回归模型案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例一:城镇居民收入与支出关系 一、研究的目的

研究影响各地居民消费水平变动的原因。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定

我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是某年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X 。

作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图, 从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型: 12i i i Y X u ββ=++ 三、估计参数 1、建立工作文件

首先,双击EViews 图标,进入EViews 主页。在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。在“Workfile frequency ”中选择数据频率:

Annual (年度) Weekly ( 周数据 )

Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。并在“Start date ”中输入开

始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。

在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。

若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。

2、生成变量和输入数据

在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。

3、估计参数

方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”

方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。 若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形。 四、模型检验

1、经济意义检验

所估计的参数,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差多少元。这与经济学中边际消费倾向的意义相符。

2、拟合优度和统计检验

用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。

案例二:

表二给出了美国30所知名学校的MBA 学生某年基本年薪(ASP ),GPA 分数(从1—4共四个等级),GMAT 分数,以及每年学费(X )的数据。

1、用双变量回归模型分析GPA 分数是否对ASP 有影响?

2、用合适的回归模型分析GMAT 分数是否与ASP 有关?

3、每年的学费与ASP 有关吗?如果两变量之间正相关,是否意味着进到最高费用的商业学校是有利的?

4、高学费的商业学校意味着高质量的MBA 成绩吗?为什么? 表二

学校 ASP/美

GPA 分数 GMAT 分数 X/美元 Harvard

102630.

3.400000

650.0000

23894.00

Stanford

100800.

0 3.300000665.000021189.00

Columbian

100480.

0 3.300000640.000021400.00

Dartmouth

95410.0

0 3.400000660.000021225.00

Wharton

89930.0

0 3.400000650.000021050.00

Northwestern

84640.0

0 3.300000640.000020634.00

Chicago

83210.0

0 3.300000650.000021656.00

MIT

80500.0

0 3.500000650.000021690.00

Virginia

74280.0

0 3.200000643.000017839.00

UCLA

74010.0

0 3.500000640.000014496.00

Berkeley

71970.0

0 3.200000647.000014361.00

Cornell

71970.0

0 3.200000630.000020400.00

NUY

70660.0

0 3.200000630.000020276.00

Duke

70490.0

0 3.300000623.000021910.00

Carnegie Mellon

59890.0

0 3.200000635.000020600.00

North Carolina

69880.0

0 3.200000621.000010132.00

Michigan

67820.0

0 3.200000630.000020960.00

Texas61890.0 3.300000625.00008580.000

相关文档
最新文档