打折销售问题(一元一次方程)
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)例1:一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?解析:本题的关键在于第一问,求出其他问题就解决。
由题意可知如下相等关系:加工后的蔬菜重量×加工后的蔬菜单价=1568元。
而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程。
解答:设不加工每千克可卖x元,依题意,得1000(1-20%)(1+40%)x=1568.解方程得:x=1.4.所以1000x=1400,1568-1400=168.答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元。
例2:某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?解析:由已知可得如下相等关系:调整成本前的销售利润=调整成本后的销售利润。
若设该产品每件的成本价应降低x 元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售价为510(1-4%),调整后的成本价为400-x。
调整后的销售数量m(1+10%),所以调整后的销售利润是:[510(1-4%)-(400-x)]×(1+10%)m,由相等关系可得方程:[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
解答:设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
七年级数学 第五章 一元一次方程 4 应用一元一次方程打折销售
②利润率=
利 进
价润×100%=
售×价1进00价%进.价
③利润=进价×利润率.
④总利润=单价利润×总数量.
⑤售价=(1+利润率)×进价=标价×折扣.
⑥销12售/11/额202=1 售价×销售量.
3.折扣:商家为了促销,在标价的基础上所打的折扣.商品打几折则售价
即为标价的十分之几或百分之几十.例如,打9折就是售价为标价的十分
12/11/2021
3.某商场计划购进甲、乙两种空气净化机共500台,这两种空气净化机
的进价、售价如下表:
进价(元/台)
售价(元/台)
甲种空气净化机
3 000
3 500
乙种空气净化机
8 500
10 000
解答下列问题:
(1)按售价售出一台甲种空气净化机的利润是
元;
(2)若两种空气净化机都能按售价卖出,问如何进货能使利润恰好为450
10 10
答:用贵宾卡在打8折的基础上还能享受9折优惠. (2)设用贵宾卡在原价的基础上能享受y折优惠.
根据题意,得10
000×
1
=y2
10
800,
解得y=7.2.
答:用贵宾卡在原价的基础上能享受7.2折优惠. 12/11/2021
3.某织布厂有150名工人,每名工人每天能织布30 m,或制衣4件,已知制
12/11/2021
解析 (1)设该商品的成本价为x元,则根据题意可得 (1+8%)x=1 800×0.9, 解得x=1 500. 答:该商品的成本价为1 500元. (2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m 件,则根据题意,可得 (97 200÷1 800+m)×1 800×0.9=97 200, 解得m=6. 答:降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.
七年级数学上册教学课件《应用一元一次方程——打折销售》
分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
5.4 应用一元一次方程——打折销售
某商场将某种商品按原价的八折出售,此时商品的
利润率是10%.已知这种商品的进价为1800元,那么这种
商品的原价是多少?
解:设商品的原价是x元,根据题意,得
80%1x8−001800×100%=10% 解这个方程,得x=2475.
等量关系:
(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
探究新知
5.4 应用一元一次方程——打折销售
归纳总结
1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果.
则由题意得: x (1+25%)=135.
解这个方程, 得: x=108.
则第一件衣服盈利: 135-108=27(元).
设第二件衣服的成本价是y元,
由题意得: y(1-25%)=135.
解这个方程, 得: y=180.
则第二件衣服亏损: 180-135=45(元),
总体上约亏损了: 45-27=18 (元).
利润=售价-成本价 利润率:利润占成本的百分比. 利润率=利润÷成本×100% =(售价-成本) ÷成本×100%
探究新知
5.4 应用一元一次方程——打折销售
交流思考
①一个篮球成本是80元,售价是100元,则这个篮球的利润
是_2_0__元,利润率是_2_5_%__.
售价是120元呢?
利润=售价-成本价
连接中考
第五章一元一次方程---应用题打折销售问题专题讲解
第五章一元一次方程--专题(二)应用题分类讲解(2)知识点二、打折销售问题一、打折销售问题1、算一算:(1)原价100元的商品打8折后价格为元;(2)原价100元的商品提价40%后的价格为元;(3)进价100元的商品以150元卖出,利润是元,利润率是;(4)原价X元的商品打8折后价格为元;(5)原价X元的商品提价40%后的价格为元;(6)原价100元的商品提价P %后的价格为元;(7)进价A元的商品以B元卖出,利润是元,利润率是。
2、1、一件商品的标价为50元,现以八折销售,售价为____元;如果进价为32元,则他的利润____元,利润率是______。
3、一块手表的成本价是70元,利润率是30%,则这块手表的利润是____元,售价应是____元。
4、一款手机原价1080元,现在打折促销,售价为810元,则商家打______折销售。
5、某商品的进价为1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,则商店最低降____元出售此商品.6、一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,则这种服装每件的成本是元.7、一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为.8、一件商品的成本是200元,提高30%后标价,再打九折销售,这件商品的利润为______元.9、某商店一套服装的进价为200元,若按标价的80%销售可获利72元,该服装的标价为_元.10、、据了解,一些商品销售的服装如果高出进价的20%便可盈利,但商家常以高出进价的50%~100%标价。
假如你准备买一件标价为200元的服装,应在什么范围内还价?11、某种以八折的优惠价买一套服装省了25元,,那么买这套服装实际用了( )(A)31.25元(B)60元(C)125元(D)100元12、某家具的标价为132元,若降价以九折出售,仍可获利10%,则该家具的进价是()元。
打折销售一元一次方程应用题讲解
一、打折销售一元一次方程应用题的相关概念1.1 打折销售的概念在日常生活中,我们经常会遇到各种各样的打折销售活动。
打折销售是商家为了促进产品的销售而采取的一种促销手段,通过给予用户一定比例的折抠,来吸引用户购物商品。
1.2 一元一次方程的概念一元一次方程是指一个未知数的一次方程,通常可以用类似“ax+b=c”的形式来表示,其中a、b、c分别代表已知的系数或常数,x代表未知数。
解一元一次方程就是求出这个未知数的值,使得方程等号成立。
1.3 打折销售一元一次方程的应用在打折销售中,经常会涉及到一元一次方程的应用。
用户在购物商品时,商家通常会给出原价和折抠率,用户需要根据这些信息来计算最终的价格。
而这个过程就可以用一元一次方程来进行建模和求解。
二、打折销售一元一次方程应用题的解题步骤2.1 理清题意,假设原价为x在遇到打折销售一元一次方程应用题时,首先要理清题意,明确原价和折抠率等信息。
然后假设原价为x,根据折抠率可以得到折抠后的价格为x*(1-折抠率),这就是我们需要求解的最终价格。
2.2 起一个未知数,建立方程接下来,我们可以起一个未知数,通常用y来表示折抠后的价格。
然后根据题目给出的信息,建立一元一次方程。
如果题目给出了原价为x,折抠率为p,折抠后的价格为d,那么我们就可以建立方程x-p*x=d,然后求解方程得到最终的价格。
2.3 检验解答是否合理我们要对求解出的结果进行检验,看看是否符合实际情况。
通常可以将求解出的y值代入原方程中,再用折抠率计算实际的折抠后价格,看两者是否相符。
如果相符,则说明求解无误。
三、打折销售一元一次方程应用题的实例3.1 实例一某商场举行打折促销活动,一件原价为200元的商品打八五折,求打折后的价格是多少?3.1.1 确定未知数和建立方程我们可以假设折抠后的价格为y,原价为200元,折抠率为85。
根据折抠率公式,可以得到打折后的价格的方程为200*0.85=y。
3.1.2 求解方程带入原方程计算可得y=170,所以打折后的价格为170元。
一元一次方程之打折销售类问题
一元一次方程之打折销售 类问题
这份演示将向大家展示如何解决一元一次方程中的打折销售类问题,让购物 更加省钱!
问题描述
问题情境
我们将在超市中买到很多不同的商品和打折信息。 你知道如何应对这些不同的情况用最小的钱买到我 们需要的商品吗?
问题类型
打折销售类问题是一类计算机基础问题,可以通过 数学方程式直接求解。
将求得的数值代入原来的题 目中进行验证。
练习题
练习题1
一个衣服原来的价格为102元,现在打7折出售,请 问现在的价格是多少钱?
练习题2
店家打算以95元售卖某鞋子,但是根据市场需求, 他必须打7.5折,应该以什么价格售卖这双鞋子?
结论和总结
结论
通过一元一次方程,我们可以轻松解决打折销售类 问题。
总结
2
例题2
某店正在搞促销,8%的折扣力度,原价500元的货物现在进行折扣销售,请问现 在的金额是多少?
解决打折销售类问题的步骤
步骤1 - 推导方程
将问题转化为数学方程式。 比如半价折扣等于商品价格 的50%。
步骤2 - 求解
通过解一元一次方程来求出 未知数的值。(如例题1中的 折扣力度为50%)
步骤3 - 验证答案
1 加减法
通过加或减两个方程化简 求解,消去一个变量的系 数。
2 乘除法
ห้องสมุดไป่ตู้
3 判别式
通过乘或除某个常数,将 一个未知数的系数化为一。
通过求出方程的判别式来 判断方程是否有唯一解、 无解或者无数解。
打折销售类问题的例题
1
例题1
某厂商对旗下的商品进行折扣销售,现在一件商品的原价是240元,进行了一次 半价折扣后的现价是120元,请问这种折扣所打的折扣力度是多少折扣?
(完整版)一元一次方程应用题公式
一元一次方程应用题公式知能点1:市场经济、打折销售问题(1)售价、进价、利润的关系式:商品利润=商品售价—商品进价(2)进价、利润、利润率的关系:利润率=(商品利润/商品进价)×100%(3)标价、折扣数、商品售价关系:商品售价=标价×(折扣数/10)(4)商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)(5)商品总销售额=商品销售价×商品销售量(6)商品总的销售利润=(销售价-成本价)×销售量知能点2;储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)商品利润率=(商品利润/商品进价)×100%知能点3:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”知能点4:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=ab(形状面积变了,周长没变;原料体积=成品体积)知能点5:行程问题掌握行程中的基本关系:路程=速度×时间。
初一数学-第三十讲一元一次方程——打折销售
第三十讲 一元一次方程——打折销售【知识要点】1.商品销售问题①商品打x 折出售:是按标价的10x 出售 ②商品利润=商品售价-商品成本价 ③商品的利润率=%100 商品成本价商品利润 ④商品的销售额=商品销售价×商品销售量 ⑤商品的销售利润=(销售价-成本价)×销售量⑥市场经济型题可先抽象成熟悉的数学问题,然后利用所学知识对问题进行分析、归 纳、从而使问题迎刃而解.【经典例题】【例1】①一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对商店的光顾,售价为224元,这件商品的成本价是多少元?②某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?【例2】某商场的电冰箱原价是1500元,现以8折销售。
要使降价前后的销售额都是12万元,则销售量应增加多少?【例3】某种商品因换季准备打折出售.如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元.问这种商品的定价是多少?【例4】一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格。
【例5】某校科技小组的学生在3名教师带领下,准备前往国家森林公园考察标本.当地有甲、乙两家旅行社,其定价都一样,但表示对师生都有优惠,甲旅行社表示带队老师免费,学生按8折收费;乙旅行社表示师生一律按7折收费.经核算,甲、乙两旅行社的实际收费正好相同.问科技小组共有多少学生?【初试锋芒】1.某商品进价是200元,标价为350元,商店要求以利润不低于5%的售价打折出售,则售货员出售该商品时,最低可以打()A.5折 B.6折 C.7折 D.8折2.某商店出售甲、乙两种商品,售价都是1800元,其中,甲商品能盈利20%,乙商品则亏损20%,如果同时出售甲、乙商品各一件,那么()A.共盈利150元 B.不盈利也不亏损C.共亏损150元 D.以上答案都不对3.标价为x元的某件商品,按标价八折出售仍能盈利b元,已知该件商品的进价为a元,则x等于()A.5)(4ba-B.4)(5ba-C.5)(4ba+D.4)(5ba+4.一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于()A.0.6元 B.0.5元 C.0.45元 D.0.3元5.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元6.某商场的老板销售一种商品,他要以不低于超过进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )A.80元B.100元C.120元D.160元7.某商品的原价是a 元,现将原价提高%50,又以8折出售,每件商品还能盈利_________8.商场对某种商品调价,按原价的8折出售,这时商品的利润率是20%,此商品的进价是560元,这件商品的原价是_________元.9.甲、乙两种衬衣的原价相同.换季时,甲种衬衣按原价的四折销售,乙种衬衣按原价的五折销售,李叔叔购买这两种衬衣各一件,正好用去216元.甲种衬衣打折后的售价是_________元,乙种衬衣打折后的售价是_________元.10.某打火机厂生产某种型号的打火机,每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%,则这种打火机每只的成本降低了__________元.((精确到0.01元.%100-⨯=成本成本售价毛利率) 【大展身手】1.某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?2.某种商品因换季准备打折出售,如按定价的五折出售,将赔20元;如按定价的八折出售,将赚40元,求这种商品的定价及成本?3.某书店一天销售两种书籍,甲种书籍共卖得1560元,乙种书籍送下乡共卖得1350元,按甲、乙两种书籍的成本分别计算,甲种书籍盈利%25,乙种书籍亏本%10,试问该书店这一天共盈利(或亏本)多少元?4.某工厂出售一种耳机,其成本每个24元,方案甲:直接由厂家们销售,每个32元,消耗其他费用每月2400元;方案乙:委托某商店销售,出厂价每个28元,在这两种销售方式下,每月售出多少件时,所得利润相等。
一元一次方程打折销售应用题
一元一次方程打折销售应用题1.某商店新开张,为了吸引顾客,所有商品都按八折优惠出售。
已知一种皮鞋进价为60元一双,商家按八折出售后获利润率为40%。
问这种皮鞋的标价和优惠价分别是多少元?解:设这种皮鞋标价为x元,根据题意得到方程8/10x=60×(1+40%),解得x=105.因此,这种皮鞋的标价是105元,优惠价是84元。
2.一家商店将某种服装按进价提高40%后标价,然后以八折优惠卖出,结果每件仍获利15元。
问这种服装每件的进价是多少元?解:设进价为X元,根据题意得到方程80%X(1+40%)—X=15,解得X=125.因此,这种服装每件的进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,然后以八折优惠卖出,结果每辆仍获利50元。
问这种自行车每辆的进价是多少元?解:设这种自行车每辆的进价是x元,根据题意得到方程80%×(1+45%)x - x = 50.解得x=200.因此,这种自行车每辆的进价是200元。
4.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售,但要保持利润率不低于5%。
则至多打几折?解:设最多打折为x折,则有(1-x)×1200=800×(1+5%)。
解得x≤20%。
因此,至多打2折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
解:设每台彩电的原价格是x元,根据题意得到方程(1+40%)x×0.8-x=270.解得x=2250.因此,每台彩电的原售价是2250元。
5.4应用一元一次方程——打折销售例题与讲解
4 应用一元一次方程——打折销售1.商品销售中与打折有关的概念及公式(1)与打折有关的概念 ①进价:也叫成本价,是指购进商品的价格. ②标价:也称原价,是指在销售商品时标出的价格. ③售价:商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润. ⑤利润率:利润占进价的百分比. ⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________. 解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x 的八折是340,所以有0.8x =340,解得x =425;(3)利润率=利润进价=售价-进价进价=70-4040=75%. 答案:(1)140 (2)450 425 (3)75%2.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一.②解、答时必须写清单位名称. ③求出的方程的解要判断是否符合实际意义,即必须检验.【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?分析:利润=销售价×打折数-让利数-进价.解:设进价是x 元,依题意,得x ×20%=10×0.8-2-x .解得x =5.答:一个玩具赛车进价是5元.【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.解:设甲种服装的标价为x 元,则进价为x 1.4元,乙种服装的标价为(210-x )元,进价为210-x 1.4元. 根据题意,得0.8x +0.9(210-x )=182.解得x =70.所以210-x =140.x 1.4=50,210-x 1.4=100.答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.3.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数 利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润 根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%.解得x =7. 答:售货员最低可以打7折出售此商品.【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.解:因为200×0.9=180(元)<212(元),所以购书超过了200元.设应该付x 元,根据题意,得200×0.9+(x -200)×0.8=212.解方程,得x =240.答:若没有任何优惠,则李明应该付240元.。
一元一次方程的折扣问题
一元一次方程的折扣问题折扣是我们日常生活中经常遇到的问题之一。
当我们购买商品时,商家会常常给予一定的折扣,以吸引消费者。
这种折扣通常以百分比形式给出,如打八折、九五折等。
这些折扣都可以用一元一次方程来解决。
一元一次方程是指只含有一个未知数的一次方程。
通常是形如ax + b = 0的形式,其中a和b都是已知的常数。
在折扣问题中,我们需要通过已知的折扣比例来求解未知数。
假设有一家商店正在打折销售一款商品,原价为¥P。
商家表示这款商品打了八折,即折扣比例为80%。
我们可以设商品的折扣后的价格为¥D,可以列出一元一次方程来解决这个问题。
根据题意,折扣后的价格等于原价减去折扣所得的金额。
那么我们可以得出如下的一元一次方程:P - D = P × 0.2这个方程表示原价减去折扣后的价格等于原价乘以折扣比例的剩余金额。
我们将原价与折扣后的价格都使用同一个未知数来表示,即D 表示商家折扣后的价格。
接下来,我们可以解这个方程来求解出折扣后的实际价格。
首先将方程化简:P - D = 0.2PD = 0.8P这个方程告诉我们,折扣后的价格D等于原价P乘以0.8。
也就是说,商家打八折的实际折扣后价格为原价的80%。
接下来我们可以通过已知的原价来计算出折扣后的价格。
例如,假设这款商品原价为¥100,我们可以将P代入方程中来计算D:D = 0.8 × 100 = 80这个计算结果告诉我们,商品折扣后的价格为¥80。
也就是说,在这个折扣下,消费者只需支付商品原价的80%。
通过这个例子,我们可以看到一元一次方程在解决折扣问题中的应用。
只需将问题抽象化为方程,并通过代入已知数值来计算未知数,就能够轻松解决折扣问题。
除了解决已知折扣比例求解实际价格的问题外,我们还可以反过来思考。
例如,假设商家给出了折扣后的价格D,我们可以通过一元一次方程来求解出原价P。
我们可以设原价为¥P,折扣后的价格为¥D。
那么我们可以列出下面的一元一次方程:P - D = -0.2P这个方程表示原价减去折扣后的价格等于原价的20%。
一元一次方程解打折销售类应用题
一元一次方程解打折销售类应用题1.一家商店将某种服装的成本价设为x元,然后提高20%后标价,再以9折销售,售价为270元。
根据题意可列方程:0.9(1.2x)=270,解得x=200元,因此该服装的成本价为200元。
2.一家服装店将某种服装的成本价设为x元,然后提高40%后标价,再以八折优惠售出,每件仍获利15元。
根据题意可列方程:0.8(1.4x)=x+15,解得x=100元,因此该服装每件的成本为100元。
3.若某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为10a/9元。
4.设涨价前的价格为x元,则根据题意可列方程:1.25x=50,解得x=40元,因此涨价前的价格为40元。
5.设该上衣的进价为x元,则根据题意可列方程:0.9m=270,0.6m=1.1x,解得x=150元,因此该上衣的进价为150元。
6.设该商品的进价为x元,则根据题意可列方程:0.9(900-40)+40=1.1x,解得x=700元,因此该商品的进价为700元。
7.设该商品原来的利润率为p%,则根据题意可列方程:1.05(1+p%)=(1+p%+15%),解得p=40%,因此该商品原来的利润率为40%。
8.设该文具的进价为x元,则根据题意可列方程:0.7x+0.2=2,解得x=2.6元,因此该文具的进价为2.6元。
9.设该打火机每只的成本为x元,则根据题意可列方程:0.25x=2,0.4x=1.15(1.25x),解得x=2.5元,因此这种打火机每只的成本为2.5元。
10.设该商品打折后的售价为y元,则根据题意可列方程:0.8(1.4×150)=y,0.2y=0.2×150,解得y=252元,因此该商品按7.2折销售。
11.第一件衣服的售价为x元,则根据题意可列方程:1.25x+0.75(60-x)=60,解得x=45元。
第二件衣服的售价为y 元,则根据题意可列方程:0.75y+1.25(60-y)=60,解得y=75元。
一元一次方程应用题4----打折销售问题QQQ
规定 : 利润 = 售价 - 进价
5.利润率:利润占进价的百分率,即利润率 = 利润÷进价×100﹪ 6.打折:卖货时,按照标价乘以十分之几或百分之几十,则称 将标价进行了几折.或理解为:销售价占标价的百分率. 例如某种服装打 8 折即按标价的百分之八十出售,或
按标价的十分之八出售
例、一家商店将服装按成本价提高40%后标价,又以 8 折(即按标价的80%)优惠本是多少元?
例、一家商店将服装按成本价提高40%后标价,又以 8 折(即按标价的80%)优惠卖出,结果每件仍 获利15元,这种服装每件的成本是多少元?
解:设这种服装的成本为x元,依题意,得:
一件夹克按成本价提高50%后标价,后因季 节关系按标价的8折出售,每件以60元卖出,这种 夹克每件的成本价是多少元?
解:设这种夹克的成本价为x元,依题意,得:
答:这种夹克的成本为50元。
某服装商店以135元的价格售出两件衣服,按成本 计算,第一件盈利25 %,第二件亏损25 %,则该 商店卖这两件衣服总体上是赚了,还是亏了?
答:总体上约亏损了18元。
练习
学练优P59--60
一元一次方程的实际应用
----打折销售问题
200元 7折
140 -115= 25
成本115元, 赚了多少钱?
需要花多少钱?
1.进价:购进商品时的价格(有时也叫成本价) 2.售价:在销售商品时的售出价(有时也叫成交价,卖出价) 3.标价:在销售时标出的价(有时称原价,定价) 4.利润:在销售商品的过程式中的纯收入,在教材中,我们就
北师版初中数学七年级上册精品教学课件 第5章一元一次方程 4应用一元一次方程——打折销售
【方法归纳】 弄清储蓄问题中本金、利息、期数、利率的含义,以及它们之间的关系是 解决这类问题的关键.
返回首页
新知训练巩固
1.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏
损25元,而按原售价的九折出售,将盈利20元,那么该商品的原售价为( D )
A.230元
B.250元
售香蕉t千克,则第三天销售香蕉 30-12t 千克.(用含t的代数式表示)
返回首页
返回首页
本课结束
第五章 一元一次方程
4 应用一元一次方程 ——打折销售
核心重难探究
知识点一 打折销售问题 【例1】 下面是某数码商城电脑产品的进货单,其中进价一栏被墨迹污染, 读了进货单后,请你求出这台电脑的进价是多少元.
返回首页
商品进货单
进价(商品的进货价格) 标价(商品的预售价格) 折扣 利润(实际销售的利润) 售后服务
270元
D.300元
2.(2022黑龙江牡丹江中考)某商品的进价为每件10元,若按标价打八折售
出后,每件可获利2元,则该商品的标价为每件 15 元.
返回首页
3.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千 克,第三天再降为3元/千克,三天全部售完,共计所得270元.若该店第二天销
供货单位 品名与规格 商品代码 商品归属
乙单位 P4200 DN—63D7 电脑专柜
5 850元
8折
210元
保修终生,三年内免收任何费用,三年后收取材料
费,五日快修,周转机备用,免费投诉,回访
返回首页
思路点拨:由进货单得知商品的进价是未知的,可用未知数表示商品进价, 根据进价、售价、利润之间的关系找出等量关系,列出方程. 解 设这台电脑的进价为x元, 则根据题意,得5 850×0.8-x=210. 解这个方程,得x=4 470. 因此,这台电脑的进价为4 470元.
初一数学《应用一元一次方程——打折销售》知识点总结
知识点总结1.与打折有关的概念(1)进价:也叫成本价.(2)标价:也称原价.(3)售价:也叫成交价.(4)利润:“获利” “盈利” “赚”.(5)利润率:利润占进价的百分比.(6)打折:出售商品时,将标价乘十分之几或百分之几卖岀即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打八折就是以原价的80%卖出.2 .利润问题中的关系式(1)售价=标价X折扣;售价=成本+利润售价=成本X (1 +利润率)(2)利润=售价-进价二标价X折扣一进价(3)利润=进价X利润率;利润=成本价X利润率;利润率=利润/进价=(售价-进价)/进价考察角度1:求商品的进价和卖价1 .一件衣服按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批服装每件的成本价是多少元?2.一件衣服按成本价提高40%后标价,后因季节关系按标价的8折出售,结果每件仍获利15元,这批服装每件的成本价是多少元?3.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是多少元?4.某商品打八折比打九折少花20元,那么这本书的原价是多少元?5.小明买了 20本练习本,店主给他八折优惠(即以标价的80%岀售),结果便宜了 32元,则每本练习本的标价是多少元?6.某商品把进价2250元的某商品按标价的九折出售,仍获利20%,则该商品的标价为多少元?7.某商场举行优惠活动,规定一次购物不超过200元的不优惠;超过200元的,全部按八折优惠.顾客买了一件服装,付款180元,这件服装的标价是多少?A. 180 元B. 200 元C. 225 元D. 180 元或 225元8.书店举行购书优惠活动:(1)-次性购书不超过100元,不享受打折优惠;(2)一次性购书超过100元,但不超过200元一律打九折;(3)一次性购书200元以上一律打七折.小明在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小明这两次购书原价的总和是多少元?9.己知A、B两件商品的成本共1000元,老板分别以 30%和20%的利润率定价后进行销售,两件商品共获利 130元,问A、B两件服装的成本各是多少元.10.某商品若按标价的七五折出售将亏25元,而按标价的九折出售将嫌20元,问这种商品的标价是多少,进价是多少?11 .某商品的进货价为每件x元,零售价为每件900 元,为了适应市场竞争,商店按零售价的九折且让利40 元销售,仍可获利10%,则x% ( )A. 700B.约 773C.约 736D.约 856 考察角度:求商品的折扣12.某种商品的进价是每件8元,销售价是每件10元,现为了扩大销售量,将每件的销售价打折出售,但要求卖出一件商品所获的利润是降价前所获利润的90%,则折扣应为多少?13.某商品进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的几折销售的?14.某服装店将品牌时装提价25%后,发现销路不好,要恢复原价,则应降价百分之多少.15.书店里每本定价10元的书,成本是8元,为了促销,书店决定让利10%给读者,问该书应打几折?16..某商场以每件80元的价格购进了衬衫500件,然后以每件120元的价格销售了 400件,商场准备将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?考察角度:预测盈利或亏损|17.某商店出售两件衣服,每件100元.其中一件赚 10%,而另一件赔10%,那么这家商店是嫌了还是赔了, 或是不赚也不赔呢?18.某织布厂有150名工人,为了提高经济效益,增设制衣项目,己知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排X名工人制衣.(1)一天中制衣所获利润P二—(用含X的式子表示);(2)一天中剩余布所获利润Q二—(用含X的式子表示);19.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元. 经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?20.超市促销,一次性购物不超过200元不优惠;超过 200元,但不超过500元,按九折优惠;超过500元,超过部分按八折优惠,其中的500元仍按九折优惠.某人两次购物分别用了 134元和466元.问:(1)此人两次购物,若物品不打折,值多少钱?(2)此人两次购物共节省多少钱?(3)若将两次购物的钱合起来,一次购买相同的物品,是否更节省?说明理由.五个基本概念:进价、标价、售价、利润、利润率.三个基本公式:利润率二利润/进价x100%利润二售价-进价售价二标价X折扣打折销售的基本等量关系式:①标价二进价(1+利润率);②实际售价二标价X 打折数;④销售额二销售价X 销售量 ⑤销售利润二(销兽价-成本价)X 销售量思维导图运用方程解决实际问题的思维步骤:有关销售的槪念进价:购进商品时的价格(有时也叫成本价).售价:在销售商品时的售出价(有时称成交价,卖出价). 标价:在销售时标出的价(有时称原价,定价).利润:在销售商品的过程中的纯收入,利润=售价-进价. 利润率:利润占进价的百分率,即:利润率=利润《进价X 100%.甲,,设 _______________ 数学问题]已知量、未知量、 等量关系解释+解的合理性—方程的解实际问题销售问题中的基本等量关系 •利洞=售价•进价(成本价)•利润率X 100%•售价=标价X 折扣「丄0•售价二进价+进价(成本价)X 利润率 •提价后价格=提价前价格X(w 提价率) •降价后价格=降价前价格X (1 •降价率) I 进价磬榆利润、利润率.坦警售价进价、标价、售价之间关系进价商品利润=商品售价一商品进价商品售价=商品标价X折扣商品售价=成本+利润=成本(1+利润率)乘以打折数习题精析打折销售(利润问题)3. (2016-潮南区模拟)某商场销售的一款空调机毎台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率二二)・(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【思路点拨】(1)利用利润率=这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【答案与解析】解:(1)设这款空调每台的进价为x元,根据题意得:3270X0. 8-x二9%x,解得:X二2400,答:这款空调每台的进价为2400元;(2)商场销售这款空调机100台的盈利为:100X2400X9%=21600 (元),答:商场销售了这款空调机100台,盈利21600元.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【变式】(201 5・滦平县二模)一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A. 120 元B. 100 元C. 72 元D. 50 元【答案】D.解:设进货价为x元,由题意得:(1+100%) x・60%=60,解得:x=50.4. (2015・怀柔区二模)列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶毎把定价30元,茶杯每把定价5 元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5 把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.【思路点拨】由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x-5只茶杯的钱,己知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;若两种优惠办法付款一样,则两式子的值相等,计算出x的值即需购买茶杯的数冃.【答案与解析】解:设购买茶杯X只,依题意得5x+125=4.5x+135,解得:x=20.所以购买茶杯20只时,两种优惠办法付款一样.【总结升华】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题.解题关键是要读懂题冃的意思,根据题目给岀的条件,找出合适的等量关系列出方程,再求解,举一反三:【变式】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示), 求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为X元,由题意得:0. 8x+20 = xT2,解得:x = 160.答:李明上次所买书籍的原价是160元.——打折销售问题(一)【例1】某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80% )出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】相等关系:售价-进价=利润(14元).【解】设这种书包的进价是x元,其标价是(1 + 60% )x元,依题意,得(1 + 60% ) x・80% - x=14 ,解得:x=50 ,答:这种书包的进价是50元.【练习1] 一家商店将某种服装按成本提高15%后标价,又以标价的9折卖出,结果每件服装仍可获利7 元,问:(1 )这种服装每件的成本价是多少元?(2 )成本提高15%后的标价是多少?【解】(1 )设这种服装每件的成本价是x元,依题x・(1+15% ) X90% ・ x=7 , 解得:x=200 .答:这种服装每件的成本价是200元.(2 ) x・(1 + 15% ) =200x1.15=230 (元)答:成本提高15%后的标价是230元.【例2]小明去文具店购买2B铅笔,店主说:〃如果多买一些,给你打8.5折〃.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?【分析】相关关系:原价•现价=差额・【解】设每支铅笔的原价是x元,依题意,得100x ・ 100x0.85x=27 ,解得:x=1.8 .答:每支铅笔的原价是1.8元.【练习2]王老师去菜市场为食堂选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?〃摊派主说:"多买按八折算,你要多少斤?”王老师报了数量后摊主同意按八折卖给王老师,并说:〃之前一人只比你少买了5斤就是按标价的,还比你多花了3元呢!〃你知道王老师购买了多少斤豆角吗?【分析】相等关系:之前顾客花费-王老师的花赛=3 元,再根据总价=单价x数量【解】设王老师买了 X斤豆角,则另一个顾客买了( X-5)斤豆角,依题意,得3x0.8x+3 = 3 ( x - 5 ),解得:x=30 .答:王老师买了 30斤豆角.【例3]某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】相等关系:铅笔斐用+圆珠笔费用=87元,再根据总价二单价x数量・【解】设卖出铅笔x支,则卖出圆珠笔(60 - x )支, 依题意,得1.2x0.8x+2x0.9 ( 60 - x ) =87 ,解得:x=25 ,.・.60 - x=60 - 25 = 35 .答:卖出铅笔25支,卖出圆珠笔35支.【练习3]某老板将A品牌服装每套按进价的2.5倍进行销售,恰逢"春节〃来临,为了促销,他将售价提高了50元再标价,打出了〃大酬宾,五折优惠〃的牌子,结果每套服装的利润是进价的三分之一,现售价与原售价相比,价格降了还是升了 ?说出你的理由・【分析】先求出原售价及提价打折后的售价,再进行比较. 【解】设A品牌服装每套进价为x元,依题意,得(2.5X+50 ) x0.5 - x=x/3x ,解得x=300 .原来售价2.5x300 = 750 (元),提价后打五折后价格为:(2.5x300 + 50 ) x0.5=400 (元),.・.400 < 750,二价格降了・答:现售价与原售价相比,价格降低了.——打折销售问题(二)【例1】甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动・甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元, 乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2 )该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费・如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1 )设甲购书x本,则乙购书(15-x)本,相等关系:甲购书实际斐用+乙购书实际费用= 323 元,再根据总价二单价x购买数量.(2 )相等关系:总花费=购买图书的总价x折扣率+会员卡工本费・【解】(1)设甲购书X本,则乙购书(15 -X)本,依题意/得[20X+25 ( 15 - x ) ]x0.95 = 323 ,解得:x=7 ,...15 - x=8 .答:甲购书7本,乙购书8本.(2 ) ( 20x7 + 25x8 )x0.85 + 20=309 (元),323 - 309 = 14 (元)・答:办会员卡比不办会员卡购书共节省14元钱.【练习1]某超市为了促销,对A、B两种商品进行打折出售.打折前,购买5件A商品和2件B商品需要 88元,购买7件A商品和3件B商品需要124元.促销期间,购买100件A商品和100件B商品仅需 1500 元.(1 )求打折前每件A商品和B商品的价格.(2 )若B商品所打折扣为7.5折,求促销期间每件A商品的价格・【分析】(1 )设打折前每件A商品的价格为x元,每件B商品的价格为(88-5x)/2元(根据〃打折前,购买5 件A商品和2件B商品需要88元),再根据:购买7 件A商品的费用+购买3件B商品的费用= 124元〃.(2 )设促销期间每件A商品的价格为z元,根据单价x数量二总价.【解】(1 )设打折前每件A商品的价格为x元,每件 B商品的价格为(88・5x)/2元,依题意,得解得:x=16,则(88-5x)/2=4 .答:打折前每件A商品的价格为16元,每件B商品的价格为4元.(2 )设促销期间每件A商品的价格为z元,依题意,得100x4x0.75 + 100z=1500 ,解得:z=12 .答:促销期间每件A商品的价格为12元.【例2]某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同・甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠・乙家的规定如下表:表格说明:批发价分段计箕:如:某人批发200千克的苹果;则总费用= 50x8x95%+100x8x85%+ 50x8x75%.(1 )如果他批发240千克苹果选择哪家批发更优惠;(2 )设他批发x干克苹果(x>100),当x取何值时选择两家批发所花赛用一样多•【分析】(1)分别计算出各自的费用,再进行比较;(2 )分 100<x<150 x x> 150 及当 100 < x<150 三种情况,分别用含x的式子表示出在甲、乙两家批发x干克苹果所需费用.然后得出存在相等的情况;,再分别计算不等情况。
一元一次方程的应用----销售问题(含答案)
I、商品销售问题1.商品的进价:指商店从厂家购进商品时的价格;(有时候它就是成本价)2.商品的售价:商店销售商品时的实际售出价;(有的时候售价就是标价、原价、定价)3.利润:商店销售商品时所赚的钱;4.折扣:商店销售商品时销售价占商品价格的十分之几.(例如:7折即70%或十分之七或0.7)5.商品的利润=商品的售价-商品的进价; 6.商品的利润率=商品的进价商品的利润×100%=商品的进价商品的进价商品的售价 ; 7.打折的算法:商品的标价×商品的销售折扣=商品的售价.(例如7折)一、求商品的进价例 某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为?练习: 一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.那么这件商品的成本价为多少元?,.二、求商品的标价(或原售价)例 小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元. 其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为 多少元?练习 张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.2.商店将每台彩电先按进价提高40%标出售价,然后在广告中宣传将以八折的优惠价出售,结果每台彩电赚了300元,那么每台彩电的进价是多少元?三、求商品的利润率例 下面是某商场A品牌电脑产品的进货单中的一部分,其中进价一栏被墨水污染,读了进货单后,请你求出这台电脑的利润率为 .(精确到0.1%)商场A品牌电脑进货单进价(商品的进货价格)元标价(商品的预售价格) 5850元折扣 8折利润(实际售后的利润) 210元四、求折扣例 某商品的进价是500元,标价为750元,商店要求以不低于5%利润率的售价打折出售,售货员最低可以打多少折?.练习:某商品的进价为1250元,按进价的120%标价,商店允许营业员在利润率不低于8%的情况下打折销售,问:营业员最低可以打几折销售此商品?五、探究商家的盈亏例 有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意是亏损还是盈利?练习:一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?专题训练1、一只钢笔原价30元,现打8折出售,现售价是 元.2、一个书包,打9折后售价45元,原价 元.3、某件商品进价100元,售价150元,则其利润是 元,利润率是 .4、一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是 元.5、一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是 元.6、原价100元的商品打8折后价格为 元;7、原价100元的商品提价40%后的价格为 元;8、进价100元的商品以150元卖出,利润是 元,利润率是 ;9、原价X元的商品打8折后价格为 元;10、原价X元的商品提价40%后的价格为 元;11、原价100元的商品提价P %后的价格为 元;12、进价A元的商品以B元卖出,利润是 元,利润率是 。
一元一次方程专项训练2--打折销售问题答案
一元一次方程专项训练2-----打折销售问题答案1.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少?解:设这种商品的成本价是x元,根据题意,得x⋅(1+20%)⋅90%=270,解得x=250,因此,这种商品的成本价是250元.2.一件夹克衫先按成本提高50%的标价,再以8折出售,结果获利28元,这件夹克衫的成本价是多少元?解:设这件夹克的成本是x元,由题意,得x(1+50%)×80%−x=28,解得:x=140.答:这件夹克的成本是140元.3.商场将一批学生书包按成本提高50%后标价,又以八折(按标价的80%)优惠卖出,每个的售价为72元,这种书包每个成本价是多少元?每个书包的利润是多少元?利润率是多少?解:设这种书包每个成本价是x元,根据题意得(1+50%)x×0.8=72,解得:x=60.每个书包的利润是72−60=12(元),利润率是12÷60=20%.故这种书包的成本价是60元.每个书包的利润是12元,利润率是20%.4.某商店将一种裤子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元.这种裤子的成本是多少元?解:设这种裤子的成本是x元.则x×(1+50%)×80%−x=10,解得:x=50.答:这种裤子的成本是50元.5.一件商品按成本价提高50%后标价,再打八折销售,售价为480元,那么这件商品的成本价是多少? 解:设这件商品的成本价是x元,根据题意可得(1+50%)x×0.8=480,解得x=400,答这件商品的成本价是400元.6.某商店的一批电视机,原价2500元,现以8折销售,如果想使降价前后的月销售额都为10万元,那么月销量应增加多少台?解:设销售量应增加x台,根据题意,得100002500+x=1000002500×80%,解得x=10,因此,销售量应增加10台.7.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.解:设四月份每件衬衫的售价为x元,根据相等关系列方程得:(5000+40x)×0.8=5000+600,解得x=50.答:四月份每件衬衫的售价是50元.8.某商店准备将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.问:(1)每件服装的标价、成本价各是多少元?(2)为了保证不亏本,最多能打几折?8、解:(1)设每件服装标价为x元,根据题意得:0.5x+20=0.8x−40,解得:x=200.则每件服装标价为200元;成本价是:200×50%+20=120(元);(2)设能打x折,根据题意得:200×x10=120,解得:x=6.答:至多能打6折.9.某商店将一种电视机按进价提高35%后定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台电视机获利208元.(1)求每台电视机的进价;(2)另一商家出售同种电视机,按进价提高40%,然后打出“八折酬宾”的广告,如果你想买这种电视机,应选择哪一个商家?9、解:(1)设每台电视机的进价为x元,根据题意,得x(1+35%)×90%−50−x=208,解得x=1200.答:每台电视机的进价为1200元.(2)若选择第二个商家,则购买该电视机实际花费:1200×(1+40%)×80%=1344(元);若选择第一个商家,则购买该电视机花费:1200+208=1408(元),因为1344<1408,所以应选择第二个商家.10.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你帮助设计一下商场的进货方案.10、解:当购进甲、乙两种电视机时:设购进甲种电视机x台,则购进乙种电视机(50−x)台,列方程为1500x+2100(50−x)=90000,解得x=25,所以50−x=25,即购进甲种电视机25台,乙种电视机25台.当购进甲、丙两种电视机时:设购进甲种电视机y台,则购进丙种电视机(50−y)台,列方程为1500y+2500(50−y)=90000,解得y=35,所以50−y=15,即购进甲种电视机35台,丙种电视机15台.当购进乙、丙两种电视机时:设购进乙种电视机z台,则购进丙种电视机(50−z)台,列方程为2100z+2500(50−z)=90000,解得z=87.5,(不合题意,舍去).综上所述,共有两种方案:一是购进甲种电视机25台,乙种电视机25台;二是购进甲种电视机35台,丙种电视机15台.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利润:(100 – 80)元 = 20元。
利润率= _20_ × 100% = 25%
80
7
1、佳佳电脑城为了促销,进行6折酬宾活动, 电脑每台标价5000元,则折后售价为每台 ___3_0_0元0 .
2、惠民服装店新进了一批品牌服装,进价每 件100元,售价180元,则每件衣服的利润为 _8_0 元,利润率是_80_%.
解: 设商品进价为x元, 根据题意, 得:1 50%x 8 x 20
10
解这个方程得:x 100
标价为: 1 50%x 150元, 打6折售价为:150 6 90元
10
利润为:90 100 10元, 所以销售员的建议不可行
如果某商品进价降低8%,而售价不变,那么利润 率可由目前的m%增加到(m+10)%,求m的值。
损,或是不盈不亏?
=___1_2_8___元,而两件衣服的
售价是60+60=120元,进价
___大__于售价,由此可知卖这两
件衣服总的盈亏情况是
_____亏_损__________.
¥60
¥60
1、某商场要进一批玩具,一种进价15元,市面一般售价为18元;另一种进价为12 元,市面一般售价为15元,商场进哪一种获利更大?你能帮他们做出决定吗?
利润 = 售价-进价
利润率 = 利润 进价
打 x 折的售价= 原价× x 10
我们可以设其中一件衣服
的进价为x元,它的利润是
__2_5_%__x__,列出方程是
____6_0_-__x_=___2_5_%__x______,
¥60
¥60
解这个方程得__X__=__4_8___。
销售中的盈亏
类似的,可以设另一件衣
则售价是____1_50_____元. 3、某商品售价120,进价为100元,则利润是2_0_元. 利润与进价的百分比为__2_0_%__.
利润 = 售价-进价
利润率 = 利润 进价
打 x 折的售价= 原价× x
10
想一想
王洁做服装生意。她进了一批运动衫, 每件进价80元,卖出时每件100元。请问一 件运动衫利润是多少元?利润率又是多少?
服装店今天卖出了一 件衣服,售价120元,利 润率为20%,你能算出 进价为多少吗?
(运用一元一次方程的知识解答)
讲解
例 某商店因价格竟争,将某型号彩电按
标价的8折出售,此时每台彩电的利润率是
5%。此型号彩电的进价为每台4000元,那
么彩电的标价是多少?
条
按标价的8折出售
——标价的
_8__为售价 10
某商店在某一时间以 服的进价y元,它的商品利润是
每件60元的价格卖出两件 __-_2_5_%__y__,列出方程是
衣服,其中一件盈利25 % , _______6_0_-_y_=__-__2_5_%_y____, 另一件亏损25 % ,卖这两 解得___y_=__80__.
件衣服总的是盈利还是亏 两件衣服的进价是 x + y
4000
4000 × 5%
例 某商店因价格竟争,将某型号彩电按标价的8折出售,此
时每台彩电的利润率是5%。此型号彩电的进价为每台4000元, 那么彩电的标价是多少?
解:设此彩电的标价为x元,根据题意,得
__8_
10
x
–
4000 =
4000 × 5%
移项 _8_ x = 4000 × 5% +4000 10
3、某商品的利润是50元,售价是150元,则 进价是_1_0_0__元,利润率为_5_0_%___.
4、某商品的进价为1000元,利润率为30%, 则利润为_3_0_0__元.
8
进价、售价、利润和利润率之间的关系是: 利润 = 售价 –进价 利润 利润率 = 进价
即: 利润 = 进价 × 利润率
因此: 售价 –进价 = 进价 × 利润率
售价 进价 进价利润率 售价 进价利润率 进价 即: 售价 (1 利润率) 进价
移项, 化简得:0.08m 1.2
系数化为1, 得:m 15
1. 本节课你有什么收获?
合并同类项
__8_
10
x
=
4200
系数化为1 x = 5250 答:此彩电的标价为5250元。
(只列方程不解答)
1、某商品的进价为250元,按标价 的9折销售时,利润率为15.2%,商 品的标价是多少?
2、某商品的进价为200元,标价为 300元,打折销售时的利润率为5%, 此商品按几折销售的?
某商店在某一时间以每件60元的 价格卖出两件衣服,其中一件盈利25 % ,另一件亏损25 % ,卖这两件衣 服总的是盈利还是亏损,或是不盈不 亏?
一元一次方程的应用
2
大放血
5折酬宾
清仓处理
跳楼价大亏本大Fra bibliotek卖学习目标 学会利用进价、利润、利润率之间的关系解 应用题
教学重点 列方程解打折促销问题的应用题
教学难点 寻找打折问题中的等量关系
1、500元的9折价是___45_0__元 ,x折是_5_0_0_1_x0__元. 2、某商品的每件销售利润是50元,进价是100元,
解: 设商品的进价为x元, 则:
(1 m%)x 1 (m 10)% (1 8%)x
1 m% 1 (m 10)% 0.92
1 m 0.92 m 10 0.92
100
100
去分母, 得:100 m 92 0.92(m 10)
去括号, 得:100 m 92 0.92m 9.2
解: 第一种: 利润率 18 15 100% 20% 15
第二种: 利润率 15 12 100% 25% 12
所以,选择第二种获利更大
2、万联超市新进了一种时尚生活用品,按进价提高50%标价,然后按8折出 售,这样每卖出一个可获利20元。你能求出商品的进价吗?为了能尽快打开 销路,一名销售员建议按标价的6折出售。如果你是经理,你认为他的建议可 行吗?为什么?
件 按8折出售时的利润率是5% ——利润率
彩电的进价为4000元
——进价
问
题
彩电的标价是多少?——标价
已知:4000元
已知:4000元
彩电售价 – 彩电进价 = 彩电进价 × 彩电的利润率
彩电标价 × _8__ 10
已知为:5%
如果设彩电标价为x元,则根据等量关系可得方程:
x – = _8__
10