,求出AE ,再根据三角形的面积公式求出即可.【详解】过D 作DE AB ⊥,交BA 的延长线于E ,则90∠=∠=︒E C ,90BCD ∠=︒,BD 平分ABC ∠,DE DC ∴=,在Rt BCD ∆中,由勾股定理得:222213125CD BD BC --=,5DE ∴=,在Rt BED ∆中,由勾股定理得:222213512BE BD DE =--,8AB =,1284AE BE AB ∴=-=-=,∴四边形ABCD 的面积BCD BED AED S S S S ∆∆∆=+-111222BC CD BE DE AE DE =⨯⨯+⨯⨯-⨯⨯ 11112512545222=⨯⨯+⨯⨯-⨯⨯ 50=,故选:A .【点睛】本题考查了勾股定理,三角形面积,角平分线的性质等知识点,能求出DE=DC 是解题的关键.10.C解析:C【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4, ∴22224223ACAD CD ; 故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.11.C解析:C【分析】根据线段的垂直平分线的性质得到DA DB =,根据三角形的周长公式计算,得到答案.【详解】解:DE 是AB 的垂直平分线,DA DB ∴=,ACD ∆的周长为17,17AC CD AD ∴++=,17AC CD DB AC BC ∴++=+=,5AC =,17512BC ∴=-=,由勾股定理得,13AB ==,故选:C .【点睛】 本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.B解析:B【分析】先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数.【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x ,则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+, ∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,DE ==∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ;如下图所示:点P 共有7个点;故选:B .【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P 的位置,注意运用数形结合的思想进行解题.二、填空题13.【分析】如图中连接ADAE 首先证明∠DAE=90°易知∠DBA=∠DAB ∠EAC=∠C 根据三角形内角和定理可得推出由此即可解决问题【详解】解:如图连接∵的垂直平分线分别交于点∴∴∵∴∴∴∴∴∴故答案 解析:135【分析】如图中,连接AD 、AE .首先证明∠DAE=90°,易知∠DBA=∠DAB ,∠EAC=∠C ,根据三角形内角和定理可得2290180B C ∠+∠+=,推出45B C ∠+∠=,由此即可解决问题.【详解】解:如图,连接DA ,EA .∵AB ,AC 的垂直平分线分别交BC 于点D ,E ,∴AD BD =,CE AE =,∴DAB B ∠=∠,EAC C ∠=∠.∵222BD CE DE +=,∴222AD AE DE +=,∴90DAE ∠=,∴2290180B C ∠+∠+=,∴45B C ∠+∠=,∴45DAB EAC ∠+∠=,∴135BAC DAB DAE EAC∠=∠+∠+∠=.故答案为:135.【点睛】本题考查了线段垂直平分线的性质和三角形内角和定理,根据线段垂直平分线作出辅助线,根据三角形内角和定理解决问题是关键.14.【分析】作E关于AD的对称点M连接CM交AD于F连接EF过C作CN⊥AB于N再求出BD的长根据三角形面积公式求出CN根据对称性得CF+EF =CM根据垂线段最短得出CF+EF≥CM即可得出答案【详解】解析:120 13【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,再求出BD 的长,根据三角形面积公式求出CN,根据对称性得CF+EF=CM,根据垂线段最短得出CF +EF≥CM,即可得出答案.【详解】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的高,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,∴S△ABC=12×BC×AD=12×AB×CN,∴CN=BC×AD÷AB=10×12÷13=12013,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥120 13,即CF+EF的最小值是120 13,故答案为:120 13.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,掌握“点与直线上的所有点的连线中,垂线段最短”,是一道比较好的题目.15.【分析】根据勾股定理可得整理配方即可求解【详解】解:根据勾股定理可得:∵∴线段AB 的最小值为故答案为:【点睛】本题考查勾股定理的应用完全平方公式的应用根据勾股定理表示出是解题的关键 解析:245【分析】 根据勾股定理可得()()2224433AB a a =++-,整理配方即可求解.【详解】解:根据勾股定理可得:()()22222757644332514255525AB a a a a a ⎛⎫=++-=++=++ ⎪⎝⎭, ∵27576576552525a ⎛⎫++≥ ⎪⎝⎭, ∴线段AB 的最小值为245, 故答案为:245. 【点睛】 本题考查勾股定理的应用、完全平方公式的应用,根据勾股定理表示出2AB 是解题的关键.16.45【分析】设每个小格边长为1可以算得ADCDAC 的边长并求得∠ACD 的度数根据三角形外角性质即可得到∠CAB+∠CBA 的值【详解】解:设每个小格边长为1则由图可知:∴∴△ADC 是等腰直角三角形∴∠解析:45设每个小格边长为1,可以算得AD、CD、AC的边长并求得∠ACD的度数,根据三角形外角性质即可得到∠CAB+∠CBA的值.【详解】解:设每个小格边长为1,则由图可知:=====AD CD AC∴222+=,AD CD AC∴△ADC是等腰直角三角形,∴∠ACD=45°,又∠ACD=∠CAB+∠CBA,∴∠CAB+∠CBA=45°,故答案为45.【点睛】本题考查勾股定理逆定理的应用,熟练掌握勾股定理的逆定理及三角形的外角性质是解题关键.17.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键.18.【分析】可将教室的墙面ADEF与地面ABCD展开连接PB根据两点之间线段最短利用勾股定理求解即可【详解】解:如图过P作PG⊥BF于G连接PB∵AG=3AP=AB=5∴∴BG=8∴故这只蚂蚁的最短行程解析:【分析】可将教室的墙面ADEF与地面ABCD展开,连接PB,根据两点之间线段最短,利用勾股定理求解即可.解:如图,过P作PG⊥BF于G,连接PB,∵AG=3,AP=AB=5,∴224==-,PG AP AG∴BG=8,∴2245B=+=P GB GP故这只蚂蚁的最短行程应该是45故答案为:45【点睛】本题考查了平面展开-最短路径问题,立体图形中的最短距离,通常要转换为平面图形的两点间的线段长来进行解决.19.cm【分析】利用平面展开图有两种情况画出图形利用勾股定理求出MN的长即可【详解】解:如图1∵AB=24cmAM=6cm∴BM=18cm∵BC=GF=12cm点N 是FG的中点∴FN=6cm∵BF=7c解析:493cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴FN=6cm,∵BF=7cm,∴BN=7+6=13cm,∴MN=221813+=493cm;如图2,∵AB=24cm,AM=6cm,∴BM=18cm,∵BC=GF=12cm,点N是FG的中点,∴BP=FN=6cm,∴MP=18+6=24cm,∵PN= BF=7cm,∴22+==cm.24762525∵49325,∴蚂蚁沿长方体表面爬到N493.493.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.20.4【分析】作A关于OM的对称点A´A关于ON的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:2【分析】作A关于OM的对称点A´,A关于ON的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B,AC=A´´C,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A关于OM的对称点A´,A关于ON的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´2244+2(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´2(cm )即△ABC 的周长最小值为2故答案为:2【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.230cm【分析】先利用勾股定理,求得BD=5;再利用勾股定理的逆定理,证明三角形ABD 是直角三角形,利用面积公式计算即可.【详解】4CD cm =,3BC cm =,90C ∠=︒,22435BD cm ∴=+=,12AB cm =,13AD cm =,222BD AB AD ∴+=,90ABD ∴∠=︒, ∴211·1253022ABD S AB BD cm ∆==⨯⨯=. 【点睛】本题考查了勾股定理及其逆定理的应用,熟练掌握两个定理是解题的关键.22.(1),EC EG CF GF ==;(2)证明见解析;(3)EG 的长是134.【分析】(1)根据角平分线性质得出EC =EG ,再根据勾股定理推出CF =GF 即可.(2)连接BE ,推出AE =BE ,根据HL 证出Rt △AGE ≌Rt △BCE 即可.(3)求出BC ,根据勾股定理求出AC ,设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得出方程62+x 2=(8﹣x )2,求出方程的解即可.【详解】(1)解:EC =EG ,CF =GF ,理由是:∵∠C =90°,EG ⊥AF ,EF 平分∠AFC ,∴CE =EG ,∵EF =EF ,∴由勾股定理得:2222,,CF EF CE GF EF EG =-=-∴ CF =GF .(2)证明:连接BE ,∵AB 的垂直平分线DE ,∴AE =BE ,在Rt △AGE 和Rt △BCE 中,AE BE EG EC =⎧⎨=⎩, ∴Rt △AGE ≌Rt △BCE (HL ),∴AG =BC .(3)解:,,AG BC FG FC ==∴ AG =BC =BF +GF ,212,AF BF AG GF BF AG +=++==∴AG =BC =12×12=6, 在Rt △ABC 中,由勾股定理得:22221068,AC AB BC =-=-=设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得:62+x 2=(8﹣x )2,22366416,x x x ∴+=-+1628,x ∴=解得:31,4x =∴EG 的长是31.4【点睛】本题考查的是角平分线的性质定理,勾股定理的应用,线段的垂直平分线的性质定理,直角三角形全等的判定与性质,掌握以上知识是解题的关键.23.(1)证明见解析;(2)BD =【分析】(1)根据平行的性质可得两组对应角相等,再结合OA =OC 根据AAS 即可证明全等; (2)先证明△DOC 为直角三角形,根据勾股定理即可求得DO ,从而求得BD .【详解】解:(1)证明:∵AB //CD ,∴∠A=∠C ,∠B=∠D ,又∵OA =OC ,∴△AOB ≌△COD (AAS );(2)∵∠A +∠D =90°,∠A=∠C ,∴∠C +∠D =90°,∴∠DOC=90°,△DOC 为直角三角形,∵△AOB ≌△COD ,AB =AC =2,∴BO=DO ,DC=AB=2,OA =OC =1,∴在Rt △DOC 中根据勾股定理,OD = ∴BD BO DO =+=【点睛】本题考查全等三角形的性质和判定,勾股定理,两锐角互余的三角形是直角三角形.(1)中掌握全等三角形的几种判定定理,能根据已知条件选取合适的定理是解题关键;(2)中能证明△DOC 为直角三角形是解题关键.24.(1)①见解析;②4732y x =-;(2)图见解析,222BP AQ PQ +=,理由见解析【分析】(1)①先通过证ADQ BDG △≌△得到GD=DQ ,又因为PD ⊥DQ 便可证得PG=PQ ; ②由ADQ BDG △≌△证得AQ=BG ,因为CQ=y ,则AQ=BG=9-y ,BP=x ,则PC=12-x ,由PG=PQ ,根据勾股定理可列方程:()()2222912y x x y -+=-+,化简后不能得出y 与x 的函数关系;(2)依据题意画出图形,过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,先证ADQ BDE △≌△,得出EB=AQ ,ED=DQ ,因为PD DQ ⊥,所以EP PQ =,再根据勾股定理得出222EB PB EP +=,不难推出线段BP 、PQ 、AQ 之间的数量关系【详解】解:(1)①//BG AC ,A GBA ∴∠=∠, AD=DB GDB=ADQ ∠∠,,()ASA ADQ BDG ∴△≌△,GD=QD ∴,又PD GQ ⊥,PG=PQ ∴; ②ADQ BDG △≌△∴AQ=BG ,12BC =,9AC =, BP x =,CQ y =, ∴ AQ=BG=9-y ,PC=12-x ,在Rt GBP △中,222B PB =GP G + ,在PCQ Rt △中, 222P QC =PQ C + GP PQ =,∴ 2222B PB =P QC G C ++,∴ ()()22229x =12y y x -+-+, 整理,得4732y x =-; (2)依据题意画出图形,当点P 在线段CB 的延长线上时,222AQ PB PQ += ,理由如下:过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,//EB AC ,EBD A ∴∠=∠ ,又EDB ADQ AD DB ∠=∠=, ,∴ ()ASA ADQ BDE △≌△,∴ EB=AQ ,ED=DQ ,PD DQ ⊥,∴ EP PQ =,在EBP Rt △中,222EB PB EP +=,222A Q PB PQ ∴+=.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,线段垂直平分线的性质及勾股定理,构造全等三角形是解决本题的关键.25.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c , ∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 26.(1)作图见解析;45°;(2)2AF ,证明见解析【分析】(1)根据轴对称即可补全图形,延长FB 至点M 使MB=CF ,通过ABM ACF △≌△,进而证得△MAF 是等腰直角三角形,问题即可解决;(2)由(1)知△MAF 是等腰直角三角形及CF=BF ,再根据勾股定理问题即可解决;【详解】(1)补全图形,如图所示:∠AFE=45°理由如下:延长FB 至点M 使MB=CF ,∵点B 、E 关于AF 对称,∴AB=AE ,∠ABF=∠AEC ,∠AFB=∠AFE∵AB=AC ,∴AC=AE ,∴∠ACE=∠AEC‘∴180180ACE ABF ︒-∠=︒-∠ ∠ACE=∠ABF ,即:ABM ACF ∠=∠,()ABM ACF SAS ∴△≌△,,CAF AM AF MAB ∴=∠=∠,AMF=AFM MAF=BAC=90∴∠∠∠∠︒,,AFM=45∴∠︒,AFE=45∴∠︒(2)2AF∠︒理由如下:由(1)知AM=AF,CF=MB,MAF=902222∴AF+AM=MF=2AF∴AF+MF=MB BF即AF∴,【点睛】本题考查了轴对称的性质,全等三角形的判定和性质,直角三角形的判定和性质,等腰三角形的判定和性质,构造全等三角形是解决本题的关键.。
新人教版初中数学八年级数学下册第二单元《勾股定理》检测题(含答案解析)

一、选择题1.如图,在四边形ABCD 中,∠A =∠C =90°,AB =A D .若这个四边形的面积为16,求BC +CD 的值是( )A .6B .8C .42D .43 2.ABC 中,A ∠,B ,C ∠的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .ABC =+∠∠∠B .::1:1:2A BC ∠∠∠= C .222b a c =+D .::1:1:2a b c = 3.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1544.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE 上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个5.如图,在ABC 中,点D 是BC 上一点,连结AD ,将ACD △沿AD 翻折,得到AED ,AE 交BD 于点F .若2BD DC =,AB AD =,2AF EF =,2CD =,DFE △的面积为1,则点D 到AE 的距离为( )A .1B .65C .52D .26.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,3AC =,2AD =,则ABD △的面积为( )A .3B .2C .23D .37.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 8.如图,将一根长为20cm 的筷子置于底面直径为5cm ,高为12cm 的圆柱形水杯中,筷子露在杯子外面的长度为( )A .13cmB .8cmC .7cmD .15cm 9.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B .7C .5或7D .以上都不对 10.若ABC 的三边a 、b 、c 满足2(3)450a b c -+-+-=,则ABC 的面积是( )A .3B .6C .12D .1011.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A .3.6B .2.4C .4D .3.212.给出下列说法: ①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a b c 、、满足222+=a b c ,则90︒∠=C ;③ABC ∆中,若::1:5:6A B C ∠∠∠=,则ABC ∆是直角三角形;④ABC ∆中,若::1:2:3a b c =,则这个三角形是直角三角形.其中,错误的说法的个数为( )A .1B .2C .3D .4二、填空题13.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.若2DC =,1AD =,则BE 的长为__________.14.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.15.如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为BC 的中点,8AB =,点P 为AB 上一动点,则PC PD +的最小值为__________.16.在Rt ABC 中,90,8cm,4cm C BC AC ∠=︒==,在射线BC 上一动点D ,从点B 出发,以1厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为_____________秒.17.已知:如图,ABC 中,∠ACB=90°,AC=BC=2,ABD 是等边三角形,则CD 的长度为______.18.在平面直角坐标系中有两点A(5,0),B(2,1),如果点C 在坐标平面内,且由点A 、O 、C 连成的三角形与△AOB 全等(△AOC 与△AOB 不重合),则点C 的坐标是_________ 19.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD 的面积=______________.三、解答题21.Rt △ABC 中,∠ACB =90°,AC =3,AB =5.(1)如图1,点E 在边BC 上,且∠AEC =2∠B .①在图1中用尺规作图作出点E ,并连结AE (保留作图痕迹,不写作法与证明过程); ②求CE 的长.(2)如图2,点D 为斜边上的动点,连接CD ,当△ACD 是以AC 为底的等腰三角形时,求AD 的长.22.在△ABC 中,D 是BC 上一点,AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.23.如图,在ABC 中,2,1,20AB AC BAC AD BC ︒==∠=⊥于点D ,延长AD 至点E ,使DE AD =,连接BE 和CE .(1)补全图形;(2)若点F 是AC 的中点,请在BC 上找一点P 使AP FP +的值最小,并求出最小值. 24.在如图的正方形网格中,每个小正方形的边长都是1,请在图中画出2个形状不同的等腰三角形,使它的腰长为5,且顶点都在格点上,则满足条件的形状不同的等腰三角形共 个.25.如图,在等边ABC 中,AO 是BAC ∠的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边CDE △,连接BE .(1)求证:≌ACD BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连接CP 、CQ 使5CP CQ ==,若8BC =时,求PQ 的长.26.如图,在锐角△ABC 中,AD ⊥BC 于点D ,点E 在AD 上,DE =DC ,BE =AC ,点F 为BC 的中点,连结EF 并延长至点M ,使FM =EF ,连结CM .(1)求证:△BDE ≌△ADC ;(2)求证:AC ⊥MC ;(3)若AC =m ,则点A 、点M 之间的距离为 (用含m 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】本题可通过作辅助线进行解决,延长CB 到E ,使BE=DC ,连接AE ,AC ,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.【详解】解:延长CB 到E ,使BE=DC ,连接AE ,AC ,∵∠ABE=∠BAC+∠ACB ,∠D=180°-∠DAC-∠DCA ,∵∠BAD=90°,∠BCD=90°,∴∠BAC+∠ACB=90°-∠DAC+90°-∠DCA=180°-∠DAC-∠DCA ,∴∠ABE=∠D ,在△ABE 和△ADC 中,BE DC ABE D AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC(SAS),∴AE=AC ,∠EAB=∠DAC ,∴∠EAC=90°,∴S △AEC =12AE 2=14CE 2, ∵S △AEC =S 四边形ABCD =16, ∴14CE 2=16, ∴CE=8, ∴BC+CD=BC+BE=CE=8,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.2.D解析:D【分析】根据三角形内角和定理可判断A 和B ,根据勾股定理可判断C 和D .【详解】A.A B C ∠=∠+∠,180A B C ∠+∠+∠=︒,2180A ∴∠=︒,∴90A ∠=︒,ABC ∴为直角三角形,不符合题意,故A 错误;B.::1:1:2A B C ∠∠∠=,A B ∴∠=∠,2C A ∠=∠,又∵180A B C ∠+∠+∠=︒,2180A A A ∴∠+∠+∠=︒,45A ∠=︒,290C A ∴∠=∠=︒,ABC ∴为直角三角形,不符合题意,故B 错误;C.222b a c =+,ABC ∴是直角三角形,不符合题意,故C 错误;D.::1:1:2a b c =, b a ∴=,2c a =,222a b c ∴+≠,ABC ∴不是直角三角形,符合题意,故D 正确.故选D .【点睛】本题考查了三角形内角和定理,以及勾股定理的逆定理,熟练掌握各知识点是解答本题的关键.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中.3.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.4.C解析:C【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E ,∴∠DAB =∠ACE ,故②正确;∴∠ACE +∠ACD =∠ACD +∠DCB =90°,∴∠ACE =∠DCB ,在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;∴AE =BD ,∠CEA =∠CDB =45°,∴∠ADB =∠CDB +∠EDC =90°,∴△ADB 是直角三角形,∴AD 2+BD 2=AB 2,∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形,∴AB=2AC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中, 45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△FCD (SAS),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确;故选:C .【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键. 5.B解析:B【分析】过A 作AG BC ⊥于点G ,根据2AF EF =可得3ADE ACD S S ∆∆==,再由勾股定理求得5AE AC ==,最后由三角形面积公式可求出点D 到AE 的距离.【详解】解:过A 作AG BC ⊥于点G∵1DFE S ∆=,2AF EF =∴2ADF S ∆=∴3ADE ACD S S ∆∆== ∵12ADC S CD AG ∆=⋅⋅ ∴3AG =∵AB AD =,AG BC ⊥∴2BD GB =由2BD CD =得,2GD CD ==∴224GC GD DC =+=+=在Rt AGC ∆中,225AC AG GC =+=∴5AE AC == ∴236255ADE S h AE ∆⨯=⋅== 故选:B .【点睛】 本题考查了折叠问题,勾股定理定理,等腰三角形的性质以及三角形面积公式的应用,熟练运用这些性质进行推理是本题的关键.6.A解析:A【分析】根据含30度角的直角三角形性质可求出CD=1,过点D 作DE ⊥AB ,证明Rt △ACD ≌Rt △AED ,得3Rt △BED ≌Rt △AED ,得3用三角形面积公式即可求出答案.【详解】解:∵30B ∠=︒,90C ∠=︒,∴∠BAC=90゜-30゜=60゜∵AD 平分BAC ∠,∴∠BAD=∠CAD=1302BAC ∠=︒ 在Rt △ACD 中,由AD=2∴CD=1;过点D 作DE ⊥AB ,如图,∵AD 平分BAC ∠,90C ∠=︒,∴DE=DC=1又AD=AD∴Rt △ACD ≌Rt △AED ,∴3在Rt △ADE 和Rt △BDE 中DAE DBE AED BED DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴Rt △BED ≌Rt △AED∴3∴3∴11123322ABD S AB DE ∆=⨯=⨯⨯= 故选:A .【点睛】此题主要考查了角平分线的性质、含30度角的直角三角形的性质以及勾股定理,熟练掌握相关定理、性质是解答此题的关键. 7.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积.8.C解析:C【分析】根据勾股定理求出杯子内的筷子长度,即可得到答案.【详解】解:由题意可得:,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm ).故选:C .【点睛】此题考查勾股定理的实际应用,熟记勾股定理的计算公式是解题的关键.9.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.10.B解析:B【分析】根据绝对值,乘方和算术平方根的非负性求得a 、b 、c 的值,再结合勾股定理逆定理判断△ABC 为直角三角形,由此根据直角三角形面积等于两直角边乘积的一半可得面积.解:∵2(3)450a b c -+-+-=,∴30,40,50a b c -=-=-=,解得3,4,5a b c ===,又∵222223425a b c +=+==, ∴△ABC 为直角三角形,∴13462ABC S =⨯⨯=△. 故选:B .【点睛】本题考查非负数的性质,勾股定理的逆定理.理解几个非负数(式)的和为0,那么这几个数(式)都为0是解题关键. 11.A解析:A【分析】连接BF ,交AE 于点H ,由折叠可知,BF ⊥AE ,BE=EF ,根据勾股定理可求得AE 的值,运用等面积法可求得BH ,进而可得到BF 的长度;结合题意可知FE=BE=EC ,可证得90BFC ∠=︒,在Rt BFC △中利用勾股定理求出CF 的长度即可.【详解】解:连接BF ,交AE 于点H ,如图:∵AEF 是由AEB △沿AE 折叠得到的,∴BF ⊥AE ,BE=EF ,∵BC=6,点E 为BC 的中点,∴BE=EF=CE=3, ∵在Rt ABE △中,222AB BE AE +=,即:2224+3=AE ,∴AE=5,∵1122ABE S AB BE AE BH =⨯=⨯, 解得:125BH =, ∴245BF =,∵BE=EF=CE ,∴=EBF EFB ∠∠,=EFC ECF ∠∠,∴90BFC EFB EFC ∠=∠+∠=︒,∴BCF △是直角三角形,∴222+=BF CF BC ,即:22224()65CF +=, ∴解得:18=3.65CF =. 故选:A .【点睛】本题考查矩形性质和折叠问题,灵活运用等面积法和勾股定理是解题关键. 12.A解析:A【分析】分4为直角三角形的直角边和斜边两种情况,根据勾股定理即可判断①;根据勾股定理的逆定理即可判断②④;根据三角形的内角和定理即可求出三角形的三个内角,进而可判断③;从而可得答案.【详解】解:若4为直角三角形ABC 5=,若4为直角三角形ABC=,故①错误;三角形的三边a b c 、、满足222+=a b c ,则90C ∠=︒,故②正确;△ABC 中,若::1:5:6A B C ∠∠∠=,所以11801512A ∠=︒⨯=︒,51807512B ∠=︒⨯=︒,61809012C ∠=︒⨯=︒,所以ABC 是直角三角形,故③正确;△ABC 中,若::1:2a b c =,2,a k b k c ===,因为)()222222242a c k k k b +=+===,所以这个三角形是直角三角形,故④正确.综上,错误的说法是①,有1个.故选:A .【点睛】 本题考查了三角形的内角和、勾股定理及其逆定理等知识,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.【分析】根据是的垂直平分线得到BD=CDBE=CE 推出∠DBC=∠C 根据BD 平分推出∠ABD=∠CBD=∠C 求出∠C=得到DE=1利用勾股定理求出CE 即可得到BE 【详解】∵是的垂直平分线∴BD=CD【分析】根据DE 是BC 的垂直平分线,得到BD=CD ,BE=CE ,推出∠DBC=∠C ,根据BD 平分ABC ∠,推出∠ABD=∠CBD=∠C ,求出∠C=30,得到DE=1,利用勾股定理求出CE 即可得到BE .【详解】∵DE 是BC 的垂直平分线,∴BD=CD,BE=CE ,∴∠DBC=∠C ,∵BD 平分ABC ∠,∴∠ABD=∠CBD ,∴∠ABD=∠CBD=∠C ,∵∠ABD+∠CBD+∠C=90︒,∴∠C=30,∵2DC =,∴DE=1,∴=,【点睛】此题考查线段垂直平分线的性质,角平分线的性质,直角三角形30度角的性质,勾股定理,熟记线段垂直平分线的性质及角平分线的性质是解题的关键.14.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中, 2264164843EC AB AC =-=-==,故答案为:43.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.15.【分析】根据勾股定理得到BC 由中点的定义求出BD 作点C 关于AB 对称点C′则PC′=PC 连接DC′交AB 于P 连接BC′此时DP+CP=DP+PC′=DC′的值最小由对称性可知∠C′BA=∠CBA=45解析:210【分析】根据勾股定理得到BC ,由中点的定义求出BD ,作点C 关于AB 对称点C′,则PC′=PC ,连接DC′,交AB 于P ,连接BC′,此时DP+CP=DP+PC′=DC′的值最小.由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:在等腰直角ABC 中,90ACB ∠=︒,AC BC =, 8AB =,∵AC 2+BC 2=AB 2,∴AC=BC=242AB =. ∵D 为BC 的中点,∴BD=22.作点C 关于AB 对称点C′,交AB 于点O ,则PC′=PC ,连接DC′,交AB 于P ,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵点C 关于AB 对称点C′,∴∠C′BA=∠CBA=45°,'42BC BC ==∴∠'90CBC =,∴()()2222''2242210DC BD BC =+=+=,故答案为:210.【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质,以及勾股定理等知识,确定动点P何位置时,使PC+PD的值最小是解题的关键.16.10和16【分析】求出当△ADB是等腰三角形时BD的长用其除以点D运动的速度即可注意分情况讨论【详解】解:分三种情况如下图1所示当AD=DB时∵BC=8∴CD=8-BD又AC=6在RT△ACD中由勾解析:254、10和16【分析】求出当△ADB是等腰三角形时BD的长,用其除以点D运动的速度即可,注意分情况讨论.【详解】解:分三种情况如下图1所示,当AD=DB时.∵BC=8,∴CD=8-BD又AC=6在RT△ACD中,由勾股定理得2226(8)BD BD+-=解得254 BD=除以点D运动的速度得所用时间t为254秒;如下图2所示,当AB=DB时.由勾股定理得22226810AC BC+=+=,除以点D 运动的速度得t 为10秒;如下图3所示,当AD=AB 时.∵AC ⊥BC∴CD=BC=8∴BD=16除以点D 运动的速度得t 为16秒.综上所述,以A 、D 、B 为顶点的三角形恰为等腰三角形,D 所用时间t 为254秒、10秒或16秒. 故答案为:254、10或16. 【点睛】此题考查等腰三角形的定义和性质,分情况讨论和用勾股定理列方程是关键. 17.【分析】由勾股定理求出AB 根据等边三角形的性质得出AB=AD=BD=2∠DAB=∠ABD=60°证出AB ⊥CD 于E 且AE=BE=1求出AE=CE=1由勾股定理求出DE 即可得出结果【详解】解:∵∠AC 31【分析】由勾股定理求出AB ,根据等边三角形的性质得出AB=AD=BD=2,∠DAB=∠ABD=60°,证出AB ⊥CD 于E ,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE ,即可得出结果.【详解】解:∵∠ACB=90°,2,∴()()2222222AC BC +=+=,∠CAB=∠CBA=45°, ∵ABD 是等边三角形,∴AB=AD=BD=2,∠DAB=∠ABD=60°,∵AC=BC ,AD=BD ,∴AB ⊥CD 于E ,且AE=BE=1,在Rt △AEC 中,∠AEC=90°,∠EAC=45°,∴∠EAC=∠ACE=45°,∴AE=CE=1,在Rt △AED 中,∠AED=90°,AD=2,AE=1,∴DE=223AD AE -=, ∴CD=31+.31.【点睛】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识.运用勾股定理求出DE 是解决本题的关键.18.或或【分析】设点C 的坐标为先根据两点之间的距离公式可得的值再根据全等三角形的性质建立方程组解方程组即可得【详解】设点C 的坐标为由题意分以下两种情况:(1)当时则即解得或则此时点C 的坐标为或(与点B 重 解析:(2,1)-或(3,1)-或(3,1)【分析】设点C 的坐标为(,)C a b ,先根据两点之间的距离公式可得2222,,,AC OC AB OB 的值,再根据全等三角形的性质建立方程组,解方程组即可得.【详解】设点C 的坐标为(,)C a b , (5,0),(0,0),(2,1)A O B ,222(5)AC a b ∴=-+,222OC a b =+,222(25)(10)10AB =-+-=,222(20)(10)5OB =-+-=,由题意,分以下两种情况:(1)当AOC AOB ≅时,则,AC AB OC OB ==,2222,AC AB OC OB ∴==,即2222(5)105a b a b ⎧-+=⎨+=⎩, 解得21a b =⎧⎨=-⎩或21a b =⎧⎨=⎩, 则此时点C 的坐标为(2,1)C -或(2,1)C (与点B 重合,不符题意,舍去);(2)当OAC AOB ≅时,则,AC OB OC AB ==,2222,AC OB OC AB ∴==,即2222(5)510a b a b ⎧-+=⎨+=⎩, 解得31a b =⎧⎨=-⎩或31a b =⎧⎨=⎩, 则此时点C 的坐标为(3,1)C -或(3,1)C ;综上,点C 的坐标为(2,1)-或(3,1)-或(3,1),故答案为:(2,1)-或(3,1)-或(3,1).【点睛】本题考查了两点之间的距离公式、全等三角形的性质、利用平方根解方程等知识点,熟练掌握全等三角形的性质,并正确分两种情况讨论是解题关键.19.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC ,,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =, ∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒,∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)①见解析;②78CE =;(2)2.5 【分析】(1)①作出AB 的垂直平分线交BC 于点E ,则可得结论;②由勾股定理求得BC=4,设CE =x ,则BE =AE =4-x ,依据勾股定理列出方程求解即可; (2)求得BD=CD=AD=2.5即可.【详解】解:(1)①如图,作∠BAE =∠B ,②可求得BC =4∵∠AEC=∠B +∠BAE ,又∵∠AEC =2∠B ,∴∠BAE =∠B ,∴BE =AE ,.设CE =x ,则BE =AE =4-x ,在Rt △AEC 中,222CE AC AE +=,∴2223(4)x x+=-,∴78x=,∴78CE=(2)AC为底时,如图2所示,此时AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD=BD=2.5.【点睛】本题考查了线段垂直平分线的性质、勾股定理以及等腰三角形的性质等知识,熟练掌握相关知识是解答此题的关键.22.△ABC的面积为84.【分析】先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【详解】∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,22AC AD-,∴BC=BD+CD=6+15=21,∴S△ABC=12BC•AD=12×21×8=84.∴△ABC的面积为84.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.23.(1)见解析;(23【分析】(1)根据题意补全图形即可;(2)连接EF 交BC 于点P ,根据两点之间线段最短结合等边三角形的性质求解即可.【详解】解:(1)补全图形如下:(2)连接EF 交BC 于点P ,此时AP FP +的值最小.DE AD AD BC =⊥,,BC ∴为AE 的垂直平分线.2,CA CE AP EP ∴===.AP FP EP PF ∴+=+.,120AB AC AD BC BAC ︒=⊥∠=,,60BAD CAD ∴∠=∠=︒.ACE ∴为等边三角形.∵点F 是AC 的中点,1EF AC AF CF ∴⊥==,.在Rt CEF △中,90,1,2CFE CF EC ∠=︒==,3EF ∴=. AP FP ∴+3【点睛】此题主要考查了等边三角形的判定与性质以及勾股定理等知识,熟练掌握相关性质和定理是解答此题的关键.24.画图见解析,5【分析】根据等腰三角形的定义作图即可求解.【详解】解:如图,OAB 和OBC 是腰长为5的等腰三角形,作图如下: ,可画出满足条件的形状不同的等腰三角形有OAB 、OAE △、OAD △、OBC 、OBD 共5种.【点睛】本题考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.25.(1)见详解;(2)6【分析】(1)由△ABC 与△DCE 是等边三角形,可得AC =BC ,DC =EC ,∠ACB =∠DCE =60°,又由∠ACD +∠DCB =∠ECB +∠DCB =60°,即可证得∠ACD =∠BCE ,所以根据SAS 即可证得△ACD ≌△BCE ;(2)首先过点C 作CH ⊥BQ 于H ,由等边三角形的性质,即可求得∠DAC =30°,则根据等腰三角形“三线合一”与直角三角形中的勾股定理即可求得PQ 的长.【详解】 (1)证明:ABC 和CDE △均为等边三角形,∴AC BC =,CD CE =,60ACB DCE ∠=∠=︒,∵60ACD DCB DCB BCE ∠+∠=∠+∠=︒,∴ACD BCE ∠=∠, ∴≌ACD BCE ;(2)过点C 作CH ⊥BQ 于H ,∵△ABC 是等边三角形,AO 是角平分线,∴∠DAC =30°,∵△ACD ≌△BCE ,∴∠PBC =∠DAC =30°,∴在Rt △BHC 中,CH =12BC =12×8=4, ∵PC =CQ =5,CH =4, ∴PH =QH 225-43=,∴PQ =6.【点睛】此题考查了全等三角形的判定与性质,等腰三角形、等边三角形的性质以及勾股定理,此题综合性较强,但难度不大,解题时要注意数形结合思想的应用.26.(1)证明见解析;(2)证明见解析;(32m .【分析】(1)先根据垂直的定义可得BDE 和ADC 都是直角三角形,再利用HL 定理证明三角形全等即可;(2)先根据(1)中的全等三角形可得DBE DAC ∠=∠,再根据三角形全等的判定定理与性质可得DBE FCM ∠=∠,从而可得DAC FCM ∠=∠,然后根据角的和差、等量代换即可得证;(3)先根据(2)中的全等三角形可得BE CM =,从而可得CM AC m ==,再在Rt ACM △中,利用勾股定理即可得.【详解】(1)AD BC ⊥,90BDE ADC ∠∴∠==︒,∴BDE 和ADC 都是直角三角形,在BDE 和ADC 中,DE DC BE AC =⎧⎨=⎩, ()BDE ADC HL ∴≅;(2)BDE ADC ≅,DBE DAC ∠=∠∴,点F 为BC 的中点,BF CF ∴=,由对顶角相等得:BFE CFM ∠=∠, 在BEF 和CMF 中,BF CF BFE CFM EF MF =⎧⎪∠=∠⎨⎪=⎩,()BEF CMF SAS ∴≅,FBE FCM ∴∠=∠,即DBE FCM ∠=∠,DAC FCM ∠=∠∴, 又在Rt ACD △中,90DAC ACD ∠+∠=︒,90FCM ACD ∴∠+∠=︒,即90ACM ∠=︒,AC MC ∴⊥;(3)如图,连接AM ,BEF CMF ≅,BE CM ∴=,,BE AC AC m ==,CM AC m ∴==,AC MC ⊥,ACM ∴是直角三角形,222AM AC CM m ∴+,即点A 、点M 2m .【点睛】本题考查了直角三角形全等的判定定理与性质、直角三角形的性质、勾股定理等知识点,熟练掌握三角形全等的判定方法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列四组线段中,能构成直角三角形的是( ) A .2cm 、4cm 、5cm B .15cm 、20cm 、25cm C .0.2cm 、0.3cm 、0.4cmD .1cm 、2cm 、2.5cm2.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC ,灰色部分面积记为1S ,黑色部分面积记为2S ,白色部分面积记为3S ,则( )A .12S SB .23S S =C .13S S =D .123S S S =-3.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE 上.下列结论:其中正确的有( )①△ACE ≌△BCD ;②∠DAB =∠ACE ;③AE +AC =AD ;④AE 2+AD 2=2AC 2A .1个B .2个C .3个D .4个4.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .2cmD .2cm5.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm6.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .2457.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .648.有四个三角形,分别满足下列条件,其中不是直角三角形的是( ) A .一个内角等于另外两个内角之和 B .三个内角之比为3:4:5 C .三边之比为5:12:13 D .三边长分别为7、24、259.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = 10.以下列各数作为长度的线段,能构成直角三角形的是( )A .1,2,3B .3,4,6C .1,2,3D .7,15,1711.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2二、填空题13.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.若2DC =,1AD =,则BE 的长为__________.14.如图,已知圆柱体底面圆的半径为aπ,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)15.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______.16.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 17.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是______cm .18.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 19.在直角三角形中,其中两边分别为3,4,则第三边是______.20.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.三、解答题21.在△ABC 中,D 是BC 上一点,AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.22.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.23.如图,在中,,是上的中线,的垂直平分线交于点O ,连接并延长交于点E ,,垂足为H .(1)求证:. (2)若,,求的长; (3)如图,在中,,,D 是上的一点,且,若,请你直接写出的长.24.阅读材料,并解决问题. 有趣的勾股数定义:勾股数又名毕氏三元数.凡是可以构成一个直角三角形三边长的一组正整数,称之为勾股数.一般地,若三角形三边长a ,b ,c 都是正整数,且满足222=a b c +,那么数组()a b c ,,称为勾股数.公元263年魏朝刘徽著《九章算术注》,文中除提到勾股数()3,4,5以外,还提到()5,12,13,()7,24,25,()8,15,17,()20,21,29等勾股数.数学小组的同学研究勾股数时发现:设m ,n 是两个正整数,且m n >,三角形三边长a ,b ,c 都是正整数.下表中的a ,b ,c 可以组成一些有规律的勾股数()a b c ,,.mnabc2 1345 3 2 5 12 13 4 1 15 8 17 4 3 7 24 25 5 2 21 20 29 5 4 9 40 416 1 35 12 37 6 5 11 60 61 7 2 45 28 53 7 4 33 56 65 76138485通过观察这个表格中的数据,小明发现勾股数a b c ,,可以写成()2222mn b m n -+,,.解答下列问题:(1)表中b 可以用m ,n 的代数式表示为_____________. (2)若4m =,2n =,则勾股数()a b c ,,为______________. (3)小明通过研究表中数据发现:若1c b -=,则勾股数的形式可表述为()211k b b ++,,(k 为正整数),请你通过计算求此时的b .(用含k 的代数式表示b )25.如图,为了测量湖泊两侧点A 和点B 间的距离,数学活动小组的同学过点A 作了一条AB 的垂线,并在这条垂线的点C 处设立了一根标杆(即AC AB ⊥).量得160m AC =,200m BC =,求点A 和点B 间的距离.26.在ABC 中,90,C AC BC ∠=︒=,点D 在射线BC 上(不与点BC 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE .(1)如图1,点D 在BC 边上. ①求证:2AB BE BD =+; ②若22BE BD ==,求CD 的长.(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB BD BE 、、之间的数量关系(直接写出结论).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据勾股定理逆定理逐项分析即可. 【详解】A :2222+45≠ ,不符合题意;B :22215+20=25 ,符合题意;C :2220.2+0.30.4≠ ,不符合题意;D :2221+23≠ ,不符合题意; 故选B 【点睛】本题考查勾股定理逆定理,利用逆定理判定直角三角形是重要考点.2.A解析:A 【分析】由勾股定理,由整个图形的面积减去以BC 为直径的半圆的面积,即可得出结论. 【详解】 Rt △ABC 中, ∵AB 2+AC 2=BC 2∴S 2=222111111222222ABCAB AC BC S πππ⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()22218ABC AB AC BC Sπ∆+-+=S 1. 故选A . 【点睛】本题考查了勾股定理、圆面积公式以及数学常识;熟练掌握勾股定理是解题的关键.3.C解析:C 【分析】由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS 证出△ACE ≌△BCD ,①正确;证出△ADB 是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案. 【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴CA =CB ,CE =CD ,∠ACB =∠ECD =90°,∠E =∠CDE =45°,∠CAB =∠CBA =45°, ∵∠DAB +∠CAB =∠ACE +∠E , ∴∠DAB =∠ACE ,故②正确; ∴∠ACE +∠ACD =∠ACD +∠DCB =90°, ∴∠ACE =∠DCB , 在△ACE 和△BCD 中,CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCD (SAS ),故①正确; ∴AE =BD ,∠CEA =∠CDB =45°, ∴∠ADB =∠CDB +∠EDC =90°, ∴△ADB 是直角三角形, ∴AD 2+BD 2=AB 2, ∴AD 2+AE 2=AB 2,∵△ABC 是等腰直角三角形, ∴ABAC ,∴AE 2+AD 2=2AC 2,故④正确;在AD 上截取DF =AE ,连接CF ,如图所示:在△ACE 和△FCD 中,45AE FD E CDF CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩, ∴△ACE ≌△FCD (SAS ),∴AC =FC ,当∠CAF =60°时,△ACF 是等边三角形,则AC =AF ,此时AE +AC =DF +AF =AD ,故③不正确; 故选:C . 【点睛】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键.4.C解析:C 【分析】由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm , 故选:C . 【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.5.A解析:A 【分析】由已知可得DF ⊥AB ,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF 的值. 【详解】解:∵AB=AC,∠A=60°, ∴ΔABC 为等边三角形, ∴∠ACB=60°, ∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°,∴∠AFE=180°-∠A-∠AEF=90°, ∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=,∴∴AF AE == ∴2BF AB AF AE AF =-=-= ∵∠D=30°, ∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A . 【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键.6.A解析:A 【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题. 【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.8.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A 、设一个内角为x ,则另外两个内角之和为x ,则x +x =180°,解得x=90°,故是直角三角形;B 、设较小的角为3x ,则其于两角为4x ,5x ,则3x +4x+5x =180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C 、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D 、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B .【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.C解析:C【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】解:A 、222123+≠,∴不能构成直角三角形,故A 错误;B 、222346+≠,∴不能构成直角三角形,故B 错误;C 、()()222123+=,∴能构成直角三角形,故C 正确; D 、22271517+≠,∴不能构成直角三角形,故D 错误.故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.12.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,228+=,BD DC BC此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题13.【分析】根据是的垂直平分线得到BD=CDBE=CE推出∠DBC=∠C根据BD平分推出∠ABD=∠CBD=∠C求出∠C=得到DE=1利用勾股定理求出CE即可得到BE【详解】∵是的垂直平分线∴BD=CD3【分析】根据DE是BC的垂直平分线,得到BD=CD,BE=CE,推出∠DBC=∠C,根据BD平分∠,推出∠ABD=∠CBD=∠C,求出∠C=30,得到DE=1,利用勾股定理求出CE即可ABC得到BE.【详解】∵DE是BC的垂直平分线,∴BD=CD,BE=CE,∴∠DBC=∠C,∠,∵BD平分ABC∴∠ABD=∠CBD,∴∠ABD=∠CBD=∠C,∵∠ABD+∠CBD+∠C=90︒,∴∠C=30,∵2DC=,∴DE=1,∴BE=CE=223CD DE-=,故答案为:3.【点睛】此题考查线段垂直平分线的性质,角平分线的性质,直角三角形30度角的性质,勾股定理,熟记线段垂直平分线的性质及角平分线的性质是解题的关键.14.【分析】要求一只蚂蚁从A点出发从侧面爬行到C点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC的长度即为所求在Rt△ABC中AB=解析:2+4a【分析】要求一只蚂蚁从A点出发,从侧面爬行到C点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC的长度即为所求,在Rt△ABC中,AB=π•aπ=a,BC=2,则:2222=+=4AC AB BC a+,所以2+4a2+4a2+4a.【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图.15.cm2【分析】设BC=acmAC=bcm则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c解析:12cm 2 【分析】设BC=acm ,AC=bcm ,则,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =, ∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.16.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 17.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.18.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上 解析:12537 【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长22435=+=∴斜边上的高为341255⨯=;②斜边是4有一条直角边是3,由勾股定理得:第三边长=,∴斜边上的高为344=;故答案为:125或4. 【点睛】本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用. 19.5或【分析】从当此直角三角形的两直角边分别是3和4时当此直角三角形的一个直角边为3斜边为4时这两种情况分析再利用勾股定理即可求出第三边【详解】解:当此直角三角形的两直角边分别是3和4时则第三边为=5解析:5【分析】从当此直角三角形的两直角边分别是3和4时,当此直角三角形的一个直角边为3,斜边为4时这两种情况分析,再利用勾股定理即可求出第三边.【详解】解:当此直角三角形的两直角边分别是3和4时,,当此直角三角形的一个直角边为3,斜边为4时,故答案为:5.【点睛】此题考查了勾股定理的知识,注意掌握勾股定理的表达式,分类讨论是关键,难点在于容易漏解.20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE 垂直平分AB ∴AE =BE ∴∠EAB =∠B =225°∴∠AEC =∠EAB +∠B =45°∵∠C =90°∴AC =CE =2A解析:【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE 垂直平分AB ,∴AE =BE ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴AC =CE =2,AE 2=AC 2+CE 2,∴AECE =,∴BE =AE =.故答案为:【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.△ABC 的面积为84.【分析】先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.【详解】∵BD 2+AD 2=62+82=102=AB 2,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,,∴BC=BD+CD=6+15=21,∴S △ABC =12BC•AD=12×21×8=84. ∴△ABC 的面积为84.【点睛】 此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD 是直角三角形.22.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+=解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.23.(1)证明见解析;(2);(3)【分析】(1)根据题意利用中线的性质和垂直平分线的性质,即可解答(2)根据题意和由(1)得到AH=EH ,再利用勾股定理得到AH=,最后利用全等三角形的性质,即可解答(3)作AE ⊥BC 于E ,AH ⊥BD 于H ,可得,设DH=x ,则AD=2x ,利用勾股定理即可解答【详解】(1)证明:∵AB=AC ,AD 是BC 上的中线∴AD ⊥BC又∵AH ⊥BE∴∠ADB=∠H=90°∵MN 是AB 的垂直平分线∴AO=BO∴∠OAB=∠ABO又∵AB=BA∴在与中∴(2)解:∵AB=AC , AD 是BC 上的中线,∠BAC=30° ∴∠BAD=15°由(1)知,∠ABO=15°∴∠AEH=∠ABO+∠BAC=45°∵AH ⊥BE∴∠EAH=45°∴AH=EH由AE=4可得 AH=∵∴BD=AH∴BC=2BD=2AH=(3)如图,作AE ⊥BC 于E ,AH ⊥BD 于H仿(1)可得且∠ADH=60°∴AH=BE=设DH=x ,则AD=2x在RtΔAHD 中得(负值舍去) ∴AD=【点睛】此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线24.(1)2b mn =;(2)(12,16,20);(3)222b k k =+【分析】(1)根据表格中提供的数据可得答案; (2)把4m =,2n =代入()22222m n mn m n -+,,即可求解;(3)根据勾股定理求解即可;【详解】(1)∵4=2×2×1,12=2×3×2,8=2×4×1,24=2×4×3,…,∴2b mn =,故答案为:2b mn =;(2)当4m =,2n =时, a=m 2-n 2=42-22=12,2b mn ==2×4×2=16,c=m 2+n 2=42+22=20,∴勾股数()a b c ,,为(12,16,20),故答案为:(12,16,20);(3)根据题意,得222(21)(1)k b b ++=+,∴22244121k k b b b +++=++,解得222b k k =+.【点睛】本题考查了数字类规律探究,以及勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.25.点A 和点B 间的距离为120m【分析】在Rt △ABC 中利用勾股定理计算出AB 长即可.【详解】解:∵AC AB ⊥.∴90BAC ︒∠=,∴在Rt ABC △中,222AB AC BC +=.∵160AC =,200BC =, ∴2222200160120(m)AB BC AC =-=-=.答:点A 和点B 间的距离为120m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.26.(1)①见解析;②2;(2)2BD BE AB =+【分析】(1)①过点D 作DF CB ⊥交AB 于点F ,证明ADF EDB ≌△△得AFEB =, 再在等腰直角DFB △求出BF 即可得到结论;②首先求出BC 的长,再根据CD=BC-BD 即可得到结论;(2)过点E 作EG DB ⊥于G ,证明△ADC DEG ≅∆和△EGB 为等腰直角三角形即可得到结论.【详解】解:(1)①过点D 作DF CB ⊥交AB 于点F ,如图,则90FDB ∠=︒,由题意可知AD DE =,90ADE ∠=︒.∵∠ADF+∠EDF=90°,∠EDB+∠EDF=90°∴ADF EDB ∠=∠,∵90C ∠=︒,AC BC =,∴45ABC DFB ∠=∠=︒,∴DB DF =.在ADF 和EDB △中AD ED ADF EDB DF DB =⎧⎪∠=∠⎨⎪=⎩∴ADF EDB ≌△△.∴AF EB =.在等腰直角DFB △中,2BF BD =,∴2AB AF FB BE BD =+=+.②∵22BE BD ==∴BD=1,∴BF=2由①得222AB BE BD =+=+,在等腰直角ABC 中222AB BC ==+,∴21BC =+, ∴2112CD BC BD =-=+-=.(2)过点E 作EG DB ⊥于G ,如图所示,∵90ADE ∠=︒∴∠90EDG DEG +∠=︒,90EDG ADC ∠+∠=︒∴∠DEG ADC =∠∵,90AD DE ACD DGE =∠=∠=︒∴△ADC DEG ≅∆∴DG AC BC ==,EG DC =∴DC BG =∴BG GE =∴△EGB 为等腰直角三角形,∴BD DG BG AC AB =+== ∴AB BE =+【点睛】此题主要考查了全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理等知识,熟练掌握相关定理和性质是解答此题的关键.。