平面向量的概念ppt课件
合集下载
平面向量的实际背景及基本概念 课件
![平面向量的实际背景及基本概念 课件](https://img.taocdn.com/s3/m/5e3b61b5900ef12d2af90242a8956bec0875a554.png)
关系,没有大小之分,“对于向量 、a,b
这种a说法b是错误的.
或a b”
例2.如图设O是正六边形ABCDEF的中心,写出图中
与向量 OA、OB、OC 相等的向量.
解:OA CB DO; OB DC EO; OC AB ED FO.
向量的几何表示
由于实数与数轴上的点一一对应,所以数量常常用数 轴上的一个点表示,而且不同的点表示不同的数量.
对于向量,我们常用带箭头的线段——有向线段来表 示,线段按一定比例(标度)画出,它的长短表示向量 的大小,箭头的指向表示向量的方向.
有向线段:带有方向的线段叫有向线段.(如图)我们在 有向线段的终点处画上箭头表示它的方向.以A为起点、B 为终点的有向线段记作 AB ,起点写在终点的前面.
③用字母 a ,b,c 等表示.
问题1:“向量就是有向线段,有向线段就是向量.”的说 法对吗?
不对,①向量是自由向量,只有大小和方向两个要素;与 起点无关:只要大小和方向相同,则这两个向量就是相同 的向量;②有向线段有起点、大小和方向三个要素,起点 不同,尽管大小和方向相同,也是不同的有向线段.
向量的长度(或称模):向量 AB的大小,也就是向量 AB
1:8000000
解: AB表示A地至B地的位移,且
AB 240kmቤተ መጻሕፍቲ ባይዱ.
AC 表示A地至C地的位移,且 AC 300km .
相等向量与共线向量 平行向量定义:
a
b c
①方向相同或相反的非零向量叫平行向量;
②我们规定 0 与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;
(2)向量 a,b,c平行,记作 a // b // c .
(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有 向线段来表示,并且与有向线段的起点无关.在平 面上,两个长度相等且指向一致的有向线段表示 同一个向量,因为向量完全由它的方向和模确定.
中职数学平面向量的概念ppt课件
![中职数学平面向量的概念ppt课件](https://img.taocdn.com/s3/m/17a446e7dc3383c4bb4cf7ec4afe04a1b171b041.png)
中职数学平面向量的概念ppt 课件
目录
• 平面向量基本概念 • 平面向量运算规则 • 平面向量坐标表示法 • 平面向量数量积概念及性质 • 平面向量应用举例 • 总结回顾与拓展延伸
01
平面向量基本概念
向量定义及表示方法
01
向量的定义
向量是既有大小又有方向的量 ,通常用有向线段表示。
02
向量的表示方法
向量可以用小写字母或大写字 母加箭头表示,如$vec{a}$或 $overset{longrightarrow}{AB
}$。
03
向量的模
向量的大小称为向量的模,记 作$|vec{a}|$,模长是一个非负
实数。
向量模长与方向角
03
向量的模长
方向角
向量的模长等于有向线段的长度,可以通 过勾股定理或三角函数计算。
与零向量的数量积
任何向量与零向量的数 量积都是0。
夹角余弦值计算
夹角余弦公式
两向量的夹角余弦值可以通过它们的 数量积和模长来计算,即 cosθ=(a·b)/(|a||b|)。
夹角范围
夹角θ的取值范围为[0,π],当θ=0时 ,两向量同向;当θ=π时,两向量反 向。
垂直条件判断
两向量垂直的充要条件是它们 的数量积为0,即a·b=0。
结合律
三个或三个以上的向量进行加法或乘法运算时,改变它们 的结合方式,结果不变。
分配律
一个实数与两个向量的和相乘等于该实数分别与这两个向 量相乘后再相加;两个实数的和与一个向量相乘等于这两 个实数分别与这个向量相乘后再相加。
03
平面向量坐标表示法
直角坐标系中向量表示方法
确定坐标原点O和x、y轴
在平面上选取一点作为坐标原点,并通过该点作两条互相垂直的数轴,分别称为 x轴和y轴。
目录
• 平面向量基本概念 • 平面向量运算规则 • 平面向量坐标表示法 • 平面向量数量积概念及性质 • 平面向量应用举例 • 总结回顾与拓展延伸
01
平面向量基本概念
向量定义及表示方法
01
向量的定义
向量是既有大小又有方向的量 ,通常用有向线段表示。
02
向量的表示方法
向量可以用小写字母或大写字 母加箭头表示,如$vec{a}$或 $overset{longrightarrow}{AB
}$。
03
向量的模
向量的大小称为向量的模,记 作$|vec{a}|$,模长是一个非负
实数。
向量模长与方向角
03
向量的模长
方向角
向量的模长等于有向线段的长度,可以通 过勾股定理或三角函数计算。
与零向量的数量积
任何向量与零向量的数 量积都是0。
夹角余弦值计算
夹角余弦公式
两向量的夹角余弦值可以通过它们的 数量积和模长来计算,即 cosθ=(a·b)/(|a||b|)。
夹角范围
夹角θ的取值范围为[0,π],当θ=0时 ,两向量同向;当θ=π时,两向量反 向。
垂直条件判断
两向量垂直的充要条件是它们 的数量积为0,即a·b=0。
结合律
三个或三个以上的向量进行加法或乘法运算时,改变它们 的结合方式,结果不变。
分配律
一个实数与两个向量的和相乘等于该实数分别与这两个向 量相乘后再相加;两个实数的和与一个向量相乘等于这两 个实数分别与这个向量相乘后再相加。
03
平面向量坐标表示法
直角坐标系中向量表示方法
确定坐标原点O和x、y轴
在平面上选取一点作为坐标原点,并通过该点作两条互相垂直的数轴,分别称为 x轴和y轴。
6.1 平面向量的概念 课件(共21张PPT)
![6.1 平面向量的概念 课件(共21张PPT)](https://img.taocdn.com/s3/m/1ecb8e51bfd5b9f3f90f76c66137ee06eef94e73.png)
规定: 0 和任意向量平行.
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
【课件】平面向量的概念课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册
![【课件】平面向量的概念课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册](https://img.taocdn.com/s3/m/1e02455800f69e3143323968011ca300a6c3f67e.png)
作用力、反作用力、加速度都是向量,质量、路程、功都是数量。
引导探究
练习一:在质量、重力、速度、加速度、身高、面积、体积 这些量中,_____________是数量_______________是向量.
练习二: 1.身高是一个向量( ) 2.温度含零上和零下温度,所以温度是向量( ) 3.坐标平面上的 x 轴和 y 轴都是向量。( )
引导探究
(三):向量的模和两类特殊向量
思考: AB 有什么含义?
A
B
表示以A为起点,B为终点的向量。线段的 长度就是向量的大小,即为向量的模。
向量的模:向量 AB 的大小称为向量的长度(或称为模),记 作|AB |. 两类特殊向量: 长度为0的向量称为零向量, 记作 0
长度等于1个单位长度的向量,叫做单位向量。
共线向量:平行向量又称为共线向量.
任意一组平行向量都可以平移到同一直线上
引导探究
思考:AB, BA 是相同的向量吗?
A
BB
A
AB, BA 是大小相等但方向相反的两个向 量。这样的两个向量叫做相反向量。
a a 与 长度相等,方向相反的向量叫 的相反向量.记为 a
同理可得,大小相等且方向相同的两个向量叫做 相等向量。
(二):向量的表示二:字母表示法 思考:你能用表示线段的方法表示向量吗?向量的大小和方向 怎样表示?
字母表示法:
1、用小写字母表示:如 a 、b、c
2、用大写字母表示:如 AB (A为起点、B为终点)
注:用小写字母 a 表示向量时,印刷用粗体 a,书写
a 用 。书写向量时,字母上的箭头不能省略。
箭头表示向量的方向,线段的长度表示大小。
注:向量是否相等(或相反)只与大小和 方向有关,与起点、终点的位置无关.
引导探究
练习一:在质量、重力、速度、加速度、身高、面积、体积 这些量中,_____________是数量_______________是向量.
练习二: 1.身高是一个向量( ) 2.温度含零上和零下温度,所以温度是向量( ) 3.坐标平面上的 x 轴和 y 轴都是向量。( )
引导探究
(三):向量的模和两类特殊向量
思考: AB 有什么含义?
A
B
表示以A为起点,B为终点的向量。线段的 长度就是向量的大小,即为向量的模。
向量的模:向量 AB 的大小称为向量的长度(或称为模),记 作|AB |. 两类特殊向量: 长度为0的向量称为零向量, 记作 0
长度等于1个单位长度的向量,叫做单位向量。
共线向量:平行向量又称为共线向量.
任意一组平行向量都可以平移到同一直线上
引导探究
思考:AB, BA 是相同的向量吗?
A
BB
A
AB, BA 是大小相等但方向相反的两个向 量。这样的两个向量叫做相反向量。
a a 与 长度相等,方向相反的向量叫 的相反向量.记为 a
同理可得,大小相等且方向相同的两个向量叫做 相等向量。
(二):向量的表示二:字母表示法 思考:你能用表示线段的方法表示向量吗?向量的大小和方向 怎样表示?
字母表示法:
1、用小写字母表示:如 a 、b、c
2、用大写字母表示:如 AB (A为起点、B为终点)
注:用小写字母 a 表示向量时,印刷用粗体 a,书写
a 用 。书写向量时,字母上的箭头不能省略。
箭头表示向量的方向,线段的长度表示大小。
注:向量是否相等(或相反)只与大小和 方向有关,与起点、终点的位置无关.
中职数学基础模块下册《平面向量的概念》课件
![中职数学基础模块下册《平面向量的概念》课件](https://img.taocdn.com/s3/m/3cace32759fafab069dc5022aaea998fcc2240aa.png)
向量的投影可以看作是向量在某个方 向上的分量,通过计算向量的数量积 可以得到向量的投影。
速度和加速度的计算
在运动学中,速度和加速度可以表示 为位置向量的时间导数,通过计算向 量的数量积可以得到速度和加速度的 大小。
THANKS
感谢观看
数量积的几何意义
01
数量积表示向量a与向量b的长度 和它们之间的夹角的余弦值的乘 积。
02
当两向量同向时,数量积为两向 量长度之积;当两向量反向时, 数量积为两向量长度之差的绝对 值。
数量积的应用举例
力的合成与分解
向量的投影
在物理中,力可以视为向量,力的合 成与分解可以通过计算向量的数量积 来实现。
详细描述
向量模是表示向量长度的概念, 记作|a|。向量模具有非负性、齐 次性、三角形不等式等性质。
向量模的计算方法
总结词
掌握向量模的计算方法是实际应用中必不可少的技能。
详细描述
向量模的计算公式为|a| = 根号(x^2 + y^2),其中x和y分别是向量在x轴和y轴上的分量。此外,还有 向量模的运算性质,如|a+b|≤|a|+|b||a-b|≤|a|+|b||a-b|≥||a|-|b||等,这些性质在实际问题中具有广泛 的应用。
平面向量数乘的定义与性质
总结词
数乘是标量与向量的乘积,结果仍为 向量,满足分配律。
详细描述
数乘是实数与向量的乘积,其实质是 标量与向量的乘积。数乘的结果仍为 向量,且满足分配律,即 m(a+b)=ma+mb。
平面向量加法与数乘的几何意义
总结词
平面向量加法的几何意义是将两个向量首尾相接, 按平行四边形法则或三角形法则确定的合成向量; 数乘的几何意义是改变向量的模长和方向。
6.1平面向量的概念课件共34张PPT
![6.1平面向量的概念课件共34张PPT](https://img.taocdn.com/s3/m/cebc691af6ec4afe04a1b0717fd5360cba1a8d9e.png)
探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
人教版中职数学拓展模块一:3.1平面向量的概念课件(共19张PPT)
![人教版中职数学拓展模块一:3.1平面向量的概念课件(共19张PPT)](https://img.taocdn.com/s3/m/9bfcd25e78563c1ec5da50e2524de518964bd3ca.png)
,有向线段的方向表示向量的方向.用有向线段表示向量
,使向量有了直观形象.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
向量 的大小称为向量 AB 的长度(或称 模),
记作 | |.长度为 0 的向量称为零向量,记作0.零向
量的方向是不确定的.长度为 1 的向量称为单位向量.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
我们把长度相等且方向相同的向量称为相等向量.向
量 和 为相等向量,记作 =.例如,图3-4所示的平行
四边形 ABCD 中, = .
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
读一读
最先使用有向线段表示向量的是英国著名科学家牛
顿.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
如果两个非零向量的方向相同或者相反,则称这两个
活动 2
调动思维,探究新知
通常,在线段 AB 的两个端点中,规定一个顺序,假
设 A 为始点, B 为终点,我们就说线段 AB 具有方向,
具有方向的线段称为有向线段.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
通常在有向线段的终点处画上箭头表示它的方向.以
A 为始点、B 为终点的有向线段记作 ,如图3-3所示
《平面向量的概念》平面向量及其应用 PPT教学课件
![《平面向量的概念》平面向量及其应用 PPT教学课件](https://img.taocdn.com/s3/m/84259828fe00bed5b9f3f90f76c66137ef064f60.png)
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理
名称 大小 方向
零向量 0
任意的
单位向量 1 规定了方向
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 向量的关系 预习教材,思考问题 (1)向量由其模和方向所确定.对于两个向量 a,b,就其模等与不等,方向同与不同 而言,有哪几种可能情形?
必修第二册·人教数学A版
返回导航 上页 下页
探究三 相等向量与共线向量 [例 3] 如图,四边形 ABCD 为边长为 3 的正方形,把各边三等分后,共有 16 个交 点,从中选取两个交点作为向量,则与A→C平行且长度为 2 2的向量个数有________ 个.
必修第二册·人教数学A版
返回导航 上页 下页
[解析] 如图所示,满足与A→C平行且长度为 2 2的向量有A→F,F→A, E→C,C→E,G→H,H→G,→IJ,→JI共 8 个.
[答案] 8
必修第二册·人教数学A版
返回导航 上页 下页
相等向量与共线向量的探求方法 (1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是 同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向 与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终 点的向量. 提醒:与向量平行相关的问题中,不要忽视零向量.
[自主检测] )
B.拉力 D.压强
解析:拉力既有大小又有方向,是向量,其余均是数量.
答案:B
必修第二册·人教数学A版
返回导航 上页 下页
2.下列说法正确的是( ) A.数量可以比较大小,向量也可以比较大小 B.向量的模可以比较大小 C.模为 1 的向量都是相等向量 D.由于零向量的方向不确定,因此零向量不能与任意向量平行
中职数学基础模块下册《平面向量的概念》ppt课件
![中职数学基础模块下册《平面向量的概念》ppt课件](https://img.taocdn.com/s3/m/5a7ca773bc64783e0912a21614791711cd797969.png)
变式一:与向量OA长度相等的向量 有多少个? 11个
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
1.下面几个命题: (1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是
01
2.1向量的基本概念
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
01.
唉, 哪儿去了?
单击此处添加正文
02.
嘻嘻!大笨猫!
单击此处添加正文
03.
A
单击此处添加正文
04.
B
单击此处添加正文
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
方向走了 米到10达C2点,到达C点后又改变方向向西走了10
米到达D点(1)作出向量AB,BC,CD;(2) 求AD的模
D C
1m
北
西
A
B东
南
小结:
向量
定义
几何表示法:有向线段
பைடு நூலகம்表示
符号表示法:
a ,b
AB
长度(模)
向量的有关概念
特殊向量
向量间 的关系
零向量 单位向量 平行(共线)
相等
作业:课本86页 习题2.1第2题,第3题
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
a
如:
b
c
平行向量又叫做共线向量 记作 a ∥b ∥c
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
1.下面几个命题: (1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是
01
2.1向量的基本概念
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
01.
唉, 哪儿去了?
单击此处添加正文
02.
嘻嘻!大笨猫!
单击此处添加正文
03.
A
单击此处添加正文
04.
B
单击此处添加正文
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
方向走了 米到10达C2点,到达C点后又改变方向向西走了10
米到达D点(1)作出向量AB,BC,CD;(2) 求AD的模
D C
1m
北
西
A
B东
南
小结:
向量
定义
几何表示法:有向线段
பைடு நூலகம்表示
符号表示法:
a ,b
AB
长度(模)
向量的有关概念
特殊向量
向量间 的关系
零向量 单位向量 平行(共线)
相等
作业:课本86页 习题2.1第2题,第3题
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
a
如:
b
c
平行向量又叫做共线向量 记作 a ∥b ∥c
平面向量的概念 课件-高中数学人教A版(2019)必修第二册
![平面向量的概念 课件-高中数学人教A版(2019)必修第二册](https://img.taocdn.com/s3/m/254d3bd577eeaeaad1f34693daef5ef7ba0d12e6.png)
系.
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就
2024版中职数学基础模块下册平面向量的概念课件
![2024版中职数学基础模块下册平面向量的概念课件](https://img.taocdn.com/s3/m/2239dcfe64ce0508763231126edb6f1aff0071db.png)
中职数学基础模块下册平面向 量的概念课件
2024/1/30
1
2024/1/30
CONTENTS
• 平面向量基本概念 • 平面向量运算 • 平面向量坐标表示法 • 平面向量数量积与投影 • 平面向量应用举例
2
2024/1/30
01
平面向量基本概念
3
向量定义及表示方法
2024/1/30
向量的定义
向量是既有大小又有方向的量,常 用带箭头的线段表示,线段的长度 表示向量的大小,箭头的指向表示 向量的方向。
18
数量积定义及性质
数量积定义
性质1
两个向量的数量积是一个标量,其大小等于 这两个向量的模与它们夹角的余弦的乘积, 方向由夹角决定。
交换律,即a·b=b·a。
性质2
分配律,即(a+b)·c=a·c+b·c。
性质3
与零向量的数量积,a·0=0。
2024/1/30
19
投影概念及计算方法
2024/1/30
坐标运算
若向量a=(x,y),则λa=(λx,λy)。
2024/1/30
11
向量运算性质总结
交换律
向量加法满足交换律,即 a+b=b+a。
零元
存在零向量0,使得对于任 意向量a,都有a+0=a。
数乘结合律
对于任意实数λ、μ和向量 a,都有(λμ)a=λ(μa)。
结合律
向量加法满足结合律,即 (a+b)+c=a+(b+c)。
这两个向量的和。
2024/1/30
三角形法则
将两个向量平移至同一起 点,首尾相接,从第一个 向量起点指向第二个向量 终点的向量即为这两个向
2024/1/30
1
2024/1/30
CONTENTS
• 平面向量基本概念 • 平面向量运算 • 平面向量坐标表示法 • 平面向量数量积与投影 • 平面向量应用举例
2
2024/1/30
01
平面向量基本概念
3
向量定义及表示方法
2024/1/30
向量的定义
向量是既有大小又有方向的量,常 用带箭头的线段表示,线段的长度 表示向量的大小,箭头的指向表示 向量的方向。
18
数量积定义及性质
数量积定义
性质1
两个向量的数量积是一个标量,其大小等于 这两个向量的模与它们夹角的余弦的乘积, 方向由夹角决定。
交换律,即a·b=b·a。
性质2
分配律,即(a+b)·c=a·c+b·c。
性质3
与零向量的数量积,a·0=0。
2024/1/30
19
投影概念及计算方法
2024/1/30
坐标运算
若向量a=(x,y),则λa=(λx,λy)。
2024/1/30
11
向量运算性质总结
交换律
向量加法满足交换律,即 a+b=b+a。
零元
存在零向量0,使得对于任 意向量a,都有a+0=a。
数乘结合律
对于任意实数λ、μ和向量 a,都有(λμ)a=λ(μa)。
结合律
向量加法满足结合律,即 (a+b)+c=a+(b+c)。
这两个向量的和。
2024/1/30
三角形法则
将两个向量平移至同一起 点,首尾相接,从第一个 向量起点指向第二个向量 终点的向量即为这两个向
平面向量的概念PPT课件
![平面向量的概念PPT课件](https://img.taocdn.com/s3/m/0b20a8a0541810a6f524ccbff121dd36a32dc428.png)
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
6.1平面向量的概念课件共45张PPT
![6.1平面向量的概念课件共45张PPT](https://img.taocdn.com/s3/m/96dff76d59fb770bf78a6529647d27284b73378b.png)
即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不
→
→
要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写
→
时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,
→
→
(1)分别找出与, 相等的向量;
→
→
→
→
解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,
→
(2)找出与共线的向量;
→
→
→
→
解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
高一下学期数学人教A版必修第二册6.1平面向量的概念 课件
![高一下学期数学人教A版必修第二册6.1平面向量的概念 课件](https://img.taocdn.com/s3/m/0d93f40a59fafab069dc5022aaea998fcc2240a0.png)
相对地,把只有大小没有方向的量称 为数量。如年龄、身高、长度、面积、 体积、质量等都是数量。
6.1.2 向量的几何表示
温故知新
对于长度,我们可以用线段表示,比如 一个直角三角形的边长可以表示为
BC=3, AB=4, AC=5
问题3:我们应该用什么 4
5
图形去表示向量呢?
有向线段
3
新课讲授
通常,在线段AB中,规定一个顺序,
a
a
b
b
定义:方向相同或相反的非零向量叫做平行 向量,记作a//b.
规定:零向量与任何一个向量都平行
问题6:你能根据向量的定义给相等向量 下一个定义吗?
长度相等且方向相同的向量,叫做相等
向量。
a
记作a=b
b
例2、辨析正误 (1)任意两个相等的非零向量,都可以用同一条
有向线段表示,并且与有向线段的起点无关。( √ )
因此,平行向量也称为共线向量
l
C
OB A
例3 如图,设O是正六边形ABCDEF的中心。 (1)写出图中的共线向量; (2)分别写出图中与 OA,OB,OC 相等的向量。
解:
B
A
(1)OA,CB,DO,FE是共线向量;
O
C
F
OB,DC,EO,AF是共线向量;
OC,AB,ED,FO是共线向量。
D
E
(2)OA=CB=DO;
假设A为起点,B为终点,我们就说线
段AB具有方向,具有方向的线段叫做
有向线段。ຫໍສະໝຸດ B(终点)有向线段 三要素:
起点、方
A(起点)
向和长度
线段AB的长度就是对应有向线段 AB 的长 度,可以记作AB或者 AB .
6.1.2 向量的几何表示
温故知新
对于长度,我们可以用线段表示,比如 一个直角三角形的边长可以表示为
BC=3, AB=4, AC=5
问题3:我们应该用什么 4
5
图形去表示向量呢?
有向线段
3
新课讲授
通常,在线段AB中,规定一个顺序,
a
a
b
b
定义:方向相同或相反的非零向量叫做平行 向量,记作a//b.
规定:零向量与任何一个向量都平行
问题6:你能根据向量的定义给相等向量 下一个定义吗?
长度相等且方向相同的向量,叫做相等
向量。
a
记作a=b
b
例2、辨析正误 (1)任意两个相等的非零向量,都可以用同一条
有向线段表示,并且与有向线段的起点无关。( √ )
因此,平行向量也称为共线向量
l
C
OB A
例3 如图,设O是正六边形ABCDEF的中心。 (1)写出图中的共线向量; (2)分别写出图中与 OA,OB,OC 相等的向量。
解:
B
A
(1)OA,CB,DO,FE是共线向量;
O
C
F
OB,DC,EO,AF是共线向量;
OC,AB,ED,FO是共线向量。
D
E
(2)OA=CB=DO;
假设A为起点,B为终点,我们就说线
段AB具有方向,具有方向的线段叫做
有向线段。ຫໍສະໝຸດ B(终点)有向线段 三要素:
起点、方
A(起点)
向和长度
线段AB的长度就是对应有向线段 AB 的长 度,可以记作AB或者 AB .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作出向量AB,BC,CD
D CLeabharlann 1m北西A
B东
南
.
10
小结:
定义
几何表示法:有向线段 表示
符号表示法: a ,b AB
向量
长度(模)
向量的有关概念
特殊向量
零向量 单位向量
向量间
平行(共线)
的关系
.
相等
11
作业:课本86页
习题2.1第2题,第3题
.
12
.
13
2.向量的模是一个正实数。
3.若|a|>|b| ,则a > b
注:向量不能比较大小
❖ 长度相等且方向相同的两个向量表示相等向量,
❖ 但是两个向量之间只有相等关系,没有大小之分,
“对于向量a,b,a>b,或a<b”这种说法
是错误的.
.
5
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
OA = DO = CB
变式一:与向量OA长度相等的向量 有多少个?
11个
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些?
CB、DO、FE
.
8
1.下面几个命题: (1)若a = b,b = c,则a = c。 (2)若|a|=0,则a = 0 (3)若|a|=|b|,则a = b
2.1向量的基本概念
.
1
嘻嘻!大笨 猫!
唉, 哪儿去了?
A B
.
2
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
B(终点)
A(起点)
1 几何表示法: 有向线段( 起点、方向、长度 )
2 字母表示法: a ,b AB
.
3
三、 向量的有关概念 1.向量的长度(模):向量AB的大小也就是向量的长度(模)。
记作 |AB| 或 | a |
2.两个特殊向量:
零向量---长度(模)为0的向量叫做零向量,记作 0。 单位向量---长度(模)等于1个单位长度的向量叫作单位向量。
问:在平面上把所有单位向量的起点平移到同一点P,那么它们 的终点的集合组成什么图形?
P
.
4
判断题
1.温度含零上和零下温度,所以温度是向量
2.若a//b ,则a与b的方向一定相同或相反吗?
(2)相D等向量:C长度相等且方向相同的向量叫做相等向量。
A
B
A
B
D
C
记作:a = b 规定:0 = 0
a b
.
o
相等向量一定是平行向量吗?
向量相等
平行向量一定是相等向量吗?
向量平行
.
7
例1.如图设O是正六边形ABCDEF的中心,写出图中
与向量OA相等的向量。
如: a b c
平行向量又叫做共线向量
记作 a ∥b ∥c
. 规定:0与任一向量平行。
C
o
A
B
l
OA = a OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的
一点O ,这时它们是不是平行向量?
各向量的终点与直线l之间有什. 么关系?
6
1.若非零向量AB//CD ,那么AB//CD吗?
(4)若A、B、C、D是不共线的四点, 若AB=DC,则四边形ABCD是平形四边形。
其中真命题的个数是( )
A.0 B. 1
C. 2
D. 3
变式:若 a ∥ b, b ∥ c, 则a ∥c
.
9
2.某人从A点出发向东走了5米到达B点,然后改变方向
按东北方向走了10 2米到达C点,到达C点后又改变方
向向西走了10米到达D点
D CLeabharlann 1m北西A
B东
南
.
10
小结:
定义
几何表示法:有向线段 表示
符号表示法: a ,b AB
向量
长度(模)
向量的有关概念
特殊向量
零向量 单位向量
向量间
平行(共线)
的关系
.
相等
11
作业:课本86页
习题2.1第2题,第3题
.
12
.
13
2.向量的模是一个正实数。
3.若|a|>|b| ,则a > b
注:向量不能比较大小
❖ 长度相等且方向相同的两个向量表示相等向量,
❖ 但是两个向量之间只有相等关系,没有大小之分,
“对于向量a,b,a>b,或a<b”这种说法
是错误的.
.
5
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
OA = DO = CB
变式一:与向量OA长度相等的向量 有多少个?
11个
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些?
CB、DO、FE
.
8
1.下面几个命题: (1)若a = b,b = c,则a = c。 (2)若|a|=0,则a = 0 (3)若|a|=|b|,则a = b
2.1向量的基本概念
.
1
嘻嘻!大笨 猫!
唉, 哪儿去了?
A B
.
2
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
B(终点)
A(起点)
1 几何表示法: 有向线段( 起点、方向、长度 )
2 字母表示法: a ,b AB
.
3
三、 向量的有关概念 1.向量的长度(模):向量AB的大小也就是向量的长度(模)。
记作 |AB| 或 | a |
2.两个特殊向量:
零向量---长度(模)为0的向量叫做零向量,记作 0。 单位向量---长度(模)等于1个单位长度的向量叫作单位向量。
问:在平面上把所有单位向量的起点平移到同一点P,那么它们 的终点的集合组成什么图形?
P
.
4
判断题
1.温度含零上和零下温度,所以温度是向量
2.若a//b ,则a与b的方向一定相同或相反吗?
(2)相D等向量:C长度相等且方向相同的向量叫做相等向量。
A
B
A
B
D
C
记作:a = b 规定:0 = 0
a b
.
o
相等向量一定是平行向量吗?
向量相等
平行向量一定是相等向量吗?
向量平行
.
7
例1.如图设O是正六边形ABCDEF的中心,写出图中
与向量OA相等的向量。
如: a b c
平行向量又叫做共线向量
记作 a ∥b ∥c
. 规定:0与任一向量平行。
C
o
A
B
l
OA = a OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的
一点O ,这时它们是不是平行向量?
各向量的终点与直线l之间有什. 么关系?
6
1.若非零向量AB//CD ,那么AB//CD吗?
(4)若A、B、C、D是不共线的四点, 若AB=DC,则四边形ABCD是平形四边形。
其中真命题的个数是( )
A.0 B. 1
C. 2
D. 3
变式:若 a ∥ b, b ∥ c, 则a ∥c
.
9
2.某人从A点出发向东走了5米到达B点,然后改变方向
按东北方向走了10 2米到达C点,到达C点后又改变方
向向西走了10米到达D点