岩石力学与工程 岩石本构关系与强度理论
3-3 岩石力学与工程 岩石本构关系与强度理论 矿大岩石力学
所以
k1
2 k2
2 1
k1
k1 k1 k2
化简上式可得广义开尔文体本构方程:
k2 1 k2 k1 k1
图3-4 牛顿流体力学模型及其动态
2013-7-22
17
3.本构方程
d 或 dt
1
将(5-13)式积分,得:
t C
式中:C——积分常数,当时,C=0,则:
t
1
4.牛顿体的性质 (1)从上式可以看出,当t=0时,ε=0。当应力为 0 时,完成其相应的应变需要时间 t1 ,说明应变与时 间有关,牛顿体无瞬时变形。
2013-7-22
12
3.4.3 基本元件
一、弹性元件(虎克体H) 1.定义 如果材料在载荷作用下,其变形性质完全符合虎克 定律,即是一种理想的弹性体,则称此种材料为虎 克体,用符号H代表。 2.力学模型
图3-2 虎克体力学模型及其动态
2013-7-22
13
3.本构方程
K
4.虎克体的性能 (1)具有瞬时弹性变形性质,无论载荷大小,只要 不为零,就有相应的应变,当为零时,也为零,说 明虎克体没有弹性后效,即与时间无关; (2)应变恒定时,应力也保持恒定不变,应力不会 因时间增长而减小,故无应力松弛性质; (3)应力保持恒定时,应变也保持不变,即无蠕变 性质。
6.弹性后效:是加载或卸载时,弹性应变滞后 于应力的现象。 7.粘性流动:即蠕变一段时间后卸载,部分应 变永久不恢复的现象。
2013-7-22
岩体本构关系与强度理论
Rockmass Mechanics
第七章 岩体本构关系与强度理论
概述 岩石的本构关系 岩石强度理论 岩体变形及本构关系 岩体破坏机制及破坏判据
概述
--岩体的力学性质表现为弹性、塑性和粘性或三者之间的组合,如
粘弹性、弹粘性、弹塑性、弹塑粘性等。
如何求解岩体的基本力学问题呢?
3
(12c)1
1 3c
3(12)t
那么最大正应变强度判据可写成:
f C tg
1 1 3 c
当岩石应力条件满足以上判据时,岩石发生张破裂。取其中最小的
比较。 该强度理论适用于无围压和低围压及脆性岩石。
0
0
2. (二次)抛物线型 岩性较坚硬至较弱的岩石,
如泥灰岩、泥岩、砂岩、泥页 岩、页岩等岩石的强度包络线 近似于二次抛物线。
3.双曲线型 岩性坚硬、较坚硬的岩石,
如砂岩、灰岩、花岗岩等,其强 度包络线近似于双曲线。
二次抛物线型莫尔强度包络线 双曲线型莫尔强度包络线
0
说明:莫尔-库仑判据(强度理论)实质上是一种剪应力强度判据(理 论),既适用于塑性岩石,又适用于脆性岩石的剪切破坏,应用很广。
那么,岩石承受低于瞬时强度的荷载作用,是否会破坏?
只要收到长期荷载作用下,由于流变作用,岩石完全可能发生破坏。 而且岩石强度随外荷载作用时间的延长而降低,通常将时间t→∞的强度 (最低值)称为岩石的长期强度。
对大多数岩石,长期强度/瞬时强度(S∞/S0)一般为0.4~0.8,软的 和中等坚固岩石为0.4~0.6,坚固岩石为0.7~0.8。
2.莫尔-库仑强度理论
(Coulomb-Mohr Strength theory)
岩石的强度理论与本构关系
岩石的强度理论与本构关系朱浮声(东北大学土木系,沈阳110006)朱浮声,1948年6月生于黑龙江齐齐哈尔11976年毕业于东北大学,1983年获中国矿业大学工学硕士学位,1991年获东北大学博士学位11988年曾在美国南伊利诺大学作访问学者,1993年在瑞典皇家工学院任客座教授1现任东北大学土木工程系教授,辽宁省力学学会理事1主要研究方向为计算岩土力学和岩土加固技术1在国内外学术刊物上发表论文50余篇,出版5锚喷加固设计方法6等学术专著2部,译著1部1摘要本文简要介绍了岩石强度理论和本构关系的发展和现状,讨论了它们不同的特点与适用条件1关键词岩石,岩体,强度理论,本构关系1前言随着电子计算机的飞速发展和计算技术的逐步完善,对岩石强度理论和本构关系提出了更高要求,以便更真实描述岩石和岩体力学特征,求解复杂的工程岩石力学问题1由于岩石材料力学性质的某些相似性和其它历史原因,岩石强度理论和本构关系的早期研究曾大量引用了土力学成果,并提出了一些适用于岩土介质的强度理论和本构关系1随着岩石力学的发展,人们认识到,岩石和岩体的物理力学性质不仅有别于其它非摩擦工程材料,而且,与土或混凝土等摩擦材料也存在较明显差异1例如,岩石破坏包括脆性、延性及由脆性向延性转化等复杂类型;岩体的力学特性受控于岩块和不连续面的力学特性;岩石工程的稳定性通常受主要不连续面控制等1因此,近年来又提出了适用于岩石、不连续面和岩体的强度理论或本构方程式1本文旨在介绍这些理论研究的最新进展,并对已有岩土强度理论和本构关系的适用条件和局限性加以简要评价1限于篇幅,本文仅涉及与时间无关的各向同性和等向强化模型12岩土共用的强度理论和本构关系211弹性均质、各向同性或横观各向同性模型曾被广泛用于描述岩土力学特征,特别是峰值强度前的应力-应变关系,并得到了大量解析解和实用近似解1考虑到应力-应变曲线的明显非线性特性,曾将非线性弹性理论与计算机技术相结合,提出了一批数值算法,并在60~70年代的岩土力学分析中不断被引用1例如,以曲线各点的割线模量取代弹性常数,构成了各种超弹性模型[1],或以增量形式描述非线性弹性应力-应变关系,形成了亚弹性模型[2]等1但是,由于这些模型只考虑到岩土材料的弹性特征,并且,随着模型阶次增高,待定常数的数目往往过多,因而,限制了它们的广泛应用1212 理想塑性强度理论在计算岩土力学中,广泛采用了莫尔-库伦强度准则(Mohr -Coulomb)和德鲁克-普拉格准则(Drucker -Prager)1莫尔-库伦准则可以表述为R 1-B R 3=C (1)式中,B 和C 一般是常数1在主应力空间,式(1)表示一个以静水应力轴为中心轴,具有不规则六角形截面的角锥体表面(图1)1这个准则由于较好地表征了岩土介质在压缩条件下的某些弹塑性力学特征,因而得到了较广泛的应用1但是,由于忽略了中间主应力对破坏的作用,存在明显的缺陷1另外,由于屈服面在三维应力空间中存在/角隅0,给数值计算带来了诸多困难1为了解决上述问题,曾对莫尔-库伦准则进行修正,将米赛斯准则(M ises)加上一个静水应力因子,形成了著名的德鲁克-普拉格准则,不仅考虑到三个主应力对破坏的影响,并且消除了屈服面存在的角隅1这个准则可表述为A J 1+J 2=C (2)式中,J 1和J 2是主应力不变量,A 和C 是正常数1图1 莫尔-库伦准则和德鲁克-普拉格准则屈服面在主应力空间,式(2)是一个以静水应力轴为中心轴的圆锥体(图1)1它虽然克服了莫尔-库伦准则的上述缺点,但在破坏状态下,该准则给出了较大的材料体积膨胀,这与岩土介质的试验结果明显不符1我国学者俞茂由正交八面单元体的三个主应力出发,提出了双剪强度理论和适用于岩土体的广义双剪强度理论(包括屈服准则)[3],并得到了双剪统一强度理论[4]R 1-A 1+b (b R 2+R 3)=R t ,R 2F R 1+A R 31+A11+b (R 1+b R 2)-A R 3=R t ,R 2E R 1+A R 31+A (3)式中,A 和b 是常数,R t 是材料单轴抗拉强度1在主应力空间,式(3)表示一个以静水应力轴为中心轴,具有不等边十二边形截面的锥体表面1可以证明,广义双剪理论和莫尔-库伦准则在P 平面上的屈服曲线分别是各种岩土屈服准则的上限和下限1213应变硬化(软化)一般地,岩土体应力状态满足屈服准则时,将出现屈服应力随变形增大而不断增高(硬化)或降低(软化)现象1对于前者,屈服面在主应力空间是连续扩大的;对于后者,则表现为屈服面的不断收缩1当满足破坏条件时,将形成屈服面与破坏面(残余破坏面)相互重合,而屈服面与破坏面始终相一致的情况仅发生在完全塑性材料中1因此,为了建立岩土介质完整的本构关系,必须同时考虑屈服准则、流动法则和软(硬)化定律等三方面1其中,对材料硬(软)化特图2帽盖模型屈服面性的研究多借助于控制该材料硬化特性的屈服面,称之为硬化帽盖(图2)1根据不同的岩土介质和试验,提出了不同形状的帽盖[5],其一般表达式为f1(J1,J c2,k1)=0(4)式中,J c2为应力偏量第二不变量,k1为硬化参数1除了屈服帽盖,岩土帽盖模型还包括一个固定屈服面,例如,通常以初始德鲁克-普拉格破坏面与米赛斯屈服面光滑相接表示1一般地,固定屈服面取为强度理论限定的破坏面f2(J1,J c2)=0(5) 3岩石和岩体强度理论与本构关系如前所述,在一定条件下,可以使用相同强度理论分析岩土力学问题1但在一般情况下,岩石的破坏面具有如下特征:(1)在主应力空间,破坏曲面在原点附近的顶角是张开的;(2)岩石破坏包络线,即破坏面在伦杜列克面(Rendulic)上的子午线不是直线,而是曲线;(3)岩石有抗拉强度1通常,前述岩土体的屈服和强度准则都可以满足条件(1)和(3),为了满足条件(2),需要进行必要修正1311岩土强度理论的修正为了使强度理论满足上述条件(2),从而应用于岩石力学问题分析中,早期的工作多采用对破坏曲线近似逼近方法,例如,以双曲线或抛物线取代莫尔-库伦准则中的直线等1更一般的方法是直接采用莫尔强度理论,并通过对P平面上多边形屈服曲线角点的光滑化得到各种角隅模型[6]1典型范例是关于岩石的吉姆-拉德破坏准则(Kim-Lade)1拉德曾提出如下土体两参数破坏准则[7](J21/J3-27)(J1/P a)m=G1(6)式中,P a是该应力状态下大气压力,m和G1是常数,其中,破坏面在原点附近的张角随G1变化,而子午线曲率随m值变化(图3)1在主应力空间,拉德准则是一个以静水应力轴为中心轴,具有带圆角三角形截面的子弹头形曲面,该曲面顶点位于原点1图3拉德破坏准则破坏面[7]为了得到适用于岩石的强度准则,吉姆和拉德对式(6)进行了修正,即考虑岩石凝聚力和抗拉强度的作用,在式(6)的法向主应力分量叠加一个常应力项aP aR x=R x+aP aR y=R y+aP a(7)R z=R z+aP a研究式中,a是一个无因次常数,aP a的值反映了岩石的抗拉强度1不难看到,这个三参数强度准则较好地反映了岩石破坏面的上述3个特征,同时,原作者通过87组不同岩石的试验数据对模型进行了多次验证1312岩石的脆性破坏准则岩石三轴试验结果表明,在侧限压力较低时,岩石试件的破坏应力随变形增大而不断降低,在很小或完全未出现永久变形的情况下发生突然的脆性破坏1随着侧限压力增大,通常出现由脆性向延性破坏的转变,这种现象可以由塑性变形机制来解释(岩石破裂流动与颗粒滑移等)1岩石脆性破坏准则研究仍处于发展阶段1其中,格里菲斯理论(Griffith)是一个基于理想脆性假定的二维准则,由此理论预测的脆性材料单轴抗压与抗拉强度R c和R t的关系式R c=-8R t1由于岩石裂纹随围压增高将出现闭合,此时应考虑闭合裂纹表面间摩擦作用,因此,提出了关于岩石修正的格里菲斯理论[8]S=2R t+R n tg<(8)式中,S和R n为裂纹面上切应力与法应力,<为内摩擦角1显然,这种修正是将低应力条件下的格里菲斯理论转化为高应力条件下的莫尔理论1M urrell考虑到中间主应力的作用,提出了一个三维脆性破坏准则,这个准则预测R c/P a=12 |R t/P a|1在主应力空间,这个准则表示为一个以静水压力轴为中心轴的椭球面与一个处于拉应力区的四棱锥面相切得到的曲面(图4)1需要指出,这个准则虽计及中间主应力影响,并具有弯曲的子午线,但它的基本出发点却是基于单轴抗拉强度判据1图4M urrell三维脆性破坏准则破坏面[9]313岩石破坏的经验准则由于岩石和岩体力学特征的复杂性,针对不同岩石和荷载条件提出了大量实用经验准则1其中,霍克-布朗准则是应用最广的1这个准则依据格里菲斯和修正格里菲斯理论的基本概念,采用/试凑法0得到了分别适用于岩石和岩体的经验准则[10]R1=R3+m R c R3+S R c2(9)式中,m和S是表征岩石或岩体性质及其破坏范围的常数1在主应力空间,这是一个以静水应力轴为中心轴、具有6条抛物线围成的6边形截面的锥体表面(图5)1这个准则给出R c=-(7~25)R t,这与大量试验结果接近,因而,得到较广泛应用1图5霍克-布朗经验破坏准则破坏面4节理和节理岩体天然岩体由节理和岩块组合而成1对于起控制作用的节理,通常采用/节理单元0来模拟1早期的节理单元是一个非线性弹性模型,给出了节理面两侧力-位移的增量表达式1为了考虑节理延性和切向-法向作用的相互影响,普遍采用了遵循莫尔-库伦准则的弹塑性节理模型1但是,如果采用关联流动法则,这个模型将产生一个无法消除的剪胀率1因此,罗伯茨等(Roberts)建议用非关联流动法则,相应塑性势函数Q为Q=|R s|-R n tg W(10)式中,R s和R n是节理切向和法向应力,W是节理剪胀角,可由试验确定1由于试验水平和理论的限制,节理面的理论模型尚不成熟,在应用中最可靠、最广泛的是巴登(Barton)提出的经验准则[11]F=|R s|-R n tg<(JRC lg(JCS/R n)+<r)=0(11)式中,JR C是节理面粗糙度系数,JCS是节理面抗压强度,<和<r分别是节理面摩擦角和残余摩擦角1这些参数都可以由简单原位试验得到1国际岩石力学学会制订了规范用于获取和解释这些参数,从而,推动了这一准则的普遍应用1对于受多组节理切割的岩体,由于很难同时模拟这几组节理,通常需找到节理岩体的本构关系1目前,此项研究仍处于开始阶段,应予充分重视1对于等距排列的平行节理(未充填),若节理连续分布且尺寸远小于岩体或结构物尺寸,提出了/节理岩体层状模型0(Multilaminate model)[12]1这实质上是一种等效材料模型,在最终形成的弹塑性或粘弹塑性本构关系中,以不同力学模型分别描述各层岩石和节理面的力学特征,并同时考虑它们对岩体力学的影响,得到节理岩体总的粘塑性应变速率ÛE VP=C i3F i45Q i5R+E nJ=1C J3F J45Q J5R J5R J5R(12)式中,F i和F J分别是第i层岩石和第J层节理的屈服(破坏)函数,Q i和Q J为相应塑性势,R J 表示J组节理面上法向和切向应力,C i和C k是相应粘性参数1式(12)中等号右端第一项与岩石特性有关,第二项则涉及n个节理面的力学特征1如果不考虑岩体的流变特性,采用关联流动法则,可以给出弹塑性节理岩体的类似表达式15结束语(1)非线性弹性模型曾在岩土力学中应用1由于高次模型待定常数过多,且为区分加、卸载情况需给出复杂应力状态下加载条件,限制了它们的使用范围,在岩石力学中应用较少,并主要用于比例加载条件下1(2)莫尔-库伦准则和德鲁克-普拉格准则在岩土力学分析中得到广泛应用1前者的缺点是忽略了中间主应力的作用,并且,在三维主应力空间存在屈服面角隅,给计算带来了困难1后者虽然克服了上述问题,但在破坏状态下给出较大体积膨胀,这与岩土试验结果严重不符1广义双剪强度理论及其角隅模型展示了广阔应用前景,但需大量试验与工程验证1各种帽盖模型考虑到岩土介质的应变硬(软)化,计及剪胀或剪缩,但公式推导中加入种种补充假定,模型的可靠性需进一步验证1(3)岩石、岩体和土体的强度理论和本构关系相似又相区别1吉姆-拉德的三参数岩石破坏准则经过87组岩样检验1有较高可信度1各种岩石脆性破坏准则都源于单向抗拉强度判据,它们的可靠性有待检验1岩石和岩体经验破坏准则在应用中占重要地位,其中,霍克-布朗准则适用于R1>314R3条件下延性岩石(体),在无控制作用节理存在的岩体工程分析中得到普遍应用1(4)在主要节理面的模拟中采用了莫尔-库伦准则和关联/非关联流动法则1已提出的8参数节理模型可用于研究节理加载-卸载-再加载过程[12],但最可靠、应用最广的仍是巴登经验准则1对无控制性不连续面的节理岩体提出了等效模型和相应本构关系1节理岩体的强度理论和本构关系研究仍处于初始阶段,是目前主要研究方向之一1参考文献1Fung Y C1Foundations of Solid M echanics1Prentice-Hall,19652T ruesdell C1Hypoelas ticity1J Ration M ech A nal,1955,4:83~1333俞茂等1双剪应力强度理论及其推广1中国科学A辑,1985,28(11)4俞茂1统一强度理论及其应用1强度理论研究新进展1西安:西安交通大学出版社,1993133~445S chofield A N,Worth C P1Critical S tate Soil M echanics1M cGraw-Hill Book Company,19686Zienkiew icz O C,Pande G N1Som e useful forms of isotropic yield surfaces for soil and rock mechanics1Finite Elements in Geome-chanics1Gudehus G(eds)1John Wiley&Sons,19777Kim M K,Lade P V1M odelling rock strength in three-dimensions1Int J Roc k M ec h M in S ci&Geomech,1984,21:21~338M cCli ntok F A,Walsh J B1Fri ction on Griffith cracks under pressure1Proc4th US Nat Congr Appl M ech,196211015~10219M urrel l S A F1A cri terion for bri ttle fracture of rocks and concrete under triaxial stress and the effect of pore pres sure on the creter-i on1Proc5th US S ym p Rock M ech,Pergamon Press,19631563~57710Hoek E,Brown E T1岩石地下工程1连志升等译,北京:冶金工业出版社,198611Barton N R,Choubey V1The shear strength of rock joints in theory and practice1Rock M ech,1977,10:1~5412Pande G N,Beer G,Williams J R1Numerical M ethods in Rock M echanics1W i ley,199013Pande G N1A constitutive model of rock joints1Proc Int Symp Fund Rock Joints1Center Pub11985(1996年5月31日收到第1稿,1996年8月12日收到修改稿)(上接第7页)29Levy D,Powell K,van Leer B1An i m plementati on of a grid-i ndependent upwind scheme for the Euler equati ons1AIAA89-1931-CP 30Rumsey C L,van Leer B,Roe P L1A grid-independent approximate Riemann solver w ith applications to the Euler and Navier-Stokes equations1J Comput Physics,1993,105(2):306~32331Roe P L1Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics1J Comp ut Phys,1986,63: 458~47632Roe P L1Discontinuous sol utions to hyperbolic system s under operator splitting1Nu merical M ethods f or Par tial Diff erential Equa-tions,1991,7:277~29733Lacor C,Hirsch Ch1Genuinely upw ind algorithms for th e multidimensionalEuler equations1AIA A J,1992,30(1):56~6334Parpia I H,M ichalek D J1Grid-independent upw ind sch eme for multidimensi onal flow1AIA A J,1993,31(4)135Hartwich P M1Comparison of coordinate-i n variant and coordinate-aligned u pw ind for the Euler equations1A IAA J,1994,32(9): 1791~179936van Leer B1Advancing the accuracy and efficiency of explicit Euler solvers1AIAA90-001237Zhang X D,Trepanier J-Y,Reggio M,et al1Grid i nfluence on upw ind schemes for Euler and Navier-Stokes equations1A IAA J, 1996,34(4):717~72738Abarbanel S,Duth P,Gottlieb D1Splitting methods for low M ach number Euler and Navier-Stokes equations1Comp uters&Fluids, 1989,17(1):1~12(1996年11月29日收到第1稿,1997年3月30日收到修改稿)。
岩体本构关系与强度理论
18
注意事项
通过以上教学步骤和注意事项 的安排,相信学生能够更好地 掌握表格数据的图表化技能, 为未来的学习和工作打下坚实
的基础
··· ···
-
谢谢您的 ·观看·
BUSINESS TRIP PROJECT PLAN
汇报人:XXX
汇报时间:XXXXX
了解图表的基本 类型及适用场景
课程目标
Stage 3 学会根据需:求 调整图表的样式 和布局
Stage 5
了解如何根据数 据变化更新图表
Stage 2
掌握在Ex:cel 中创建图表的方 法
Stage 4
掌握数据标签和 图例的添加方法
3 课程内容
1. 图表基础知 识
什么是图表?
图表的基本类型 及特点
岩体本构关系与强度 理论
1 课程简介 3 课程内容 5 教学步骤
-
2 课程目标 4 教学方法 6 注意事项
1 课程简介
课程简介
本课程旨在介绍如何使 用Excel软件进行表格
数据的图表化
通过学习这个课程,你 将掌握如何将表格数据 转化为直观的图表形式, 以更好地分析和理解数 据
2 课程目标
Stage 1ຫໍສະໝຸດ 5. 高级图表的 制作复合图表的制作
自定义图表的制作
数据透视表的创 建和应用
课程内容
4 教学方法
教学方法
5 教学步骤
作业布置:布置与课程内容 相关的作业,让学生进行实 际操作,加深对知识点的理
解和掌握
总结与回顾:对本节课的内 容进行总结与回顾,帮助学
生巩固所学知识
教学步骤
岩石力学第5章-岩体的本构关系与强度理论PPT课件
dzx
dzx G
zxd
ss ss ss Mises屈服条件变换形式 ( x y) 2 ( y z) 2 ( z x) 2 6 ( x 2 y y 2 z z 2 x) 2 S 2
sssssssss x 2 y 2 z 2 xy yz20 21 zx 3 ( x 2 y y 2 z z 2 x) 8 S 2
(2)非稳定蠕变:岩石承受的恒定荷载较大,当岩石应力超过 某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最 终导致岩体整体失稳破坏。
(3)岩石的长期强度:岩石的蠕变形式取决于岩石应力大小, 当应力小于某一临界值时,岩石产生稳定蠕变;当应力大于该值时, 岩石产生非稳定蠕变。则将该临界应力称为岩石的长期强度。
第5章 岩体的本构关系与强度理论
2021
1
§5.1 弹性体的本构关系
1、空间问题
2、平面应力问题
xE 1x(yz)
x E 1 x y
yE 1y(xz)
z E 1z(yx)
xy
1 G
xy
yz
1 G
yz
y E 1 y x
xy
1 G
xy
3、平面应变问题
12
x E x 1y
zx
3dw 2S2
于是可得Prandtl-Reuss本构方程
dex
dsx 2G
3dw 2S2
sx
dey
dsy 2G
3dw 2S2
sy
dez
dsz 2G
3dw 2S2
sz
dxy
dxy G
3dw S2 xy
dyz
dyz G
3dw S2 yz
dzx
dzx G
岩体本构关系与强度理论
对莫尔强度理论的评价:
优点:①适用于塑性岩石,也适用于脆性岩石的剪切破坏; ②较好解释了岩石抗拉强度远远低于抗压强度特征; ③解释了三向等拉时破坏,三向等压时不破坏现象; ④简单、方便:同时考虑拉、压、剪,可判断破坏方向. 不足:①忽视了σ2 的作用,误差:±10%; ②没有考虑结构面的影响; ③不适用于拉断破坏; ④不适用于膨胀、蠕变破坏。
判据的表达式 剪应力表达式:
4 ) t( t
2
主应力表达式:
2 ( ) 1 3 8 t 1 3 3 t
3 0 1 3 3 0 1 3
由格里菲斯判据得
1.当σ3=0时,σ1=σc=8σt,即 c t =8,与库仑-纳维尔判据接近。 2. 适用脆性岩石拉破坏。 修正的格里菲斯判据(考虑摩擦效应f,C)
b.最大剪应力理论破坏面上剪应力最大; 而岩石破坏面上剪应力不是最大。
④歪形能理论
只与σ1 、σ2 和σ3三者之间的差的绝对值有关;
而与应力大小无关,这与岩石破坏现象不符。
1 2 2 2 [ ( ) ( ) ( )] 1 2 2 3 3 1 2
古典强度理论与岩石强度表现不符:
①最大拉应力理论没有考虑σ
2
和σ
3
的影响。
②最大伸长线应变理论虽考虑σ2 和σ3 的影响,但多向拉 比单向拉安全,与事实矛盾。
③最大剪应力理论与岩石试验结果不符
σ1-σ3≤[σ]
a.最大剪应力理论破坏面与σ1 的夹角为45°;
而岩石破坏面与σ1 的夹角为45°-φ/2。
第七章 岩体本构关系与强度理论
§ 7.1 概述 § 7.2 岩石的本构关系
第7章岩体本构关系与强度理论
σ σc
σ
利用图7-10中的关系,有:
σ3
1 2
(1 3)
1 2
(1
3)
ctg 2
sin 2
1.双向压7 缩应4力2圆,2.双向拉压应力圆,
3..双向拉伸应力圆 图7-10 二次抛物型强度包络线
其中:
n( t )
1 3 2
sin 2
(
1 3 )2 2
2
(
1
3
)
2
规定:
1、σ1为最大主应力 、σ2 为中间主应力、 σ3 为最小主应力 ;
2、压应力为正,拉应力为负,剪应力以逆时 针为正。位移与应变的规定也一样。
二、 岩石弹性本构关系 1.平面弹性本构关系
据广义虎克定理有:
成E/(1- μ 2) ,μ换成μ/(1- μ)。
2. 空间问题弹性本构方程
x
1 E
x
( y
z )
y
1 E
y
( z
x )
z
1 E
z
( x
y )
yz
2(1 E
) yz , zx
1
1 f f2
2
f
f
)
σ1
1 tan2 c
1 3tg 2 (45 / 2) 2ctg(45 / 2)
σc
arc( tan2 θ)
岩石本构关系
3.2.5 平面问题的求解
按位移求解时,变换基本方程和边界条件 为位移分量函数,求出位移分量后,代入 几何方程求出变形分量,再代入本构方程 求出应力分量。
v y
xy
v x
u y
2、空间问题的几何方程(柯西方程)
x
u x
y
v y
z
w z
xy
v x
u y
yz
w y
v z
zx
w x
u z
3.2.3 物理方程(弹性本构关系)
混合求解时,变换部分基本方程和边界条 件为只包含部分未知函数,先求出这部分 未知函数以后,再应用适当方程求出其他 的未知函数。
以上这些方法我们已在弹性力学中学习了 这里不再熬述。
3.3 岩石流变理论
岩石的变形不仅表现出弹性和塑性,而且也具有流 变性质,岩石的流变包括蠕变、松弛和弹性后效。
平衡微分方程
几何方程
物理方程或本构方程
结合边界条件
应力场解 位移场解
求解岩石力学问题的基本步骤图解
3.2.1 平衡微分方程 1、平面问题的平衡微分方程:
x
x
yx
y
fx
0
xy
x
y
y
第四章-岩石本构关系与强度理论
0
0t + 0
设初始条件 t=0
=
0
K1
+0=
0
K1
0 =
0
K1
4.4 岩石流变理论
4.4.2 流变模型理论
组合模型——马克斯威尔(Maxwell)体
蠕变方程:
=
1
2
0t +
0 =
0
K1
0
K1
蠕变曲线
0
o
等速蠕变,且不稳定
t
(a)蠕变曲线
4.4 岩石流变理论
是弹性变形后的一个阶段,材料进入塑性的特征是当荷
载卸载以后存在不可恢复的永久变形。
(1)屈服条件:材料最先达到塑性状态的应力条件。
(2)加-卸载准则(塑性发展或退化):材料进入塑性状态
以后继续塑性变形或回到弹性状态的准则。
(3)本构方程:材料在塑性阶段的应力应变关系或应力增
量与应变增量间的关系。
1
=
+
K1
2
= 0e
−
K1
2
0
t
o
t
(b)松弛曲线
4.4 岩石流变理论
4.4.2 流变模型理论
组合模型——马克斯威尔(Maxwell)体
瞬变应变量
描述岩石的特点
具有瞬变性
有不稳定的蠕变
有松弛
有残余(永久)变形
0 =
无弹性后效
0
0
K1
o
0
=
1
+ t
——岩石的蠕变特性对于岩石工程稳定意义重大,重点
第七章 岩体本构关系与强度理论
14
最易扩展的裂纹端部附近的最大切向拉应力
第 七 章 岩 石 的 破 坏 判 据
( 1 3 ) 2 b m 4( 1 3 )
用单轴拉伸破坏时的抗拉强度来表示临界值
( 1 3 ) 2 8 t 1 3
1 3 1 2( 1 3 )
σb:椭圆周边切向应力; m=b/a,a为椭圆长半轴,b为椭圆短半轴; α:椭圆偏心角。
11
假定: (1)岩体内裂纹形状是一个很扁平的椭圆; (2)岩石性质的局部变化忽略不计; (3)岩体内裂纹与裂纹之间相互不发生影响; (4)椭圆形裂纹周围的应力系统作为平面问题处理。
裂纹尖端附近,α→0,故sinα→α,cosα→1
12
2、强度准则 (1)以σy 、τxy表示的强度准则
第 七 章 岩 石 的 破 坏 判 据
当单向拉伸破坏时,τxy=0,σy=σt,代入得
b m t t 2 t
或
2 1/ 2 2 t y ( t2 xy )
4 t ( t y )
d b 0 d
sin 2 0
( 1 3 )
2 1 2 3 2 1
12 32
2 3
0
1 2
0
2 cos 2 2 2
1 3 cos2 2(1 3 )
β称为破裂发生角
二、莫尔判据
第 七 章 岩 石 的 f ( ) 破 坏 判 •判断岩石中一点是否会发生剪切破坏时,可在莫尔包络 据 线上,叠加上反映实际研究点应力状态的莫尔应力圆, 如果应力圆与包络线相切或相割,则研究点将产生破坏; 如果应力圆位于包络线下方,则不会产生破坏。 5
岩石力学与工程课后习题与思考解答
第一章岩石物理力学性质3.常见岩石的结构连接类型有哪几种?各有什么特点?答:岩石中结构连接的类型主要有两种,分别是结晶连接和胶结连接。
结晶连接指矿物颗粒通过结晶相互嵌合在一起。
这类连接使晶体颗粒之间紧密接触,故岩石强度一般较大,抗风化能力强;胶结连接指岩石矿物颗粒与颗粒之间通过胶结物连接在一起,这种连接的岩石,其强度主要取决于胶结物及胶结类型。
7.岩石破坏有几种形式?对各种破坏的原因作出解释。
答:岩石在单轴压缩载荷作用下,破坏形式包含三种:X状共轭面剪切破坏、单斜面剪切破坏和拉9.答:力-10.答:(若A<(2;(4)从C(3并不断向破坏段应力-应变曲线靠近,在循环荷载加载到一定程度,岩石将发生疲劳破坏,通过全应力-应变图可看出,高应力状态下加载循环荷载,岩石在较短时间内发生破坏,在低应力状态下加载循环荷载则需要较长时间才发生破坏。
11.在三轴压缩试验条件下,岩石的力学性质会发生哪些变化?答:三轴压缩试验条件下,岩石的抗压强度显着增大;岩石的变形显着增大;岩石的弹性极限显着增大;岩石的应力-应变曲线形态发生明显变化,表明岩石由弹性向弹塑性变化。
14.简述岩石在单轴压缩条件下的变形特征。
答:单轴压缩条件下岩石变形特征分四个阶段:(1)空隙裂隙压密阶段(0A段):试件中原有张开结构面或微裂隙逐渐闭合,岩石被压密,试件(2)弹性变形至微弹性裂隙稳定发展阶段(AC段):岩石发生弹性形变,随着载荷加大岩石发生轴向压缩,横向膨胀,总体积缩小。
(3)非稳定破裂发展阶段(CD段):微破裂发生质的变化,破裂不断发展直至试件完全破坏,体积由压缩转为扩容,轴向应变和体积应变速率迅速增大。
(4)破裂后阶段(D点以后):岩块承载力达到峰值强度后,内部结构遭到破坏,试件保持整体状,随着继续施压,裂隙快速发展,出现宏观断裂面,此后表现为宏观断裂面的块体滑移。
第三章地应力及其测量3.简述地壳浅部地应力分布的基本规例。
答:(2(3(4(5(6(74.答:水力致、局部应5.θ=0为Ps=σ2,利用上述公式,在测算出岩石抗拉强度T后,就能计算出原岩应力σ1和σ2。
岩石弹性本构关系
5.2 岩石弹性本构关系
a.岩石强度是指岩石抵抗破坏的能力。破坏是指岩石材料的应力 超过了它的极限或者变形超了它的限制。 b.破坏两种形式:断裂破坏和流动破坏(显著塑性变形或流动现 象) c.断裂破坏发生于应力达到强度极限,流动破坏发生于应力达到 屈服极限。
d.材料强度确定——试验方法。单轴压缩试验→单轴抗压强度; 单轴拉伸试验→单轴抗拉强度;同时建立强度准则。复杂应力条 件??(仿照单轴情况一一试验,建立强度准则,难以实现) e.采用推理方法,提出一定假说,推测材料在复杂应力状态下破 坏的原因,从而建立强度准则,这些假说称为强度理论。
5.1 综述
由于P点在y方向的位移分量为v,A点 在y方向的位移分量为:
v v dx x
因此PA的转角是:
yx
v v dx v v x dx x
同理,PB的转角是:
u u dy v y u xy dy y
5.2.5 岩石力学的习惯符号规定
a.到目前为止有关力、位移、应变和应力的符号规定都是按照 一般弹性力学通用规定。 b.在岩石力学中,往往以承受压应力为主,如果仍采用弹性力 学的符号规定,应力和应变计算的结果将出现很多负值,处理 起来不方便。 c.岩石力学的习惯符号规定
力和位移分量的正方向与坐标轴的正方向一致;
5.2 岩石弹性本构关系
a.岩石本构关系是指岩石的应力或应力速率与其应变或应变 速率的关系。
b.只考虑静力问题,则本构关系是应力与应变,或应力增量 与应变增量之间的关系。 c.岩石的变形性质按卸载后是否可恢复,弹性和塑性 d.弹性和塑性是两种物质变形的性质,与时间无关,属即时 变形。一般也是物质变形的两个阶段,物质在变形的初始阶 段呈弹性,后期呈塑性,包括岩石。岩石变形一般为弹塑性。 e.本构关系又分线弹性本构、非线性弹性本构、塑性本构、各 向同性本构、非各向同性本构 f.物体的应变或应力随时间而变化,则称物体具有流变性,流 变本构关系
岩石力学22
u x x v y y v u xy x y
(4-3)
•
(2)岩石本构关系的概念
• ① 平衡方程和几何方程与材料的性质无关,只有本构关系反映材料的性质。 • ② 岩石本构关系:指岩石的应力或应力速率与应变或应变速率的关系。 • 岩石本构关系一般有:弹性本构关系、塑性本构关系和流变本构关系三种。 • ③ 强度理论:采用判断推理的方法,提出一些假设,推测材料在复杂应力状
• (4)相容方程 • ① 用变形表示的相容方程:
x 2 2 y x xy
2
2 y
2 xy
(4-11)
( ② 用应力函数 x, y ) 表示的相容方程:
• •
4 4 4 2 2 2 4 0 4 x x y y
(4-26)
• (5)当物体体力为常数时,两种平面问题的相容方程,应力分量以及应力 边界条件都不含任何弹性常数,故体力为常数时的平面问题的应力分布规 律与材料的弹性常数无关。 • 4.2.5 空间问题基本方程 • (1)空间问题的平衡微分方程:
• (2)平衡微分方程 由列平衡方程
F F
x y
0 0
可得平面问题的平衡微分方程为
• 4.1.2 几何方程 • (1)平面问题的几何方程
x yx X 0 y x y xy y x Y 0
(4-2)
(1)应力分量、变形分量和位移分量的符号规定(在弹性力学中):在外 法线的指向与坐标轴的正向一致的面上,应力的正向与坐标轴的正向相同; 在外线的指向与坐标轴的正向相反的面上,应力的正向与坐标轴的正向相反。 应变的伸长为正,压缩为负。剪应变以直角变小为正,变大时为负。作用力 和位移以沿坐标轴的正方向为正,沿坐标轴的负方向为负。依此规定图所示 的应力全都是正的。
6本构与强度理论
式中: 是一正的待定有限量,它的具体数值和材料硬化法则有关。 式中: 是一正的待定有限量,它的具体数值和材料硬化法则有关。 λ
式
变硬化材料, 通常取与后继屈服函数F 相同的形式, 变硬化材料,Q 通常取与后继屈服函数 相同的形式, 这种特殊情况称为关联塑性。 当Q=F 时,这种特殊情况称为关联塑性。 对于关联塑性,塑性流动法则可表示为: 对于关联塑性,塑性流动法则可表示为:
屈服面:屈服条件在几何上可以看成是应力空间中的超曲面。 屈服面:屈服条件在几何上可以看成是应力空间中的超曲面。
初始屈服面和后继屈服面。 初始屈服面和后继屈服面。
分类:按塑性材料屈服面的大小和形状 屈服面的大小和形状是否发生变 分类:按塑性材料屈服面的大小和形状是否发生变 化。理想塑性材料(不变化)和硬化材料(变化)。 理想塑性材料(不变化)和硬化材料(变化)。
依据适合的强度理论,判断岩体的破坏及其破坏形式。 依据适合的强度理论,判断岩体的破坏及其破坏形式。 岩体本构关系: 岩体本构关系:指岩体在外力作用下应力或应力速率与其应 变或应变速率的关系。 变或应变速率的关系。
岩石或岩体的变形性质:弹塑性或粘弹塑性。 岩石或岩体的变形性质:弹塑性或粘弹塑性。 本构关系:弹塑性或粘弹塑性本构关系。 或粘弹塑性本构关系 本构关系:弹塑性或粘弹塑性本构关系。 本构关系分类: 本构关系分类: 弹性本构关系:线性弹性、非线性弹性本构关系。 ①弹性本构关系:线性弹性、非线性弹性本构关系。 弹塑性本构关系:各向同性、各向异性本构关系。 ②弹塑性本构关系:各向同性、各向异性本构关系。 流变本构关系:岩石产生流变时的本构关系。 ③流变本构关系:岩石产生流变时的本构关系。流变 性是指如果外界条件不变, 性是指如果外界条件不变,应变或应力随时间而变化的 性质。 性质。 岩石强度理论: 岩石强度理论:研究岩石在一定的假说条件下在各 种应力状态下的强度准则的理论。 种应力状态下的强度准则的理论。
二讲、本构关系和强度理论
2)
单轴抗压强度的影响因素
(1)承压板给予单轴抗压强度的影响(摩擦力和刚度)
(2)试件尺寸和形状对单轴抗压强度的影响
方形试件的四个边角会产生明显的应力集中现象。试 件的强度通常随其尺寸的增大而减小。高径比在2~3时, 岩石的单轴抗压强度值趋于稳定。 (3) 加载速率对单轴抗压强度的影响
岩石的单轴抗压强度通常随加载速率的提高而增大。 (4)环境对岩石单轴抗压强度的影响 含水量的影响(软化系数)、温度的影响。
图 1-24 根据岩石强度曲线判断岩石破坏状态示意图
图 1-25 斜直线强度曲线
4) 格里菲斯强度理论 1) 格里菲斯强度理论的基本思想 (1) 在脆性材料内部随机地分布着扁平的(用橢圆)裂 纹,在外力作用下,微裂纹尖端附近的应力很大时,裂 纹开始扩展。 (2) 理论分析:裂纹将沿着与最大拉应力成直角的方向 扩展。在单轴压缩的情况下,裂纹最终向最大主应力的 方向过渡,类似于单轴压缩的情况下的劈裂现象。 (3) 当作用在裂纹尖端附近的有效应力达到形成新裂纹 所需能量时,裂纹开始扩展,其表达式为:
1) 位移边界гd,即全部边界上的位移是已知的;
2) 面力边界гt,即全部边界上的面力是已知的;
3) 混合边界,即部分边界(位移边界гd)上的位移 是已知的;而其余边界(面力边界гt)上的面力 是已知的。
边界条件是求解弹性力学问题的重要条件,在位移 边界条件中,所研究物体的边界上的位移分量已知,设 u,v为物体的边界位移。
1e
E
t t1
4 岩石的强度理论 1) 平面问题的简化 平面应力问题,主要特征为:σz=0 εz≠0。
平面应变问题,主要特征为:σz≠0 εz=0。
二维的应力状态
第7章岩体本构关系与强度理论
整理得:
P cos P sin tg j C j
(7-99) (7-100)
当C j 0 时,上式变为:P cos 整理得: 即:
P sin tg j
900 j
板状 结构体
横向弯曲 悬臂弯曲
结 构 面
坚硬 结构面
闭合变形 错动变形 挤出变形 滑动变形
软弱 结构面
二、 岩体变形机制与本构关系
岩体变形=F(岩石、岩体结构、压力、温度、时间):
其中前两项为岩体的实体,后二者为岩体赋存环境,最
后一项表征变形过程。
其数学表达式称为本构方程:
u f ( E, , usb , , T , t )
第7章 岩体本构关系 与强度理论
岩、工系
刘佑荣
7.3 岩石强度理论与破坏判据
一、 库仑强度准则 二、 莫尔强度准则 三、 格里菲斯强度准则
四、 德鲁克一普拉格准则
四、德鲁克一普拉格准则
在 C-M 准则和在八面体强度理论中的Mises 准则基础上的扩展和推广而得的,表达式为:
f I1 J 2 K 0
1,0
(7-90)
( 1 3 ) 2 8 t 1 3 t 3
1 3 3 0 1 3 3 0
或
2 4 t ( t )
对岩体拉张破坏进行判别。
三、 剪破坏判据
岩体剪破坏可以用库伦-莫尔判据进行研究,其判据式在岩 石破坏判据中已有讨论。但应注意,对于岩体,在用库伦-莫尔 判据时,必须用岩体的应力与强度参数,才能进行正确的判据。
或
(7-84)
岩石力学第四章岩石本构关系与强度理论PPT课件
介绍了岩石本构关系的定义、分类和特点 ,以及不同类型本构关系的适用范围和局 限性。
介绍了岩石强度理论的定义、分类和特点 ,以及不同类型强度理论的适用范围和局 限性。
岩石本构关系与强度理论的实验 研究
介绍了实验研究在岩石本构关系与强度理 论中的重要性,以及实验研究的方法和步 骤。
岩石本构关系与强度理论的应用 实例
岩石力学第四章:岩石本构关系与 强度理论
目录
• 引言 • 岩石本构关系 • 岩石强度理论 • 岩石破坏准则 • 本章总结与展望
01 引言
课程背景
01
岩石力学是一门研究岩石材料在 各种力场作用下的行为和性能的 科学。
02
本章重点介绍岩石的本构关系和 强度理论,为后续章节的学习奠 定基础。
本章目标
探索新的应用领域
将岩石本构关系与强度理论应用到更广泛的领域,如环境工程、地质 工程和地震工程等,为解决实际问题提供更多帮助。
结合数值计算方法
将岩石本构关系与强度理论结合数值计算方法,实现更加高效、精确 的数值模拟和分析,为工程设计和优化提供更多支持。
THANKS FOR WATCHING
感谢您的观看
3
该准则适用于分析简单应力状态下的岩石破坏, 但在复杂应力状态下需要考虑其他因素。
应变能密度准则
应变能密度准则是基于岩石在受力过 程中储存的应变能密度来描述其应力 状态。
当应变能密度达到一定阈值时,岩石 会发生破坏。该准则适用于分析岩石 在复杂应力状态下的破坏机制。
莫尔-库仑强度理论
01
莫尔-库仑强度理论是岩石力学中最常用的强度理论之一。
弹性本构关系
描述
弹性本构关系描述了岩石在受力后立即发生的弹性变形阶段的应力应变关系。
岩石力学-岩石本构关系与强度理论
岩石的本构关系分类: 弹性本构关系(线性、非线性) 塑性本构关系 弹塑性本构关系(各向同性、非各向同性)
岩石破坏形式:1.断裂破坏 2.流动破坏(塑性变形活着流动现象)
在弹性体内的任意一点P,沿x轴和y轴的方向取两个微小在度
的线段PA=dx和PB=dy,受力后,P,A,B三点移动到P′,
A′,B ′,现以u,v表示P点在x方向和y方向的位移分量,则A
点在x方向的位移分量为u+
,u dx
x
线段PA的正应变是:
B点在y方向的位移为
,因此,线段PB的正应变是:
在分析PA,PB两线段之间直角的改变,也就是剪应变
xy
即剪应变 γxy ;
综合以上正应变、剪应变求解公式,可得平面问题中的几何方程;
当物体的位移分量完全确定时,应变分量就可以完全确定。 应变分量完全确定时,位移分量却不能完全确定。物体的位移 不但与物体的变形有关,还与物体的刚体运动有关。 平衡方程和几何方程与材料的性质无关;只有本构关系反映材
料的性质。 岩石本构关系:是指岩石的应力或应力速率与其应变或应变速 率的关系。 若只考虑静力问题,则本构关系是指应力与应变,或者应力增 量与应变增量之间的关系。
这两个微分方程中包含着三个未知函数 σx σy τyx=τxy, 是一个超静定问题。还必须考虑变形和位移才能求解。
4.1.2几何方程
物体在外力作用下将产生形状和尺寸的改变, 这种改变使物体内各点的位置发生了变化,即 各点都有位移。现在推导应变(单位长度的变 形)分量和位移之间的关系,也就是平面问题 的几何方程。
剪应变
一部分是x方向的线段PA向y方向的线段PB的转角 a yx 。
a 另一部分是y方向的线段PB向x方向的线段PA的转角
04岩石的本构关系和强度准则1精品PPT课件
单元体棱边的伸长和缩短--正应变
棱边之间夹角的变化--切应变或剪应变
εx、εy、εz表示x,y,z轴方向棱边的相对伸长度,即正应变。 用γxy、γyz、γzx表示x和y,y和z,z和x轴之间的夹角变化,即切应变。
14
4.2 应变及应变状态分析
微分单元体的变形
15
4.2 应变及应变状态分析
微分单元体的变形
第4章 岩石的本构关系和强度准则
4.1 应力及应力状态分析 4.2 应变及应变状态分析 4.3 岩石的应力应变关系 4.4 岩石的强度理论
1
4.1 应力及应力状态分析
一、基本概念
1)应力
S lim Q A0 A
与岩石形变和强度直接相 关的是应力在其作用法线方向 的分量及切线方向的分量,其 中,沿截面法线方向的应力分 量称为正应力σ,切线方向的应
11
4.1 应力及应力状态分析
2)柱坐标系下的应力平衡方程
rr 1 r r z zr r rfr 0
12
4.2 应变及应变状态分析
应变的概念
由于载荷作用或者温度变化等外界因素等影响,物体内各点在 空间的位置将发生变化,即产生位移。
刚体位移 变形
13
4.2 应变及应变状态分析
应变的概念
由力矩平衡: Moz 0
得出: xy yx 同理: yz zy xz zx
6
4.1 应力及应力状态分析xyxxxy yy
xyzzxxyx
xy yy
xyzz
zx zy zz xz yz zz
11 12 13 11 12 13 21 22 2312 22 23 31 32 33 13 23 33
7
4
4.1 应力及应力状态分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)几何方程
u x x v y y v u xy x y
(4)物理方程(弹性本构关系)
1 2 x y x E 1 1 2 y y x E 1 2 1 xy xy E
4.虎克体的性能 1)具有瞬时弹性变形性质,无论载荷大小,只要不 为零,就有相应的应变,当为零时,也为零,说明 虎克体没有弹性后效,即与时间无关; 2)应变恒定时,应力也保持恒定不变,应力不会因 时间增长而减小,故无应力松弛性质; 3)应力保持恒定时,应变也保持不变,即无蠕变性 质。
2018/11/27
(2)流变现象
1.流变性质:是指材料的应力-应变关系与时间因素 有关的性质。 2.流变现象:材料变形过程中具有时间效应的现象。 3.岩石的流变包括蠕变、松弛和弹性后效。
2018/11/27 5
4.蠕变:是当应力不变时,变形随时间的增加而增长 的现象。 5.松弛:是当应变不变时,应力随时间增加而减小的 现象。 6.弹性后效:是加载或卸载时,弹性应变滞后于应力 的现象。 7.粘性流动:即蠕变一段时间后卸载,部分应变永久 不恢复的现象。
3.流变本构关系 如果岩石在外载荷作用条件不变的条件下,岩石的 应变或应力还随时间而变化,则称该岩石具有流变 性,此时的本构关系称为岩石的流变本构关系。
(2)强度理论
指采用判断、推理的方法,推测材料在复杂应力状 态下破坏的原因,而建立强度准则,所提出的一些 假设。 总之,岩石的力学性质可分为变形性质和强度性质 两类,变形性质主要通过本构关系来反映,而强度 性质则主要通过强度准则来反映。
ε d c
B
b
a
0
t
2018/11/27
7
(5)岩石的长期强度
当岩石的应力超过某一临界值时,蠕变向不稳定蠕 变发展;当岩石的应力小于该临界值时,蠕变按稳 定蠕变发展。通常称此临界应力为岩石的长期强度。
5.3.2 流变模型理论 流变性主要研究岩石在流变过程中的应力、应 变和时间的关系,即通过应力、应变和时间组 成的流变方程来表示。流变方程主要包括本构 方程、蠕变方程和松弛方程。 在一系列的岩石流变试验基础上建立反映岩石 流变性质的方程,通常有两种方法:
(在 s u 上)
2.应力边界条件
l x m yx m y l xy
s f x s s f y s
(在 s 上)
3.混合边界条件
2018/11/27
4
5.3 岩石流变理论
5.3.1概念 (1)研究背景
1.各种岩土工程,无一不和时间因素有关; 2.是岩石力学的重要研究内容之一; 3.存在的问题尚多,理论与实验研究仍有待进一步 加强。
(3)研究蠕变的意义
1.中硬以下岩石及软岩中开挖的地下工程,大都需要 经过半个月甚至半年时间变形才能稳定;或处于无 休止的变形状态,直至破坏失稳。 2.解决地下工程的设计和维护问题。
2018/11/27 6
(4)蠕变的三个阶段 如图5-1中的abcd曲线所示, A 蠕变过程可分为三个阶段: 1.第一蠕变阶段:如曲线中ab段 所示,应变速率随时间增加而减 C 小,故称为减速蠕变阶段或初始 蠕变阶段; 图5-1 岩石蠕变曲线 2.第二蠕变阶段:如曲线中bc段所示,应变速率保持不 变,故称为等速蠕变阶段; 3.第三蠕变阶段:如曲线中cd段所示,应变速率迅速增 加直到岩石破坏,故称为加速蠕变阶段。
2018/11/27
1
5.2 岩石弹性问题的求解
(1)岩石弹性问题的求解步骤
应力场解 几何方程 结合边界条件 位移场解 物理方程或本构方程 平衡微分方程
(2)平衡微分方程
x yx fx 0 x y xy y f 0 y x y
(5-12)
4. 塑性体的性能 1)当物体所受的应力小于屈服极限时,模型表现为 刚形体; 2)当物体所受的应力大于或等于屈服极限时,模型 表现为理想塑性体,即具有塑性流动的特点。
2018/11/27
13
(3)粘性元件(牛顿体N) 1.定义 牛顿流体是一种理想粘性体,即应力与应变速率成 正比,用符号N表示 。 2.力学模型
2018/11/27
9
5.3.3 基本元件
(1)弹性元件(虎克体H) 1.定义 如果材料在载荷作用下,其变形性质完全符合虎克 定律,即是一种理想的弹性体,则称此种材料为虎 克体,用符号H代表。 2.力学模型
图5-2 虎克体力学模型及其动态
2018/11/27 10
3.本构方程
K
(5-11)
2018/11/27
1 x E x y 1 y x y E 2 1 xy xy E
3
(5)边界条件
1.位移边界条件
u s
v s v s u s ,
11
(2)塑性元件(库仑体C) 1.定义 当物体所受的应力达到屈服极限时,便开始产生塑 性变形,即使应力不再增加,变形仍然不断增长, 具有这一性质的物体为塑性体,用符合Y来代表。 2.力学模型
图5-3 塑性体力学模型及其动态
2018/11/27 12
3.本构方程 当 s时, 0, s时,
2018/11/27
8
(1)经验方程法
即根据岩石蠕变试验结果,由数理统计学的回归拟 合方法建立的方程。通常形式为:
t 0 1 t 2பைடு நூலகம்t 3 t (2)微分方程法
(5-10)
本方法是将岩石介质理想化,归纳成各种模型,模 型可用理想化的具有基本性能(弹性、塑性和粘性) 的元件组合而成。通过这些元件不同形式的串联和 并联得到一些典型的流变模型体,相应地推导出它 们的有关微分方程。