2016山东省济南市中考数学试卷(含答案解析)

合集下载

2016年山东省日照市中考数学试卷-答案

2016年山东省日照市中考数学试卷-答案

山东省日照市2016年初中学生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】由于|2121|=-,正数大于负数,所以1122->,故选D . 【提示】先求出||12-的值,再根据实数的大小比较法则比较即可. 【考点】实数大小的比较 2.【答案】B【解析】由题意得:俯视图与选项B 中图形一致.故选B . 【提示】根据组合图形的俯视图,对照四个选项即可得出结论. 【考点】组合体的三视图 3.【答案】D【解析】A 项32a a a=,故原题计算错误;B 项2a 和a 不是同类项,不能合并,故原题计算错误;C 项24(2)4a a -=,故原题计算错误;D 项326()a a =,故原题计算正确;故选:D .【提示】A 选项中分子分母同时约去公因式a 可得2a ,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B 错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C 错误;根据幂的乘方法则:底数不变,指数相乘可得D 错误. 【考点】幂的运算,整式的加减 4.【答案】B【解析】∵148∠=︒,∴3901904842∠=︒-∠=︒-︒=︒.∵直尺的两边互相平行,∴2342∠=∠=︒.故选B .【提示】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论. 【考点】平行线的性质 5.【答案】C【解析】50.0000105 1.0510-=⨯,故选C .【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯﹣,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【考点】科学记数法 6.【答案】B【解析】两个函数图像的另一个交点坐标为(2,1)--,当20x -<<或2x >时,直线1y k x =在222(0)k y k x=>图像的上方,故不等式21k k x x>的解集为1x <-或2x >.故选B . 【提示】由图象可以知道,当2x =-或2x =时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k k x x>的解集,即可得出结论 【考点】在数轴上表示不等式的解集,反比例函数与一次函数的图象 7.【答案】A 【解析】根据10户家庭一个月的节水情况可得,平均每户节水:(0.52131.5421)(⨯+⨯+⨯+⨯÷+++=(吨)∴200户家庭这个月节约用水的总量是:200 1.2240⨯=(吨)故选A .【提示】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【考点】用样本估计总体 8.【答案】C【解析】设该县这两年GDP 总量的平均增长率为x ,根据题意,得:21000(1)1210x +=,解得:1 2.1x =-(舍),20.110%x ==,即该县这两年GDP 总量的平均增长率为10%,故选C .【提示】设该县这两年GDP 总量的平均增长率为x ,根据:2015年某县2GDP (1)⨯+总量增长百分率2017GDP =年全县总量,列一元二次方程求解可得.【考点】平均增长率 9.【答案】A【解析】①∵1a <,10a ->,∴(1a -=但不是轴对称图形,故本小题错误;,故本小题错误;④∵方程2210ax x ++=有两个不相等的实数根,440a ∴∆=->,解得1a <且0a ≠,故本小题错误. 故选A .【提示】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【考点】根式的化简,平行四边形的对称性,算术平方根,一元二次方程根的判别式 10.【答案】A【解析】作DH AB ⊥于点H ,如右图所示,∵2AD =,2AB =,60A ∠=︒,∴•sin60DH AD =︒2==∴•336ABCDS AB DH ===,∴233PBC S S S +==△,又∵E F 、分别是PB PC 、(靠近点P )的三等分点,∴19PEF PBC S S =△△,∴·1393PEF S =⨯=△,即113S =,∴123110333S S S ++=+=,故选A .【提示】先作辅助线DH AB ⊥于点D ,然后根据特殊角的三角函数值可以求得DH 的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得123S S S ++的值. 【考点】相似三角形的判定与性质,平行四边形的性质 11.【答案】C【解析】∵抛物线开口向下,∴0a <,∵抛物线的对称轴为直线12bx a=-=,∴20b a =->,∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①错误;2b a =-,∴20a b +=,所以②正确;∵抛物线与x 轴的一个交点为(1,0)-,抛物线的对称轴为直线1x =,∴抛物线与x 轴的另一个交点为(3,0),∴当2x =时,0y >,∴420a b c ++>,所以③错误;∵点13(,)2y -到对称轴的距离比点210(,)3y 对称轴的距离远,12y y ∴<,所以④正确.故选C .【提示】由抛物线开口方向得到0a <,有对称轴方程得到20b a =->,∵抛物线与y 轴的交点位置得到0c >,则可对①进行判断;由2b a =-可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当2x =时,0y >,于是可对③进行判断;通过比较点13(,)2y -与点210(,)3y 到对称轴的距离可对④进行判断.【考点】二次函数图象与系数的关系 12.【答案】D【解析】200的所有正约数之和可按如下方法得到:因为3220025=⨯,所以200的所有正约数之和为232(1222)(155)465+++⨯++=.故选D .【提示】在类比推理中,200的所有正约数之和可按如下方法得到:根据3220025=⨯,可得200的所有正约数之和为232(1222)(155)+++⨯++,即可得出答案. 【考点】规律型:数字的变化类第Ⅱ卷二、填空题 13.【答案】12【解析】设方程的另一个根为t ,根据题意得112t =,解得12t =.故答案为12.【提示】设方程的另一个根为t ,根据根与系数的关系得到112t =,然后解关于t 的方程即可.【考点】一元二次方程根与系数的关系14.【答案】【解析】如图,建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点;抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2);通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标(2,0)-,到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降1米,通过抛物线在图上的观察可转化为:当1y =-时,对应的抛物线上两点之间的距离,也就是直线1y =-与抛物线相交的两点之间的距离,可以通过把1y =-代入抛物线解析式得出:210.52x -=-+,解得:x =为:【提示】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把1y =-代入抛物线解析式得出水面宽度,即可得出答案. 【考点】二次函数的应用 15.【答案】724【解析】设CE x =,则8BE AE x ==-,∵90C ∠=︒,6AC =,∴2226(8)x x +=-,解得,74x =,∴774tan 624CE CAE AC ∠===,故答案为:724.【提示】根据题意可以求得CE 的长,从而可以求得tan CAE ∠的值. 【考点】翻折变换(折叠问题),解直角三角形16. 【解析】过点C 作CP 垂直直线AB 于点P ,过点P 作C 的切线PQ ,切点为Q ,此时PQ 最小,连接CQ如图所示.直线AB 的解析式为334y x =-+,即34120x y+=﹣,∴165CP =.∵PQ 为C 的切线,∴在Rt CQP △中,1CQ =,90CQP ∠=︒,∴PQ =.【提示】过点C 作CP 垂直直线AB 于点P ,过点P 作C 的切线PQ ,切点为Q ,此时PQ 最小,连接CQ ,由点到直线的距离求出CP 的长度,再根据勾股定理即可求出PQ 的长度.【考点】切线的性质,一次函数,线段 三、解答题17.【答案】(1)23m n =⎧⎨=⎩(2【解析】(1)∵21512m xy --与n m n x y +是同类项, ∴215m n m n -=⎧⎨=+⎩,解得23m n =⎧⎨=⎩. (2)21121(2)(1)3()122(1)(2)a a a a a a a a a a a a a+-++--÷=⨯=-++--+,当a ==【提示】(1)根据同类项的定义可以得到关于m n 、的二元一次方程组,从而可以解答m n 、的值; (2)先对原式化简,再将a =代入化简后的式子即可解答本题 【考点】分式的化简求值,同类项18.【答案】(1)∵将ADF △绕点A 顺时针旋转90︒后,得到ABQ △, ∴90QAF ∠=︒, ∵45EAF ∠=︒, ∴45QAE ∠=︒, ∴EA 是QED ∠的平分线;(2)∵将ADF △绕点A 顺时针旋转90︒后,得到ABQ △, ∴QB DF =,AQ AF =,45ABQ ADF ∠=∠=︒,在AQE △和AFE △中AQ AFQAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴AQE AFE △≌△(SAS ), ∴QE EF =, 在Rt QBE △中,222QB BE QE +=,则222EF BE DF =+.【提示】(1)直接利用旋转的性质得出对应线段关系进而得出答案;(2)直接利用旋转的性质得出AQE AFE △≌△(SAS ),进而利用勾股定理得出答案. 【考点】旋转的性质,三角形的全等,勾股定理19.【答案】(1)15a =,0.04b =,0.030x =,0.004y = (2)小王的成绩在7080x ≤<的范围内 (3)图见解析,概率为110【解析】(1)90.1850÷=,500.084⨯=,所以509204215a =----=,2500.04b =÷=, 1550100.03x =÷÷=,0.04100.004y =÷=;(2)小王的测试成绩在7080x ≤≤范围内;(3)画树状图为:(五位同学请用A B C D E 、、、、表示,其中小明为A ,小敏为B )共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2, 所以小明、小敏同时被选中的概率212010==. 【提示】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a 的值,接着用第5组的频数除一样本容量得到b 的值,用b 的值除以组距10得到y 的值,然后计算第2组的频率,再把第2组的频率除以组距得到x 的值; (2)根据中位数的定义求解;(3)画树状图(五位同学请用A B C D E 、、、、表示,其中小明为A ,小敏为B )展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解. 【考点】列表法与树状图法,频数(率)分布表,频数(率)分布直方图,中位数 20.【答案】(1)2000元(2)当新进A 型车20辆,B 型车40辆时,这批车获利最大【解析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(200)x -元,由题意,得()8000011080000200x x -=-%, 解得:2000x =.经检验,2000x =是原方程的根. 答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60)a -辆,获利y 元,由题意得(60)y a a =+-,30036000y a =-+. ∵B 型车的进货数量不超过A 型车数量的两倍, ∴602a a -≤, ∴20a ≥.∵30036000y a =-+. ∴3000k =-<, ∴y 随a 的增大而减小. ∴20a =时30000y =最大,元. ∴B 型车的数量为:602040-=辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.【提示】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(200)x -元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60)a -辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【考点】分式方程的应用,一次函数的应用.21.【答案】阅读理解:动点P 的轨迹是:△ABC 的中位线EF知识应用:线段EF 中点Q 的运动轨迹的长为4 拓展提高:(1)120︒ (2【解析】阅读理解:根据轨迹的定义可知,动点P 的运动轨迹是线段EF .知识应用:如图1中,作ABC △的中位线MN ,作EG AC ∥交NM 的延长线于G ,EF 与MN 交于点Q '∵ABC △是等边三角形,MN 是中位线, ∴AM BM AN CN ===, ∵AF BE =, ∴EMFN =,∵MN BC ∥,∴60AMN B GME ∠=∠=∠=︒, ∵60A GEM ∠=∠=︒, ∴GEM △是等边三角形, ∴EM EG FN ==,在GQ E '△和NQ F '△中'''GQ E NQ F G FNQ GE FN ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴GQ E NQ F ''△≌△,∴EQ FQ '=', ∵EQ QF =,点Q Q '、重合, ∴点Q 在线段MN 上,∴段EF 中点Q 的运动轨迹是线段MN ,118422MN BC ==⨯=. ∴线段EF 中点Q 的运动轨迹的长为4.拓展提高:如图2中,(1)∵APC △,PBD △都是等边三角形, ∴60AP PC PD PB APC DPB ==∠=∠=︒,,, ∴APD CPB ∠=∠,在APD △和CPB △中AP PC APD CPB DP BP =⎧⎪∠=∠⎨⎪=⎩,∴APD CPB △≌△,∴ADP CBP ∠=∠,设BC 与PD 交于点G , ∵QGD PGB ∠=∠, ∴60DQG BPG ∠=∠=︒, ∴180120AQB DQG ∠=︒-∠=︒.(2)由(1)可知点P 的运动轨迹是AB ,设弧AB 所在圆的圆心为O ,在圆上任意取一点M ,连接AM BM ,, 则60M ∠=︒,∴2120AOB M ∠=∠=︒,作OH AB ⊥于H ,则3AH BH ==,OH,OB =∴弧AB 的长.∴动点Q.【提示】阅读理解:根据轨迹的定义可知,动点P 的运动轨迹是线段EF .知识应用:如图1中,作ABC △的中位线MN ,作EG AC ∥交NM 的延长线于G ,EF 与MN 交于点Q ' GQ E NQ F ''△≌△,推出Q Q '、重合即可解决问题.拓展提高:如图2中,(1)只要证明APD CPB △≌△,推出60DQG BPG ∠=∠=︒结论解决问题.(2)由(1)可知点P 的运动轨迹是AB ,设弧AB 所在圆的圆心为O ,在圆上任意取一点M ,连接AM BM ,,则60M ∠=︒,作OH AB ⊥于H ,则3AH BH ==,OH,OB =【考点】三角形综合题22.【答案】(1)1m =,9n =-(2)758(3)存在,点P坐标为或3(,0)4 【解析】(1)∵抛物线的解析式为22[()]3332(2)555y x n x n =--+-=--,∴抛物线的对称轴为直线2x =,∵点A 和点B 为对称点,∴2(2)232m m --=+-,解得1m =,∴(1,0)A -,(5,0)B ,把(1,0)A -代入233255y x n =---()得90n +=,解得9n =-; (2)作ND y ∥轴交BC 于D ,如图2, 抛物线解析式为22[]3312(2)93555y x x x =--=-++-, 当0x =时,3y =,则(0,3)C ,设直线BC 的解析式为y kx b =+,把(5,0)B ,(0,3)C 代入得503k b b +=⎧⎨=⎩,解得353k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为335y x =-+, 设23)12,355(N x x x -++,则3(,3)5D x x -+,∴22312333(3)35555ND x x x x x -++--+==-+, 2213155755()22228NBC NDC NDB S S S ND x x x ∴=+==-+=--+△△△, 当52x =时,NBC △面积最大,最大值为758; (3)存在.∵(5,0)B ,(0,3)C ,∴BC =当90PMB ∠=︒,则90PMC ∠=︒,PMC △为等腰直角三角形,MP MC =,设PM t =,则CM t =,MB t , MBP OBC ∠=∠,BMP BOC △∽△,∴PM BM BPOC OB BC ==,即3t ==t =,174BP =, ∴173544OP OB BP =-=-=, 此时P 点坐标为3(,0)4;当90MPB ∠=︒,则MP MC =,设PM t =,则CM t MB t =,,∵MBP CBO ∠=∠,∴BMP BCO △∽△,∴MP BM BP OC BC BO ==,即35t BP ==,解得t =BP =∴354OP OB BP =-=,此时P 点坐标为;综上所述,P 点坐标为或3(,0)4.【考点】二次函数的轴对称性,三角形面积最大值的求解,等腰三角形,直角三角形存在的判断和计算。

2016年山东省菏泽市中考数学试卷(含答案解析)

2016年山东省菏泽市中考数学试卷(含答案解析)

2016年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.56.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.2016年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.【点评】本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9.故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.8.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC ﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7.【解答】解:45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣2×+2+1=+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】此题是平行四边形的判定与性质题,主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG 是平行四边形.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)解法一:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.解法二:设⊙O的半径为x,则OC=x,OP=1+x∵PC=3,且OC⊥PC∴32+x2=(1+x)2解得x=4∴AB=2x=8【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6种等可能的结果,锐锐顺利通关的只有1种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.【点评】本题考查了等腰三角形的性质、全等三角形的判定及性质、解直角三角形以及角的计算,解题的关键是:(1)通过角的计算结合等腰三角形的性质证出△ACD≌△BCE;(2)找出线段AD、DE的长.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,利用角的计算找出相等的角,再利用等腰三角形的性质找出相等的边或角,最后根据全等三角形的判定定理证出三角形全是关键.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC =S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b 经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC =S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.。

济南市中考数学试卷及答案(Word解析版)

济南市中考数学试卷及答案(Word解析版)

济南中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)(•济南)下列计算正确的是()A.=9B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A 、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的答:长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(•济南)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵÷6=335…3,∴当点P第次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250 频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解解:(1)完成图形,如图所示:答:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD 的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。

山东省临沂市2016年数学中考试题(word版,含答案)

山东省临沂市2016年数学中考试题(word版,含答案)

绝密★启用前 试卷类型:A2016年临沂市初中学生学业考试试题数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是(A) —3.(B) 0.(C) 1(D) 2.2.如图,直线AB∥CD,∠A = 40°,∠D = 45°,则∠1等于(A) 80°.(B) 85°. (C) 90°.(D) 95°.3.下列计算正确的是(A) . (B) . (C). (D). 4.不等式组的解集,在数轴上表示正确的是32x x x -=326x x x ⋅=32x x x÷=325()x x =33324x x x ⎧⎪⎨-⎪⎩<+≥2,45°40°1DCBA5.如图,一个空心圆柱体,其主视图正确的是6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(A) .(B).(C) .(D) .7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于(A) 108°.(B) 90°. (C) 72°.(D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是(A) 4.(B) 3.(C) 2(D) 1.10.如图,AB 是⊙O的切线,B 为切点,AC 经过点O,与⊙O 分别相交于点D 、C.若∠ACB=30°,则阴影部分面积是.(B)...11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是1816381278()3230x y A x y +=⎧⎨+=⎩78()2330x y B x y +=⎧⎨+=⎩30()2378x y C x y +=⎧⎨+=⎩30()3278x y D x y +=⎧⎨+=⎩6π6π-6π(A) 2n+1.(B) n 2-1. (C) n 2+2n.(D) 5n-2.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD 、BD,则下列结论:①AC=AD 。

2016年山东省日照市中考数学试卷(含详细答案及解析)

2016年山东省日照市中考数学试卷(含详细答案及解析)

2016年山东省日照市中考数学试卷一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.(3分)以下选项中比|﹣|小的数是()A.1 B.2 C.D.2.(3分)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.3.(3分)下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a64.(3分)小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°5.(3分)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4 C.1.05×10﹣5D.105×10﹣76.(3分)正比例函数y1=k1x(k1>0)与反比例函数y2=(k2>0)部分图象如图所示,则不等式k1x>的解集在数轴上表示正确的是()A .B . C.D . 7.(3分)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是( ) A .240吨B .360吨C .180吨D .200吨8.(3分)2015年某县GDP 总量为1000亿元,计划到2017年全县GDP 总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP 总量的平均增长率为( )A .1.21%B .8%C .10%D .12.1%9.(4分)下列命题:①若a <1,则(a ﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax 2+2x +1=0有两个不相等的实数根,则实数a <1.其中正确的命题个数是( )A .1个B .2个C .3个D .4个10.(4分)如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别是PB 、PC (靠近点P )的三等分点,△PEF 、△PDC 、△PAB 的面积分别为S 1、S 2、S 3,若AD=2,AB=2,∠A=60°,则S 1+S 2+S 3的值为( )A.B.C.D.411.(4分)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④12.(4分)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(4分)关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.14.(4分)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.15.(4分)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.16.(4分)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(9分)(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.18.(9分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.19.(10分)为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)20.(10分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?21.(13分)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF 于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.22.(13分)如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.2016年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题,每小题3分,9-12小题,每小题3分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.(3分)(2016•日照)以下选项中比|﹣|小的数是()A.1 B.2 C.D.【分析】先求出|﹣|的值,再根据有理数的大小比较法则比较即可.【解答】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.【点评】本题考查了有理数的大小比较法则的应用,能熟记有理数的大小比较法则内容是解此题的关键.2.(3分)(2016•日照)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.3.(3分)(2016•日照)下列各式的运算正确的是()A.B.a2+a=2a3C.(﹣2a)2=﹣2a2D.(a3)2=a6【分析】A选项中分子分母同时约去公因式a可得a2,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得B错误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得C错误;根据幂的乘方法则:底数不变,指数相乘可得D错误.【解答】解:A、=a2,故原题计算错误;B、a2和a不是同类项,不能合并,故原题计算错误;C、(﹣2a)2=4a4,故原题计算错误;D、(a3)2=a6,故原题计算正确;故选:D.【点评】此题主要考查了分式的约分、合并同类项、积的乘方、幂的乘方,关键是熟练掌握各运算法则.4.(3分)(2016•日照)小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=48°,∴∠3=90°﹣∠1=90°﹣48°=42°.∵直尺的两边互相平行,∴∠2=∠3=42°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)(2016•日照)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4 C.1.05×10﹣5D.105×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000105=1.05×10﹣5,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)(2016•日照)正比例函数y1=k1x(k1>0)与反比例函数y2=(k2>0)部分图象如图所示,则不等式k1x>的解集在数轴上表示正确的是()A .B .C.D .【分析】由图象可以知道,当x=﹣2或x=2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1x的解集,即可得出结论.【解答】解:两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x<0或x>2时,直线y=k1x在y2=图象的上方,故不等式k1x的解集为﹣2<x<0或x>2.故选:B.【点评】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.7.(3分)(2016•日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是()A.240吨B.360吨C.180吨D.200吨【分析】先根据10户家庭一个月的节水情况,求得平均每户节水量,再计算200户家庭这个月节约用水的总量即可.【解答】解:根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨)∴200户家庭这个月节约用水的总量是:200×1.2=240(吨)故选A.【点评】本题主要考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(3分)(2016•日照)2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为()A.1.21% B.8% C.10% D.12.1%【分析】设该县这两年GDP总量的平均增长率为x,根据:2015年某县GDP总量×(1+增长百分率)2=2017年全县GDP总量,列一元二次方程求解可得.【解答】解:设该县这两年GDP总量的平均增长率为x,根据题意,得:1000(1+x)2=1210,解得:x1=﹣2.1(舍),x2=0.1=10%,即该县这两年GDP总量的平均增长率为10%,故选:C.【点评】本题主要考查一元二次方程的应用,关于增长率问题:若原数是a,每次增长的百分率为a,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即:原数×(1+增长百分率)2=后来数.9.(4分)(2016•日照)下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个 B.2个 C.3个 D.4个【分析】分别根据平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系对各小题进行逐一判断即可.【解答】解:①∵a<1,1﹣a>0,∴(a﹣1)=﹣,故本小题正确;②平行四边形是中心对称图形但不是轴对称图形,故本小题错误;③的算术平方根是,故本小题错误;④∵方程ax2+2x+1=0有两个不相等的实数根,∴△=4﹣4a>0,解得a<1又∵a≠0,∴a<1且a≠0.故本小题错误.故选A.【点评】本题考查的是命题与定理,熟知平方根的定义、平行四边形的性质、一元二次方程根与判别式的关系是解答此题的关键.10.(4分)(2016•日照)如图,P为平行四边形ABCD边AD上一点,E、F分别是PB、PC(靠近点P)的三等分点,△PEF、△PDC、△PAB的面积分别为S1、S2、S3,若AD=2,AB=2,∠A=60°,则S1+S2+S3的值为()A.B.C.D.4【分析】先作辅助线DH⊥AB于点D,然后根据特殊角的三角函数值可以求得DH 的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S1+S2+S3的值.【解答】解:作DH⊥AB于点H,如右图所示,∵AD=2,AB=2,∠A=60°,∴DH=AD•sin60°=2×=,∴S▱ABCD=AB•DH=2=6,∴S2+S3=S△PBC=3,又∵E、F分别是PB、PC(靠近点P)的三等分点,∴,=×3=,∴S△PEF即S1=,∴S1+S2+S3=+3=,故选A.【点评】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题.11.(4分)(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【分析】由抛物线开口方向得到a<0,有对称轴方程得到b=﹣2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=﹣2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(﹣)与点()到对称轴的距离可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(4分)(2016•日照)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).【点评】本题属于类比推理的问题,类比推理的一般方法是:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想.解决问题的关键是认真观察、仔细思考、善用联想,探寻变化规律.二、填空题:本大题共4小题,每小题4分,共16分,不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(4分)(2016•日照)关于x的方程2x2﹣ax+1=0一个根是1,则它的另一个根为.【分析】设方程的另一个根为t,根据根与系数的关系得到1•t=,然后解关于t的方程即可.【解答】解:设方程的另一个根为t,根据题意得1•t=,解得t=.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(4分)(2016•日照)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.(4分)(2016•日照)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.【分析】根据题意可以求得CE的长,从而可以求得tan∠CAE的值.【解答】解:设CE=x,则BE=AE=8﹣x,∵∠C=90°,AC=6,∴62+x2=(8﹣x)2,解得,x=,∴tan∠CAE===,故答案为:.【点评】本题考查翻折变换、解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数值解答问题.16.(4分)(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,利用角的正弦求出CP的值,再根据勾股定理即可求出PQ 的长度.【解答】解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.当x=0时,y=3,∴点B的坐标为(0,3);当y=0时,x=4,∴点A的坐标为(4,0).∴OA=4,OB=3,∴AB==5,∴sinB==.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为:.【点评】本题考查了切线的性质、三角函数以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P、Q的位置是关键.三、解答题:本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(9分)(2016•日照)(1)已知﹣与x n y m+n是同类项,求m、n的值;(2)先化简后求值:(),其中a=.【分析】(1)根据同类项的定义可以得到关于m、n的二元一次方程组,从而可以解答m、n的值;(2)先对原式化简,再将a=代入化简后的式子即可解答本题.【解答】解:(1)∵﹣与x n y m+n是同类项,∴,解得,,即m的值是2,n的值是3;(2)()==,当a=时,原式==.【点评】本题考查分式的化简求值、同类项、解二元一次方程组,解题的关键是明确它们各自的计算方法.18.(9分)(2016•日照)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.【分析】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)利用(1)中所求,再结合勾股定理得出答案.【解答】证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确得出△AQE≌△AFE(SAS)是解题关键.19.(10分)(2016•日照)为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a、b、x、y的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)【分析】(1)先利用第1组的频数除以它的频率得到样本容量,再计算出第4组的频数,则用样本容量分别减去其它各组的频数得到a的值,接着用第5组的频数除一样本容量得到b的值,用b的值除以组距10得到y的值,然后计算第2组的频率,再把第2组的频率除以组距得到x的值;(2)根据中位数的定义求解;(3)画树状图(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)展示所有20种等可能的结果数,再找出小明、小敏同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)9÷0.18=50,50×0.08=4,所以a=50﹣9﹣20﹣4﹣2=15,b=2÷50=0.04,x=15÷50÷10=0.03,y=0.04÷10=0.004;(2)小王的测试成绩在70≤x≤80范围内;(3)画树状图为:(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)共有20种等可能的结果数,其中小明、小敏同时被选中的结果数为2,所以小明、小敏同时被选中的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.20.(10分)(2016•日照)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(2000﹣1500)a+(2400﹣1800)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.=34000元.∴a=20时,y最大∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.21.(13分)(2016•日照)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF 于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:线段EF.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.【分析】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.【解答】阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.故答案为线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′∵△ABC是等边三角形,MN是中位线,∴AM=BM=AN=CN,∵AF=BE,∴EM=FN,∵MN∥BC,∴∠AMN=∠B=∠GME=60°,∵∠A=∠GEM=60°,∴△GEM是等边三角形,∴EM=EG=FN,在△GQ′E和△NQ′F中,,∴△GQ′E≌△NQ′F,∴EQ′=FQ′,∵EQ=QF,′点Q、Q′重合,∴点Q在线段MN上,∴段EF中点Q的运动轨迹是线段MN,MN=BC=×8=4.∴线段EF中点Q的运动轨迹的长为4.拓展提高:如图2中,(1)∵△APC,△PBD都是等边三角形,∴AP=PC,PD=PB,∠APC=∠DPB=60°,∴∠APD=∠CPB,在△APD和△CPB中,,∴△APD≌△CPB,∴∠ADP=∠CBP,设BC与PD交于点G,∵∠QGD=∠PGB,∴∠DQG=∠BPG=60°,∴∠AQB=180°﹣∠DQG=120°(2)由(1)可知∠AQB=120°是定值,所以点Q的运动轨迹是,设弧AB所在圆的圆心为O,在圆上任意取一点M,连接AM,BM,则∠M=60°,∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,∴弧AB的长==π.∴动点Q运动轨迹的长π.。

初中数学 中考数学试卷(含答案)

初中数学 中考数学试卷(含答案)

一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 【答案】B. 【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B. 考点:点到直线的距离定义 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱 【答案】A. 【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .【答案】A. 【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A 。

考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B. 考点:多边形的内角与外角7. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A . -3B . -1 C. 1 D .3 【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 【答案】A.考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是()A.①B.② C. ①②D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________. 【答案】π (答案不唯一). 【解析】试题分析:π∵3<x<4, ∴916x << , ∴9<x<16,故答案不唯一 π,10,11,12,13,14,15考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩ .考点:二元一次方程组的应用.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3. 【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC 的中点,∴12CM CN AC AB == , ∴2211()()24CMN ABC S CM S AC ∆∆=== ,∵1,44CMN ABC CMN S S S ∆∆∆=== ,413ABNMABC CMN SS S ∆∆=-=-=.考点:相似三角形的性质. 14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .【答案】将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一). 【解析】试题分析:观察图形即可,将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB ,注意是顺时针还是逆时针旋转. 考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:()4cos3012122+--+-【答案】3. 【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可. 试题解析:原式=4×32+1-23+2=23+1-23+2=3 . 考点:实数的运算18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=12(180°-∠A)= 12×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=12∠ABC=12×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB ∴AD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________).易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S .考点:矩形的性质,三角形面积计算.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(23【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,AC= 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N .①当1n=时,判断线段PM与PN的数量关系,并说明理由;②若PN PM≥,结合函数的图象,直接写出n的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3.【解析】试题分析:(1)先求A 点坐标,在代入kyx=,即可求出结果;(2)①令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1)∵函数kyx=(x>0)的图象与直线y=x-2交于点A(3,m)∴m=3-2=1,把A(3,1)代入kyx=得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,AB是O的一条弦,E是AB的中点,过点E作EC OA⊥于点C,过点B作O的切线交CE 的延长线于点D .(1)求证:DB DE =; (2)若12,5AB BD ==,求O 的半径.【答案】(1)见解析;(2)152【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据: 成绩x人数 部门 4049x ≤≤ 5059x ≤≤ 6069x ≤≤ 7079x ≤≤ 8089x ≤≤ 90100x ≤≤甲 0 0 1 11 7 1 乙1710 2a.估计乙部门生产技能优秀的员工人数为400×1240=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高; ②甲部门生产技能测试中,没有生产技能不合格的员工. 可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高. 考点:众数,中位数.26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:/x cm0 1 2 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.为等腰三角形时,AP的长度约为(3)结合画出的函数图象,解决问题:当PAN____________cm.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6 (2)如图所示:(3)作y=x 与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.【答案】(1)y=-x+3;(2)7<123x x x ++<8. 【解析】试题分析:(1)先求A 、B 、C 的坐标,用待定系数法即可求解;(2)由于垂直于y 轴的直线l与抛物线243y x x =-+要保证123x x x <<,则P 、Q 两点必位于x 轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x 轴和过顶点的直线,继而求解.(2).由2243(2)1y x x x =-+=--,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵12y y = ,∴1x +2x =4.令y=-1,y=-x+3,x=4. ∵ 123x x x <<,∴3<3x <4, 即7<123x x x ++<8, ∴ 123x x x ++的取值范围为:7<123x x x ++<8.考点:二次函数与x 轴的交点问题,待定系数法求函数解析式,二次函数的对称性. 28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)试题解析:(1)∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+α.(2)线段MB与PQ之间的数量关系:PQ=2MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ,∴AP=AQ=QM,在RT△APC和RT △QME 中,MQE PAC ACP QEM AP QM ∠=⎧⎪∠=∠⎨⎪=⎩∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴1222PQ MB =, ∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 . 29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-322≤x≤-22 或22 ≤x≤322,(2)-2≤x≤1或2≤x≤22试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12,∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±,∴ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt △OCB 中,由勾股定理得OC=23122-= , C 点坐标为 (22,0).∴ C 点的横坐标的取值范围为2≤c x ≤22 ;∴综上所述点C 32 ≤c x ≤-22 或22 ≤c x ≤322. 考点:切线,同心圆,一次函数,新定义.。

2016年山东省滨州市中考数学试卷【答案加解析】

2016年山东省滨州市中考数学试卷【答案加解析】

2016年山东省滨州市中考数学试卷一.选择题1.(2016•滨州)﹣12等于()A. 1B. ﹣1C. 2D. ﹣2【答案】B【考点】有理数的乘方【解析】【解答】解:﹣12=﹣1,故选:B.【分析】根据乘方的意义,相反数的意义,可得答案.本题考查了有理数的乘方,1的平方的相反数.2.(2016•滨州)如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A. ∠EMB=∠ENDB. ∠BMN=∠MNCC. ∠CNH=∠BPGD. ∠DNG=∠AME【答案】D【考点】平行线的性质【解析】【解答】解:A、∵AB∥CD,∴∠EMB=∠END(两直线平行,同位角相等);B、∵AB∥CD,∴∠BMN=∠MNC(两直线平行,内错角相等);C、∵AB∥CD,∴∠CNH=∠MPN(两直线平行,同位角相等),∵∠MPN=∠BPG(对顶角),∴∠CNH=∠BPG(等量代换);D、∠DNG与∠AME没有关系,无法判定其相等.故选D.【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论.本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.3.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A. a=2,b=3B. a=﹣2,b=﹣3C. a=﹣2,b=3D. a=2,b=﹣3【答案】B【考点】因式分解的应用【解析】【解答】解:∵(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.故选:B.【分析】运用多项式乘以多项式的法则求出(x+1)(x﹣3)的值,对比系数可以得到a,b的值.本题考查了多项式的乘法,解题的关键是熟练运用运算法则.4.(2016•滨州)下列分式中,最简分式是()A. B. C. D.【答案】A【考点】最简分式【解析】【解答】解:A、原式为最简分式,符合题意;B、原式= = ,不合题意;C、原式= = ,不合题意;D、原式= = ,不合题意,故选A【分析】利用最简分式的定义判断即可.此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.5.(2016•滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A. 15.5,15.5B. 15.5,15C. 15,15.5D. 15,15【答案】D【考点】条形统计图,算术平均数【解析】【解答】解:根据图中信息可知这些队员年龄的平均数为:=15(岁),该足球队共有队员2+6+8+3+2+1=22(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D.【分析】根据年龄分布图和平均数、中位数的概念求解.本题考查了确定一组数据的平均数,中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A. 50°B. 51°C. 51.5°D. 52.5°【答案】D【考点】对顶角、邻补角,三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED= (180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.7.(2016•滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A. (2,﹣3)B. (2,3)C. (3,2)D. (3,﹣2)【答案】C【考点】坐标与图形性质【解析】【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴.8.(2016•滨州)对于不等式组下列说法正确的是()A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是﹣3,﹣2,﹣1D. 此不等式组的解集是﹣<x≤2【答案】B【考点】解一元一次不等式组,一元一次不等式组的整数解【解析】【解答】解:,解得x≤4,解得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.【分析】分别解两个不等式得到x≤4和x>﹣2.5,利用大于小的小于大的取中间可确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.9.(2016•滨州)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:根据图形可得主视图为:故选:C.【分析】根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.10.(2016•滨州)抛物线y=2x2﹣2 x+1与坐标轴的交点个数是()A. 0B. 1C. 2D. 3【答案】C【考点】抛物线与x轴的交点【解析】【解答】解:抛物线y=2x2﹣2 x+1,令x=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2x2﹣2 x+1=0,即(x﹣1)2=0,解得:= ,即抛物线与x轴交点为(,0),则抛物线与坐标轴的交点个数是2,故选C【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.11.(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A. y=﹣(x﹣)2﹣B. y=﹣(x+ )2﹣C. y=﹣(x﹣)2﹣D. y=﹣(x+ )2+【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.12.(2016•滨州)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A. ②④⑤⑥B. ①③⑤⑥C. ②③④⑥D. ①③④⑤【答案】D【考点】圆的综合题【解析】【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故选D【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.二.填空题13.(2016•滨州)有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是________.【答案】【考点】概率公式,无理数【解析】【解答】解:所有的数有5个,无理数有π,共2个,∴抽到写有无理数的卡片的概率是2÷5= .故答案为:.【分析】让是无理数的数的个数除以数的总数即为所求的概率.考查概率公式的应用;判断出无理数的个数是解决本题的易错点.14.(2016•滨州)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做________个零件.【答案】9【考点】二元一次方程组的应用【解析】【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的二元一次方程组,解方程组即可得出结论.本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.15.(2016•滨州)如图,矩形ABCD中,AB= 3 ,BC= 6 ,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则CFCD =________.【答案】13【考点】矩形的性质,相似三角形的判定与性质【解析】【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB= 3 ,BC= 6 ,∴BD= AB2+AD2 =3,∵BE=1.8,∴DE=3﹣1.8=1.2,∵AB∥CD,∴ DEAB = DEBE ,即DE3 = 1.21.8 ,解得,DF= 233 ,则CF=CD﹣DF= 33 ,∴ CFCD = 333 = 13 ,故答案为:13 .【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF,计算即可.本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.16.(2016•滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是________【答案】2π﹣3 3【考点】等边三角形的性质,扇形面积的计算【解析】【解答】解:∵正△ABC的边长为2,∴△ABC的面积为12 ×2× 3 = 3 ,扇形ABC的面积为60·π·22360 = 23 π,则图中阴影部分的面积=3×(23 π﹣3 )=2π﹣3 3 ,故答案为:2π﹣3 3 .【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S= nπR2360 求出扇形的面积,求差得到答案.本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S= nπR2360 是解题的关键.17.(2016•滨州)如图,已知点A、C在反比例函数y= ax 的图象上,点B,D在反比例函数y= bx 的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB= 34 ,CD= 32 ,AB与CD间的距离为6,则a ﹣b的值是________.【答案】3【考点】反比例函数的性质【解析】【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A(ay1 ,y1),点B(by1 ,y1),点C(ay2 ,y2),点D(by2 ,y2).∵AB= 34 ,CD= 32 ,∴2×| a-by1 |=| a-by2 |,∴|y1|=2|y2|.∵|y1|+|y2|=6,∴y1=4,y2=﹣2.连接OA、OB,延长AB交y轴于点E,如图所示.S△OAB=S△OAE﹣S△OBE= 12 (a﹣b)= 12 AB•OE= 12 × 34 ×4= 32 ,∴a﹣b=2S△OAB=3.故答案为:3.【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,连接OA、OB,延长AB交y轴于点E,通过计算三角形的面积结合反比例函数系数k的几何意义即可得出结论.本题考查了反比例函数系数k的结合意义以及反比例函数的性质,解题的关键是找出a﹣b=2S△OAB.本题属于中档题,难度不大,解决该题型题目时,利用反比例函数系数k的几何意义结合三角形的面积求出反比例函数系数k是关键.18.(2016•滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为________.【答案】(32016﹣2)×32016+1=(32016﹣1)2【考点】探索数与式的规律【解析】【解答】解:观察发现,第n个等式可以表示为:(3n﹣2)×3n+1=(3n﹣1)2,当n=2016时,(32016﹣2)×32016+1=(32016﹣1)2,故答案为:(32016﹣2)×32016+1=(32016﹣1)2.【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键.三.解答题:19.(2016•滨州)先化简,再求值:÷(﹣),其中a= .【答案】解:原式= ÷[ ﹣]= ÷= •=(a﹣2)2,∵a= ,∴原式=(﹣2)2=6﹣4【考点】分式的化简求值【解析】【分析】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可.本题考查分式的混合运算化简求值,熟练掌握分式的混合运算法则是解题的关键,通分时学会确定最简公分母,能先约分的先约分化简,属于中考常考题型.20.(2016•滨州)某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【答案】解:设本场比赛中该运动员投中2分球x个,3分球y个,依题意得:,解得:.答:本场比赛中该运动员投中2分球16个,3分球6个【考点】二元一次方程组的应用【解析】【分析】设本场比赛中该运动员投中2分球x个,3分球y个,根据投中22次,结合罚球得分总分可列出关于x、y的二元一次方程组,解方程组即可得出结论.本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.(2016•滨州)如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC= 34 ,DF= 5 ,求EF的长.【答案】(1)证明:连接OP,BF,PF,∵⊙O与AD相切于点P,∴OP⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OP∥CD,∴∠PFD=∠OPF,∵OP=OF,∴∠OPF=∠OFP,∴∠OFP=∠PFD,∴PF平分∠BFD;(2)解:连接EF,∵∠C=90°,∴BF是⊙O的直径,∴∠BEF=90°,∴四边形BCFE是矩形,∴EF=BC,∵AB∥OP∥CD,BO=FO,∴OP= 12 AD= 12 CD,∵PD2=DF•CD,即(12CD )2= 5 •CD,∴CD=4 5 ,∴EF=BC=4 5【考点】正方形的性质,切线的性质【解析】【分析】(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DF•CD,于是得到结论.本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.22.(2016•滨州)星期天,李玉刚同学随爸爸妈妈会老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km/h.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家。

济南市槐荫区中考数学一模试卷含答案解析

济南市槐荫区中考数学一模试卷含答案解析

山东省济南市槐荫区中考数学一模试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣22.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣35.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣66.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.78.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤113.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是.17.分解因式:3m2﹣27=.18.方程的解是x=.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.山东省济南市槐荫区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x﹣2=0的解是()A. B.C.2 D.﹣2【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项即可求出解.【解答】解:方程x﹣2=0,解得:x=2,故选C【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.【解答】解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A【点评】此题考查三视图,关键是根据三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3.是“十二五”规划收官之年,济南市政府围绕“打造四个中心,建设现代泉城”中心任务,统筹推进稳增长,实现生产总值6200亿元,6200亿元用科学记数法表示为()A.6.2×1010元B.6.2×1011元C.6.2×1012元D.0.62×1012元【考点】科学记数法—表示较大的数.【分析】数据>10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:6200亿=6.2×1011.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A. =3 B.﹣(﹣3)2=9 C.﹣(﹣2)0=1 D.|﹣3|=﹣3【考点】立方根;绝对值;有理数的乘方;零指数幂.【分析】根据立方根、有理数的乘方、0次幂、绝对值,逐一判断即可解答.【解答】解:A、=3,正确;B、﹣(﹣3)2=﹣9,故错误;C、﹣(﹣2)0=﹣1,故错误;D、|﹣3|=3,故错误;故选:A.【点评】本题考查了立方根、有理数的乘方、0次幂、绝对值,解决本题的关键是熟记立方根的定义.5.下列运算正确的是()A.a2•a4=a8B.2a+3a=5a C.(x﹣2)2=x2﹣4 D.(x﹣2)(x+3)=x2﹣6【考点】完全平方公式;合并同类项;同底数幂的乘法;多项式乘多项式.【分析】根据同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,即可解答.【解答】解:A、a2•a4=a6,故错误;B、2a+3a=5a,故正确;C、(x﹣2)2=x2﹣4x+4,故错误;D、(x﹣2)(x+3)=x2+x﹣6,故错误;故选:B.【点评】本题考查了同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式,解决本题的关键是熟记同底数幂的乘法、合并同类项、完全平方公式、多项式乘以多项式.6.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.7.已知一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),求a﹣b的值()A.﹣1 B.﹣3 C.3 D.7【考点】一次函数图象上点的坐标特征.【分析】先把(1,3)和(0,﹣2)代入一次函数y=ax+b,求出a、b的值,进而可得出结论.【解答】解:∵一次函数y=ax+b(a、b为常数且a≠0)经过(1,3)和(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只【考点】用样本估计总体.【分析】从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,即在样本中有标记的所占比例为,而在整体中有标记的共有20只,根据所占比例即可解答.【解答】解:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为,∴池塘里青蛙的总数为20÷=200.故选:D.【点评】此题主要考查了用样本去估计总体,统计的思想就是用样本的信息来估计总体的信息.9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30° B.60°C.80°D.120°【考点】平行线的性质;角平分线的性质.【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选:A.【点评】本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.角平分线上的点到角两边的距离相等C.一次函数y=﹣x+1的函数值随自变量的增大而增大D.两点之间线段最短【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】A.抛物线y=﹣x2+x的开口向下,正确,B.角平分线上的点到角两边的距离相等,正确,C.一次函数y=﹣x+1的函数值随自变量的增大而减小,原命题错误,D.两点之间线段最短,正确,故选:C.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.如图,矩形ABCD中,AD=10,点P为BC上任意一点,分别连接AP、DP,E、F、G、H分别为AB、AP、DP、DC的中点,则EF+GH的值为()A.10 B.5 C.2.5 D.无法确定【考点】三角形中位线定理;矩形的性质.【分析】E、F、G、H分别是AB、AP、DP、DC的中点,则EF,GH分别是△ABP,△DCP的中位线,得到EF+GH=BC.【解答】解:在矩形ABCD中,BC=AD=10.∵E、F、G、H分别为AB、AP、DP、DC的中点,∴EF是△ABP的中位线,GH是△DPC的中位线,∴EF+GH=BP+PC=BC=5.故选:B.【点评】本题主要考查了三角形的中位线定理.三角形的中位线平行于第三边,并且等于第三边的一半.12.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥﹣1 B.b≤﹣1 C.b≥1 D.b≤1【考点】二次函数的性质.【专题】数形结合.【分析】先根据抛物线的性质得到其对称轴为直线x=b,且当x>b时,y随x的增大而减小,由于已知当x>1时,y的值随x值的增大而减小,则可得判断b≤1.【解答】解:∵抛物线y=﹣x2+2bx+c的对称轴为直线x=﹣=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x+)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b/2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小,13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④【考点】圆周角定理.【专题】几何图形问题.【分析】①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,③先证出D、P、C、F四点共圆,再利用△AMP∽△FCP,得出结论.④直径所对的圆周角是直角.【解答】证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.【点评】本题主要考查了圆周角的知识,解题的关键是明确直径所对的圆周角是直角.15.如图,直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为、,则k1k2的值为()A.﹣6 B.36 C.72 D.144【考点】二次函数的性质.【分析】根据反比例函数的性质和一次函数的性质得出k1=﹣2x12,k2=﹣2x22,根据题意x1、x2是方程﹣2x=﹣x2+mx+6的两个根,根据根与系数的关系得出x1•x2=﹣6,从而求得k1k2的值.【解答】解:由直线y=﹣2x和双曲线、交于A、B两点,∴k1=﹣2x12,k2=﹣2x22,∵直线y=﹣2x与抛物线y=﹣x2+mx+6交于A、B两点,∴x1、x2是方程﹣2x=﹣x2+mx+6的两个根,整理方程得x2﹣(m+2)x﹣6=0,∴x1•x2=﹣6,∴k1k2=(﹣2x12)×(﹣2x22)=4×(﹣6)2=144,故选D.【点评】本题考查了一次函数的性质,反比例函数的性质以及二次函数的性质,函数和方程的关系,求得x1•x2=﹣6是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分.)16.﹣6的相反数是6.【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的概念,得﹣6的相反数是﹣(﹣6)=6.【点评】此题考查了相反数的定义,互为相反数的两个数分别在原点两旁且到原点的距离相等.17.分解因式:3m2﹣27=3(m+3)(m﹣3).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣27,=3(m2﹣9),=3(m2﹣32),=3(m+3)(m﹣3).故答案为:3(m+3)(m﹣3).【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.18.方程的解是x=6.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是x(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得x=6.检验:当x=6时,x(x﹣2)≠0.∴x=6是原方程的解.【点评】解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解,解分式方程一定注意要代入最简公分母验根.19.在的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是26.【考点】中位数;折线统计图.【分析】根据中位数的定义,即可解答.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).20.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,则的值为.【考点】菱形的性质.【分析】可通过构建全等三角形求解.延长GP交DC于H,可证三角形DHP和PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(ASA),于是两三角形全等,那么HP=PG,可根据三角函数来得出PG、CG的比例关系.【解答】解:如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,由题意可知DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,∴△GFP≌△HDP(ASA),∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∴CG=CH,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠ABC=∠BEF=60°,∴∠GCP=60°,∴=sin60°=;故答案为:.【点评】本题主要考查了菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.21.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号[n,m]表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转度;第3次从第2次停止的位置向相同的方向再次旋转度;第4次从第3次停止的位置向相同的方向再次旋转度;…依此类推.例如[2,90]=,则[,180]=.【考点】扇形面积的计算.【专题】规律型.【分析】主要是读懂[2,90]=,它反应的是开始第一次以90°旋转,第二次以旋转,旋转两次.【解答】解:由题意可得:[,180]=.故答案为.【点评】本题是扇形面积的计算,解决本题的关键是读懂这个新定义.三、解答题(共7小题,满分57分)22.(1)解不等式组:.(2)先化简,再求值:,其中x可取任何一个你喜欢的数值.【考点】分式的化简求值;解一元一次不等式组.【分析】(1)分别求出各不等式的解集,再求出其公共解集即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:(1),解不等式①得x≤2;解不等式②得x>﹣1,所以不等式的解集为﹣1<x≤2.(2)原式=(1﹣)÷=•=,当x=2时,原式=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(1)如图,在△ABC和△BAD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.求证:AC=BD.(2)如图,▱ABCD中,AB=3,AD=5,∠BAD的平分线交BC于点E.求EC的长.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据SAS证出△ABC≌△BAD,可直接得出AC=BD.(2)根据平行四边形的性质得出AD=BC,∠DAE=∠BEA,再根据角平分线的性质得出∠BAE=∠DAE,从而得出∠BAE=∠BEA,即可得出BE=BA,再根据EC=BC﹣BE,求出EC的长.【解答】解:(1)在△ABC和△ABD中,∵,∴△ABC≌△BAD (SAS),∴AC=BD.(2)∵四边形ABCD是平行四边形,AB=3,BC=5,∴AD∥BC,AD=BC=5,∴∠DAE=∠BEA,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=BA=3,∴EC=BC﹣BE=2.【点评】此题考查了全等三角形的判定与性质和平行四边的性质,用到的知识点是全等三角形的判定与性质、平行四边的性质、角平分线的定义、等边对等角、平行线的性质等,熟练掌握有关知识是本题的关键.24.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.【解答】解:(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:150(1+x)2=216,解得x1=﹣220%(不合题意,舍去),x2=20%.答:该品牌电动自行车销售量的月均增长率20%.(2)二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800﹣2300)×(150+180+216)=500×546=273000(元).【点评】本题考主要查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,请直接写出球上的汉字恰好是“美”的概率;(2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成“美丽”或“槐荫”这两个词的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次的汉字恰好组成“美丽”或“槐荫”这两个词的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一个不透明的袋子中装有分别标注着汉字“美”“丽”“槐”“荫”的四个小球,除汉字不同之外,小球没有任何区别,∴P(美)=;(2)列表得:美丽槐荫二一美美美美丽美槐美荫丽丽美丽丽丽槐丽荫槐槐美槐丽槐槐槐荫荫荫美荫丽荫槐荫荫∵所有可能有16种,满足条件的有2种,∴P(美丽或槐荫)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.26.如图,直线y1=x+2与双曲线y2=交于A(m,4),B(﹣4,n).(1)求k值;(2)当y1>y2时请直接写出x的取值范围;(3)P为x轴上任意一点,当△ABP为直角三角形时,求P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A、B坐标代入直线y1=x+2可得m、n的值,将A或B坐标代入双曲线y2=可求得k的值;(2)由A、B坐标根据函数图象可得x的取值范围;(3)设P坐标为(a,0),根据A、B坐标分别表示出PA2、PB2、AB2,分∠BAP=90°、∠ABP=90°、∠APB=90°三种情况根据勾股定理列出关于a的方程,解方程可得a的值,即可得点P的坐标.【解答】解:(1)根据题意可将点A(m,4),B(﹣4,n)代入直线y1=x+2,得:m+2=4,﹣4+2=n,解得:m=2,n=﹣2,故点A坐标为(2,4),点B坐标为(﹣4,﹣2),将点A(2,4)代入双曲线y2=,可得k=8;(2)观察图象可得,y1>y2时,﹣4<x<0或x>2;(3)设x轴上的点P坐标为(a,0),∵点A坐标为(2,4),点B坐标为(﹣4,﹣2),∴PA2=(2﹣a)2+42=(a﹣2)2+16,PB2=(﹣4﹣a)2+(﹣2)2=(a+4)2+4,AB2=(﹣4﹣2)2+(﹣2﹣4)2=72,①当∠BAP=90°时,AB2+AP2=PB2,即(a﹣2)2+16+72=(a+4)2+4,解得:a=6,则点P坐标为(6,0);②当∠ABP=90°时,AB2+PB2=AP2,即72+(a+4)2+4=(a﹣2)2+16,解得:a=﹣6,则点P坐标为(﹣6,0);③当∠APB=90°,PA2+PB2=AB2,即(a﹣2)2+16+(a+4)2+4=72,解得:a=﹣1+或a=﹣1﹣,则点P的坐标为(﹣1+,0)或(﹣1﹣);综上,点P的坐标为:(6,0),(﹣6,0),(﹣1+,0),(﹣1﹣).【点评】本题主要考查一次函数与反比例函数交点问题,根据直线与双曲线相交求得点A、B坐标是解题根本,由△ABP为直角三角形根据勾股定理分类讨论是解题的关键.27.如图1所示,过点M作⊙N的切线MA、MB,切点分别为A、B,连接MN(1)求证:∠AMN=∠BMN.(2)如图2所示,在图1的基础上作⊙M,过⊙N的圆心N作⊙M的切线NC、ND,切点分别为C、D,MA、MB分别与⊙M交于点E、F,NC、ND分别与⊙N交于点G、H,MA与ND交于点P.求证:sin∠DPM=.(3)求证:四边形EFGH是矩形.【考点】圆的综合题.【分析】(1)首先连接NA,NB,由MA、MB是⊙N的切线,利用HL易证得Rt△AMN和Rt△BMN,继而证得结论;(2)首先连接MD,由ND是⊙M的切线,可求得sin∠DPM=,继而证得sin∠DPM=;(3)易证得EH∥MN,继而证得∠FEH=90°,∠EFG=∠FGH=90°,则可证得结论.【解答】证明:(1)如图,连接NA、NB,∵MA、MB是⊙N的切线,∴∠MAN=∠MBN=90°,在Rt△AMN和Rt△BMN中,,∴Rt△AMN和Rt△BMN(HL),∴∠AMN=∠BMN;(2)如图2,连接MD,∵ND是⊙M的切线,∴∠MDP=90°,∴sin∠DPM=,∵MD=ME,∴sin∠DPM=;(3)由(2)可得sin∠APN=,∴=,∴EH∥MN,∵ME=MF,∠AMN=∠BMN,∴MN⊥EF,∴EH⊥EF,∴∠FEH=90°,同理可证∠EFG=∠FGH=90°,∴四边形EFGH是矩形.【点评】此题属于圆的综合题,考查了切线的性质、全等三角形的判定与性质、矩形的判定以及三角函数等知识.注意准确作出辅助线是解此题的关键.28.如图,抛物线y=﹣x+4与y轴交于点A、与x轴分别交于B、C两点.(1)求A、B两点坐标;(2)将Rt△AOB绕点A逆时针旋转90°得到△ADE,求点E的坐标;(3)求出第一象限内的抛物线上与直线AE距离最远的点的坐标.【考点】二次函数综合题.【分析】(1)分别令x=0,y=0可求得点A、B的坐标;(2)由点A、B的坐标可求得OA、OB的长,然后由旋转的性质可得到点E的坐标;(3)延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.先求得直线AE的解析式,然后求得点M的坐标,设点P(t,﹣ t2+t+4),则N(t,﹣t+4),可求得PN=﹣t2+t.从而得到△APM的面积与t的函数关系式,利用配方法可求得△APM的最大值,以及此时点P的坐标.【解答】解:(1)∵当x=0时,y=4,∴A(0,4).∵当y=0时,﹣ x+4=0,∴x1=﹣4,x2=8.∴B(﹣4,0).(2)由(1)得OA=OB=4,∵将△ABO逆时针绕A旋转90°得到△ADE,∴∠ADE=90°,DE=AD=4.∴点D(4,4).∴E(4,0).(3)如图所示:延长AE交抛物线与点M,过点P作PN⊥x轴,交直线AE与点N,过点P作PW⊥AE垂足为W.设直线AE的解析式为y=kx+b.∵将A(0,4),B(,0)代入得:,解得:,∴直线AE的解析式为y=﹣x+4.∵将y=﹣x+4与y=﹣x+4联立解得:,,∴M(12,﹣8).设点P(t,﹣ t2+t+4),则N(t,﹣t+4),PN=﹣t2+t+4﹣(﹣t+4)=﹣t2+t.S△APM=PN•x M=×12×(﹣t2+t)=﹣t2+9t=﹣(t﹣6)2+27.∴当t=6时,△APM的面积最大.∴当t=6时,y=﹣×62+×6+4=.∴P(6,).∵当△APM面积最大时,PW最大,∴直线AE最远的点的坐标为P(6,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了函数解析式与点的坐标的关系、待定系数法求一次函数的解析式、一次函数与二次函数的交点、配方法求二次函数的最值、三角形的面积公式、旋转的性质,列出三角形APM的面积与点P的横坐标t之间的函数关系式是解题的关键.。

2016年山东省烟台市中考数学试卷(含解析版)

2016年山东省烟台市中考数学试卷(含解析版)

2016年山东省烟台市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.D.0.1010010012.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5 D.﹣(a3)2=a64.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为() A. B.C.D.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C. D.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.310.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80° D.80°或140°11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①② B.①③ C.②③ D.①②③12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:原料成本(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.2016年山东省烟台市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.D.0.101001001【考点】实数.【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【解答】解:A、不能正好开方,即为无理数,故本选项错误;B、不能正好开方,即为无理数,故本选项错误;C、π为无理数,所以为无理数,故本选项错误;D、小数为有理数,符合.故选D.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选C.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5 D.﹣(a3)2=a6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的加减法可得出A选项结论不正确;根据单项式乘单项式的运算可得出B选项不正确;根据整式的除法可得出C选项正确;根据幂的乘方可得出D选项不正确.由此即可得出结论.【解答】解:A、3a2﹣6a2=﹣3a2,﹣3a2≠﹣3,∴A中算式计算不正确;B、(﹣2a)•(﹣a)=2a2,2a2=2a2,∴B中算式计算正确;C、10a10÷2a2=5a8,5a8≠5a5(特殊情况除外),∴C中算式计算不正确;D、﹣(a3)2=﹣a6,﹣a6≠a6(特殊情况除外),∴D中算式计算不正确.故选B.4.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】位似变换;坐标与图形性质;正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.10.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80° D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①② B.①③ C.②③ D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为﹣4.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由|x﹣y+2|﹣=0,根据非负数的性质,可求得x﹣y与x+y的值,继而由x2﹣y2=(x﹣y)(x+y)求得答案.【解答】解:∵|x﹣y+2|﹣=0,∴x﹣y+2=0,x+y﹣2=0,∴x﹣y=﹣2,x+y=2,∴x2﹣y2=(x﹣y)(x+y)=﹣4.故答案为:﹣4.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.【考点】解一元一次不等式组;负整数指数幂;在数轴上表示不等式的解集.【分析】根据不等式组,和数轴可以得到a、b的值,从而可以得到b﹣a的值.【解答】解:,由①得,x≥﹣a﹣1,由②得,x≤b,由数轴可得,原不等式的解集是:﹣2≤x≤3,∴,解得,,∴,故答案为:.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为﹣6.【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,==π,∴S扇形B′OBS扇形C′OC==,∵∴阴影部分面积=S扇形B′OB +S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.【考点】圆柱的计算.【分析】根据题意得到EF=AD=BC,MN=2EM,由卷成圆柱后底面直径求出周长,除以6得到EM的长,进而确定出MN的长即可.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,∵把该正方形纸片卷成一个圆柱,使点A与点D重合,底面圆的直径为10cm,∴底面周长为10πcm,即EF=10πcm,则MN=cm,故答案为:.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.【考点】分式的化简求值.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是13.3%;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据×100%可得;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.【解答】解:(1)①小明统计的评价一共有: =150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.故答案为:(1)①150;③13.3%.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲原料成本12(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【考点】一元二次方程的应用.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.22.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.【考点】切线的性质;三角形的外接圆与外心.【分析】(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可解决问题.(2)利用面积法首先证明==,再证明△BEO∽△PEB,得=,即==,由此即可解决问题.【解答】(1)证明:连接OB.∵PB是⊙O切线,∴OB⊥PB,∴∠PBO=90°,∴∠PBD+∠OBD=90°,∵OB=OD,∴∠OBD=∠ODB,∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠PBD=∠EBD,∴BD平分∠PBC.(2)解:作DK⊥PB于K,∵==,∵BD平分∠PBE,DE⊥BE,DK⊥PB,∴DK=DE,∴==,∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,∴∠OBE=∠P,∵∠OEB=∠BEP=90°,∴△BEO∽△PEB,∴=,∴==,∵BO=1,∴OE=,∵OE⊥BC,∴BE=EC,∵AO=OC,∴AB=2OE=.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,在Rt△CSD中根据勾股定理可得x2+y2=25①,在Rt△ARD中根据勾股定理可得(5+x)2+(10﹣y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=, =,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣ m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣ m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,==.∴当m=时,MN最大祝福语祝你考试成功!。

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版七年级第七章平面直角坐标系单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.在平面直角坐标系中,点(-2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】山东省日照市莒县2016-2017学年七年级下学期期末考试数学试题(WORD版)【答案】B2.如图:正方形ABCD中点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为().A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)【来源】2018人教版数学七年级下册第七章平面直角坐标系单元测试题【答案】B3.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】D4.线段AB两端点坐标分别为A(–1,4),B(–4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A.A1(–5,0),B1(–8,–3)B.A1(3,7),B1(0,5)C.A1(–5,4),B1(-8,1)D.A1(3,4),B1(0,1)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】C5.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C6.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C7.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为()A.(2,1)B.(3,3)C.(2,3)D.(3,2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C8.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B9.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】D10.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B11.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC 翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()A.(0,-92)B.(0,-94)C.(0,-72)D.(0,-74)【来源】2016届山东省济南市中考三模数学试卷(带解析)【答案】D12.若点A(m,n)在第二象限,那么点B(-m,n+3)在()A.第一象限B.第二象限;C.第三象限D.第四象限【来源】人教版七年级数学下册第七章平面直角坐标系单元测试【答案】A13.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园-玲珑塔-国家体育场-水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为()A.(-2,-4)B.(-1,-4)C.(-2,4)D.(-4,-1)【来源】第七章平面直角坐标系单元练习题【答案】A评卷人得分二、填空题14.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A 点的位置,用(3,4)表示B 点的位置,那么用______表示C 点的位置.【来源】2016年北师大新版八年级数学上册同步练习:3.1确定位置【答案】(6,1)15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.【来源】2018年秋北师大版八年级数学上册第三章位置与坐标检测卷【答案】(3,-2)16.第三象限内的点P(x ,y),满足5x =,29y =,则点P 的坐标是_________.【来源】湖北黄石江北中学2016-2017学年七年级(下)期中模拟数学试卷(含答案)【答案】(-5,-3).17.若点P (x ,y )满足xy <0,则点P 在第________象限.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】二或四18.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(5,2)19.若点P (a,-b )在第二象限,则点Q (-ab,a+b )在第_______象限.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】三20.若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(15,12)或(15,-12)或(-15,12)或(-15,-12);21.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5), 小华一下就说出了C在同一坐标系下的坐标________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(-1,7)22.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母依次对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是________.【来源】人教版七年级下册数学练习:7.1.1有序数对【答案】APPLE23.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1、1),则此“QQ”笑脸左眼B的坐标________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(0,3)24.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】四25.平面直角坐标系中,点P(3,-4)到x轴的距离是________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】426.通过平移把点A(2,-1)移到点A′(2,2),按同样的平移方式,点B(-3,1)移动到点B′,则点B′的坐标是________.【来源】沪科版数学八年级上学期全册综合测试试卷【答案】(-3,4)27.同学们排成方队做操,李明在第10列第8行,用数对表示为________,小方所在的位置用数对表示为(8,7),她在第________列第________行.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(10,8)8728.若图中的有序数对(4,1)对应字母D ,有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2),(5,2),(1,3),请你把这个英文单词写出来为________.【来源】第七章平面直角坐标系单元练习题【答案】HELLO29.已知点A(x -4,x +2)在y 轴上,则x 的值等于________.【来源】第七章平面直角坐标系单元练习题【答案】4评卷人得分三、解答题30.已知平面直角坐标系中有一点()M 2m 3,m 1-+.(1)点M 到y 轴的距离为1时,M 的坐标?(2)点()N 5,1-且MN//x 轴时,M 的坐标?【来源】山东省济宁市嘉祥县2017-2018学年七年级下学期期中水平测试数学试题【答案】(1)(﹣1,2)或(1,3)(2)(﹣7,﹣1)31.(1)已知图1是将线段AB 向右平移1个单位长度,图2是将线段AB 折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a ,宽为b ,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10m ,长为40m 的长方形菜地上有一条弯曲的小路,小路宽度为1m ,求这块菜地的面积.【来源】2017-2018学年人教版七年级数学下册同步测试题 5.4平移【答案】(1)图形见解析.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)390(m2).32.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.【来源】人教版七年级下册第七章《平面直角坐标系》全章测试含答案【答案】(1)食堂的位置是(-5,5),图书馆的位置是(2,5);(2)见解析;(3)240米.33.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(1)点P(-12,-9)(2)P(0,-3)34.已知A(a-3,a2-4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.【来源】2016——2017学年度江西省赣县区第二学期期中考试七年级数学试题【答案】(1)a=±2,点A的坐标为(-1,0)或(-5,0);(2)a=3,点A的坐标为(0,5).35.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【来源】湖南省长沙市青竹湖湘一外国语学校2017-2018学年七年级上期末试卷数学试题【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°或60°.36.如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场和停车场分别在小明家的什么方位?(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?【来源】2017-2018学年八年级数学冀教版下册单元测试题第19章平面直角坐标系【答案】(1)距小明家距离相同的是学校和公园;(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向;(3)停车场距离小明家800m.37.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】见解析38.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】这些点在同一直线上,在二四象限的角平分线上,举例见解析.39.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.【来源】2014-2015学年山西省大同市矿区十二校七年级下学期期末数学试卷(带解析)【答案】4.40.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【来源】2017-2018学年北师大版八年级下册第三章图形的平移与旋转 3.1图形的平移同步练习卷含答案=5;(2)A′(2,0),B′(4,-2),O′(0,-3).【答案】(1)S△ABO41.请写出点A,B,C,D的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】A(3,2),B(-3,4),C(-4,-3),D(3,-3)42.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)点B的坐标为(-2,0)或(6,0);(2)点B的坐标为(-4,0)或(4,0)或(0,4)或(0,-4)43.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.44.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【来源】2017-2018学年山西农大附中八年级(上)期中数学试卷【答案】A(2,2)、B(-2,-1)、C(3,-2),面积9.5平方单位45.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【来源】2016-2017学年福建省宁德市蕉城中学七年级(下)期末模拟数学试卷(带解析)【答案】(1)57°;(2)3.5cm.46.已知点P 的坐标为()2,a a -,且点P 到两坐标轴的距离相等,求a 的值.【来源】安徽省潜山市2018-2019学年度第一学期八年级数学期末教学质量检测【答案】a =1.47.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B 向上平移5个单位到达点C ,求:(1)A 、B 两点间的距离;(2)写出点C 的坐标;(3)四边形OABC 的面积.【来源】第七章平面直角坐标系单元练习题【答案】(1)5;(2)(3,2);(3)15.48.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A 点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.【来源】2015年人教版初中数学七年级7.2.1练习卷(带解析)【答案】见解析49.已知:点P(2m +4,m -1).试分别根据下列条件,求出P 点的坐标.(1)点P 在y 轴上;(2)点P 在x 轴上;【来源】第七章平面直角坐标系单元练习题【答案】(1)P 点的坐标为(0,-3);(2)P 点的坐标为(6,0).50.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1,1),(3,1),(1,3),(1,1);(-1,3),(-1,5),(-3,3),(-1,3);(-5,1),(-3,-1),(-3,1),(-5,1);(-1,-1),(1,-1),(-1,-3),(-1,-1).(1)观察所得的图形,你觉得它像什么?(2)求出这四个图形的面积和.【来源】第七章平面直角坐标系单元练习题【答案】画图见解析;(1)风车;(2)8.。

2016年山东省烟台市中考数学试卷-答案

2016年山东省烟台市中考数学试卷-答案
10
0.4 ∵丁的成绩的方差最小
∴丁的成绩最稳定
∴参赛选手应选丁
【提示】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可。
【考点】方差,算术平均数
7.【答案】A 【解析】∵正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位似图形,且相似比为 1 ,
3 ∴ AD 1 ,
2 / 14
【考点】位似变换,坐标与图形性质,正方形的性质。
8.【答案】B 【解析】将 y x 2 代入到反比例函数 y 1 6t 中,
x 得: x 2 1 6t ,
x
整理,得: x2 2x 1 6t 0 ∵反比例函数 y 1 6t 的图象与直线 y x 2 有两个交点,且两交点横坐标的积为负数,


【提示】直接利用组合体结合主视图以及俯视图的观察角度得出答案。 【考点】简单组合体的三视图 5.【答案】C
1 / 14
【解析】利用该型号计算器计算 2 cos55 ,按键顺序正确的是

【提示】简单的电子计算器工作顺序是先输入者先算,其中 R CM 表示存储、读出键,M+为存储加键, M 为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果。 【考点】计算器—三角函数,计算器—数的开方
x
22 41 6t ,解得: t > 1
1 6t 0
6
【提示】将一次函数解析式代入到反比例函数解析式中,整理得出关于 x 的一元二次方程,由两函数图象有
两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于 k 的一元一次
不等式组,解不等式组即可得出结论。
6.【答案】D 【解析】由图可知丁射击 10 次的成绩为:8、8、9、7、8、8、9、7、8、8

2023山东省济南市中考数学真题试卷和答案

2023山东省济南市中考数学真题试卷和答案

济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1. 下列几何体中,主视图是三角形的为( )A. B.C. D.2. 2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )A. 80.6865310⨯ B. 86.865310⨯C. 76.865310⨯ D. 768.65310⨯3. 如图,一块直角三角板的直角顶点放在直尺的一边上.如果170=︒∠,那么2∠的度数是( )A. 20︒B. 25︒C. 30︒D. 45︒4. 实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A. 0ab >B. 0a b +>C. 33a b +<+ D. 33a b-<-5. 下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )A. B.C. D.6. 下列运算正确的是( )A. 248a a a ⋅= B. 43a a a -=C. ()325a a = D. 422a a a ÷=7. 已知点()14,A y -,()22,B y -,()33,C y 都在反比例函数()0ky k x=<的图象上,则1y ,2y ,3y 的大小关系为( )A. 321y y y << B. 132y y y <<C. 312y y y << D. 231y y y <<8. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )A.13B.12C.23D.349. 如图,在ABC 中,AB AC =,36BAC ∠=︒,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12B D 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确的是( )A. 36BCE ∠=︒B. BC AE =C.BE AC =D.AEC BEC S S =△△10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q --都是点1P “倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =--上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB其中,正确结论个数是( )A. 1B. 2C. 3D. 4二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11. 因式分解:216x - =__________.12. 围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒子中棋子的总个数是_________.13. 关于x 的一元二次方程2420x x a -+=有实数根,则a 的值可以是_________(写出一个即可).14. 如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).的的15. 学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离()km s 和时间()h t 的关系,则出发__________h 后两人相遇.16. 如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE 的长等于__________.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.计算:()1011tan 602π-⎛⎫-++-︒ ⎪⎝⎭.18. 解不等式组:()223235x x x x ⎧+>+⎪⎨+<⎪⎩①②,并写出它的所有整数解.19. 已知:如图,点O 为ABCD Y 对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F .求证:DE BF =.20. 图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C '处经过,有没有碰头的危险?请说明理由.(结果精确到001m .,参考数据:sin 270.454︒≈,cos 270.891︒≈,tan 270.510︒≈ 1.732≈)21. 2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ≤<;B 组:1223m ≤<;C 组:2334m ≤<;D 组:3445m ≤<;E 组:4556m ≤<.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期平均出游人数如下表:组别A112m ≤<B1223m ≤<C2334m ≤<D3445m ≤<E4556m ≤<平均出游人数(百万)551632.54250求这30个地区“五一”假期的平均出游人数.22. 如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ∠=∠,点E 是 BD的中点,弦CE ,BD 相交于点E .(1)求OCB ∠的度数;(2)若3EF =,求O 直径的长.23. 某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?24 综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a =,能否围出矩形地块?的..【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy =,满足条件的(),x y 可看成是反比例函数8y x=的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y +=,满足条件的(),x y 可看成一次函数210y x =-+的图象在第一象限内点的坐标,同时满足这两个条件的(),x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数()80y x x=>的图象与直线1l :210y x =-+的交点坐标为()1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m =AB ,8m BC =;或AB =___________m ,BC =__________m .(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a =-+.发现直线2y x a =-+可以看成是直线2y x =-通过平移得到的,在平移过程中,当过点()2,4时,直线2y x a =-+与反比例函数()80y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =-+过点()2,4时的图象,并求出a 的值.【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a =-+与8y x=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.25. 在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上,()2,3C ,()1,3D -.抛物线()220y ax ax c a =-+<与x 轴交于点()2,0E -和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线()220y ax ax c a =-+<与正方形ABCD 恰有两个交点,求a 的取值范围.26. 在矩形ABCD 中,2AB =,AD =点E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG .(1)如图1,连接BD ,求BDC ∠的度数和DGBE的值;(2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当EA EC =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求PA PC +的最小值.济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1. 下列几何体中,主视图是三角形的为( )A. B.C. D.【答案】A 【解析】【分析】分别判断出各选项中的几何体的主视图,即可得出答案.【详解】解:A 、圆锥的主视图是三角形,故本选项符合题意;B 、球的主视图是圆,故本选项不符合题意;C 、长方体的主视图是长方形,故本选项不符合题意;D 、三棱柱的主视图是长方形,故本选项不符合题意;故选:A .【点睛】本题考查了简单几何体的三视图,熟知常见几何体的主视图是解本题的关键.2. 2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为( )A. 80.6865310⨯ B. 86.865310⨯C. 76.865310⨯ D. 768.65310⨯【答案】B 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:866.68360503000851=⨯,故选:B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图,一块直角三角板的直角顶点放在直尺的一边上.如果170=︒∠,那么2∠的度数是( )A. 20︒B. 25︒C. 30︒D. 45︒【答案】A 【解析】【分析】根据两直线平行,同位角相等可得13∠=∠,再结合三角板的特征利用平角定义即可算出2∠的度数.【详解】解:如下图进行标注,AB CD ∥ ,1370∴∠=∠=︒,2180903907020∴∠=︒-︒-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线性质,三角形平角的定义,利用三角板的特点求出结果是解答本题的关键.4. 实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A. 0ab >B. 0a b +>C. 33a b +<+D. 33a b-<-【答案】D 【解析】【分析】根据题意可得32,2b a -<<-=,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a -<<-=,所以b a <,∴,30,033,3a b ab a b a b <+-<><-++,观察四个选项可知:只有选项D 的结论是正确的;故选:D .【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出32,2b a -<<-=是解题的关键.5. 下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】A 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.将一个图形沿着一条直线翻折后,直线两侧能完全重合的图形是轴对称图形,将一个图形绕一点旋转180度后能与自身重合的图形是中心对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 下列运算正确的是( )A. 248a a a ⋅= B. 43a a a -=C. ()325a a = D. 422a a a ÷=【答案】D 【解析】【分析】根据同底数幂的乘除法、合并同类项、幂的乘方等运算法则逐项判断即得答案.【详解】解:A 、246a a a ⋅=,故本选项运算错误,不符合题意;B 、4a 与3a -不是同类项,不能合并,故本选项运算错误,不符合题意;C 、()326a a =,故本选项运算错误,不符合题意;D 、422a a a ÷=,故本选项运算正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方等知识,熟练掌握相关运算法则是解题的关键.7. 已知点()14,A y -,()22,B y -,()33,C y 都在反比例函数()0ky k x=<的图象上,则1y ,2y ,3y 的大小关系为( )A. 321y y y << B. 132y y y <<C. 312y y y << D. 231y y y <<【答案】C 【解析】【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解: 在反比例函数(0)ky k x=<中,0k <,∴此函数图象在二、四象限,420-<-< ,∴点()14,A y -,2(2,)B y -在第二象限,10y ∴>,20y >,函数图象在第二象限内为增函数,420-<-<,120y y ∴<<.30> ,3(3,)C y ∴点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y <<.故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.8. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )A.13B.12C.23D.34【答案】B 【解析】【分析】根据题意画树状图,再利用概率公式,即可得到答案.【详解】解:根据题意,画树状图如下:∴一共有12种情况,被抽到的2名同学都是男生的情况有6种,61122P ∴==,故选:B .【点睛】本题考查了列表法或画树状图法求概率,熟练掌握概率公式是解题关键.9. 如图,在ABC 中,AB AC =,36BAC ∠=︒,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12B D 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确的是( )A. 36BCE ∠=︒B. BC AE =C.BE AC =D.AEC BEC S S =△△【答案】C 【解析】【分析】由题意得,BC DC =,CE 平分ABC ∠,根据三角形内角和及角平分线判断A 即可;由角平分线求出36ACE A ∠=︒=∠,得到AE CE =,根据三角形内角和求出72BEC B ∠=︒=∠,得到CE BC =,即可判断B ;证明ABC CBE △∽△,得到AB BCBC BE=,设1,AB BC x ==,则1BE x =-,求出x ,即可判断C ;过点E 作EG BC ⊥于G ,EH AC ⊥于H ,由角平分线的性质定理推出EG EH =,即可根据三角形面积公式判断D .【详解】解:由题意得,BC DC =,CE 平分ABC ∠,∵在ABC 中,AB AC =,36BAC ∠=︒,∴72ABC ACB ∠=∠=︒∵CE 平分ABC ∠,∴36BCE ∠=︒,故A 正确;∵CE 平分ABC ∠,72ACB ∠=︒∴36ACE A ∠=︒=∠,∴AE CE =,∵72ABC ∠=︒,36BCE ∠=︒,∴72BEC B ∠=︒=∠,∴CE BC =,∴BC AE =,故B 正确;∵,A BCE ABC CBE ∠=∠∠=∠,∴ABC CBE △∽△,∴AB BCBC BE=,设1,AB BC x ==,则1BE x =-,∴11x x x=-,∴21x x =-,解得x =∴1BE ==∴BE AC =,故C 错误;过点E 作EG BC ⊥于G ,EH AC ⊥于H ,∵CE 平分ACB ∠,EG BC ⊥,EH AC ⊥,∴EG EH=∴1212AEC BECAC EHS AC S BC BC EG ⋅⋅===⋅⋅△△,故D 正确;故选:C .【点睛】此题考查了等腰三角形等边对等角,相似三角形的判定和性质,角平分线的作图及性质,解一元二次方程,熟练掌握各知识点是解题的关键.10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q --都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =--上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB 其中,正确结论的个数是( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点(),2A a a +,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点()2,23D t t t --是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点(),B m n ,根据“倍增点”定义可得()21m n +=,根据两点间距离公式可得()22211PB m n =-+,把()21n m =+代入化简并配方,即可得出21PB 的最小值为165,即可判断.【详解】解:①∵()11,0P ,()13,8Q ,∴()()121282288103,x x y y +=+=++⨯==,∴()12122x x y y +=+,则()13,8Q 是点1P 的“倍增点”;∵()11,0P ,()22,2Q --,∴()()121222212202,x x y y +==-⨯-=-=-+,∴()12122x x y y +=+,则()22,2Q --是点1P 的“倍增点”;故①正确,符合题意;②设点(),2A a a +,∵点A 是点1P 的“倍增点”,∴()2102a a ⨯+=++,解得:0a =,∴()0,2A ,故②不正确,不符合题意;③设抛物线上点()2,23D t t t --是点1P 的“倍增点”,∴()22123t t t +=--,整理得:2450t t --=,∵()()24415360∆=--⨯⨯-=>,∴方程有两个不相等实根,即抛物线223y x x =--上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点(),B m n ,∵点B 是点1P 的“倍增点”,∴()21m n +=,∵(),B m n ,()11,0P ,∴()22211PB m n =-+()()22121m m ⎡⎤=-++⎣⎦2565m m =++2316555m ⎛⎫=++ ⎪⎝⎭,∵50>,∴21PB 的最小值为165,∴1PB =故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11. 因式分解:216x - =__________.【答案】(x+4)(x-4)【解析】【分析】【详解】x 2-16=(x+4)(x-4),故答案为:(x+4)(x-4)12. 围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒子中棋子的总个数是_________.【答案】12【解析】【分析】利用概率公式,得出黑色棋子的数量除以对应概率,即可算出棋子的总数.【详解】解:13124÷=,∴盒子中棋子的总个数是12.故答案为:12.【点睛】本题考查了简单随机事件概率的相关计算,事件出现的概率等于出现的情况数与总情况数之比.13. 关于x 的一元二次方程2420x x a -+=有实数根,则a 的值可以是_________(写出一个即可).【答案】2(答案不唯一)【解析】【分析】由于方程有实数根,则其根的判别式0∆≥,由此可以得到关于a 的不等式,解不等式就可以求出a 的取值范围,进而得出答案.【详解】解:∵关于x 的一元二次方程2420x x a -+=有实数根,∴()22444120b ac a ∆=-=--⨯⨯≥,即1680a -≥,解得:2a ≤,∴a 的值可以是2.故答案为:2(答案不唯一).【点睛】本题考查一元二次方程()200ax bx c a ++=≠的根与判别式的关系,当0a >时,方程有两个不相等的实数根;当0a =时,方程有两个相等的实数根;当a<0时,方程没有实数根.14. 如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).【答案】65π【解析】【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A ∠的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和()52180540=-⨯︒=︒,5401085A ︒∴∠==︒,2108263605ABES ππ∴==扇形,故答案为:65π.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键.15. 学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离()km s 和时间()h t 的关系,则出发__________h 后两人相遇.【答案】0.35【解析】【分析】根据题意和函数图象中的数据可以计算出小明和小亮的速度,从而可以解答本题.【详解】解:由题意和图象可得,小明0.5小时行驶了()6 3.5 2.5km -=,∴小明的速度为:()2.55km/h 0.5=,小亮0.4小时行驶了6km ,∴小明的速度为:()615km/h 0.4=,设两人出发h x 后两人相遇,∴()155 3.5x -=解得0.35x =,∴两人出发0.35后两人相遇,故答案为:0.35【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16. 如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=︒,2AP =,则PE 的长等于__________.+【解析】【分析】过点A 作AQ PE ⊥于点Q ,根据菱形性质可得75DAC ∠=︒,根据折叠所得30E D ∠=∠=︒,结合三角形的外角定理得出45EAP ∠=︒,最后根据cos 45PQ AP =⋅︒=,tan 30AQ EQ ==︒【详解】解:过点A 作AQ PE ⊥于点Q ,∵四边形ABCD 为菱形,30ABC ∠=︒,∴AB BC CD AC ===,30ABC D ∠=∠=︒,∴()118030752DAC ∠=︒-︒=︒,∵CPE △由CPD △沿CP 折叠所得,∴30E D ∠=∠=︒,∴753045EAP ∠=︒-︒=︒,∵AQ PE ⊥,2AP =,∴cos 45PQ AP =⋅︒=AQ PQ ==,∴tan 30AQ EQ ==︒∴PE EQ PQ =+=+.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17. 计算:()1011tan 602π-⎛⎫-++-︒ ⎪⎝⎭.【答案】3【解析】【分析】根据绝对值的意义、负整数指数幂、零指数幂以及特殊角的三角函数值分别计算后,再根据二次根式加减运算法则求解即可得到答案.【详解】解:()1011tan 602π-⎛⎫-++-︒ ⎪⎝⎭21=++-3=.【点睛】本题考查了绝对值的意义、负整数指数幂运算、零指数幂运算、特殊角的三角函数值、二次根式加减运算,熟练掌握相关运算法则是解本题的关键.18. 解不等式组:()223235x x x x ⎧+>+⎪⎨+<⎪⎩①②,并写出它的所有整数解.【答案】13x -<<,整数解为0,1,2【解析】【分析】分别求解两个不等式,再写出解集,最后求出满足条件的整数解即可.【详解】解:解不等式①,得1x >-,解不等式②,得3x <,在同一条数轴上表示不等式①②的解集,原不等式组的解集是13x -<<,∴整数解为0,1,2.【点睛】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.19. 已知:如图,点O 为ABCD Y 对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F .求证:DE BF =.【答案】详见解析【解析】【分析】根据平行四边形的性质得出AD BC =,AD BC ∥,进而得出EAO FCO ∠=∠,OEA OFC ∠=∠,再证明AOE COF ≌△△,根据全等三角形的性质得出AE CF =,再利用线段的差得出AD AE BC CF -=-,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∴EAO FCO ∠=∠,OEA OFC ∠=∠,∵点O 为对角线AC 的中点,∴AO CO =,∴AOE COF ≌△△,∴AE CF =,∴AD AE BC CF -=-,∴DE BF =.【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,正确理解题意是解题的关键.20. 图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C '处经过,有没有碰头的危险?请说明理由.(结果精确到001m .,参考数据:sin 270.454︒≈,cos 270.891︒≈,tan 270.510︒≈ 1.732≈)【答案】(1)车后盖最高点B '到地面的距离为2.15m(2)没有危险,详见解析【解析】【分析】(1)作B E AD '⊥,垂足为点E ,先求出B E '的长,再求出B E AO '+的长即可;(2)过C '作C F B E ''⊥,垂足为点F ,先求得63AB E '∠=︒,再得到60C B F AB C AB E '''''∠=∠-∠=︒,再求得cos 600.3B F B C '''=⋅︒=,从而得出C '到地面的距离为2.150.3 1.85-=,最后比较即可.【小问1详解】如图,作B E AD '⊥,垂足为点E在Rt AB E '△中∵27B AD '∠=︒,1AB AB '==∴sin 27B EAB '︒='∴sin 2710.4540.454B E AB ''=︒≈⨯=∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO '+=+=≈答:车后盖最高点B '到地面的距离为2.15m .【小问2详解】没有危险,理由如下:过C '作C F B E ''⊥,垂足为点F∵27B AD '∠=︒,90B EA '∠=︒∴63AB E '∠=︒∵123AB C ABC ''∠=∠=︒∴60C B F AB C AB E '''''∠=∠-∠=︒在Rt B FC '' 中,0.6B C BC ''==∴cos 600.3B F B C '''=⋅︒=.∵平行线间的距离处处相等∴C '到地面的距离为2.150.3 1.85-=.∵1.85 1.8>∴没有危险.【点睛】本题主要考查了解直角三角形的应用,掌握直角三角形的边角关系是解题的关键.21. 2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ≤<;B 组:1223m ≤<;C 组:2334m ≤<;D 组:3445m ≤<;E 组:4556m ≤<.下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b .不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期的平均出游人数如下表:组别A112m ≤<B 1223m ≤<C 2334m ≤<D 3445m ≤<E 4556m ≤<平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36(2)详见解析 (3)155 (4)20百万【解析】【分析】(1)由E 组的个数除以总个数,再乘以360︒即可;(2)先用D 组所占百分比乘以总个数得出其个数,再用总个数减去A 、B 、D 、E 组的个数得出C 组个.数,最后画图即可;(3)根据中位数的定义可得出中位数为第15和16个数的平均数,第15和16个数均在B 组,求解即可;(4)根据加权平均数的求解方法计算即可.【小问1详解】33603630⨯︒=︒,故答案为:36;【小问2详解】D 组个数:3010%3⨯=个,C 组个数:30128334----=个,补全频数分布直方图如下:【小问3详解】共30个数,中位数为第15和16个数的平均数,第15和16个数均在B 组,∴中位数为151615.52+=百万,故答案为:15.5;【小问4详解】5.51216832.544235032030⨯+⨯+⨯+⨯+⨯=(百万),答:这30个地区“五一”假期的平均出游人数是20百万.【点睛】本题考查了扇形统计图和频数分布直方图的相关知识,涉及求扇形所对的圆心角的度数,画频数分布直方图,求中位数,求加权平均数,熟练掌握知识点,并能够从题目中获取信息是解题的关键.22. 如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ∠=∠,点E 是 BD的中点,弦CE ,BD 相交于点E .(1)求OCB ∠的度数;(2)若3EF =,求O 直径的长.【答案】(1)60︒(2)【解析】【分析】(1)根据切线的性质,得出OC PC ⊥,再根据直角三角形两锐角互余,得出90OCB BCP ∠+∠=︒,再根据等边对等角,得出OCB OBC ∠=∠,再根据等量代换,得出2OCB BCP ∠=∠,再根据90OCB BCP ∠+∠=︒,得出290BCP BCP ∠+∠=︒,即390BCP ∠=︒,得出30BCP ∠=︒,进而计算即可得出答案;(2)连接DE ,根据圆周角定理,得出90DEC ∠=︒,再根据中点定义,得出 DEEB =,再根据同弧或同弦所对的圆周角相等,得出1302DCE ECB FDE DCB ∠=∠=∠=∠=︒,再根据正切的定义,得出DE =,再根据30︒角所对的直角边等于斜边的一半,得出2CD DE ==【小问1详解】解:∵PC 与O 相切于点C ,∴OC PC ⊥,∴90OCB BCP ∠+∠=︒,∵OB OC =,∴OCB OBC ∠=∠,∵2ABC BCP ∠=∠,∴2OCB BCP ∠=∠,∴290BCP BCP ∠+∠=︒,即390BCP ∠=︒,∴30BCP ∠=︒,∴260OCB BCP ∠=∠=︒;【小问2详解】解:如图,连接DE,的。

(2021年整理)2016年山东省济宁市中考数学试卷及答案

(2021年整理)2016年山东省济宁市中考数学试卷及答案

(完整)2016年山东省济宁市中考数学试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016年山东省济宁市中考数学试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016年山东省济宁市中考数学试卷及答案的全部内容。

2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:1 2 3 4 5参赛者编号成绩/96 88 86 93 86分那么这五位同学演讲成绩的众数与中位数依次是()A.96,88,B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A .B .C .D .10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0。

2016年山东省青岛市市北区中考数学一模试卷(解析版)

2016年山东省青岛市市北区中考数学一模试卷(解析版)

2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。

2024年济南市中考数学真题试卷及答案

2024年济南市中考数学真题试卷及答案

2024年济南市中考数学真题试卷一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1. 9的相反数是( ) A. 19 B. 19- C. 9 D. 9-2. 黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%,将数字3465000000用科学记数法表示为( )A. 90.346510⨯B. 93.46510⨯C. 83.46510⨯D. 834.6510⨯4. 一个正多边形,它的每一个外角都等于45°,则该正多边形是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形5. 如图,已知,60,40ABC DEC A B ∠=︒∠=︒△≌△,则DCE ∠的度数为( ).A. 40︒B. 60︒C. 80︒D. 100︒6. 下列运算正确的是( )A. 336x y xy +=B. ()326xy xy =C. ()3838x x +=+D. 235x x x7. 若关于x 的方程20x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A. 14m <- B. 14m >- C. 4m <- D. 4m >-8. 3月14日是国际数学节、某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参力口其中一个活动,则她们恰好选到同一个活动的概率是( ) A. 19 B. 16 C. 13 D. 239. 如图,在正方形ABCD 中,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ,作直线EF ,再以点A 为圆心,以AD 的长为半径作弧交直线EF 于点G (点G 在正方形ABCD 内部),连接DG 并延长交BC 于点K .若2BK =,则正方形ABCD 的边长为( )A. 1B. 52C. 32+D. 110. 如图1,ABC 是等边三角形,点D 在边AB 上,2BD =,动点P 以每秒1个单位长度的速度从点B 出发,沿折线BC CA -匀速运动,到达点A 后停止,连接DP .设点P 的运动时间为()s t ,2DP 为y .当动点P 沿BC 匀速运动到点C 时,y 与t 的函数图象如图2所示.有以下四个结论:①3AB =;①当5t =时,1y =;①当46t ≤≤时,13y ≤≤;①动点P 沿BC CA -匀速运动时,两个时刻1t ,()212t t t <分别对应1y 和2y ,若126t t +=,则12y y >.其中正确结论的序号是( )A.①①①B.①①C.①①D.①①①二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.11. 若分式12x x-的值为0,则x 的值是________. 12. 如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为______.13. 如图,已知12l l ∥,ABC 是等腰直角三角形,90BAC ∠=︒,顶点,A B 分别在12,l l 上,当170=︒∠时,2∠=______.14. 某公司生产了,A B 两款新能源电动汽车.如图,12,l l 分别表示A 款,B 款新能源电动汽车充满电后电池的剩余电量()kw h y ⋅与汽车行驶路程()km x 的关系.当两款新能源电动汽车的行驶路程都是300km 时,A 款新能源电动汽车电池的剩余电量比B 款新能源电动汽车电池的剩余电量多______kw h ⋅.15. 如图,在矩形纸片ABCD中,2AB AD==,E为边AD的中点,点F在边CD上,连接EF,将DEF沿EF翻折,点D的对应点为D,连接BD'.若2BD'=,则DF=______.三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.16. 计算11(π 3.14)2cos304-⎛⎫-++-︒⎪⎝⎭.17. 解不等式组:()4212523x xx x⎧>-⎪⎨++<⎪⎩①②,并写出它的所有整数解.18. 如图,在菱形ABCD中,AE CD⊥,垂足为,E CF AD⊥,垂足为F.求证:AF CE=.19. 城市轨道交通发展迅猛,为市民出行带来极大方便,某校“综合实践”小组想测得轻轨高架站的相关距离,数据勘测组通过勘测得到了如下记录表:(1)求点C 到地面DE 的距离;(2)求顶部线段BC 的长.(结果精确到0.01m ,参考数据:sin150.259︒≈,cos150.966︒≈,tan150.268︒≈,sin830.993,cos830.122,tan838.144︒≈︒≈︒≈)20. 如图,,AB CD 为O 的直径,点E 在BD 上,连接,AE DE ,点G 在BD 的延长线上,,45AB AG EAD EDB =∠+∠=︒.(1)求证:AG 与O 相切;(2)若13BG DAE =∠=,求DE 的长. 21. 2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x 表示,单位:分) 并对数据(成绩)进行统计整理.数据分为五组:A:5060x ≤<;B:6070x ≤<;C:7080x ≤<;D:8090x ≤<;E:90100x ≤≤.下面给出了部分信息:a :C 组的数据:70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.b :不完整的学生竞赛成绩频数直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)求随机抽取的八年级学生人数;(2)扇形统计图中B 组对应扇形的圆心角为______度;(3)请补全频数直方图;(4)抽取的八年级学生竞赛成绩的中位数是______分;(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.22. 近年来光伏建筑一体化广受关注.某社区拟修建A,B 两种光伏车棚.已知修建2个A 种光伏车棚和1个B 种光伏车棚共需投资8万元,修建5个A 种光伏车棚和3个B 种光伏车棚共需投资21万元.(1)求修建每个A 种,B 种光伏车棚分别需投资多少万元?(2)若修建A,B 两种光伏车棚共20个,要求修建的A 种光伏车棚的数量不少于修建的B 种光伏车棚数量的2倍,问修建多少个A 种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?23. 已知反比例函数(0)k y x x=>的图象与正比例函数()30y x x =≥的图象交于点()2,A a ,点B 是线段OA 上(不与点A 重合)的一点.(1)求反比例函数的表达式;(2)如图1,过点B 作y 轴的垂线,l l 与(0)k y x x=>的图象交于点D ,当线段3BD =时,求点B 的坐标;(3)如图2,将点A 绕点B 顺时针旋转90︒得到点E ,当点E 恰好落在(0)k y x x =>的图象上时,求点E 的坐标.24. 在平面直角坐标系xOy 中,抛物线21:C y x bx c =++经过点()()0,2,2,2A B ,顶点为D ;抛物线()222:221C y x mx m m m =-+-+≠,顶点为Q .(1)求抛物线1C 的表达式及顶点D 的坐标;(2)如图1,连接AD ,点E 是拋物线1C 对称轴右侧图象上一点,点F 是拋物线2C 上一点,若四边形ADFE 是面积为12的平行四边形,求m 的值;(3)如图2,连接,BD DQ ,点M 是抛物线1C 对称轴左侧图像上的动点(不与点A 重合),过点M 作MN ∥DQ 交x 轴于点N ,连接,BN DN ,求BDN 面积的最小值.25. 某校数学兴趣小组的同学在学习了图形的相似后,对三角形的相似进行了深入研究.(一)拓展探究如图1,在ABC 中,90,ACB CD AB ∠=︒⊥,垂足为D .(1)兴趣小组的同学得出2AC AD AB =⋅.理由如下: ACB ∠=A B ∴∠+∠CD AB ⊥ADC ∴∠A ACD ∴∠+∠B ∴∠=①______A ∠=∠ABC∴∽AB AC ∴=①______2AC ∴=请完成填空(2)如图2,F 为线段CD 上一点,连接AF 并延长至点E ,连接CE ,当ACE AFC ∠=∠时,请判断AEB 的形状,并说明理由.(二)学以致用(3)如图3,ABC 是直角三角形,90,2,ACB AC BC ∠=︒==,平面内一点D ,满足AD AC =,连接CD 并延长至点E ,且CEB CBD ∠∠=,当线段BE 的长度取得最小值时,求线段CE 的长.2024年济南市中考数学真题试卷答案一、选择题.1. 【答案】D2. 【答案】A3. 【答案】B4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】B8. 【答案】C9. 【答案】D【解析】连接AG ,设EF 交AB 于点H,正方形边长为2x 由作图知,2AG AD x ==,EF 垂直平分AB ①12AH BH AB x ===,90AHG ∠=︒①GH = ①90BAD ∠=︒①AD GH ∥①AD BC ∥①////AD GH BC ①1DG AH GK HB== ①DG GK =①2BK = ①()112GH AD BK x =+=+1x =+①12x =①21x =.故选:D .10. 【答案】D【解析】解:由图知当动点P 沿BC 匀速运动到点C 时,27DP = 作DE BC ⊥于点EABC 是等边三角形,点D 在边AB 上,2BD =60B ∴∠=︒,AB BC AC ==sin 60DE BD ∴=⋅︒=cos601BE BD =⋅︒=2EP ∴==3AB BC BE EP ∴==+=故①正确;当5t =时,532PC =-=,1AP AD ==60A ∠=︒∴ADP △是等边三角形1DP AP AD ∴===21y DP ∴==故①正确;当46t ≤≤时,且DP AC ⊥时,2DP 最小1AD =,60A ∠=︒sin 60DP AD ∴=⋅︒=∴2DP 最小为34,即y 能取到34故①错误;动点P 沿BC CA -匀速运动时,126t t +=,12t t <∴13t <,23t >,216t t =-当101t ≤≤时,256t ≤≤()222111114y t t t =-+=-+; 当DP AC ⊥时,52CP =,34DP = 22222211111319132421616y t t t t ⎛⎫⎛⎫⎛⎫=-+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 121351401616y y ∴-=-=> 12y y ∴>; 同理,当113t <<时,235t <<()222111114y t t t =-+=-+ 22222211113191362421616y t t t t ⎛⎫⎛⎫⎛⎫=--+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121351401616y y ∴-=-=> 12y y ∴>; 故①正确;综上所述,正确的有①①①故选:D .二、填空题.11. 【答案】112. 【答案】1413. 【答案】65︒14. 【答案】1215. 【解析】解:如图:连接BE ,延长FE 交BA 的延长线于H①矩形ABCD 中2AB AD ==,E 为边AD 的中点, ①1AE DE ==,90BAE D ∠=∠=︒①将DEF 沿EF 翻折,点D 的对应点为D①190ED ED ED F D DEF D EF '''==∠=∠=︒∠=∠,, ①()Rt Rt ASA HAE FDE ≌①DF AH =①BE ===①2BD '=①22212+=,即222D E BE BD ''+=①BED '△为直角三角形设DEF α∠=,则2AEH DEF DED αα'∠=∠=∠=,①90290AEB AHE αα∠=︒-∠=︒-,①90HEB AHE α∠=∠=︒-①BHE 为等腰三角形①BH BE ==①AH BH AB =-=①DF AH ==故答案为三、解答题.16. 【答案】617. 【答案】14x -<<,整数解为:0,1,2,3.18. 证明:四边形ABCD 是菱形AD CD ∴=,AE CD CF AD ⊥⊥90AED CFD ∴∠=∠=︒D D ∠=∠AED CFD ∴≌DE DF ∴=AD DF CD DE ∴-=-AF CE ∴=19. 【答案】(1)点C 到地面DE 的距离为6.65m ; (2)顶部线段BC 的长为7.14m .【小问1详解】解:如图,过点C 作CN ED ⊥,交ED 的延长线于点N97CDE ∠=︒83CDN ∴∠=︒在Rt CDN △中,sin sin830.993, 6.7CN CDN CD CD∠=︒=== sin83 6.70.993 6.65CN CD ∴=︒=⨯≈答:点C 到地面DE 的距离为6.65m【小问2详解】解:如图,过点B 作⊥BP CF ,垂足为PCF ∥DE83FCD CDN ∴∠=∠=︒98BCD ∠=︒15BCP BCD FCD ∴∠=∠-∠=︒平行线间的距离处处相等6.65EF CN ∴==①8.5AE =8.5 6.65 1.85BP AF AE EF ∴==-=-=在Rt BCP △中, sin sin150.259BP BCP BC ∠=︒== 1.857.14sin150.259BP BC ∴==≈︒ 答:顶部线段BC 的长为7.14m .20. 【答案】(1)证明见解析; (2. 【小问1详解】解:,EDB EAB ∠∠所对的弧是同弧 EDB EAB ∴∠=∠45EAD EDB ∠+∠=︒45EAD EAB ∴∠+∠=︒即45BAD ∠=︒AB 为直径90ADB ∴∠=︒18045B ADB DAB ∴∠=︒-∠-∠=︒AB AG =45B G ∴∠=∠=︒90GAB ∴∠=︒AG ∴与O 相切.【小问2详解】解: 连接CE,DAE DCE ∠∠所对的弧是同弧DAE DCE ∴∠=∠ DC 为直径90DEC ∴∠=︒在Rt DEC △中,1sin sin 3DE DCE DAE DC∠=∠==445,90BG B BAG =∠=︒∠=︒AB DC ∴===1sin 3DE DC DAE ∴=∠== 21. 【答案】(1)60人 (2)90(3)图见解析 (4)77(5)390人【小问1详解】解:35%60÷=(人); 【小问2详解】153609060︒⨯=︒;故答案为:90;【小问3详解】D 组人数为:6031516620----=;补全直方图如图:【小问4详解】将数据排序后第30个和第31个数据分别为76,78①中位数为:()17678772+=; 【小问5详解】20690039060+⨯=(人). 22. 【答案】(1)修建一个A 种光伏车棚需投资3万元,修建一个B 种光伏车棚需投资2万元(2)修建A 种光伏车棚14个时,投资总额最少,最少投资总额为54万元【小问1详解】解:设修建一个A 种光伏车棚需投资x 万元,修建一个B 种光伏车棚需投资y 万元,根据题意,得285321x y x y +=⎧⎨+=⎩解得32x y =⎧⎨=⎩答:修建一个A 种光伏车棚需投资3万元,修建一个B 种光伏车棚需投资2万元.【小问2详解】解:设修建A 种光伏车棚m 个,则修建B 种光伏车棚()20m -个,修建A 种和B 种光伏车棚共投资W 万元,根据题意,得()220m m ≥- 解得403m ≥ ()322040W m m m =+-=+10>W ∴随m 的增大而增大∴当14m 时,W 取得最小值,此时144054W =+=(万元) 答:修建A 种光伏车棚14个时,投资总额最少,最少投资总额为54万元. 23. 【答案】(1)12y x=; (2)()1,3B ; (3)点()3,4E . 【小问1详解】解:将()2,A a 代入3y x =得326a =⨯= ()2,6A ∴将()2,6A 代入k y x =得62k =,解得12k = ∴反比例函数表达式为12y x= 【小问2详解】解:如图,设点(),3B m m ,那么点()3,3D m m +由12y x=可得12xy = 所以()3312m m +=解得121,4m m ==-(舍)()1,3B ∴;【小问3详解】解:如图,过点B 作FH ∥y 轴,过点E 作EH FH ⊥于点H ,过点A 作AF FH ⊥于点,90F EHB BFA ∠=∠=︒90HEB EBH ∴∠+∠=︒点A 绕点B 顺时针旋转90︒90,ABE BE BA ∴∠=︒=90EBH ABF ∴∠+∠=︒BEH ABF ∴∠=∠EHB BFA ∴△≌△设点(),3,63,2B n n EH BF n BH AF n ==-==-∴点()62,42E n n --()()426212n n ∴--= 解得123,22n n ==∴点()3,4E 或()2,6(舍),此时点()3,4E .24. 【答案】(1)222y x x -=+,()1,1D (2)122,9m m == (3)78时,74n =,根据三角形的面积公式即可得到结论.【小问1详解】解:抛物线2y x bx c =++过点()()0,2,2,2A B得2422c b c =⎧⎨++=⎩解得22b c =-⎧⎨=⎩∴抛物线1C 的表达式为222y x x -=+∴顶点()1,1D ;【小问2详解】解:如图,连接DE ,过点E 作EG ∥y 轴,交AD 延长线于点G ,过点D 作DH EG ⊥,垂足为H ,与y 轴交于H ',设点E 的横坐标为t .设直线AD 的表达式为y kx b =+由题意知21b k b =⎧⎨+=⎩解得12k b =-⎧⎨=⎩∴直线AD 的表达式为2y x =-+()()22,22,,2,E t t t G t t EG t t -+-=- ADFE 的面积为12162ADE ADFE S S ∴==△,162ADE AGE DGE S S S EG H D ==⋅='-△△△ 1H D '=12EG ∴=212t t ∴-=解得124,3t t ==-(舍)()4,10E ∴点E 先向右平移1个单位长度,再向下平移1个单位长度,得到点F ()5,9F ∴将()5,9F 代入()22221y x mx m m m =-+-+≠得211180m m -+=解得122,9m m ==.【小问3详解】解:如图,过M 作MP x ⊥轴,垂足为P ,过点D 作DK ∥y 轴,过点Q 作QK ∥x 轴,与DK 交于点K ,设()2,22,1M h h h h -+<且()0,,0h N n ≠22222()2y x mx m m x m m =-++-=-+- ∴抛物线2C 的顶点(),2Q m m -()121,1DK m m KQ m ∴=--=-=- ,45DK KQ DQK ∴=∠=︒ MN ∥DQ ,KQ ∥NP易得45MNP DQK ∠=∠=︒45NMP ∴∠=︒MP NP ∴=222n h h h ∴-=-+22n h h ∴=-+21724n h ⎛⎫∴=-+ ⎪⎝⎭ ∴当12h =时,74n = ∴点N 横坐标最小值为74n =,此时点N 到直线BD 距离最近,BDN 的面积最小最近距离即边BD 上的高,高为:7428⨯=BDN ∴△面积的最小值为17288BDN S =⨯=△.25. 【答案】(1)①ACD ∠;①AC AD;(2)AEB 是直角三角形,证明见解析;(3)【详解】解:(1)90ACB ∠=︒90A B ∴∠+∠=︒CD AB ⊥90ADC ∴∠=︒90A ACD ∴∠+∠=︒B ACD ∴∠=∠A A ∠=∠ABC ACD ∴∽AB AC AC AD∴= 2AC AD AB ∴=⋅;(2)AEB 是直角三角形;理由如下: ,ACE AFC CAE FAC ∠=∠∠=∠ ACF AEC ∴△∽△AC AE AF AC∴= 2AC AF AE ∴=⋅由(1)得2AC AD AB =⋅ AF AE AD AB ∴⋅=⋅ AF AD AB AE∴= FAD BAE ∠=∠AFD ABE ∴△∽△90ADF AEB ∴∠=∠=︒ AEB ∴是直角三角形. (3),CEB CBD ECB BCD ∠=∠∠=∠ CEB CBD ∴△∽△CE CB CB CD∴= (2224CD CE CB ∴⋅===如图,以点A 为圆心,2为半径作A ,则,C D 都在A 上,延长CA 到0E ,使06CE =,交A 于0D ,连接0E E则04CD = ①0CD 为A 的直径 ①090CDD ∠=︒ 0024CD CE CD CE ∴⋅==⋅ ①00CD CD CE CE = 00ECE D CD ∠=∠ 00ECE D CD ∴∽△△ 0090CDD CE E ∴∠=∠=︒ ∴点E 在过点0E 且与0CE 垂直的直线上运动 过点B 作0BE E E '⊥,垂足为E ',连接CE ' ①垂线段最短 ①当点E 在点E '处时,BE 最小 即BE 的最小值为BE '的长 ①00090CE E E CB BE E ''∠=∠=∠=︒ ①四边形0CE E B '是矩形 ①06BE CE '== 在0Rt CE E '△中根据勾股定理得:CE =='即当线段BE 的长度取得最小值时,线段CE的长为。

2024年山东省济南市中考数学模拟试卷(含答案)

2024年山东省济南市中考数学模拟试卷(含答案)

2024年山东省济南市中考数学模拟试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有理数a、b在数轴上的位置如图所示,化简:|a+2|―|2a|―|b―1|+|a+b|=( )A. ―3B. 2b―3C. 3―2bD. 2a+b2.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A.B.C.D.3.据报道,2024年春节假期河源万绿湖景区共接待游客约220000人次.数字220000用科学记数法表示是( )A. 2.2×106B. 2.2×105C. 22×106D. 0.22×1064.下列计算正确的是( )A. (a3)2=a9B. (xy2)3=xy6C. (―2b2)2=―4b4D. (a)2=a5.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°6.若二次根式1―3x有意义,则x的取值范围是( )3A. x≠13B. x≥13C. x<13D. x≤137.下列计算正确的是( )A. (a―1)2=a2―1B. 4a⋅2a=8a2C. 2a―a=2D. a8÷a2=a48.若点A(―4,y1),B(―2,y2),C(5,y3)在反比例函数y=3x的图象上,则y1,y2,y3大小关系为( )A. y3>y1>y2B. y2>y3>y1C. y3>y2>y1D. y1>y2>y39.如图,AB为⊙O的直径,AD交⊙O于点F,点C是弧BF的中点,连接AC.若∠CAB=30°,AB=2,则阴影部分的面积是( )A. π3B. π6C. 2π3D. π210.如图,点A是反比例函数y=kx(k≠0)在第二象限图象上的一点,其纵坐标为1,分别作AB⊥x轴、AC⊥y轴,点D为线段OB的三等分点(BD=13OB),作DE⊥x轴,交双曲线于点E,连接CE.若CE=DE,则k的值为( )A. ―2B. ―322C. ―94D. ―22二、填空题:本题共6小题,每小题4分,共24分。

2016年山东省济南市中考数学试卷附详细答案(原版+解析版)

2016年山东省济南市中考数学试卷附详细答案(原版+解析版)

2016年山东省济南市中考数学试卷一、选择题(本大题共15个小题,每小题3分,共45分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为()A.0.215×104B.2.15×103C.2.15×104D.21.5×1023.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°4.(3分)如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.5.(3分)下列运算正确的是()A.a2+a=2a3B.a2•a3=a6 C.(﹣2a3)2=4a6D.a6÷a2=a36.(3分)京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)化简÷的结果是()A. B.C. D.2(x+1)8.(3分)如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M 平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位9.(3分)如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x>3 C.x<D.x<310.(3分)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.11.(3分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k 的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>112.(3分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m13.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.14.(3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤015.(3分)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)16.(3分)计算:2﹣1+=.17.(3分)分解因式:a2﹣4b2=.18.(3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是.19.(3分)若代数式与的值相等,则x=.20.(3分)如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(k>0)的图象过点A,则k=.21.(3分)如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.三、解答题(本大题共7个小题,共57分)22.(7分)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.(2)解不等式组:.23.(7分)(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.24.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(8分)随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有人,在扇形统计图中“D“选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?26.(9分)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.27.(9分)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F 分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE 绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.28.(9分)如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.2016年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为()A.0.215×104B.2.15×103C.2.15×104D.21.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:2150=2.15×103,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.4.(3分)如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.【分析】直接利用主视图以及俯视图的观察角度不同分别得出几何体的视图进而得出答案.【解答】解:A、三棱锥的主视图是三角形,俯视图也是三角形,故此选项错误;B、圆柱的主视图是矩形,俯视图是圆,故此选项错误;C、圆锥的主视图是三角形,俯视图是圆,故此选项错误;D、三棱柱的主视图是矩形,俯视图是三角形,故此选项正确;故选:D.【点评】此题主要考查了由三视图判断几何体,正确把握观察角度是解题关键.5.(3分)下列运算正确的是()A.a2+a=2a3B.a2•a3=a6 C.(﹣2a3)2=4a6D.a6÷a2=a3【分析】根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法法则进行解答.【解答】解:A、a2与a不是同类项,不能合并,故本选项错误;B、原式=a2+3=a5,故本选项错误;C、原式=(﹣2)2•a3×2=4a6,故本选项正确;D、原式=a6﹣2=a4,故本选项错误;故选:C.【点评】本题综合考查了合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.(3分)京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断.【解答】解:A是轴对称图形,故错误;B既不是轴对称图形也不是中心对称图形,故错误;C是中心对称图形,故错误;D既是轴对称图形又是中心对称图形,故正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7.(3分)化简÷的结果是()A. B.C. D.2(x+1)【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•(x﹣1)=,故选A【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.(3分)如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M 平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位【分析】根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.【解答】解:根据图形M平移前后对应点的位置变化可知,需要向右平移1个单位,向下平移3个单位.故选(B)【点评】本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.9.(3分)如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x>3 C.x<D.x<3【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=,∴点B(,0).观察函数图象,发现:当x<时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.10.(3分)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C 表示)展示所有9种可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.11.(3分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k 的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>1【分析】当△>0时,方程有两个不相等的两个实数根,据此求出k的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴(﹣2)2﹣4×1×k>0,∴4﹣4k>0,解得k<1,∴k的取值范围是:k<1.故选:A.【点评】此题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况,要熟练掌握,解答此题的关键是要明确:当△>0时,方程有两个不相等的两个实数根.12.(3分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故选B.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.13.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.【解答】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.14.(3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤0【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.15.(3分)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.【分析】先求出DN,判断点Q到D点时,DP⊥AB,然后分三种情况分别用三角形的面积公式计算即可.【解答】解:∵AD=5,AN=3,∴DN=2,如图1,过点D作DF⊥AB,∴DF=BC=4,在RT△ADF中,AD=5,DF=4,根据勾股定理得,AF==3,∴BF=CD=2,当点Q到点D时用了2s,∴点P也运动2s,∴AP=3,即QP⊥AB,∴只分三种情况:①当0<t≤2时,如图1,过Q作QG⊥AB,过点D作DF⊥AB,QG∥DF,∴,由题意得,NQ=t,MP=t,∵AM=1,AN=3,∴AQ=t+3,∴,∴QG=(t+3),∵AP=t+1,∴S=S=AP×QG=×(t+1)×(t+3)=(t+2)2﹣,△APQ当t=2时,S=6,②当2<t≤4时,如图2,∵AP=AM+t=1+t,=AP×BC=(1+t)×4=2(t+1)=2t+2,∴S=S△APQ当t=4时,S=10,③当4<t≤5时,如图3,由题意得CQ=t﹣4,PB=t+AM﹣AB=t+1﹣5=t﹣4,∴PQ=BC﹣CQ﹣PB=4﹣(t﹣4)﹣(t﹣4)=12﹣2t,=PQ×AB=×(12﹣2t)×5=﹣5t+30,∴S=S△APQ当t=5时,S=5,=(t+2)2﹣,当t=2时,S=6,②S=S△∴S与t的函数关系式分别是①S=S△APQ=2t+2,当t=4时,S=10,③∴S=S△APQ=﹣5t+30,当t=5时,S=5,APQ综合以上三种情况,D正确故选D.【点评】此题是动点问题的函数图象,考查了三角形的面积公式,矩形的性质,解本题的关键是分段画出图象,判断出点Q在线段CD时,PQ⊥AB是易错的地方.二、填空题(本大题共6个小题,每小题3分,共18分)16.(3分)计算:2﹣1+=.【分析】分别根据负整数指数幂的运算法则、算术平方根的定义分别计算出各数,再根据有理数的加法法则进行计算即可.【解答】解:原式=+2=.故答案为:.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.17.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).【点评】本题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.18.(3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是16.【分析】先根据平均数的大小,求得x的值,再将这组数据按从小到大的顺序排列,求得中位数即可.【解答】解:∵18,x,15,16,13这组数据的平均数为16,∴(18+x+15+16+13)÷5=16,解得x=18,∴这组数据按从小到大的顺序排列为:13,15,16,18,18,∴这组数据的中位数是16.故答案为:16【点评】本题主要考查了中位数以及算术平均数,注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.(3分)若代数式与的值相等,则x=4.【分析】由已知条件:代数式与的值相等,可以得出方程=,解方程即可.【解答】解:根据题意得:=,去分母得:6x=4(x+2),移项合并同类项得:2x=8,解得:x=4.故答案为:4.【点评】本题考查了解分式方程,解答本题的关键在于根据题意列出方程,解方程时注意按步骤进行.20.(3分)如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(k>0)的图象过点A,则k=2.【分析】先求出点A的坐标,再代入反比例函数y=(k>0),即可解答.【解答】解:∵半径为2的⊙O在第一象限与直线y=x交于点A,∴OA=2,∴点A的坐标为(,),把点A代入反比例函数y=(k>0)得:k==2,故答案为:2.【点评】本题考查了反比例函数与一次函数的交点坐标,解决本题的关键是求出点A的坐标.21.(3分)如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【分析】如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,利用勾股定理求出x,再利用△DME∽△FEN,得=,求出EN,EM,求出tan∠AMN,再证明∠EHG=∠AMN即可解决问题.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,∴AN=EN=,∴tan∠AMN==,如图3中,∵ME⊥EN,HG⊥EN,∴EM∥GH,∴∠NME=∠NHG,∵∠NME=∠AMN,∠EHG=∠NHG,∴∠AMN=∠EHG,∴tan∠EHG=tan∠AMN=.方法二,tan∠EHG=tan∠EMN==.故答案为.【点评】本题考查翻折变换、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会把问题转化,证明∠AMN=∠EHG是关键,属于中考填空题中的压轴题.三、解答题(本大题共7个小题,共57分)22.(7分)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.(2)解不等式组:.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)a(1﹣4a)+(2a+1)(2a﹣1)=a﹣4a2+4a2﹣1=a﹣1,当a=4时,原式=4﹣1=3;(2)∵解不等式①得:x≤3,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x≤3.【点评】本题考查了整式的混合运算和求值,解一元一次不等式组的应用,能正确根据整式的运算法则进行化简是解(1)的关键,能根据找不等式组解集的规律找出不等式组的解集是解(2)的关键.23.(7分)(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.【分析】(1)根据菱形的性质,利用SAS判定△ABE≌△ADF,从而求得AE=AF;(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D∵CE=CF,∴BE=DF在△ABE与△ADF中,,∴△ABE≌△ADF.∴AE=AF;(2)∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠OPA=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.同时考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.24.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【分析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【解答】解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.25.(8分)随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有100人,在扇形统计图中“D“选项所占的百分比为10%;(2)扇形统计图中,“B”选项所对应扇形圆心角为72度;(3)请补全条形统计图;(4)若该校共有1200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?【分析】由条形统计图与扇形统计图获得的数据:(1)因为图(1)、图(2)中已知C选项的百分比与人数,由C选项的百分比=×100%求解;(2)先求出B选项的百分比,再利用扇形统计图的圆心角的度数=360°×B选项的百分比求解;(3)由(1)所得总人数求出B选项的人数即可作图;(4)先求出A选项的百分比即可求得.【解答】解:(1)因为,图(1)、图(2)中已知C选项的百分比是50%,人数是50,所以,本次接受问卷调查的学生=50÷50%=100(人)又,D选项的人数是10所以,D选项的百分比=%=10%故答案为:100,10%.(2)因为,B选项的人数为20,所以,B选项的百分比=20÷100=20%,故,B选项所对应扇形圆心角=360°×20%=72°.故答案为72(3)因为,A选项的人数=100﹣20﹣50﹣10=20(人),则,条形统计图补全如下图所示:接受调查学生条形统计图(4)因为,A选项所占的百分比为20%,所以,1200×20%=240(人)即,课外利用网络学习的时间在“A”选项的有240人【点评】此题是条形统计图,是常规题型,考查的是概率与统计中条形统计图、扇形统计图、利用样本估计总体等基础知识点26.(9分)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)①延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论;②假设存在,以OP为直径作圆,交OC于点M1,交OA于点M2,通过解直角三角形和勾股定理求出点M1、M2的坐标,此题得解.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4),∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),点B(6,4).(2)①延长DP交OA于点E,如图3所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S=EP•(y A﹣y O)=××(4﹣0)=3.△AOP②假设存在.以OP为直径作圆,交OC于点M1,交OA于点M2,连接PM1、PM2,如图4所示.∵点P(2,2),O(0,0),∴点M1(2,0);∵点A(1,4),点O(0,0),∴直线OA的关系式为y=4x.设点M2(n,4n),=3,OA==,∵S△AOP∴PM2====,即289n2﹣340n+100=0,解得:n=,∴点M2(,).故在▱OABC的边上存在点M,使得△POM是以PO为斜边的直角三角形,点M 的坐标为(2,0)或(,).【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质以及解直角三角形,解题的关键是:(1)根据反比例函数图象上点的坐标特征求出反比例函数解析式;(2)①求出EP长度;②以OP为直径作圆,找出点M的位置.本题属于中档题,难度不大,解决该题型题目时,通过作圆来确定点的数目与位置是关键.27.(9分)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F 分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=30度,线段BE、EF、FD之间的数量关系为BE+DF=EF.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE 绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年山东省济南市中考数学试卷一、选择题(本大题共15个小题,每小题3分,共45分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为()A.0.215×104B.2.15×103C.2.15×104D.21.5×1023.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°4.(3分)如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.5.(3分)下列运算正确的是()A.a2+a=2a3B.a2•a3=a6 C.(﹣2a3)2=4a6D.a6÷a2=a36.(3分)京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)化简÷的结果是()A. B.C. D.2(x+1)8.(3分)如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位9.(3分)如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x>3 C.x<D.x<310.(3分)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.11.(3分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>112.(3分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m13.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.14.(3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤015.(3分)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t 函数关系的大致图象为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)16.(3分)计算:2﹣1+=.17.(3分)分解因式:a2﹣4b2=.18.(3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是.19.(3分)若代数式与的值相等,则x=.20.(3分)如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(k>0)的图象过点A,则k=.21.(3分)如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.三、解答题(本大题共7个小题,共57分)22.(7分)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.(2)解不等式组:.23.(7分)(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.24.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(8分)随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有人,在扇形统计图中“D“选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?26.(9分)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.27.(9分)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.28.(9分)如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.2016年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣5【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为()A.0.215×104B.2.15×103C.2.15×104D.21.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2150=2.15×103,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.4.(3分)如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.【分析】直接利用主视图以及俯视图的观察角度不同分别得出几何体的视图进而得出答案.【解答】解:A、三棱锥的主视图是三角形,俯视图也是三角形,故此选项错误;B、圆柱的主视图是矩形,俯视图是圆,故此选项错误;C、圆锥的主视图是三角形,俯视图是圆,故此选项错误;D、三棱柱的主视图是矩形,俯视图是三角形,故此选项正确;故选:D.【点评】此题主要考查了由三视图判断几何体,正确把握观察角度是解题关键.5.(3分)下列运算正确的是()A.a2+a=2a3B.a2•a3=a6 C.(﹣2a3)2=4a6D.a6÷a2=a3【分析】根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法法则进行解答.【解答】解:A、a2与a不是同类项,不能合并,故本选项错误;B、原式=a2+3=a5,故本选项错误;C、原式=(﹣2)2•a3×2=4a6,故本选项正确;D、原式=a6﹣2=a4,故本选项错误;故选:C.【点评】本题综合考查了合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.(3分)京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断.【解答】解:A是轴对称图形,故错误;B既不是轴对称图形也不是中心对称图形,故错误;C是中心对称图形,故错误;D既是轴对称图形又是中心对称图形,故正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7.(3分)化简÷的结果是()A. B.C. D.2(x+1)【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•(x﹣1)=,故选A【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.(3分)如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位【分析】根据平移前后图形M中某一个对应顶点的位置变化情况进行判断即可.【解答】解:根据图形M平移前后对应点的位置变化可知,需要向右平移1个单位,向下平移3个单位.故选(B)【点评】本题主要考查了图形的平移,平移由平移方向和平移距离决定,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.9.(3分)如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x>3 C.x<D.x<3【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=,∴点B(,0).观察函数图象,发现:当x<时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.10.(3分)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)展示所有9种可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.11.(3分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k≤1 C.k>﹣1 D.k>1【分析】当△>0时,方程有两个不相等的两个实数根,据此求出k的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,∴(﹣2)2﹣4×1×k>0,∴4﹣4k>0,解得k<1,∴k的取值范围是:k<1.故选:A.【点评】此题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况,要熟练掌握,解答此题的关键是要明确:当△>0时,方程有两个不相等的两个实数根.12.(3分)济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故选B.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.13.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.【解答】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.14.(3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤0【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.15.(3分)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.【分析】先求出DN,判断点Q到D点时,DP⊥AB,然后分三种情况分别用三角形的面积公式计算即可.【解答】解:∵AD=5,AN=3,∴DN=2,如图1,过点D作DF⊥AB,∴DF=BC=4,在RT△ADF中,AD=5,DF=4,根据勾股定理得,AF==3,∴BF=CD=2,当点Q到点D时用了2s,∴点P也运动2s,∴AP=3,即QP⊥AB,∴只分三种情况:①当0<t≤2时,如图1,过Q作QG⊥AB,过点D作DF⊥AB,QG∥DF,∴,由题意得,NQ=t,MP=t,∵AM=1,AN=3,∴AQ=t+3,∴,∴QG=(t +3),∵AP=t +1,∴S=S △APQ =AP ×QG=×(t +1)×(t +3)=(t +2)2﹣,当t=2时,S=6,②当2<t ≤4时,如图2,∵AP=AM +t=1+t ,∴S=S △APQ =AP ×BC=(1+t )×4=2(t +1)=2t +2,当t=4时,S=10,③当4<t ≤5时,如图3,由题意得CQ=t ﹣4,PB=t +AM ﹣AB=t +1﹣5=t ﹣4,∴PQ=BC ﹣CQ ﹣PB=4﹣(t ﹣4)﹣(t ﹣4)=12﹣2t ,∴S=S △APQ =PQ ×AB=×(12﹣2t )×5=﹣5t +30,当t=5时,S=5,∴S 与t 的函数关系式分别是①S=S △APQ =(t +2)2﹣,当t=2时,S=6,②S=S △APQ =2t +2,当t=4时,S=10,③∴S=S △APQ =﹣5t +30,当t=5时,S=5,综合以上三种情况,D 正确故选D .【点评】此题是动点问题的函数图象,考查了三角形的面积公式,矩形的性质,解本题的关键是分段画出图象,判断出点Q 在线段CD 时,PQ ⊥AB 是易错的地方.二、填空题(本大题共6个小题,每小题3分,共18分)16.(3分)计算:2﹣1+=.【分析】分别根据负整数指数幂的运算法则、算术平方根的定义分别计算出各数,再根据有理数的加法法则进行计算即可.【解答】解:原式=+2=.故答案为:.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.17.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).【点评】本题考查运用平方差公式进行因式分解,熟记公式结构是解题的关键.18.(3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是16.【分析】先根据平均数的大小,求得x的值,再将这组数据按从小到大的顺序排列,求得中位数即可.【解答】解:∵18,x,15,16,13这组数据的平均数为16,∴(18+x+15+16+13)÷5=16,解得x=18,∴这组数据按从小到大的顺序排列为:13,15,16,18,18,∴这组数据的中位数是16.故答案为:16【点评】本题主要考查了中位数以及算术平均数,注意:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.(3分)若代数式与的值相等,则x=4.【分析】由已知条件:代数式与的值相等,可以得出方程=,解方程即可.【解答】解:根据题意得:=,去分母得:6x=4(x+2),移项合并同类项得:2x=8,解得:x=4.故答案为:4.【点评】本题考查了解分式方程,解答本题的关键在于根据题意列出方程,解方程时注意按步骤进行.20.(3分)如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(k>0)的图象过点A,则k=2.【分析】先求出点A的坐标,再代入反比例函数y=(k>0),即可解答.【解答】解:∵半径为2的⊙O在第一象限与直线y=x交于点A,∴OA=2,∴点A的坐标为(,),把点A代入反比例函数y=(k>0)得:k==2,故答案为:2.【点评】本题考查了反比例函数与一次函数的交点坐标,解决本题的关键是求出点A的坐标.21.(3分)如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【分析】如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,利用勾股定理求出x,再利用△DME∽△FEN,得=,求出EN,EM,求出tan∠AMN,再证明∠EHG=∠AMN即可解决问题.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,∴AN=EN=,∴tan∠AMN==,如图3中,∵ME⊥EN,HG⊥EN,∴EM∥GH,∴∠NME=∠NHG,∵∠NME=∠AMN,∠EHG=∠NHG,∴∠AMN=∠EHG,∴tan∠EHG=tan∠AMN=.方法二,tan∠EHG=tan∠EMN==.故答案为.【点评】本题考查翻折变换、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会把问题转化,证明∠AMN=∠EHG是关键,属于中考填空题中的压轴题.三、解答题(本大题共7个小题,共57分)22.(7分)(1)先化简再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.(2)解不等式组:.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)a(1﹣4a)+(2a+1)(2a﹣1)=a﹣4a2+4a2﹣1=a﹣1,当a=4时,原式=4﹣1=3;(2)∵解不等式①得:x≤3,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x≤3.【点评】本题考查了整式的混合运算和求值,解一元一次不等式组的应用,能正确根据整式的运算法则进行化简是解(1)的关键,能根据找不等式组解集的规律找出不等式组的解集是解(2)的关键.23.(7分)(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.【分析】(1)根据菱形的性质,利用SAS判定△ABE≌△ADF,从而求得AE=AF;(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D∵CE=CF,∴BE=DF在△ABE与△ADF中,,∴△ABE≌△ADF.∴AE=AF;(2)∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠OPA=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.同时考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.24.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【分析】(1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【解答】解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.25.(8分)随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有100人,在扇形统计图中“D“选项所占的百分比为10%;(2)扇形统计图中,“B”选项所对应扇形圆心角为72度;(3)请补全条形统计图;(4)若该校共有1200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?【分析】由条形统计图与扇形统计图获得的数据:(1)因为图(1)、图(2)中已知C选项的百分比与人数,由C选项的百分比=×100%求解;(2)先求出B选项的百分比,再利用扇形统计图的圆心角的度数=360°×B选项的百分比求解;(3)由(1)所得总人数求出B选项的人数即可作图;(4)先求出A选项的百分比即可求得.【解答】解:(1)因为,图(1)、图(2)中已知C选项的百分比是50%,人数是50,所以,本次接受问卷调查的学生=50÷50%=100(人)又,D选项的人数是10所以,D选项的百分比=%=10%故答案为:100,10%.(2)因为,B选项的人数为20,所以,B选项的百分比=20÷100=20%,故,B选项所对应扇形圆心角=360°×20%=72°.故答案为72(3)因为,A选项的人数=100﹣20﹣50﹣10=20(人),则,条形统计图补全如下图所示:接受调查学生条形统计图(4)因为,A选项所占的百分比为20%,所以,1200×20%=240(人)即,课外利用网络学习的时间在“A”选项的有240人【点评】此题是条形统计图,是常规题型,考查的是概率与统计中条形统计图、扇形统计图、利用样本估计总体等基础知识点26.(9分)如图1,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在▱OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)①延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论;②假设存在,以OP为直径作圆,交OC于点M1,交OA于点M2,通过解直角三角形和勾股定理求出点M1、M2的坐标,此题得解.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4),∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),点B(6,4).(2)①延长DP交OA于点E,如图3所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,=EP•(y A﹣y O)=××(4﹣0)=3.∴S△AOP②假设存在.以OP为直径作圆,交OC于点M1,交OA于点M2,连接PM1、PM2,如图4所示.∵点P(2,2),O(0,0),∴点M1(2,0);∵点A(1,4),点O(0,0),∴直线OA的关系式为y=4x.设点M2(n,4n),∵S=3,OA==,△AOP∴PM2====,即289n2﹣340n+100=0,解得:n=,∴点M2(,).故在▱OABC的边上存在点M,使得△POM是以PO为斜边的直角三角形,点M的坐标为(2,0)或(,).【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质以及解直角三角形,解题的关键是:(1)根据反比例函数图象上点的坐标特征求出反比例函数解析式;(2)①求出EP长度;②以OP为直径作圆,找出点M的位置.本题属于中档题,难度不大,解决该题型题目时,通过作圆来确定点的数目与位置是关键.27.(9分)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 30度,线段BE、EF、FD之间的数量关系为BE+DF=EF.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针。

相关文档
最新文档