一次函数压轴题精选(含详细答案)
(名师整理)最新人教版数学中考冲刺压轴题《一次函数》专题训练(含答案解析)
中考数学二轮复习:《一次函数》压轴专题训练1.如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C 落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.2.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P的坐标.3.如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?4.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A、点B,直线CD与x轴、y轴分别交于分别交于点C、点D,直线AB的解析式为y=﹣x+5,直线CD的解析式为y=kx+b(k≠0),两直线交于点E(m,),且OB:OC=5:4.(1)求直线CD的解析式;(2)将直线CD向下平移一定的距离,使得平移后的直线经过A点,且与y轴交于点F,求四边形AEDF 的面积.5.小明从家去李宁体育馆游泳,同时,妈妈从李宁体育馆以50米/分的速度回家,小明到体育馆后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D、F四点在一条直线上)(1)求线段OB及线段AF的函数表达式;(2)求C点的坐标及线段BC的函数表达式;(3)当x为时,小明与妈妈相距1500米;(4)求点D坐标,并说明点D的实际意义.6.如图1,已知直线AC:y=﹣x+b1和直线AB:y=kx+b2交于x轴上一点A,且分别交y轴于点C、点B,且OB=2OC=4.(1)求k的值;=9时,在线段AC上取一点F,使(2)如图1,点D是直线AB上一点,且在x轴上方,当S△ACD得CF=FA,点M,N分别为x轴、轴上的动点,连接NF,将△CNF沿NF翻折至△C′NF,求MD+MC′的最小值;(3)如图2,H,P分别为射线AC,AO上的动点,连接PH,PC是否存在这样的点P,使得△PCH 为等腰三角形,△PHA为直角三角形同时成立.请直接写出满足条件的点P坐标.7.如图1,已知直线AC的解析式为y=﹣x+b,直线BC的解析式为y=kx﹣2(k≠0),且△BOC的面积为6.(1)求k和b的值;(2)如图1,将直线AC绕A点逆时针旋转90°得到直线AD,点D在y轴上,若点M为x轴上的一个动点,点N为直线AD上的一个动点,当DM+MN+NB的值最小时,求此时点M的坐标及DM+MN+NB 的最小值;(3)如图2,将△AOD沿着直线AC平移得到△A′O′D′,A′D′与x轴交于点P,连接A′D、DP,当△DA′P是等腰三角形时,求此时P点坐标.8.如图,在平面直角坐标系中,直线BC:y=x+交x轴于点B,点A在x轴正半轴上,OC为△ABC的中线,C的坐标为(m,)(1)求线段CO的长;(2)点D在OC的延长线上,连接AD,点E为AD的中点,连接CE,设点D的横坐标为t,△CDE 的面积为S,求S与t的函数解析式;(3)在(2)的条件下,点F为射线BC上一点,连接DB、DF,且∠FDB=∠OBD,CE=,求此时S值及点F坐标.9.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.10.如图,直线y=﹣x+1和直线y=x﹣2相交于点P,分别与y轴交于A、B两点.(1)求点P的坐标;(2)求△ABP的面积;(3)M、N分别是直线y=﹣x+1和y=x﹣2上的两个动点,且MN∥y轴,若MN=5,直接写出M、N 两点的坐标.11.如图,直线l与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.12.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D 和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.13.如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.14.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.15.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.参考答案1.解:(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5),故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线EF的表达式为:y=﹣x+5;(2)证明:∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC.∴∠APO=∠OPH;(3)解:如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,∠APO=∠OPH,∠A=∠OQP,OP=OP,∴△AOP≌△QOP(AAS).∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS).∴CH=QH.∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16;故答案为:16.2.解:(1)∵将线段BO绕着点B逆时针旋转90°得到线段BC,∴OB=BC,∠OBC=90°,∵CD⊥x轴于点D,∴∠CDO=90°,∵∠BOD=90°,∴四边形OBCD为正方形,∵四边形OBCD的面积为36.∴OB=6,∵直线y=2x+b与y轴交于点B,∴b=6,∴直线AB的解析式为y=2x+6;(2)∵直线y=2x+6与x轴交于点A,∴A(﹣3,0),如图1,过点B作BL⊥CP,垂足为L,交CD于点M,∵BH=BC,∴CL=HL,∵BL⊥CP,EF⊥CP,∴BM∥EF,∴CM=ME,∵∠CBM+∠BMC=∠BMC+∠MCL=90°∴∠CBM=∠PCD,∵∠BCM=∠PDC,BC=CD,∴△BCM≌△CDP(ASA),∴CM=PD,∴PD=CM=ME=6﹣t,∴CE=2CM=2(6﹣t),∵AD=OA+OD=9,∴S===﹣9t+54(0≤t≤6);(3)设PD=a,如图2,∵BF∥CD,BM∥EF,∴四边形BFEM是平行四边形,∴BF=EM=PD=a,连接FP,设FK与OH交于A',∴∠OFP=45°,∵∠FOP+∠FHP=180°,∴F、O、P、H四点共圆,∴∠OFP=∠OHP=45°,∴∠OHF=45°,∵FK⊥OH,∴∠FA'H=90°,∴∠EFK=45°,如图3,过点E作ER⊥EF交射线FK于点R,∴△EFR为等腰直角三角形,∴EF=ER,过点F作FG⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,连接KE、∴∠RNE=∠FGE=90°,∠FEG=∠ERN,∴△EFG≌△REN(AAS),∴EN=FG,EG=RN=PD=a,∵CG=BF=a,GE=a,∴DN=CE=2a=OQ,OF=a+b,∵PD=PK=a,OD=CD=2a+b,∴OK=b,∵OK∥QR,∴,即,∴b(3a+b)=(a+b)2,∴a=b,∴3a=6,∴a=2,∴P(4,0).3.解:(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=420,故答案为:120,2,420;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+420,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣420,则当x=5时,s取得最小值,此时s=180,由上可得,行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.4.解:(1)将点E(m,)代入直线AB的解析式y=﹣x+5,解得m=,∴点E的坐标为(,),OB:OC=5:4,OB=5,∴OC=4,∴点C坐标为(﹣4,0),将点E(,),点C(﹣4,0),代入直线CD的解析式y=kx+b中,解得所以直线CD解析式为y=x+2.(2)当y=0时,﹣x+5=0,解得x=8,所以A点坐标为(8,0),∵直线CD向下平移一定的距离,平移后的直线经过A点,且与y轴交于点,∴设直线AF的解析式为y=x+d,把A(8,0)代入得d=﹣4,所以直线AF 的解析式为y =x ﹣4. 所以点F 的坐标为(0,﹣4). 如图,作EG ⊥x 轴于点G , 所以四边形AEDF 的面积为: S 梯形ODEG +S △AEG +S △AOF =(2+)×+××(8﹣)+4×8=32.答:四边形AEDF 的面积为32. 5.解:(1)设OB 的函数表达式为y =kx , 30k =3000,得k =100,即线段OB 的函数表达式为y =100x (0≤x ≤30); 点F 的横坐标为:3000÷50=60, 则点F 的坐标为(60,0),设直线AF 的函数表达式为:y =k 1x +b 1,,得,即直线AF 的函数表达式为y =﹣50x +3000; (2)当x =45时,y =﹣50×45+3000=750, 即点C 的坐标为(45,750), 设线段BC 的函数表达式为y =k 2x +b 2,,得,即线段BC 的函数表达式是y =﹣150x +7500(30≤x ≤45);(3)当小明与妈妈相距1500米时,﹣50x +3000﹣100x =1500或100x ﹣(﹣50x +3000)=1500或(﹣150x +7500)﹣(﹣50x +3000)=1500, 解得:x =10或x =30,∴当x 为10或30时,小明与妈妈相距1500米. 故答案为:10或30;(4)∵750÷250=3(分钟),45+3=48, ∴点E 的坐标为(48,0)∴直线ED 的函数表达式y =250(x ﹣48)=250x ﹣12000, ∵AF 对应的函数解析式为y =﹣50x +3000, ∴,得,∴点D 的坐标为(50,500),实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里. 6.解:(1)OB =2OC =4,则点B 、C 的坐标分别为:(0,﹣4)、(0,2),将点C 的坐标代入AC :y =﹣x +b 1并解得: AC 的表达式为:y =﹣x +2,令y =0,则x =6,故点A (6,0),将点B 、A 的坐标代入y =kx +b 2得:,解得:,故直线AB 的表达式为:y =x ﹣4,即k =;(2)由点B 、C 的坐标得,BC =6,S △ACD =S △BCD ﹣S △BCA =×BC ×(x D ﹣x A )=×6(x D ﹣6)=9,解得:x D =9, 当x =9时,y =x ﹣4=2,故点D (9,2);CF =FA ,即CF =AC ==,过点F 作FH ⊥y 轴于点H ,由直线AC的表达式知,∠OCA=60°,则HF=CF sin60°==,CH=,故点F(,),作点D关于x轴的对称点D′(9,﹣2),连接C′D′,当D′、C′、F三点共线时,MD+MC′最小,MD+MC′最小值为D′F﹣F′C′=D′F﹣CF=﹣=﹣;(3)由直线AC的表达式知,∠CAO=30°,AC==4;①当∠PHA=90°时,则△PHC为等腰直角三角形,设HP=CH=a,则AP=2HP,HA==a,AC=CH+HA=a a=4,解得:a=6﹣2,AP=2a=12﹣4,则AP=6﹣(12﹣4)=4﹣6,故点P(4﹣6,0);②当∠CPH=90°时,则CPH为等腰三角形,则HP=CP,设HP=CP=a,则在Rt△PHA中,HA=2HP=2a,∵∠CPH=90°,∴HP∥OC,则,即=,解得:a=,PA==a=4,故点P(2,0);综上,点P的坐标为:(2,0)或(4﹣6,0).7.解:(1)直线BC的解析式为y=kx﹣2,则点C(0,﹣2),将点C的坐标代入y=﹣x+b得:﹣2=b,解得:b=﹣2,故直线AC的表达式为:y=﹣x﹣2;△BOC的面积=OB•CO=2×OB=6,解得:OB=6,故点B(6,0),将点B的坐标代入y=kx﹣2得:0=6k﹣2,解得:k=;故k=,b=﹣2;(2)将直线AC绕A点逆时针旋转90°得到直线AD,则点D(0,2),由点A、D的坐标得,直线AD的表达式为:y=x+2;过点B作点B关于直线AD的对称点B′,连接B′C交AD于点N,交x轴于点M,则点M、N为所求点,点C是点D关于x轴的对称点,则MC=MD,而NB=NB′,故DM+MN+NB=MC+MN+NB′=B′C为最小,直线AD的倾斜角为45°,BB′⊥AC,则AB=AB′=8,直线AB′与AD的夹角也为45°,故直线AB′⊥AB,故点B′(﹣2,8),由点B′、C的坐标得,直线B′C的表达式为:y=﹣5x﹣2,令y=0,即﹣5x﹣2=0,解得:x=﹣,故点M(﹣,0),DM+MN+NB最小值为B′C==2;(3)设△AOD沿着直线AC向右平移m个单位,向下平移m个单位得到△A′O′D′,则点A′(m ﹣2,﹣m),设直线A′D′的表达式为:y=x+b′,将点A′的坐标代入上式得:﹣m=m﹣2+b′,解得:b′=2﹣2m,则直线A′D′的表达式为:y=x+2﹣2m,令y=0,则x=2m﹣2,故点P(2m﹣2,0),而点A′(m﹣2,﹣m),点D(0,2),则A′P2=2m2,A′D2=(m﹣2)2+(﹣m﹣2)2=2m2+8,PD2=(2m﹣2)2+4;当A′P=A′D时,2m2=2m2+8,解得:方程无解;当A′P=PD时,同理可得:m=2;当A′D=PD时,同理可得:m=0(舍去)或4,综上,点P(2,0)或(6,0).8.解:(1)∵直线BC:y=x+交x轴于点B,∴点B坐标(﹣8,0),∵C的坐标为(m,)∴=x+,∴m=﹣,∴点C坐标为(﹣,)∴CO==5;(2)如图,∵OC为△ABC的中线,∴BO=AO=8,∴S=×8×=10,△ACO∵点C坐标为(﹣,),点O坐标(0,0)∴直线CO解析式为:y=﹣x,∴点D (t ,﹣t ),∴S △AOD =×8×(﹣t )=﹣4t ,∴S △ACD =S △AOD ﹣S △AOC =﹣4t ﹣10,∵点E 为AD 的中点, ∴S =S △ACD =﹣2t ﹣5;(3)∵点D (t ,﹣t ),点A (8,0),点E 是AD 中点,∴点E 坐标(,﹣t ),∵CE =,∴(﹣﹣)2+(+t )2=13,∴t 1=﹣6,t 2=﹣8, ∴点D (﹣6,)或(﹣8,8), 当t 1=﹣6时,则点D (﹣6,),S =﹣2×(﹣6)﹣5=7,延长DF 交x 轴于点H ,设点H (x ,0) ∵∠FDB =∠OBD , ∴DH =BH , ∴x +8=∴x =20, ∴点H (20,0),设直线DH 的解析式为:y =kx +b , ∴∴∴直线DH的解析式为:y=﹣x+,∴x+=﹣x+,∴x=,∴点F(,),当t2=﹣8,点D(﹣8,8),S=﹣2×(﹣8)﹣5=11,∵点D(﹣8,8),点B(﹣8,0),∴∠DBO=90°,∵∠FDB=∠OBD=90°,∴DF∥BO,∴点F的纵坐标为8,∴8=x+,∴x=,∴点F(,8).综上所述:点F坐标为(,)或(,8).9.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S=BF(x C﹣x D)==4;△BCD(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).10.解:(1)∵直线y=﹣x+1和直线y=x﹣2相交于点P∴,解之得:,∴P点坐标为:,(2)∵直线y=﹣x+1和直线y=x﹣2分别交y轴于A、B两点∴A(0,1),B(0,﹣2),∴AB=3,由(1)知P∴S △ABP ==;(3)设M (m ,﹣m +1),则N (m ,m ﹣2), ∵MN =5,∴|﹣m +1﹣(m ﹣2)|=5, 解得m =﹣1或m =4,∴M (4,﹣3),N (4,2)或M (﹣1,2),N (﹣1,﹣3). 11.解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:,解得:,故直线l 的表达式为:;(2)在Rt △ABC 中,由勾股定理得:AB 2=OA 2+OB 2=32+22=13 ∵△ABC 为等腰直角三角形, ∴S △ABC =AB 2=;(3)连接BP ,PO ,PA ,则: ①若点P 在第一象限时,如图1:∵S △ABO =3,S △APO =a ,S △BOP =1, ∴S △ABP =S △BOP +S △APO ﹣S △ABO =,即,解得;②若点P 在第四象限时,如图2:∵S △ABO =3,S △APO =﹣a ,S △BOP =1, ∴S △ABP =S △BOP +S △APO ﹣S △ABO =,即,解得a =﹣3;故:当△ABC 与△ABP 面积相等时,实数a 的值为或﹣3.12.解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6, ∴x +2=6, 解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点, ∴x ==,y ==2,∴点T 的坐标为(,2), 故答案为:(,2);(2)设点E 的坐标为(a ,a +2), ∵点T (x ,y )是点D 和E 的融合点, ∴x =,y =,解得,a =3x ﹣3,a =3y ﹣2, ∴3x ﹣3=3y ﹣2, 整理得,y =x ﹣;(3)设点E 的坐标为(a ,a +2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).13.解:(1)把A(6,0)代入y=kx+8中,得6k+8=0,解得:,∴,把x=3代入,得y=4,∴C(3,4);(2)作CF⊥x轴于点F,EG⊥x轴于点G,∵△CDE是等腰直角三角形,∴CD=DE,∠CDE=90°,∴∠CDF=90°﹣∠EDG=∠DEG,且∠CFD=∠DGE=90°,∴△CDF≌△DEG(AAS)∴CF=DG=4,DF=EG=3﹣m,∴OG=4+m,∴E(4+m,m﹣3);(3)点E(4+m,m﹣3),则点E在直线l:y=x﹣7上,设:直线l交y轴于点H(0,﹣7),过点O作直线l的对称点O′,∵直线l的倾斜角为45°,则HO′∥x轴,则点O′(7,﹣7),连接CO′交直线l于点E′,则点E′为所求点,OC是常数,△OCE周长=OC+CE+OE=OC+OE′+CE′=OC+CE′+O′E′=OC+CO′为最小,由点C、O′的坐标得,直线CO′的表达式为:y=﹣x+联立,解得:,故:.14.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、B、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=或.15.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.。
一次函数压轴题(含答案)
一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。
$x$ 轴分别交于$A$。
$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。
1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。
2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。
3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。
考点:一次函数综合题。
分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。
解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。
因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。
又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。
一次函数压轴题经典培优
一次函数压轴题训练(一)典型例题题型一、A 卷压轴题一、A 卷中涉及到的面积问题例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO分成两部分.(1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
121+=x y 与x 轴练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :交于点C ,两直线1l ,2l 相交于点B 。
(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。
2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直.(1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?(10分)二、A 卷中涉及到的平移问题例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的ABCO y 2y 1xyP ABC ODxy 1l 2l正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫ ⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.练习1、如图,在平面直角坐标系中,直线1l:xy 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。
一次函数压轴题(提高,有答案)
1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=,BC=(用含t的代数式表示);②当点D是线段BC的中点时,S=;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.4.如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.5.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α=45°,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,请直接写出点P的坐标;若不能,试说明理由.6.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y=﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.(1)直接写出直线BD的解析式为,S△ABC=;(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.7.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.8.如图所示,平面直角坐标系中,直线y=kx+b与x轴交于点A,与y轴交于点B,且AB=2,AO:BO=2:;(1)求直线AB解析式;(2)点C为射线AB上一点,点D为AC中点,连接DO,设点C的横坐标为t,△BDO的面积为S,求S 与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当点C在第一象限时,连接CO,过D作DE⊥CO于E,在DE的延长线上取点F,连接OF、AF,且OF=OD,当∠DF A=30°时,求S的值.9.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO 方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)10.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P 作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.11.在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.12.如图1,在平面直角坐标系中,直线AC:y=﹣3x+3与直线AB:y=ax+b交于点A,且B(﹣9,0).(1)若F是第一象限位于直线AB上方的一点,过F作FE⊥AB于E,过F作FD∥y轴交直线AB于D,D 为AB中点,其中△DFF的周长是12+4,若M为线段AC上一动点,连接EM,求EM+MC的最小值,此时y轴上有一个动点G,当|BG﹣MG|最大时,求G点坐标;(2)在(1)的情况下,将△AOC绕O点顺时针旋转60°后得到△A′OC',如图2,将线段OA′沿着x轴平移,记平移过程中的线段OA′为O′A″,在平面直角坐标系中是否存在点P,使得以点O′,A″,E,P为顶点的四边形为菱形,若存在,请求出点P的坐标,若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,点A是一次函数y=3x﹣20与y=﹣x+12的交点,过点A分别作x,y轴的垂线段,垂足分别是B和C,动点P和Q以1个单位/秒的速度,分别从点C和B出发,沿线段CA和BO 方向,向终点A和O运动,设运动时间为t秒.(1)证明:无论运动时间t(0<t<8)取何值,四边形OP AQ始终为平行四边形;(2)当四边形OP AQ为菱形时,请求出此时PQ的长及直线PQ的函数解析式;(3)当OP满足2≤OP≤5时,连接PQ,直线PQ与y轴交于点M,取线段AC的中点N,试确定三角形MNP的面积S与运动时间t之间的函数关系,并求出S的取值范围.14.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.15.如图,已知直线AB与正比例函数y=kx(k≠0)的图象交于点A(5,5),与x轴交于点B与y轴交于点C (0,).点P为直线OA上的动点,点P的横坐标为t,以点P为顶点,作长方形PDEF,满足PD∥x轴,且PD=1,PF=2.(1)求k值及直线AB的函数表达式;并判定t=1时,点E是否落在直线AB上,请说明理由;(2)在点P运动的过程中,当点F落在直线AB上时,求t的值;16.对于平面直角坐标系xOy中的点A和点P,若将点P绕点A逆时针旋转90°后得到点Q,则称点Q为点P 关于点A的“垂链点”,图1为点P关于点A的“垂链点”Q的示意图.(1)已知点A的坐标为(0,0),点P关于点A的“垂链点”为点Q;①若点P的坐标为(2,0),则点Q的坐标为.②若点Q的坐标为(﹣2,1),则点P的坐标为.(2)如图2,已知点C的坐标为(1,0),点D在直线y=x+1上,若点D关于点C的“垂链点”在坐标轴上,试求出点D的坐标.(3)如图3,已知图形G是端点为(1,0)和(0,﹣2)的线段,图形H是以点O为中心,各边分别与坐标轴平行的边长为6的正方形,点M为图形G上的动点,点N为图形H上的动点,若存在点T(0,t),使得点M关于点T的“垂链点”恰为点N,请直接写出t的取值范围.17.如图,存平面直角坐标系中,直线AC与x轴交手点C,与y轴交于点A,OA=,OC=OA,分别以OA,OC力作矩形OABC,直线OD:y=x交AB于点D,交直线AC于点H.(1)求直线AC的解析式及点H的坐标;(2)如图2,P为直线OD上一动点,E点,F点为直线AC上两动点(E在上,F在下),满足EF=,当(3)如图3,将△AHD绕着点O顺时针旋转α(0°≤α≤60°),记旋转后的三角形为△A′H′D′.线段A′H′所在的直线交直线AC于点M(M不与A、C重合),交x轴于点N,在平面内是否存在一点Q,使得以C,M,N,Q四点形成的四边形为菱形?若存在,直接写出Q点的坐标;若不存在,请说出理由.18.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.19.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD 与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.20.若两个一次函数与x轴的交点关于y轴对称,则称这两个一次函数为“对心函数”,这两个与x轴的交点为“对心点”.(1)写出一个y=2x+6的对心函数:,这两个“对心点”为;(2)直线l1,经过点A(﹣1,0)和B(0,﹣3),直线l1的“对心函数”直线l2与y轴的交点D位于点(0,1)的上方,且直线l1与直线l2交于点E,点C为直线l2的“对心点”,点G是动直线l2上不与C重合的一个动点,且BG=BA,试探究∠ABG与∠ECA之间的数量关系,并说明理由;(3)如图,直线l3:y=x+2与其“对心函数”直线l4的交点F位于第一象限,M.N分别为直线l3、l4的“对心点”,点P为线段MF上一点(不含端点),连接NP;一动点H从N出发,沿线段NP以1单位/秒的速度运动到点P,再沿线段PF以单位/秒的速度运动到点F后停止,点H在整个运动过程中所用最短时间为6秒,求直线l4的解析式.21.如图,在平面直角坐标系中,矩形OABC的边OA、OC的边分别在y轴、x轴正半轴上,OA=6,OC=8,点P从点O出发以每秒2个单位长度的速度向终点C运动,点P不与点O重合,以OP为边在OC上方作正方形OPEF,设正方形OPEF与△AOC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).(1)直线AC所在直线的解析式是;(2)当点E落在线段AC上时,求t的值;(3)在点P运动的过程中,求S与t之间的函数关系式;(4)设边OC的中点为K,点C关于点P的对称点为C′,以KC′为边在OC上方作正方形KC′MN,当正方形KC′MN与△ABC重叠部分图形为三角形时,直接写出t的取值范围.(提示:根据P点的运动,可在草纸上画出正方形KC′MN与△ABC重叠部分图形为不同图形的临界状态去研究)22.在平面直角坐标系中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形“.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,4),F(3,2),G(4,0)中,能够成为点M,P的“极好菱形“的顶点的是;(2)若点M,P的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标;(3)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为12,且与直线y=x+b有公共点时,请写出b的取值范围.23.在平面直角坐标系中,四边形OABC是菱形,点A坐标为(3,4),直线AC交y轴于点D,AB边交y轴于点E.(1)如图1,求直线AC解析式;(2)如图2,点F从点C出发沿射线CA运动,点F的横坐标为m,△FOD面积为S,求S与m的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,当∠OFD+∠ABD=∠FDO时,求点F坐标.24.图1,在平面直角坐标系xOy中,直线l1,l2都经过点A(﹣6,0),它们与y轴的正半轴分别相交于点B,C,且∠BAO=∠ACO=30⁰(1)求直线l1,l2的函数表达式;(2)设P是第一象限内直线l1上一点,连接PC,有S△ACP=24.M,N分别是直线l1,l2上的动点,连接CM,MN,MP,求CM+MN+NP的最小值;(3)如图2,在(2)的条件下,将△ACP沿射线P A方向平移,记平移后的三角形为△A′C′P′,在平移过程中,若以A,C',P为顶点的三角形是等腰三角形,请直接写出所有满足条件的点C′的坐标.25.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?26.如图1,已知平行四边形ABCD,BC∥x轴,BC=6,点A的坐标为(1,4),点B的坐标为(﹣3,﹣4),点C在第四象限,点P是平行四边形ABCD边上的一个动点.(1)若点P在边CD上,BC=CP,求点P的坐标;(2)如图2,若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=﹣x+1上,求点P的坐标;(3)若点P在边AB,AD,BC上,点E是AB与y轴的交点,如图3,过点P作y轴的平行线PF,过点E 作x轴的平行线E,它们相交于点F,将△PEF沿直线PE翻折,当点F的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)27.如图,直线y=﹣2x+b分别于x轴、y轴交于A、B两点,与直线y=kx交于点C(2,4),平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,直线l分别交直线AB、直线OC于点D、E,以DE为边向左侧作正方形DEFG,当直线l经过点A时停止运动,设直线l的运动时间为t(秒).(1)b=,k=;(2)设线段DE的长度为d(d>0),求d与t之间的函数关系式;(3)当正方形DEFG的边GF落在y轴上,求出t的值;(4)当0≤t<2时,若正方形DEFG和△OCB重叠部分面积为4,则t的值为.28.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC,(1)求直线AC的解析式;(2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点,当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标;(3)如图3,将△PBC沿直线P A翻折得△PBG,点N为平面内任意一动点,在直线P A上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.29.在平面直角坐标系xOy中,中心为点C,正方形的各边分别与两坐标轴平行,点P是与C不重合的点,点P 关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ =2CM,则称Q为点P关于正方形的仿射点.图1为点P关于正方形的仿射点Q的示意图.(1)如图2当正方形的中心为原点O,边长为2时.①判断点F(2,0),H(3,3)关于该正方形的仿射点存在的是,对于存在的点,直接写出其仿射点的坐标为;②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,则点P的横坐标的取值范围是;(2)若正方形的中心C在x轴上,边长为2,直线y=﹣x+2与x轴、y轴分别交于点A、B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q存在,并使Q所有仿射点在正方形的内部或边上,直接写出正方形的中心C的横坐标的取值范围是.30.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)点A(2,1)的“伴随点”A′的坐标为.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)在(2)的条件下,点C在函数y=kx+3的图象上,点D是点C关于原点的对称点,点D的“伴随点为D'.若点C在第一象限,且CD=DD',直接写出此时“伴随点”D′的坐标,31.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于C.(1)如图1若直线AB的解析式:y=﹣2x+12①求点C的坐标;②求△OAC的面积;(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,是探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.33.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C 点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.34.已知:如图,在平面直角坐标系中,O为坐标原点.直线AB:y=mx+8m(m≠0)交x轴负半轴于A,交y 轴正半轴于B,直线BC:y=nx+2n(n≠0)交x轴负半轴于C,且∠OAB=2∠OBC.(1)求m、n的值;(2)点P(t,0)是x轴上一动点,过P作y轴的平行线,交AB于Q,交BC于R,设QR=d,求d与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,当点P在线段OA上,且d=9时,作点Q关于y轴的对称点T,连接CT,过B作BH⊥CT于H,在直线AB上取点M,过M作MN∥OH交直线BC于点N,若以O、H、M、N为顶点的四边形是平行四边形,求点N的坐标.35.如图,在平面直角坐标系中,O为坐标原点,直线y=kx﹣3k与y轴交于点A,与x轴交于点B,OA=OB.(1)求直线AB的解析式;(2)点C在第二象限,AC∥x轴,连接OC,将线段OC绕着点C逆时针旋转90°得到线段CD,连接OD 交线段AB于点E,设点C的横坐标为t,点E的纵坐标为m,求m与t的函数关系式;(3)在(2)的条件下,连接AD、BD,过点C作CF⊥BD于点F,交AD于点G,若CG=DE,求点E的坐标.36.【感知】如图①,在平面直角坐标系中,点C的坐标为(0,0.5),点A的坐标为(1,0),将线段CA绕着点C按逆时针方向旋转90°至线段CB,过点B作BM⊥y轴,垂足为点M,易知△AOC≌△CMB,得到点B的坐标为(0.5,1.5).【探究】如图②,在平面直角坐标系中,点A的坐标为(1,0),点C的坐标为(0,m)(m>0),将线段CA绕着点C按逆时针方向旋转90°至线段CB(1)求点B的坐标.(用含m的代数式表示)(2)直接写出点B所在直线对应的函数表达式.【拓展】如图③,在平面直角坐标系中,点A的坐标为(1,0),点C在y轴上,将线段CA绕着点C按逆时针方向旋转90°至线段CB,连结BO、BA,则BO+BA的最小值为.37.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.38.如图1,已知直线l:y=﹣2x+4交y轴于点A,交x轴于点B,点C(﹣3,0),D是直线l上的一个动点.(1)求点B的坐标,并求当S△BCD=S△BOA时点D的坐标;(2)如图2,以CD为边在CD上方作正方形CDEF,请画出当正方形CDEF的另一顶点也落在直线上的图形,并求出此时D点的坐标;(3)当D点在l上运动时,点F是否也在某个函数图象上运动?若是请直接写出该函数的解析式:若不在,请说明理由.39.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.40.平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”.对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(﹣,0),P4(﹣,﹣)中,与点A是“中心轴对称”的是;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(﹣2,2),H(2,2),J(2,﹣2),K(﹣2,﹣2),一次函数y=x+b图象与x轴交于点M,与y轴交于点N,若线段MN与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(1,0),点B从点A出发,以每秒1个单位速度沿x轴正方向运动,过点B作y轴的平行线交直线y=于点C,点D在直线BC上,且BD=BA.连接AC,AD,记△ACD的面积为S,设运动时间为t秒.(1)填空:①设AB=t,则BD=t,BC=t+(用含t的代数式表示);②当点D是线段BC的中点时,S=2;(2)当S=时,求t的值;(3)当点D在线段BC上时,连接OD,直线OD与过点C且与OC垂直的直线交于点E,当△CDE是以DE 为腰的等腰三角形时,直接写出点C的坐标.【解答】解:(1)①AB=BD=t,则点B(t+1,0),则点C(t+1,t+),则BC=t+,故答案为:t,t+;②当点D是线段BC的中点时,则2t=(t+1),解得:t=2,S=CD×AB=2×2=2,故答案为:2;(2)点D(t+1,|t|),×(t++|t|)×t=,解得:t=﹣2或(不合题意的值已舍去);(3)C(t+1,t+),点D(t+1,t),∵CE⊥OC,则设直线CE的表达式为:y=﹣x+b,将点C的坐标代入上式并解得:b=(t+1),即直线CE的表达式为:y=﹣x+(t+1)…①,同理直线OD的表达式为:y=x…②,联立①②并解得:x=,故点E[,],①当DE=CD时,tan∠DOB==tanα,则cosα=,DE=(x E﹣x D)÷cosα=,CD=t+﹣t=t+=DE=,整理得:17t2+10t﹣7=0,解得:t=或﹣1(舍去﹣1),故点C(,);②当DE=CE时,由等腰三角形“三线合一”知:y E=(y C+y D),即=(t++t),化简得:t2+t﹣12=0,解得:t=3或﹣4(舍去﹣4),故点C(4,);综上,点C的坐标为:(,)或(4,).2.如图①,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(0,﹣3),点E(3,m)在直线y=2x上,将△AOB沿射线OE方向平移,使点O与点E重合,得到△CED(点A、B分别与点C,D对应),线段CE 与y轴交于点F,线段AB,CD分别与直线y=2x交于点P,Q.(1)求点C的坐标;(2)如图②,连接AC,四边形ACQP的面积为24(直接填空);(3)过点C的直线CN与直线y=2x交于点N,当∠NCE=∠POB时,请直接写出点N的坐标.【解答】解:(1)点E(3,m)在直线y=2x上,则m=6,故点E(3,6),CE=AO=4,故点C(﹣1,6);(2)根据图象的平移知,四边形ACQP的面积等于▱AOEC的面积,即S四边形ACQP=S▱AOEC=AO×y C=4×6=24,故答案为:24;(3)由直线y=2x得:tan∠POB=,当∠NCE=∠POB时,tan∠NCE=tan∠POB=,①当点N在CE上方时,则CN的表达式为:y=x+b,将点C的坐标代入上式并解得:b=,故直线CN的表达式为:y=x+,将上式与y=2x联立并解得:x=,y=,故点N(,);②当点N在CE下方时,直线CN的表达式是:y=﹣x+,同理可得:点N(,);综上,点N的坐标为:(,)或(,).3.如图1,A(﹣4,0).正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,则OH=2,EH=2,故点E(﹣2,2),∠EOM=30°,OM==,设EF的函数表达式为:y=kx+,将点E的坐标代入上式并解得:k=,故直线EF的表达式为:y=x+;(2)射线OQ与OA的夹角为α(α为锐角,tanα=).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=3a,则(a)2+(3a)2=42,解得:a2=,OE=3a,正方形OEFG的面积=(3a)2=;(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=4,。
八上期末复习《一次函数》压轴题含答案解析
一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
一次函数习题集锦(含答案)经典 新课标 压轴题 详解
数学八年级上册一次函数练习题 出题人:刘鸿英一、填空题(每小题3分,共24分) 1.正比例函数12y x =-中,y 值随x 的增大而 . 2.已知y=(k-1)x+k 2-1是正比例函数,则k = .3.若y+3与x 成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点( ,0),(0, ).5.已知直线y=ax-2经过点(-3,-8)和12b ⎛⎫ ⎪⎝⎭,两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可). 7.在同一坐标系内函数112y x =+,112y x =-,12y x =的图象有什么特点 .8.下表中,y 是x 的一次函数,则该函数解析式为 ,并补全下表.x 2- 1- 0 1 2y26二、选择题(每小题3分,共24分)1.下列函数中是正比例函数的是( ) A .8y x=B .28y =C .2(1)y x =-D .(21)3xy +=-2.下列说法中的两个变量成正比例的是( ) A .少年儿童的身高与年龄 B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数y=|x |+3不是一次函数D .在y=kx+b(k 、b 都是不为零的常数)中, y-b 与x 成正比例 4.一次函数y=-x-1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( ) A .322y x =- B .122y x =- C .122y x =+ D .322y x =+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、解答题(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD 的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一次函数检测卷 出题人:刘鸿英一、选择题:1. 一次函数1-=x y 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A. 小于3吨 B. 大于3吨 C. 小于4吨 D. 大于4吨3. 若正比例函数x m y )21(-=的图象经过点),(11y x A 和点),(22y x B ,当21x x <时,21y y >,则m 的 取值范围是( )A. 0<mB. 0>mC. 21<m D. 21>m 4. 结合正比例函数x y 4=的图象回答:当1>x 时,y 的取值范围是( )A. 1<yB.1≤x <4C. 4=yD. 4>y5. 若1-<m ,则下列函数:①)0(>=x xmy ;②1+-=mx y ;③mx y =; ④x m y )1(+=中,y 随x 的增大而增大的是( ) A. ①② B. ②③ C. ①③ D. ③④6. 两条直线b ax y +=1与a bx y +=2在同一坐标系中的图象可能是下图中的( )O x yA O x yB O x yC O xyD7.有一个装有进、出水管的容器,单位时间内进、出的水量都是一定. 已知容器的容积为600升,又知单开进水管10分钟可把空容器注满. 若同时打开进、出水管,20分钟可把满容器的水放完. 现已知容器内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放,直至把容器中的水放完,则正确反映这一过程中容器中的水量Q (升)随时间t (分)变化的图象是( ))(365分钟t 升)(Q O 200 5005)(350分钟t 升)(Q O 200 5005)(365分钟t 升)(Q O 200 5005)(995分钟t 升)(Q O 2005005ABCD8.小明8.某天放学后,17时从学校出发,回家途中离家的路程 s(百米)与所走的时间t (分钟)之间的函数关系如图所示,那么这天 小明到家的时间为( )A. 17时15分B. 17时14分C. 17时12分D. 17时11分9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A. 2个B. 3个C. 4个D. 5个 二、填空题:1. 如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. 在平面直角坐标系中,直线b kx y +=(k ,b 为常数k ≠0,b >0)可以看成是将直线kx y =沿y 轴向上平行移动b 个单位得到的,那么将直线kx y =沿x 轴向右平行移动m 个单位(m >0)得到的直线方程是____________.3. 大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程s (千米)与行驶的速度t (小时)之间的函数关系式为_________________. 4. 若一次函数m x m y +-=)2(的图象经过第一、二、四象限,则m 的取值范围是________________. 三、解答题:1. 已知y 与2+x 成正比例,且1=x 时,6-=y .(1)求y 与x 之间的函数关系式;(2)若点)2,(a 在函数的图象上,求a 的值.0 3 6 8 8 1518t (分钟) s (百米) S (千米)18t (小时) 甲 乙 O 第10题图 0.5 1 2 2.52. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例. 当x =20时,y =1600;当x =30时,y =2000. (1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?3. 在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A 地到B 地,所经过的路程y (千米)与时间x (小时)的函数关系如图所示,试根据图象回答下列问题: (1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A 地到B 地的距离为_________千米. (2)轿车追上货车需要多小时? (3)轿车比货车早到多少时间?0 1 5 150 300 x (小时)y (千米) PD N M K FE 轿车 货 车 C参考答案一、1.减小2.1-3.174.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4 二、1.D 2.D 3.A 4.A 5.D6.A7.D8.B三、1.y x =-(答案不惟一) 2.(1)2y x =+ (2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+ (2)图略; (3)4四、1.(1)4S x =-; (2)02x <<; (3)图略 2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元参考答案基础达标验收卷 一、选择题:题号 1 2 3 4 5 6 7 8 9 答案BDDDAA ACC二、填空题:题号 12 34答案x y 21=)(m x k y -=t s 80160-=(0≤t ≤2) 2>m三、解答题:1. 解:(1)42--=x y ;(2)3-=a .2. 解:(1)80040+=x y ;(2)每名运动员需支付56元.3. 解:(1)1,150,300.(2)根据图象提供的信息,可知点M 为ON 的中点,MK ∥NE ,∴5.221==OE OK . ∴5.1=-=OC OK CK ,即轿车追上货车需1.5小时. (3)根据图象提供的信息,可知M 为CD 的中点,且MK ∥DF , ∴K 是CF 的中点. ∴CF =3. ∴431=+=+=CF OC OF . ∴145=-=-=OF OE EF ,即轿车比货车早到1小时.。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试(有答案解析)(1)
一、选择题1.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .2.一次函数y=2x-1的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D .5.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .6.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .9.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④11.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-212.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.已知1(2)23k y k xk -=-+-是关于x 的一次函数,则这个函数的解析式是_______.14.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________15.声音在空气中传播的速度(/)y m s (简称声速)与气温x (℃)的关系如下表所示: 气温x /℃ 0 5 10 15 20 … 声速/(/)y m s331334337340343…照此规律可以发现,当气温x 为__________℃时,声速y 达到352/m s .16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____. 19.正比例函数y =kx 的图象经过点(2,3),则k =______.20.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图,公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米.(1)设出发x小时后,汽车离A站y千米,求y与x之间的函数关系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站.汽车若按原速能否按时到达?请说明理由.23.如图,平面直角坐标系中,直线3944y x=-+与直线3922y x=+交于点B,与x轴交于点A.(1)求点B的坐标.(2)若点C在x轴上,且ABC是以AB为腰的等腰三角形,求点C的坐标.24.如图1,在平面直角坐标系xOy中,已知点A(0,3),B(2,3),OC=a.将梯形ABCO沿直线y=x折叠,点A落在线段OC上,对应点为E.(1)求点E的坐标;(2)①若BC//AE,求a的值,探究线段BC与AE的数量关系,说明理由.②如图2,若梯形ABCO的面积为2a,且直线y=mx将此梯形面积分为1∶2的两部分,求直线y=mx的解析式.25.某童装店以每件25元的价格购进某种品牌的童装若干件,销售了部分童装后,剩下的童装每件降价10元销售,全部售完.销售总额y(元)与销售量x(件)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前该童装的销售单价是元/件;(2)求降价后销售总额y(元)与销售量x(件)之间的函数关系式,并写出自变量的取值范围;(3)求该童装店这次销售童装盈利多少元?26.某技工培训中心有钳工20名、车工30名.现将这50名技工派往,A B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800y x x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.∴一次函数y =x ﹣k 的图象经过第一、三、四象限. 故选:B . 【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.2.B解析:B 【分析】根据一次函数的性质进行判断即可. 【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.3.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.4.D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.6.C解析:C【分析】根据选项依次求解,由图可知,第4min时,对应的容器内的水量为20L,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,可确定两段函数的关系式,即可求出每min 进水量为5L ,第8min 时容器内的水量为25L ,最后根据图像每分钟出水的量为3.75L . 【详解】A 项,由图可知,第4min 时,对应的容器内的水量y 为20L ,A 不符合题意;B 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx (k ≠0),通过图像过(4,20),解得k =5,所以每min 进水量为5L ,B 不符合题意;C 项,由B 项可知:每min 进水量为5L ,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L ,C 符合题意;D 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx+b (k ≠0,k 、b 为常数),通过图像过(4,20),(12,30),解得k =54,b =15,所以第8min 时,容器内的水量为25L ,D 不符合题意; 故选C . 【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题.7.B解析:B 【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③ 【详解】解:∵图象过第一,第二,第三象限, ∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大, ∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数, ∴这部分图像的纵坐标y>b ,③正确, 故①③正确 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.8.C解析:C 【解析】 试题根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.9.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II卷(非选择题)请点击修改第II卷的文字说明10.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160>150,②不正确;当乙在B地停留1h时,甲前进80km,甲乙相距=160-80=80km,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键,11.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键. 12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数,∴1120k k ⎧-=⎨-≠⎩,解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.14.(-20)【分析】作点B 关于x 轴的对称点D 连接AD 则AD 与x 轴交点即为点P 位置利用待定系数法求出AD 解析式再求出点P 坐标即可【详解】解:作点B 关于x 轴的对称点D 则点D 坐标为(0-4)连接AD 则AD 与解析:(-2,0)【分析】作点B 关于x 轴的对称点D ,连接AD ,则AD 与x 轴交点即为点P 位置,利用待定系数法求出AD 解析式,再求出点P 坐标即可.【详解】解:作点B 关于x 轴的对称点D ,则点D 坐标为(0,-4),连接AD ,则AD 与x 轴交点即为点P 位置.设直线AD 解析式为y=kx+b (k≠0),∵点A 、D 的坐标分别为(-3,2),(0,-4),∴324k b b -+=⎧⎨=-⎩ 解得24k b =-⎧⎨=-⎩ ∴直线AD 解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P 的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.15.35【分析】由题意观察图表数据可得气温每升高5℃音速增加3然后写出x 的表达式把音速y=352代入函数解析式求得相应的x 的值即可【详解】解:设函数解析式该函数图象经过点解得该解析式为:y=x+331当解析:35【分析】由题意观察图表数据可得气温每升高5℃,音速增加3,然后写出x 的表达式,把音速y=352代入函数解析式,求得相应的x 的值即可.【详解】解:设函数解析式y kx b =+该函数图象经过点()0331,,()5334, 3315334b k b =⎧∴⎨+=⎩解得35331k b ⎧=⎪⎨⎪=⎩ ∴该解析式为:y=35x+331, 当y=352时,352=35x+331, 解得x=35.即当声音在空气中的传播速度为352米/秒,气温是35℃.故答案为:35.【点睛】本题考查一次函数的应用.读懂题目信息答案,观察并发现气温每升高5℃,音速增加3是解题的关键. 16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得:21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.(0﹣3)【分析】代入x=0求出与之对应的y 值进而可得出点A 的坐标【详解】解:当x =0时y =x ﹣3=﹣3∴点A 的坐标为(0﹣3)故答案为:(0﹣3)【点睛】本题考查一次函数图象上点的坐标特征牢记直线解析:(0,﹣3)【分析】代入x=0求出与之对应的y 值,进而可得出点A 的坐标.【详解】解:当x =0时,y =x ﹣3=﹣3,∴点A 的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题关键.19.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx 中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:32【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx 中,得2k=3,解得k=32, 故答案为:32. 【点睛】 此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数. 20.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩,一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)y=40x+10;(2)汽车若按原速不能按时到达【分析】(1)先求出汽车的速度,再根据路程=速度×时间求得关系式即可;(2)由(1)中函数关系式求出汽车到达C 站的时间即可得出结论.【详解】解:(1)由题意知汽车的速度为2010401560-=(千米∕时),∴y 与x 之间的函数关系式为y=40x+10;(2)当y=150+30=180时,由180=40x+10得:x=4.25,∵12﹣8=4(小时),且4<4.25,∴汽车若按原速不能按时到达.【点睛】本题考查一次函数的应用、解一元一次方程,掌握行程问题中的等量关系,建立函数模型是解答的关键.23.(1)(1,3)B -;(2)123(5,0),(2,0),(8,0)C C C --【分析】(1)联立两直线解析式构建二元一次方程组求解即可;(2)由题意易得点A 的坐标,然后分AB=AC 和AB=BC 两种情况结合等腰三角形的性质可进行分类求解.【详解】解:(1)由题意可联立解析式得:39443922y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:13x y =-⎧⎨=⎩, ∴(1,3)B -;(2)由直线3944y x =-+可令y=0得:(3,0)A , ①若A 为顶角顶点,如图所示:由(1)及两点距离公式可得, ∴22435AC AB ==+=,∴22OC =,38OC =,②若B 为顶角顶点,∴5BC BA ==,过点B 作BD ⊥x 轴于点D ,则有14C D AD ==,∴15OC =,∴综上所述:当△ABC 以AB 为腰的等腰三角形,则有123(5,0),(2,0),(8,0)C C C --.【点睛】本题主要考查等腰三角形的性质、勾股定理及一次函数的性质,熟练掌握等腰三角形的性质、勾股定理及一次函数的性质是解题的关键.24.(1)E (3,0);(2)①a=5,BC=AE ,理由见解析;②619y x =或1211y x =. 【分析】(1)由折叠的性质可知OE=OA ,由OA 的长即可确定出点E 的坐标;(2)①由平行四边形的性质可知EC=AB ,BC=AE ,结合OE 的长即可求得a 的值; ②根据梯形的面积公式以及梯形的面积可求得a 的值,从而可求得梯形的面积,由直线y =mx 将梯形面积分为1∶2两部分,可得分成的三角形面积有两种情况,然后根据三角形的面积公式可求直线y=mx 与直线BC 交点的纵坐标,利用待定系数法可得直线BC 的函数表达式,将交点的纵坐标分别代入即可求得直线y =mx 的解析式【详解】解(1)∵点A 坐标为(0,3),∴OA=3∵直线y=x 是第一象限的角平分线,点A 落在x 轴上,∴OE=OA=3,∴E (3,0)(2)①∵//BC AE , //AB CE∴四边形ABCE 是平行四边形∴CE =AB =2∴OC =OE +CE =5∴a =5∵四边形ABCE 是平行四边形∴BC=AE②如图2,由梯形面积可知,3(2)22a a += 解得:a=6,梯形面积为12∴由B(2,3),C(6,0),可得直线BC 的解析式为3942=-+y x 若直线y=m 1x 分△OCG 1的面积为梯形面积的13时,直线y=m 1x 与BC 交于点G 1,过G 1作G 1 H 1垂直于x 轴于点H 1∴△OCG 1的面积为4,OC=6,∴G 1 H 1=43 可得点G 1384(,)93 ∴619y x = 若直线y=m 2x 分△OCG 2的面积为梯形面积的23时,直线y=m 2x 与BC 的交于点G 2,过G 2作G 2 H 2垂直于x 轴于点H 2∴△OCG 2的面积为8,OC=6,∴G 2 H 2=83 可得点G 2228(,)93∴1211y x =由上可得619y x =或1211y x = 【点睛】 本题主要考查了一次函数解析式的求法,熟练掌握待定系数法,应用分类讨论思想是解决本题的关键25.(1)45 ;(2)35400y x =+(4055)x< ;(3)该童装店这次销售童装盈利950元.【分析】(1)根据函数图象中的数据,可以计算出降价前该童装的销售单价=降价前的销售总额÷降价前的销售量;(2)设降价后销售金额y (元)与销售量x (千克)之间的函数解析式为y kx b =+,由图像可知过点(40,1800),(55,2325),两点代入求出解析式,并写出自变量的取值范围; (3)根据函数图象中的数据和题目中的数据,可以计算出该童装店这次销售童装盈利=销售总额-进价单价×销售量.【详解】(1)由图可得:降价前该童装的销售单价是:1800÷40=45元/件,故答案为:45(2)设降价后销售金额y (元)与销售量x (件)之间的函数关系式为:y kx b =+, 由题意知,该函数过点(40,1800),(55,2325) 则:180040232555k b k b =+⎧⎨=+⎩, 解之得:35400k b =⎧⎨=⎩∴35400y x =+(4055)x< (3)该童装店这次销售童装盈利了: 2325-55×25=950(元)∴ 该童装店这次销售童装盈利950元.【点睛】本题考查了一次函数的应用,解答本题明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)()400148000020y x x =+≤≤;(2)17名,154800元【分析】(1)根据50名技工的月工资总额y (元)=派往A 地x 名钳工月工资+派往B 地(20)x -名钳工月工资+派往B 地30名车工月工资,即可得出月工资总额y (元)与x 之间的函数表达式,并写出x 的取值范围;(2)根据月工资总额不得超过155000元先求出x 的取值范围,即确定y 的最大值,使他们的工资总额最高.【详解】解:(1)由题意可得,36003200(20)280030400148000y x x x =+-+⨯=+,即这50名技工的月工资总额y (元)与x 之间的函数表达式是()400148000020y x x =+≤≤;(2)∵月工资总额不得超过155000元.∴400148000155000x +≤ ∴352x ≤ 又∵k =400>0,∴∴当17x =时,y 取得最大值154800元,即当派往A 地17名钳工时,这些技工的月工资总额最大,?月工资总额最大为154800元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.。
八年级下册----一次函数压轴题解析
八年级下册----一次函数压轴题一.选择题(共17小题)1.(2013?平塘县二模)如图,是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h与t的函数图象只可的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y﹣x+3≤标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶﹣为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;点C、D在线段AB 上且AC=BD,当点P从点C运动到点D时,设点G到直线AB的距离为y,则能表示y与P点移动的10.(2011?浙江二模)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)5合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函:相交于点设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是.(只填所有正确结论的序号例如①)19.(2007?衢州)一个水池有2个速度相同的进水口,1个出水口,单开一个进水口每小时可进水10立方米,单开一个出水口每小时可出水20立方米.某天0点到6点,该水池的蓄水量与时间的函数关系如图所示(至少打开一个进水口).给出以下三个论断:(1)0点到3点只进水不出(填(3)4点到6点不进水也不出水.则错误的论断是.水;(2)3点到4点不进水只出水,序号)20.(2007?开封)已知函数y=,则x的取值范围是;若x是整数,则此函数的最小值是.21.(2008?昌平区二模)当光线射到x轴的点C后进行反射,如果反射的路径经过点A(0,1)和点B(3,4),如图,则入射线所在直线的解析式为.22.(2009?萧山区模拟)当k取不同整数时,经过第一、二、四象限的所有直线y=(2k﹣1)x+k+2与坐标轴在第一象限围成一个多边形,这个多边形的面积等于.三.解答题(共8小题)23.(2015?建邺区二模)小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1(224.(驶向A25.(速驶往C(326.((1112的函数解析式.l2(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.27.(2014?天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.28.(2014?江阴市二模)如图,A、B两点分别在x轴和y轴上,且OA=OB=,动点P、Q分别在AB、OB上运动,运动时,始终保持∠OPQ=45°不变,设PA=x,OQ=y.(1)求y与x的函数关系式.(2)已知点M在坐标平面内,是否存在以P、Q、O、M为顶点的四边形是菱形?若存在,求出点M的坐标;若不存在,说明理由.(3)已知点D在AB上,且AD=,试探究:当点P从点A出发第一次运动到点D时,点Q运动的路径长为多少?29.(2013?绥化)为了迎接“十?一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种千克,的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为yAP=,即y=,则其函数时,y=x+3+,其函数图象是直线的一部分.y=的图象问题,在初中阶段没有学×﹣x+3x+3=0∴,∴(﹣a+3a+﹣,=3AP=x OC=,然后根据三角形x?AP=OC===OC?AP=x?(匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为()y=AP?AM=×S=xS=﹣(﹣标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶BC=BE=AE=EO=GF=OA=2OF=DG=BG=CG=BC=1将两点坐标代入得:解得:始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)AC==PC=﹣(﹣xBE?PF=x x﹣xx x<<(,+1=6=6∴时,﹣1+﹣∴R从点B出发,沿B→C→D→F方向运动至点F处停止.设点R运动的路程为x,△EFR的面积为y,x+中,得18.(2007?随州)在四边形ABCD中,AB边的长为4,设动点P沿折线B?C?D?A由点B向点A运动,设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是①③.(只填所有正确结论的序号例如①)解:=y=,则x≤﹣,,此函数的最小值是﹣21.(2008?昌平区二模)当光线射到x轴的点C后进行反射,如果反射的路径经过点A(0,1),解:因为图象过第一、二、四象限,所以,解得﹣<×××=.后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为60 米/分钟,a= 960 ,小林家离图书馆的距离为1200 米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;,得:=小时从t=+1=;,t=x+4,x+4,y=x=,);,)(,(,M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含,)﹣))﹣)﹣,的交点,则,P的坐标是(,.﹣﹣)))))﹣.或OA=OB=BQ==,即=y=,,BP=OA=,﹣,PE==AE=﹣轴对称,,﹣()或(,,,,=,,+=2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?=,根据题意得,,30.(2013?常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该根据题意得,。
第20章一次函数章节压轴题专练(解析版)
第20章 一次函数章节压轴题专练模块一:一次函数的概念与图像1.(松江2018期中24)已知,点(2,)P m 是第一象限内的点,直线PA 交y 轴于点(0,2)B ,交x 轴负半轴于点A ,联结OP ,6AOP S ∆=. (1)求BOP ∆的面积; (2)求点A 的坐标和m 的值.【答案】(1)2;(2)122y x =+;3m =; 【解析】解:(1)作PE y ⊥轴于E ,因为点P 的横坐标为2,则PE=2,12BOP S OB PE ∆∴=12222=⨯⨯=; (2)624AOB AOP BOP S S S ∆∆∆∴=-=-=,142AOB S OA OB ∆∴==,即1242OA ⨯=,4OA ∴=,所以A 的坐标为(- 4,0);设AP 的解析式为y kx b =+,则402k b b -+=⎧⎨=⎩,解得122k b ⎧=⎪⎨⎪=⎩,则直线AP 的解析式为122y x =+,点P 代入得3m =. 2. (杨浦2019期中25)如图,在平面直角坐标系XOY 中,O 为坐标原点,已知直线1l 经过点A (-6,0),它与y 轴交于点B,点B 在y 轴正半轴上,且OA=2OB (1)求直线1l 的函数解析式(2)若直线2l 也经过点A (-6,0),且与y 轴交于点C ,如果ΔABC 的面积为6,求C 点的坐标【答案】(1)132y x =+;(2)C(0,5)或(0,1); 【解析】解:因为 A (-6,0),所以OA=6,因为OA=2OB ,所以OB=3,因为B 在y 轴正半轴,所以B(0,3),∴设直线1l 解析式为:y=kx+3(k ≠0)A(-6,0) 在此图像上,代入得6k+3=0,12k =,所以132y x =+; (2)解:因为62ABC BC AOS ∆⨯==,因为AO=6,所以BC=2,所以C(0,5)或(0,1). 3. (普陀2018期中23)如图,已知一次函数y =2x +4的图象与x 轴、y 轴分别交于点A 、B ,且BC ∥AO ,梯形AOBC 的面积为10. (1)求点A 、B 、C 的坐标; (2)求直线AC 的表达式.【答案与解析】解:(1)令y =0,则2x +4=0,解得:x =-2,令x =0,则y =4,∴A (-2,0),B (0,4).所以OA =2,OB =4,∵梯形AOBC 的面积为10,∴.则解得BC =3,所以点C (-3,4);(2)设直线AC 的表达式为y =kx +b (k ≠0).则2034k b k b -+=⎧⎨-+=⎩, 解得.故直线AC 的表达式为y =-4x -8.4.(崇明2018期中25)如图,平面直角坐标系xOy 中,点(,1)A a 在双曲线3y x=上,函数y kx b =+的图像经过点A ,与y 轴交于点(0,2)B -.(1)求直线AB 的解析式;(2)设直线AB 交x 轴于点C ,求三角形OAC 的面积.【答案】(1)2y x =-;(2)1;【解析】解:(1)将点(,1)A a 代入3y x=,得(3,1)A ,将(3,1)(0,2)A B -、代入y kx b =+中,得2y x =-; (2)过点A 作AH OC ⊥,由题意得:AH=1,直线AB 与x 轴交于点(2,0)C ,得OC=2,所以OAC 11=21122S OC AH ∆=⨯⨯=.5. (普陀2018期中19)在平面直角坐标系xOy 中,直线y =x 向下平移2个单位后和直线y =kx +b(k ≠0)重合,直线y =kx +b (k ≠0)与x 轴交于点A ,与y 轴交于点B . (1)请直接写出直线y =kx +b (k ≠0)的表达式和点B 的坐标; (2)求△AOB 的面积.【答案与解析】解:(1)因为直线y =x 向下平移2个单位后和直线y =kx +b (k ≠0)重合,故直线AB 的表达式为y =x -2,所以点B 的坐标是(0,-2).(2)当y =0时,x =2,所以点A 的坐标为(2,0).所以 OA =2.又因为OB =2,所以.6.(松江2018期中26)如图,一次函数y kx b =+的图像与反比例函数my x=的图像相交于(2,2)(1,4)A B --、两点. (1)求出两函数的解析式;(2)根据图像回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?(3)联结AO 、BO ,试求AOB ∆的面积.【答案】(1)4y x=,22y x =-;(2)102x x -<<>或;(3)3;【解析】解:(1)因为反比例函数my x=的图像经过点(2,2)A ,所以4m =,所以反比例函数解析式为4y x=;因为一次函数y kx b =+的图像经过点(2,2)(1,4)A B --、,所以 224k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=-⎩,故所求一次函数解析式为22y x =-; (2)由图可知:当102x x -<<>或时,一次函数的函数值大于反比例函数的函数值; (3)设直线AB :22y x =-与x 轴交于点C ,当y=0时,得x=1,知点C (1,0),OC=1. 故AOB AOC BOCS S S ∆∆∆=+111214322=⨯⨯+⨯⨯=. 7. (黄浦2018期中26)已知一次函数的图象与坐标轴交于A 、B 点(如图),AE平分∠BAO ,交x 轴于点E .(1)求点B 的坐标;(2)求直线AE 的表达式;(3)过点B 作BF ⊥AE ,垂足为F ,连接OF ,试判断△OFB 的形状,并求△OFB 的面积.(4)若将已知条件“AE 平分∠BAO ,交x 轴于点E ”改变为“点E 是线段OB 上的一个动点(点E 不与点O 、B 重合)”,过点B 作BF ⊥AE ,垂足为F .设OE =x ,BF =y ,试求y 与x 之间的函数关系式,并写出函数的定义域.【答案】(1)(8,0);(2)y = -2x +6;(3)Rt OFB ∆,8;(4)236y x =+(0<x <8)【解析】解:(1)对于364y x =-+,当x =0时,y =6;当y =0时,x =8,∴OA =6,OB =8,在Rt △AOB 中,根据勾股定理得:AB =10,则A (0,6),B (8,0);(2)过点E 作EG ⊥AB ,垂足为G (如图1所示),∵AE 平分∠BAO ,EO ⊥AO ,EG ⊥AG ,∴EG =OE ,在Rt △AOE 和Rt △AGE 中,AE AE EO EG=⎧⎨=⎩,∴Rt △AOE ≌Rt △AGE (HL ), ∴AG =AO ,设OE =EG =x ,则有BE =8-x ,BG =AB -AG =10-6=4,在Rt △BEG 中,EG =x ,BG =4,BE =8-x ,根据勾股定理得:x 2+42=(8-x )2,解得:x =3,∴E (3,0),设直线AE 的表达式为y =kx +b (k ≠0),将A (0,6),E (3,0)代入y =kx +b 得:630b k b =⎧⎨+=⎩,解得:62b k =⎧⎨=-⎩,则直线AE 的表达式为y =-2x +6;(3)延长BF 交y 轴于点K (如图2所示),∵AE 平分∠BAO ,∴∠KAF =∠BAF ,又BF ⊥AE , ∴∠AFK =∠AFB =90°,在△AFK 和△AFB 中,∵KAF BAFAF AFAFK AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFK ≌△AFB ,∴FK =FB ,即F 为KB 的中点,又∵△BOK 为直角三角形,∴OF =BK =BF ,∴△OFB 为等腰三角形,过点F 作FH ⊥OB ,垂足为H (如图2所示),∵OF =BF ,FH ⊥OB ,∴OH =BH =4,∴F 点的横坐标为4,设F (4,y ),将F (4,y )代入y =-2x +6,得:y =-2,∴FH =|-2|=2,则S △OBF =OB •FH =×8×2=8;(4)在Rt △AOE 中,OE =x ,OA =6,根据勾股定理得:AE ==,又BE =OB -OE =8-x ,S △ABE =AE •BF =BE •AO (等积法),∴BF ==(0<x <8),又BF =y ,则y =(0<x<8).8.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5.【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5.9. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3,∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 10. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.11.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOB S OA OB ∆=⨯⨯=⨯⨯=. 12.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x 轴的负半轴上,直线y kx =经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =于点C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =60CAB ∠=︒,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =经过点A,0k ∴=-即k =所以这条直线的表达式为y = (2)由题意,得点B (1,0). 设直线AC 上的点D的坐标为(m ,因为ABD ∆是等腰三角形,所以: 当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D的坐标为.综上所述,点D的坐标为(2,D -或.13.(松江2018期中27)如图,直线y =+与x 轴相交于点A,与直线y 相交于点P.(1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,;(2)OPA ∆是等边三角形;(3)22(02)4)t S t <≤=⎨⎪+-<<⎪⎩ 【解析】解:(1)由y y ⎧=+⎪⎨=⎪⎩2x y =⎧⎪⎨=⎪⎩P的坐标为(2,;(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);24OP =,4PA ,所以OA=OP=PA ,所以OPA ∆是等边三角形. (3)当02t<≤时,211222t S OF EF ==⨯;当24t <<时,2144222t t S t ⎛⎫⎫=⨯-+-=+-⎪⎪⎝⎭⎭故22(02)4)t St <≤=⎨⎪+-<<⎪⎩.14.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形). (1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7,∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO 的周长为21∴-m +7+227m +=21∴227m +=m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y=13x +8. ∵直线AB 的解析式为y =43-x -7,∴联立183473y x y x ⎧⎪⎪⎨⎪=--⎪⎩=+,解得95x y =⎧⎨=⎩∴点P 的坐标为(-9,5 ) ,∴反比例函数的解析式为45y x=-.模块二:一次函数的性质与应用1. (黄浦2018期中21)已知一次函数y =(1-2m )x +m +1(m ≠),函数值y 随自变量x 值的增大而减小.(1)求m 的取值范围;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴还是负半轴?请简述理由.【答案】(1)12m >;(2)交点M 位于x 轴的正半轴;【解析】解:(1)∵一次函数y =(1-2m )x +m +1(m ≠),函数值y 随自变量x 值的增大而减小,∴1-2m <0,解得12m >;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M位于x 轴的正半轴.理由:令y =0,则(1-2m )x +m +1=0,整理,得x =由(1)知,m >,则m +1>0,2m -1>0,∴x =>0,∴在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴.2.(崇明2018期中26)根据卫生防疫部门要求,游泳池必须定期换水,清洗. 某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完. 游泳池内的水量Q (3m )和开始排水后的时间t (h )之间的函数图像如图所示,根据图像解答下列问题: (1)暂停排水需要多少时间?排水孔排水速度是多少? (2)当23.5t ≤≤时,求Q 关于 t 的函数表达式.【答案】(1)0.5小时,3003m h ∕;(2)3001050Q t =-+;【解析】解:(1)暂停排水需要的时间为2-1.5=0.5小时;因为排水时间一共是:3.5-0.5=3小时,一共排水9003m ,所以排水孔排水速度是:900÷3=3003m h ∕;(2)当2 3.5t ≤≤时,设Q 关于 t 的函数表达式为Q kx b =+,易知图像过点(3.5,0),因为 1.5t =时,排水300 1.5450⨯=,此时Q=900-450=450,所以点(2,450)在直线Q kx b=+上,把(3.5,0)、(2,450)代入Q kx b =+,得24503.50k b k b +=⎧⎨+=⎩,解得3001050k b =-⎧⎨=⎩,所以Q 关于 t 的函数表达式为3001050Q t =-+.3.(金山2018期中26)某地举行龙舟赛,甲、乙两队在比赛时,路程y (米)与时间x (分钟)的函数图像如图所示,根据函数图像填空和解答问题:(1)最先到达终点的是 队,比另一队领先 分钟到达;(2)在比赛过程中,甲队的速度始终保持为 米/分;而乙队在第 分钟后第一次加速,速度变为 米/分,在第 分钟后第二次加速;(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.【答案与解析】(1)乙;0.6; (2)160,1,175,3; (3)乙队第一次加速后,始终保持这个速度继续前进走完余下路程需要的时间为700÷175=4,所以乙队走完全程时间为4+1=5分钟,因为甲队走完全程的时间是5分钟,故甲队与乙队同时到达.4.(浦东一署2018期中20)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.根据图中的信息:(1)求线段AB 所在直线的函数解析式;(2)可求得甲乙两地之间的距离为______千米;(3)已知两车相遇时快车走了180千米,则快车从甲地到达乙地所需时间为______小时.【答案】(1)y=-140x+280;(2)280(3)289; 【解析】解:(1)设线段AB 所对的函数解析式为y=kx+b , 1.57020k b k b +=⎧⎨+=⎩,得140280k b =-⎧⎨=⎩, 即线段AB 所在直线的函数解析式为y=-140x+280;(2)当x=0时,y=-140×0+280=280, 故答案为:280;(3)由题意可得,快车的速度为:180÷2=90千米/小时,则快车从甲地到达乙地所需时间为:280÷90=289(小时),故答案为:289. )5. (松江2019期中25)一果农带了若干千克自产的苹果进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又半价售完剩下的苹果.售出苹果千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)果农自带的零钱是多少?(2)降价前他每千克苹果出售的价格是多少?(3)降价售完剩余苹果后,这时他手中的钱(含备用零钱)是1120元,问果农一共带了多少千克苹果?【答案】(1)40元;(2) 12(元/千克);(3) 100千克.【解析】解:(1)由图可知,果农自带的零钱是40元;(2)(1000-40)÷80=12(元/千克);(3)后来又按半价出售,则降价后的售价是12÷2=6(元/千克),(1120-1000)÷6=20(千克),80+20=100(千克),答:果农自带的零钱是40元;降价前苹果的售价是12元/千克;果农一共带了100千克苹果.6.(青浦2018期末22)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.(1)求提高效率后,s关于t的函数关系式;(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?【答案】(1)450600y x =-;(2)1502m ;【解析】解:(1)设直线AB 的解析式为y =kx+b ,则4120051650k b k b +=⎧⎨+=⎩,解得450600k b =⎧⎨=-⎩. 故直线AB 的解析式为450600y x =-;(2)∵直线AB 的解析式为450600y x =-,当x =2时,y =450×2﹣600=300,300÷2=150(m 2).答:该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积是150m 2.7. (浦东四署2018期中22) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【答案】(1)40y x =-+;(2)200元;【解析】解:(1)设此一次函数解析式为y kx b =+,则15252020k b k b +=⎧⎨+=⎩, 解得1,40k b =-=,即一次函数解析式为40y x =-+. (2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元.8. (黄浦2018期中24)一个水槽有进水管和出水管各一个,进水管每分钟进水a 升,出水管每分钟出水b 升.水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x (分)与水槽内的水量y (升)之间的函数关系(如图所示).(1)求a 、b 的值;(2)如果在20分钟之后只出水不进水,求这段时间内y 关于x 的函数解析式及定义域.【答案】(1)a=3,b=2;(2)y=-2x+75(20≤x≤37.5);【解析】解:(1)由图象得知:水槽原有水5升,前5分钟只进水不出水,第5分钟时水槽实际存水20升.水槽每分钟进水a升,于是可得方程:5a+5=20.解得a=3.按照每分钟进水3升的速度,15分钟应该进水45升,加上第20分钟时水槽内原有的20升水,水槽内应该存水65升.实际上,由图象给出的信息可以得知:第20分钟时,水槽内的实际存水只有35升,因此15分钟的时间内实际出水量为:65-35=30(升).依据题意,得方程:15b=30.解得b=2.(2)按照每分钟出水2升的速度,将水槽内存有的35升水完全排出,需要17.5分钟.因此,在第37.5分钟时,水槽内的水可以完全排除.设第20分钟后(只出水不进水),y关于x的函数解析式为y=kx+b.将(20,35)、(37.5,0)代入y=kx+b,得:,解得:,则y关于x的函数解析式为:y=-2x+75(20≤x≤37.5).9. (普陀2018期中21)如图,甲、乙两人到距离A地35千米的B地办事,甲步行先走,乙骑车后走,两人行进的路程和时间的关系如图所示,根据图示提供的信息解答:(1)乙比甲晚______小时出发;乙出发______小时后追上甲;(2)求乙比甲早几小时到达B地?【答案】2;2【解析】解:(1)∵当S=0时,t乙=2,∴乙比甲晚2小时出发;∵当t=4时,S甲=S乙,4-2=2,∴乙出发2小时后追上甲.故答案为:2;2.(2)设甲的路程与时间的函数解析式为S=kt(k ≠0),∴20=4k,解得:k=5,∴甲的路程与时间的函数解析式为S=5t,当S=35时,有5t=35,解得:t=7.设乙的路程与时间的函数解析式为S=mt+n,根据题意,得:20402m nm n=+⎧⎨=+⎩,解得:1020mn=⎧⎨=-⎩,∴乙的路程与时间的函数解析式为S=10t-20.当S=35时,有10t-20=35,解得:t=5.5,∴7-5.5=1.5(小时).答:乙比甲早1.5小时到达B地.10.(浦东四署2018期中23)上周六,小明一家共7人从家里出发去公园游玩。
一次函数压轴题精选(含详细答案)
一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG的坐标.折叠,点N恰好落在x轴上的点H处,求点G3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y 轴上,一次函数y=x+3的图象经过点B、C.第1页(共99页)的坐标为 ;(1)点C的坐标为的坐标为 ,点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.两题中任选一题作答,我选择 题.请从下列A、B两题中任选一题作答,我选择A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证△BEC ≌△CDA ;(2)模型应用:①已知直线y=x +4与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y=2x ﹣6上的一点,若△APD 是不以A 为直角顶点的等腰Rt △,请直接写出所有符合条件的点D 的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△AʹOP,连接BAʹ,当BAʹ取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点Bʹ恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,当点C移动到点O时,得是等边三角形,当点始终保持△ACP是等边三角形,轴上移动时,始终保持△点C在x轴上移动时,到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为P A的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与,与 对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,为坐标原点,点点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD 2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a 2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,平面直角坐标系中,已知直线连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴与C,且OB:OC=3:1.(1)求直线BC的函数表达式;(2)直线EF:y=x﹣k(k≠0)交直线AB于E,交直线BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为Pʹ(点Pʹ不在y轴上),连接PPʹ,PʹA,PʹC.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与PʹC的交点为D.当PʹD:DC=5:13时,求m的值;(2)若∠ACPʹ=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△PʹCA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P 3(﹣4,﹣4);当BP 4=DP 4时,(﹣1+4)2+(0﹣p )2=(p ﹣4)2,解得:p=,此时P 4(﹣4,),综上,共有四个点满足要求.分别是P 1(﹣4,9),P 2(﹣4,﹣4),P 3(﹣4,﹣1),P 4(﹣4,).【点评】此题属于一次函数综合题,此题属于一次函数综合题,涉及的知识有:涉及的知识有:涉及的知识有:待定系数法求一次函数解析待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动. (1)点A 的坐标:的坐标: (4,0) ;点B 的坐标:的坐标: (0,2) ;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标; (4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G 的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.的坐标为 (﹣4,2);(1)点C的坐标为的坐标为 (0,3),点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,此题考查了一次函数综合题,需要综合利用勾股定理,需要综合利用勾股定理,需要综合利用勾股定理,等腰三角形的判等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB ,BC ,AC 的长分别为AB= 8 ,BC= 4 ,AC= 4 ;(2)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2. 请从下列A 、B 两题中任选一题作答,我选择两题中任选一题作答,我选择 A 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由. B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD=8﹣AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8), ∴OA=4,OC=8,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC=90°, ∴四边形OABC 是矩形, ∴AB=OC=8,BC=OA=4,在Rt △ABC 中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A 、①由(1)知,BC=4,AB=8, 由折叠知,CD=AD ,在Rt △BCD 中,BD=AB ﹣AD=8﹣AD , 根据勾股定理得,CD 2=BC 2+BD 2, 即:AD 2=16+(8﹣AD )2, ∴AD=5,②由①知,D (4,5), 设P (0,y ), ∵A (4,0),∴AP 2=16+y 2,DP 2=16+(y ﹣5)2, ∵△APD 为等腰三角形, ∴Ⅰ、AP=AD , ∴16+y 2=25,∴y=±3,∴P (0,3)或(0,﹣3) Ⅱ、AP=DP , ∴16+y2=16+(y ﹣5)2,∴y=, ∴P (0,),Ⅲ、AD=DP ,25=16+(y ﹣5)2, ∴y=2或8,∴P (0,2)或(0,8).B 、①、由A ①知,AD=5, 由折叠知,AE=AC=2,DE ⊥AC 于E ,在Rt △ADE 中,DE==,②、∵以点A ,P ,C 为顶点的三角形与△ABC 全等, ∴△APC ≌△ABC ,或△CPA ≌△ABC , ∴∠APC=∠ABC=90°, ∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合, 即:P (0,0), 如图3,过点O 作ON ⊥AC 于N , 易证,△AON ∽△ACO , ∴,∴, ∴AN=,过点N 作NH ⊥OA , ∴NH ∥OA ,∴△ANH ∽△ACO , ∴,∴,∴NH=,AH=, ∴OH=, ∴N (,),而点P 2与点O 关于AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,), 即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,相似三角形的相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E . (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN 2 =(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA ﹣AC=3, ∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO , ∴△EBD ≌△ABO , ∴BE=AB=10, ∴OE=BE ﹣OB=4, ∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4, ∴﹣3k ﹣4=0, ∴k=﹣,∴直线CE 的解析式为y=﹣x ﹣4,(2)解:存在,(﹣,),如图,∵点P 在直线y=x +6上,∴设P (﹣m ,﹣m +6),∴PN=m ,PM=﹣m +6,根据勾股定理得,MN 2=PN2+PM2=m2+(﹣m +6)2=(m ﹣)2+,∴当m=时,MN 2有最小值,则MN 有最小值,当m=时,y=﹣x +6=﹣×+6=,∴P (﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了待定系数法,主要考查了待定系数法,主要考查了待定系数法,全等三角形的判定和全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点. (1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)【分析】(1)由题意点P 与点C 重合,可得点P 坐标为(3,4);(2)分两种情形①当点P 在边AD 上时,②当点P 在边AB 上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P 在线段CD 上时.②如图2中,当点P 在AB 上时.③如图3中,当点P 在线段AD 上时.分别求解即可; 【解答】解:(1)∵CD=6, ∴点P 与点C 重合, ∴点P 坐标为(3,4).(2)①当点P 在边AD 上时, ∵直线AD 的解析式为y=﹣2x ﹣2, 设P (a ,﹣2a ﹣2),且﹣3≤a ≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNMʹ中,∵PM=PMʹ=6,PN=4,∴NMʹ==2,在Rt△OGMʹ中,∵OG 2+OMʹ2=GMʹ2,∴22+(2+m)2=m2,解得m=﹣, ∴P (﹣,4)根据对称性可知,P (,4)也满足条件.②如图2中,当点P 在AB 上时,易知四边形PMGMʹ是正方形,边长为2,此时P (2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠MʹRG=∠MʹGR ,推出MʹR=MʹG=GM ,设MʹR=MʹG=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2, ∴R (﹣1,0),在Rt △OGMʹ中,有x 2=22+(x ﹣1)2,解得x=,。
一次函数综合题(解析版)--2024年中考数学压轴题专项训练
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
中考数学压轴题专项训练一次函数含解析
2021年中考数学压轴题专项训练《一次函数》1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2。
5﹣1=1.5(小时),∴乙车出发后1。
5小时追上甲车.2.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为20km;(2)当x为何值时,甲、乙两车相距5km?解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0。
75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.3.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE 为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(﹣2,0),B(0,2);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)4.某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地.乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地.已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为x (分),图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B﹣C﹣D和线段EA表示乙离开学校的路程y(米)与x(分)的函数关系的图象.根据图中所给的信息,解答下列问题:(1)甲步行的速度和乙骑行的速度;(2)甲出发多少时间后,甲、乙两人第二次相遇?(3)若s(米)表示甲、乙两人之间的距离,当15≤x≤30时,求s(米)关于x(分)的函数关系式.解:(1)由题意得:(米/分),=240(米/分);(2)由题意可得:C(10,1200),D(15,0),A(30,2400),设线段CD的解析式为:y=kx+b,则,解得∴线段CD的解析式为:y=﹣240x+3600,易知线段OA的解析式为:y=80x,根据题意得240x+3600=80x,解得:x=,∴甲出发分后,甲、乙两人第二次相遇;(3)∵E(20,0),A(30,2400),设线段EA的解析式为:y=mx+n,,解得,∴线段EA的解析式为:y=240x﹣4800,∴当15≤x≤20时,s=y OA﹣0=80x,当20<x≤30时,s=y OA﹣y EA=80x﹣(240x﹣4800)=﹣160x+4800,∴.5.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M 关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC=90°,AB=AC=2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P 在直线y=x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当≤R≤1时,求点P的横坐标t的取值范围.解:(1)①如图1,过D作DE⊥AC于E,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠C=∠B=45°,∵CD=1,∴BD=2﹣1>CD,∴D到AC的距离小于到AB的距离,∵△DEC是等腰直角三角形,∴DE=,即点D关于△ABC的最大内半圆的半径长是;②当D为BC的中点时,BC关于△ABC的内半圆为⊙D,如图2,∴BD=BC=,同理可得:BC关于△ABC的内半圆半径DE=1.(2)过点E作EF⊥OE,与直线y=x交于点F,设点M是OE 上的动点,i)当点P在线段OF上运动时(P不与O重合),OE关于△OEP 的内半圆是以M为圆心,分别与OP,PE相切的半圆,如图3,连接PM,∵直线OF:y=x∴∠FOE=30°由(1)可知:当M为线段中点时,存在OE关于△OEP的内半圆,∴当R=时,如图3,DM=,此时PM⊥x轴,P的横坐标t=OM=;如图4,当P与F重合时,M在∠EFO的角平分线上,⊙M分别与OF,FE相切,此时R=1,P的横坐标t=OE=3;∴当≤R≤1时,t的取值范围是≤t≤3.ii)当点P在OF的延长线上运动时,OE关于△OEP的内半圆是以M为圆心,经过点E且与OP相切的半圆,如图5.∴当R=1 时,t的取值范围是t≥3.iii)当点P在OF的反向延长上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,经过点O且与EP相切的半圆,如图6.∵∠FOE=∠OPE+∠OEP=30°,∴∠OEP<30°,∴OM<1,当R=时,如图6,过P作PA⊥x轴于A,N是切点,连接MN,MN⊥PE,此时OM=MN=,ME=3﹣=,∴EN===,Rt△OPA中,∠POA=30°,OA=﹣t,∴PA=﹣t,∵∠ENM=∠EAP=90°,∠MEN=∠AEP,∴△EMN∽△EPA,∴,即=解得:t=﹣,∴当≤R<1时,t的取值范围是t≤﹣.综上,点P在直线y=x上运动时(P不与O重合),当≤R ≤1时,t的取值范围是t≤﹣或t≥.6.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b 过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB 的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD 为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠FAO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为C(4,6)或C(6,2)(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD 交于点N,求证:N是BD的中点.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.9.如图,在平面直角坐标系xOy中,直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.解:(1)直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO===tanα;(2)DE与FM的位置关系为相互垂直,理由:点C是AB的中点,则∠COB=∠CBO=∠EDF=α,∠ONF=∠DNM,∴∠DMN=∠DFO,∴O、F、M、D四点共圆,∴∠DMF+∠DOF=180°,∴∠DOF=90°,即:DE⊥FM;(3)MD=MN,∴∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO===tanβ,则cosβ=(证明见备注);设OF=m,则DF=FB=3﹣m,cos∠DFO=cosβ=,解得:m=,OD2=DF2﹣OF2=(3﹣m)2﹣m2=;则OD=,故点D(0,).备注:如下图,过点N作HN⊥OF于点H,tanα=,则sinα=,作FM⊥ON 于点M,设FN=OF=5a,则FN=4a,则ON=6a,同理可得:NH=,tan∠NFO===tanβ,则cosβ=.10.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).11.如图,长方形OBCD的OB边在x轴上,OD在y轴上,把OBC 沿OC折叠得到OCE,OE与CD交于点F.(1)求证:OF=CF;(2)若OD=4,OB=8,写出OE所在直线的解析式.解:(1)∵四边形OBCD为矩形,∴DO=BC,∠OBC=∠ODC.由翻折的性质可知∠E=∠OBC,CE=BC,∴OD=CE,∠E=∠ODC.在△ODF和△CEF中,∴△ODF≌△CEF(AAS),∴OF=CF.(2)∵OF=CF.设DF=x,则OF=CF=8﹣x.在Rt△ODF中,OD=4,根据勾股定理得,OD2+DF2=OF2,∴42+x2=(8﹣x)2,解得x=3,∴F(3,4),设直线OE的解析式为y=kx,把F(3,4)代入得4=3k,解得k=,∴OE所在直线的解析式y=x.12.如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,﹣2)且分别与x轴、y轴交于点B、C,过点A画AD∥x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.解:(1)∵y=﹣x+m过点A(5,﹣2),∴﹣2=﹣5+m,∴m=3,∴y=﹣x+3,令y=0,∴x=3,∴B(3,0),令x=0,∴y=3,∴C(0,3);(2)过C作直线AD对称点Q,可得Q(0,﹣7),连结BQ,交AD与点P可得直线BQ:,令y′=﹣2,∴,∴.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为Y=KX+B(K≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x 轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x 的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D 的坐标为(﹣2,5)或(﹣5,3)或(,).解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).15.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知S(﹣3,1),P (1,3),Q(﹣1,﹣3),M(﹣2,4).①在点P,点Q中,点P是点S关于原点O的“正矩点";②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点S是点P关于点M的“正矩点",写出一种情况即可;(2)在平面直角坐标系xOy中,直线y=kx+3(k<0)与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为C(x c,y c).①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标x c的值;②若点C的纵坐标y c满足﹣1<y c≤2,直接写出相应的k的取值范围.解:(1)①在点P,点Q中,点S绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②点S是点P关于点M的“正矩点”(答案不唯一);故答案为:S,P,M;(2)①如图1,作CE⊥x轴于点E,作CF⊥y轴于点F,∠BFC=∠AOB=90°,点B(0,3),点A(﹣,0),∵∠ABO+∠CBO=90°,∠CBO+∠BCF=90°,∴∠BCF=∠ABO,BC=BA,∴△BCF≌△AOB(AAS),∴FC=OB=3,故点C的坐标为:(﹣3,3+),即点C的横坐标x c的值为﹣3;②点C(﹣3,3+),如图2,﹣1<y c≤2,即:﹣1<3+≤2,则﹣3≤k.。
最新初二数学一次函数综合压轴题精选汇总(含答案)
最新初二数学一次函数综合压轴题精选汇总例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B 两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C 的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
一次函数相关中考压轴题(含分析和答案)
一次函数是初中数学的重点内容之一,也是中考的主要考点。
现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x 的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.6.首先,我们看两个问题的解答:问题1:已知x>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于x>0,我们有:≥.当,即时,上述不等式取等号,所以的最小值.问题2解答:令x=t﹣2,则t=x+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB 的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△AOB面积的最小值.7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N 的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O 位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.9.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接P P',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?13.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E 在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?14.如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=,点P在线段OC上,且PO、OC的长是方程x2﹣15x+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.15.已知函数y=(6+3m)x+(n﹣4).(1)如果已知函数的图象与y=3x的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC 边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x 轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.21.如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,的值变吗?若不变证明并求其值;若变化,请说明理由.22.如图:直线y=﹣x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;(3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围.23.直线l:y=﹣x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO 向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S 的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.答案与评分标准一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.考点:一次函数综合题。
北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)
期末备考压轴题培优:一次函数1.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)2.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为:(2,1)或(2,4)或(﹣2,8).3.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).4.如图,直线y=2x+4分别与x轴,y轴交于B,A两点(1)求△ABO 的面积;(2)如果在第三象限内有一点P (﹣1,m ),请用含m 的式子表示四边形AOPB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOPB 的面积是△ABO 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)当x =0时,y =4,∴OA =4,当y =0时,2x +4=0,x =﹣2,∴OB =2,∴△ABO 的面积===4;(2)四边形AOPB 的面积=S △AOB +S △BOP =4+=4﹣m ;(3)存在满足条件的点P .∵S 四边形AOPB =2S △ABO ,∴4﹣m =8,∴m =﹣4,∴存在点P (﹣1,﹣4),使得S 四边形ABOP =2S △ABO .5.如图,直线y =kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D 点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).7.如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动点P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)填空:当t=2时,点B的坐标为(6,2).(2)在P点的运动过程中,当AB∥x轴时,求t的值;(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.解:(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),故答案为:(6,2);(2)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠P AB=∠PBA=45°,∴∠OAP=90°﹣∠P AB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4,t=4÷1=4(秒);(3)∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠P AO+∠APO=90°,∴∠P AO=∠BPC.∠P AO=∠BPC,在△P AO和△BPC中,∠AOP=∠PCB=90°,∴△P AO≌△BPC(AAS).AP=BP,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0),点B(x,y),∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,∴y=x﹣4.8.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(4+K,﹣3+K),又∵点D在直线y=﹣2x+1上,∴﹣2(4+K)+1=﹣3+K,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).9.如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠P AE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF =S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB 的面积,∴S =S △ABC ﹣S △P AE =×8×8﹣×(2m ﹣8)×(2m ﹣8)=16m ﹣2m 2; (3)如图2,连接AM ,CM ,过点P 作PE ⊥AC ,∵AB =BC ,BO ⊥AC ,∴BO 是AC 的垂直平分线,∴AM =CM ,且AP =CQ ,PM =MQ ,∴△APM ≌△CQM (SSS )∴∠P AM =∠MCQ ,∠BQM =∠APM =45°,∵AM =CM ,AB =BC ,BM =BM ,∴△ABM ≌△CBM (SSS )∴∠BAM =∠BCM ,∴∠BCM =∠MCQ ,且∠BCM +∠MCQ =180°,∴∠BCM =∠MCQ =∠P AM =90°,且∠APM =45°, ∴∠APM =∠AMP =45°,∴AP =AM ,∵∠P AO +∠MAO =90°,∠MAO +∠AMO =90°,∴∠P AO =∠AMO ,且∠PEA =∠AOM =90°,AM =AP , ∴△APE ≌△MAO (AAS )∴AE =OM ,PE =AO =4,∴2m ﹣8=4,∴m =6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10.如图,一次函数y=﹣x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(8,0),点B的坐标为(0,4);(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)求OC的长度.解:(1)令x=0,则y=4,∴B(0,4),令y=0,则0=﹣x+4,∴x=8,∴A(8,0),故答案为:(8,0),(0,4);(2)设点P(x,﹣x+4)∵△APO的面积为12,∴12=×8×|﹣x+4|∴x=2或14,∴点P(2,3)或(14,3)(3)设点C(a,0),则OC=a,∴AC=8﹣a,由折叠知,BC=AC=8﹣a,在Rt△BOC中,OB=4,根据勾股定理得,BC2﹣OC2=OB2,∴(8﹣a)2﹣a2=16,∴a=3,即:OC=3,11.如图,已知直线y=﹣x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的关系;(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.解:(1)令y=0,则﹣x+3=0,解得x=2,∴A(2,0),令x=0,则y=3,∴C(0,3);由折叠可知:CD=AD,设AD=x,则CD=x,BD=3﹣x,由题意得,(3﹣x)2+22=x2,解得x=,此时AD=,∴D(2,),设直线CD为y=kx+3,把D(2,)代入得=2k+3,解得k=﹣,∴直线CD的解析式为y=﹣x+3;(2)∵A(2,0),D(2,),∴AD=.∵∠DAP=90°,∴△ADP是等腰直角三角形,∴当AD=AP=时,P点的坐标是(﹣,0)或(,0).12.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y =﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.=22;(1)直接写出直线BD的解析式为y=﹣2x﹣3,S△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,=×11×4=22.∴S△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).13.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP =S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP =S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=yN=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).14.在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.解:(1)把P(2,2)和点Q(0,﹣2)分别代入y1=kx+b,得.解得.则直线y1=kx+b的解析式为:y1=2x﹣2;(2)如图所示,P(2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=,AM=1当m>0时,点B有3种位置使得△P AB为等腰三角形①当AP=AB时,AB=,∴B(+1,0)②当P A=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=解得x=2.5,∴B(3.5,0)当m<0时,点B有1种位置使得△P AB为等腰三角形.当AB=AP时,OB=﹣1,∴B(1﹣,0).综上所述,点B有4种位置使得△P AB为等腰三角形,坐标分别为(+1,0)、(3,0)、(3.5,0)、(1﹣,0).15.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y =4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=4;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.解:(1)d(S,T)=|﹣1+2|+|6﹣3|=4,故答案为4;(2)直线y=﹣2x+3上的“互助直线”为:y=3x﹣2,设点H(a,﹣2a+3),将点H坐标代入y=3x﹣2得:﹣2a+3=3a﹣2,解得:a=1,故点H(1,1);(3)M(m,n)在y=ax+b上,则n=am+b…①,点N在“互助直线”y=bx+a上,则2m﹣3n=3bm+a…②,联立①②并整理得:m(2﹣3a﹣3b)=a+3b,对于任意一点M(m,n)都等式均成立,故:a+3b=0,2﹣3a﹣3b=0,解得:a=1,b=﹣,故函数的表达式为:y=x﹣,设点P(x,x﹣)是函数上的点d(L,P)=|5﹣x|+|x﹣+1|=|x﹣5|+|x+|,则d(L,P)的最小值为5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG 折叠,点N恰好落在x轴上的点H处,求点G的坐标.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.(1)点C的坐标为,点B的坐标为;(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y 轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(Ⅰ)试问:直线AC与直线AB是否垂直?请说明理由;(Ⅱ)若点D在直线AC上,且DB=DC,求点D的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证△BEC≌△CDA;(2)模型应用:①已知直线y=x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出所有符合条件的点D的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△A′OP,连接BA′,当BA′取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB 的长度分别为a和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB :y=﹣x ﹣b 分别与x ,y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴与C ,且OB :OC=3:1.(1)求直线BC 的函数表达式;(2)直线EF :y=x ﹣k (k ≠0)交直线AB 于E ,交直线BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若存在,求出k 的值;若不存在,说明理由.(3)如图2,P 为x 轴上A 点右侧的一动点,以P 为直角顶点,BP 为一腰在第一象限内作等腰直角三角形△BPQ ,连接QA 并延长交y 轴于点K .当P 点运动时,K 点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(﹣8,0),点B 的坐标是(0,n )(n >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P′(点P′不在y 轴上),连接PP′,P′A ,P′C .设点P 的横坐标为m .(1)若点P 在第一象限,记直线AB 与P′C 的交点为D .当P′D :DC=5:13时,求m 的值;(2)若∠ACP′=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P3(﹣4,﹣4);当BP4=DP4时,(﹣1+4)2+(0﹣p)2=(p﹣4)2,解得:p=,此时P4(﹣4,),综上,共有四个点满足要求.分别是P1(﹣4,9),P2(﹣4,﹣4),P3(﹣4,﹣1),P4(﹣4,).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:(4,0);点B的坐标:(0,2);(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG 折叠,点N恰好落在x轴上的点H处,求点G的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.(1)点C的坐标为(0,3),点B的坐标为(﹣4,2);(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,需要综合利用勾股定理,等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=8,BC=4,AC=4;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择A题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA﹣AC=3,∴C(﹣3,0),∵∠EDB=∠AOB=90°,BD=BO,∠EBD=∠ABO,∴△EBD≌△ABO,∴BE=AB=10,∴OE=BE﹣OB=4,∴E(0,﹣4),设直线CE的解析式为y=kx﹣4,∴﹣3k﹣4=0,∴k=﹣,∴直线CE的解析式为y=﹣x﹣4,(2)解:存在,(﹣,),如图,∵点P在直线y=x+6上,∴设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=PN2+PM2=m2+(﹣m+6)2=(m﹣)2+,∴当m=时,MN2有最小值,则MN有最小值,当m=时,y=﹣x+6=﹣×+6=,∴P(﹣,).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C的坐标,解(2)的关键是得出MN2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【分析】(1)由题意点P与点C重合,可得点P坐标为(3,4);(2)分两种情形①当点P在边AD上时,②当点P在边AB上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P在线段CD上时.②如图2中,当点P在AB上时.③如图3中,当点P在线段AD上时.分别求解即可;【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).【点评】本题考查一次函数综合题、平行四边形的性质、翻折变换、勾股定理、正方形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.【分析】(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=10,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;(2)由(1)中所求可得出F点坐标,进而得出过D,F的直线解析式;(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.【解答】解:(1)∵四边形ABCD是矩形,∴AD=CB=10,AB=DC=6,∠D=∠DCB=∠ABC=90°,由折叠对称性:AF=AD=10,EF=DE,在Rt△ABF中,BF===8,∴CF=2,设EC=x,则EF=6﹣x,。