大学物理第三章

合集下载

大学物理.第三章.刚体的转动

大学物理.第三章.刚体的转动
动 .试计算细杆转动到与竖直线成 角时的角加速度
和角速度 .
解 细杆受重力和
铰链对细杆的约束力
FN
作用 3g sin
2l
3g (1 cos )
l
§3-4 力矩的功 定轴转动的动能定理
一、力矩的功
z

O
d r
速度ω 绕端点转动,摩擦系数为μ 求M摩擦力。
ω
解: 质量线密度:
m L
dm
r dr
质量元:
r dm dr
所受摩擦力为:
dF gdm gdr
例3-5 现有一圆盘在平面内以角速度ω 转动,求 摩擦力产生的力矩(μ 、m、R)。
dr
ωr
解:
dm ds rdrd dF gdm grdrd dM1 rdF r2gdrd
I mi ri2 -质量不连续分布
i
r 2dm -质量连续分布
d -线分布λ=m/ι 质量元: dm ds -面分布σ=m/S
dV -体分布ρ=m/V
二、决定转动惯量的三因素
1)刚体的质量; 2)刚体的质量分布; (如圆 环与圆盘的不同);
3)刚体转轴的位置。 (如细棒绕中心、绕一端)
运动。 一、何谓刚体
在任何情况下形状和大小都不发生变化的
物体。即每个质元之间的距离无论运动或
受外力时都保持不变。
理想模型
ri j c mj
二、刚体运动的两种基本形式 mi
平动----刚体运动时,刚体内任一直线恒保 持平行的运动(即该直线方向保持不变)
刚体的平动过程
c a b
刚体的平动过程
能运用以上规律分析和解决包括 质点和刚体的简单系统的力学问题.

大学物理学第3章 力学的守恒定律

大学物理学第3章 力学的守恒定律
t1 t1
00:03


t2 I F (t )dt
t1
注意
•力的冲量是矢量,计算 冲量要考虑 方向 性。
•冲量是过程量。 •冲量决定于力和时间两个因素。
•F-t图上曲线下的面积与冲量大小 的关系。
00:03
(三)用冲量概念表述动量定理
质点动量定理的微分形式 dp
F
m v Fdp Fdt d
00:03
(3)矢量性质: 系统各质点的动量的矢量和不变;
若某一方向合外力为零, 则此方向动量守恒 .
ex x
F
0, 0,
px mi vix C x p y mi viy C y pz mi viz Cz
Fyex 0 , F
ex z
(4)瞬时特征: 任意两个瞬时,动量的大小和方向都相同。
m1 v' 则 v2 v m1 m2
v2 2. 10 m s 17
3 1
(m1 m2 )v m1v1 m2 v2
v1 3. 103 m s 1 17
• 力 F=12ti(SI)作用在质量m=2kg的物体上, 使物体由原点从静止开始运动,则它在3秒末的动量 为: (A)-54 i kg.m/s (B)54i kg.m/s (C)-108 i kg.m/s (D)108 i kg.m/s (B)
y
s
v
z'
y'
s'
v'
x x'
o
00:03
z
o'
已知
v 2.5 10 m s 3 1 v' 1.0 10 m s

大学物理课件 第3章 动量 角动量

大学物理课件 第3章   动量   角动量

例 如图所示,一个有四分之一圆弧光滑槽的大物体,质量为 M, 置于 光滑的水平面上。另一质量为m的小物体从圆弧顶点由静止开始下滑。 求当小物体m滑到底时,M滑槽在水平上移动的距离。
解 以 M和 m 为研究对象,其在水平方向不受外力(所受外力都 在竖直方向),故水平方向动量守恒。
设在下滑过程中,m相对于M的滑动速度为m , M 对地速 度为 M ,并以水平方向右为正,则有
t
问题 结果与m与槽M间是否存在摩擦有关系吗?
3. 质心运动定理
C
mii mc m i 1 质点系的动量 p mc
i 1
m
n
rC
mi ri
n i 1
m
n
i i
质点系的动量等于质点系的质量乘以质心的速度。 注 质点系的动量的两种表达式
n p mii , p mc
pA m j ,
pB mi
y
B
I AB pB pA m (i j )
C
pC m j
o
A
x
I AC pC pA 2m j
质点的动量定理
例 一质量为10kg的物体沿x轴无摩擦地运动,设t=0时,物体 位于原点,速度为零。设物体在力(F=3+4t)N作用下运动了3秒, 求此时它的速度和加速度。 解
3.2
角动量定理 角动量守恒定律
3.2.1 质点的角动量定理及守恒定律
1. 力矩
讨论
力F 对定点O 的力矩 Mo F r F
单位:牛 米(N m)
(1)力矩的大小和方向
所组成的平面,指向是由 180 的角转到 F 时的右手螺旋前进的方向
①方向垂直于 r 和 F o
r 经小于
x 方向: m sin m0 sin 0 y 方向: ( f mg )t m cos m0 cos sin 由第一式 0 sin

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

大学物理 第3章动量定理

大学物理 第3章动量定理


(m2
m1)v2o m1 m2
2m1v1o
2v1o
vr1o
m2 m1
当m1>>m2时,且第二个 球静止,则碰后,第一个球 速度不变,而第二球以2倍 于第一个球的初速度运动。
第一篇 力学
2.完全非弹性碰撞 totally non-elastic collision
特点:机械能不守恒,动量守恒。碰撞


理 学
例如:两队运动员拔河,有的人说甲队力气大,乙队
院 力气小,所以甲队能获胜,这种说法是否正确?
赵 承 均
甲队
乙队
第一篇 力学




学 院
r
F1
r F2
赵 承
均 分析:
拔河时,甲队拉乙队的力,与乙队拉甲队的力是一对作用 力与反作用力,为系统的内力,不会改变系统总的动量。只 有运动员脚下的摩擦力才是系统外力,因此哪个队脚下的摩 擦力大,哪个队能获胜。所以拔河应选质量大的运动员,以 增加系统外力。

大 数
质点质量与速度的乘积,可以表征质点瞬时运动的量,称为动量。

rr
学 院
p mv
单位:千克·米/秒, kg·m/s
赵 承 均
由Newton第二定律,得:F
ma
m
dv
d (mv)
dp
dt dt
即:
F dt
这就是动量定理。
在经典力学范围内,m=constant,动量定理与F=ma等价,但在高 速运动情况下,只有动量定理成立。
杆跃过自由下落,运动员与地面的作用时间分别
为 1 秒和 0.1 秒,求地面对运动员的平均冲击力。

《大学物理》第三章电势S

《大学物理》第三章电势S
i
" p"
或: d
40 ri dq d 40 r
z • 你能否迅速算出“非均匀带电球面(只知道总电量)”
在球心处的电势? • 如果用“路径积分法”,本题应如何解?
例计算均匀带电q 的园环轴线上任一点的电势。 解: 用“电势叠加法” y (以无穷远处 先考虑点电荷dq对电势的贡献 dq 的电势为0) dq d 4 0 r r q dq q R d 0 4 r 40 r 0 x o x Q 2 2 4 0 x 2 R 2 r x R
球面A 产生的电势分布
球面B 产生的电势分布
qA r R A A 4 0 RA q r RA A A 4 0 r
r RB r RB
qB B 4 0 RB qB B 4 0 r
A B
qB
qA R A
r RA
qA qB 4 0 RA 4 0 RB
E



dr
P2
2
空间变化率:
d E cos dr d E ( d dr dr ) Max

0

E

有最大值
沿电场方向电势随空间的变化率最大,就把这一最大值称为
1
P 1

dr

P2
2
该点的电势梯度 d ( ) Max 定义电势梯度--- grad
则:E dl a b
dl
a
E
E dl
0
dl
b
——场强与等势面正交。

若再取小位移 dl 与电场同向(由点 a到点b′) 则:E dl a b 0 , a b

大学物理第三章动量守恒定律和能量守恒定律

大学物理第三章动量守恒定律和能量守恒定律

动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。

大学物理 第3章 刚体力学基础

大学物理 第3章 刚体力学基础


2 1
Jd

1 2
J22

1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF

大学物理第三章动量守恒定律和能量守恒定律

大学物理第三章动量守恒定律和能量守恒定律
展望了未来在学习相对论和量子力学中,对动量守恒定律和能量守恒定律的更深入理解 和应用。
探索其他守恒定律
鼓励了对其他守恒定律的探索,如角动量守恒定律、电荷守恒定律等。
THANKS
感谢观看
探索性实验:动量与能量的关系研究
实验目的
研究动量与能量的关系,探索两者之间的联系和 区别。
实验步骤
选择合适的实验器材,如弹性碰撞器、非弹性碰 撞器等,设计不同的碰撞条件,记录实验数据。
实验原理
动量和能量是描述物体运动状态的物理量,两者 之间存在一定的关系。通过研究不同运动状态下 物体的动量和能量变化,可以深入理解两者之间 的关系。
05
实验验证与探索
动量守恒定律的实验验证
实验目的
通过实验验证动量守恒定律, 加深对动量守恒定律的理解。
实验原理
动量守恒定律指出,在没有外 力作用的情况下,系统的总动 量保持不变。
实验步骤
选择合适的实验器材,如滑轨、 滑块、碰撞器等,按照实验要求 进行操作,记录实验数据。
实验结果
通过分析实验数据,验证动量 守恒定律的正确性。
动量守恒定律的应用实例
总结词:举例说明
详细描述:应用动量守恒定律的实例包括行星运动、碰撞、火箭推进等。例如,在行星运动中,行星绕太阳旋转时动量守恒 ;在碰撞过程中,两物体相互作用时的动量变化遵循动量守恒定律;火箭推进则是通过燃料燃烧产生高速气体,利用反作用 力推动火箭升空,这一过程中动量守恒。
03
守恒定律的意义
强调了守恒定律在物理学中的重要地位,以及在解决实际问题中的应 用价值。
对动量守恒定律和能量守恒定律的思考
守恒的哲学思考
探讨了守恒定律在哲学上的意义,以及它们 对宇宙观的影响。

大学物理第三章热力学第一定律第四章热力学第二定律

大学物理第三章热力学第一定律第四章热力学第二定律

A1 A绝热 Q1 0 A2 A绝热 Q2 0
放热 吸热
(B)对
38
补充作业(4692)如图所示,C是固定的绝热壁, D是可动活塞,C、D将容器分成A、B两部分。 开始时A、B两室中各装入同种类的理想气体, 它们的温度T、体积V、压强P均相同,并与大 气压强相平衡。现对A、B两部分气体缓慢地 加热,当对A和B给予相等的热量Q以后,A室 中气体的温度升高度数与B室中气体的温度升 高度数之比为7:5。求:
内能:态函数,系统每个状态都对应着一定内能的数值。 功、热量:只有在状态变化过程中才有意义,状态不
变,无功、热可言。
8
五、热力学第一定律
1. 数学表式
★ 积分形式 Q E A
★ 微分形式 dQ dE dA
9
2. 热力学第一定律的物理意义
(1)外界对系统所传递的热量 Q , 一部分用于 系统对外作功,一部分使系统内能增加。
(4)内能增量: dE 2i(R适dT用于任C何V d过T程!!)
E E2 E1 CV (T2 T1 )
等容过程
Q等容 E E2 E1 CV (T2 T1 )
A等容 0
CV
iR 2
14
2. 等压过程
(1)特征: P=恒量 ,dP=0, P
参量关系: V T 恒量 (2)热一律表式:
E EA EB
E A
3
2
RTA
3 2
RTA
5 EB 2 RTB
C是导热板,因此A、B两部分气体的温度
始终相同。即:TA TB T
T A 4R
5
5
EB 2 RT 8 A
36
例4(4313)一定量的理想气体,从P-V图 上初态a经历(1)或(2)过程到达末 态b,已知a、b两态处于同一条绝热线 上(图中虚线是绝热线),问两过程中 气体吸热还是放热? (A)(1)过程吸热 (2)过程放热 (B)(1)过程放热 (2)过程吸热

大学物理课课件第3章_刚体的定轴转动

大学物理课课件第3章_刚体的定轴转动
G2 G1
(m1-m2)g R(m1+ m2+ m 2) (m1-m2)g R(m1+ m2+ m 2)
a
gt 2
(rad)
两匀直细杆
两者瞬时角加速度之比 转动定律例题五
θ
θ
根据
1 2 1 2
θ θ
1 3 1 3
地面 从等倾角 处静止释放
短杆的角加速度大 且与匀质直杆的质量无关
第3节 机械能守恒定律
用两个对 转的顶浆
(支奴干 CH47)
A、B两轮共轴 A以ωΑ作惯性转动
守恒例题一
两轮啮合后 一起作惯性转动的角速度
ωΑΒ
以A、B为系统,忽略轴摩擦,脱离驱动力矩后,系 统受合外力矩为零,角动量守恒。
初态角动量 末态角动量

守恒例题二
木棒 弹
以弹、棒为系统 击入阶段 子弹击入木棒瞬间,系统在
铅直位置,受合外力矩为零,角动量守恒。 该瞬间之始 该瞬间之末 棒 弹 棒
对 质点运动和刚体转动定律
m 1 m 2 和 m 分别应用

β
R
T2 T2
m
T1 T1 m1
m1 g – T1 = m1a T2 – m2 g = m2a ( T1 – T2 ) R = Iβ
得 故
a = Rβ
1 I = 2 mR2 常量
β
(m1-m2)g = R(m1+ m2+ m 2) 由
m2
a
定轴转动物理量
1. 角位置
描述刚体(上某点)的位置 刚体定轴转动 的运动方程 刚体
刚体中任 一点
(t+△t) (t) 参考 方向
2. 角位移

大学物理第3章_动量与角动量

大学物理第3章_动量与角动量
C
N N i 1 i 1
i 1
在任何参考系中,质心的动量都等于质点系 的总动量。
dvc mi ai m 4、质心的加速度 ac dt
N i 1
28
§3.6 质心运动定理和质心参考系
一、质心运动定理
f2外
p2
dP F m a c (惯性系) dt
i
内力可改变各质点的动量, 但合内力为零,对总动量无影 rj 响。 应用质点系动量定理不必 o 惯性系 考虑内力。
ri
f ij f ji
mj
pj
fj
13
证明:对第 i 个质点 d f ij fi d t pi j i 对质点求和
fi
pi
ri
2.火箭所受的反推力 研究对象:喷出气体 dm t 时刻:速度v (和主体速度相同),动量 vdm t +dt时刻:速度 v - u, 动量dm(v - u)
由动量定理,dt内喷出气体所受冲量
F箭对气dt = dm(v - u) - vdm = - F气对箭dt
由此得火箭所受燃气的反推力为
dm F F气 对 箭 u dt
3
§ 3.1 冲量与动量定理 力的时间积累称为冲量(impulse):
dI Fdt t I F (t )dt
t0
牛顿第二定律质点的动量定理: dI Fdt dp t I F (t )dt p p0
t0
动量定理常用于碰撞过程。
星(TEMPEL1)的彗核相撞。 据推算,撞击的强度相当于 4.5 吨 TNT 炸药造成的 巨大爆炸,它将会在彗核表面撞出一个约有足球场大

大学物理-第三章-动量守恒定律和能量守恒定律

大学物理-第三章-动量守恒定律和能量守恒定律

20
★一对作用力与反作用力的功只与相对位移有关
f ji
ri

f ij

rij

rj
0


dW
jidWij

f
ji
dri
fij drj
f ji fij


fji f ji
(dd(rriidrrjj))

f ji
drij
S
S u
动量的相 对性和动量定 理的不变性
F(t)
t1 m
v1
光滑
v 2
m t2
参考系 t1 时刻 t2 时刻
动量定理
S系
S’系
mv1
mv2
m(v1 u) m(v2 u)
t2 t1
F (t )dt

mv2

mv1
5
例3-1: 作用在质量为1kg 的物体上的力 F=6t+3,如果物体在这
0=m1(v1+v2)+m2v2
v2


m1v1 m1 m2
x
t 0
v2dt
m1 m1 m2
t 0
v1dt
L
t
0 v1dt
x m1L 0.8m m1 m2
负号表示船移动的方向与人前进的方向相反。
17
3-4 动能定理
一、功的概念(work) 功率(power) 1、恒力的功
2、动能定理
2
1

F

dr
F

dr

1 2
mv22

大学物理 第三章 光的偏振

大学物理  第三章  光的偏振

9.请将下列各图中反射光及折射光的偏振态 9.请将下列各图中反射光及折射光的偏振态 画出来. 画出来.图中i0 = tg-1 n2/n1 i≠i0
(E) I 0 cos α .
4
(B) 0.
1 2 (D) I 0 sin α. 4
[ C ]
6.如图,P1, P2为偏振化方向间夹角为α的两个偏 如图, , 为偏振化方向间夹角为α 如图 振片.光强为I 的平行自然光垂直入射到P 表面上, 振片.光强为 0的平行自然光垂直入射到 1表面上, 1 I cos α. 则通过P 的光强I= 则通过 2的光强 2
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生 当光在晶体内沿某个特殊方向传播时不发生 双折射,该方向称为晶体的光轴 光轴. 双折射,该方向称为晶体的光轴. 例如,方解石晶体(冰洲石) 例如,方解石晶体(冰洲石) 光轴是一特殊的方向 , 凡 平行于此方向的直线均为光 轴. 单轴晶体: 单轴晶体:只有一个光轴的晶体
υ e → ne =
c
υe
根据n 的关系可分为正, 根据 0 ,ne的关系可分为正,负晶体 负晶体 : ve > v0 方解石 : ve < v0 正晶体 英 ne< no,如 ne> no,如石
5. 单轴晶体的主平面 主平面: 主平面:单轴晶体中光的传播方向与晶体 光轴构成的平面. 光轴构成的平面.
α = 0,I = I max = I 0 三. 检偏
消光 α = ,I = 0 ——消光
2
旋转一周 2 明2 暗 自然光 部分偏振光
π
用偏振器件 分析, 分析,检验 光的偏振态
?
堆叠在一起, 例1. 三个偏振片 P1,P2与P3 堆叠在一起, 的偏振化方向相互垂直, P1 与 P3 的偏振化方向相互垂直 , P2 与 P1 的偏振化方向间的夹角为 30 ° .强度为 I0 的自然光垂直入射到偏振片 P1,并依次透过 偏振片 P1 , P2 与 P3 , 若不考虑偏振片的吸 收和反射,则通过三个偏振片后的光强为: 收和反射,则通过三个偏振片后的光强为:

大学物理第三章总结

大学物理第三章总结

⼤学物理第三章总结第三章热⼒学的基本规律热学是从系统的物理性质及其状态的变化是与冷热状态相联系这⼀客观事实出发,来研究系统的物理性质及其状态变化的⼀门学科,它是物理学的重要分⽀之⼀。

热学研究对象就是由⼤量(微观)粒⼦组成的宏观物体。

§ 3.1 热⼒学系统的平衡态⼀、⼏个基本的定义:系统:体积具有有限的宏观物质体系。

外界或环境——与系统内部具有⼀定联系孤⽴系:与外界没有任何相互作⽤的热⼒学系统。

封闭系:与外界没有实物交换但有能量(如热能)交换的系统。

开放系:与外界既有实物交换⼜有能量交换的系统。

平衡态:孤⽴系经过⾜够长的时间⼀定会达到⼀个宏观性质不随时间变化的状态。

宏观性质不随时间变化的状态叫做平衡态(是动态平衡)状态参量:描述系统平衡态性质的物理量称状态参量。

不同情况时选⽤不同的状态参量来描述状态。

§ 3.2 温度状态⽅程热⼒学第零定律:若两个系统分别和处于确定状态的第三个系统达到热平衡,则这两个系统彼此也将处于热平衡。

温度的定义:热平衡的概念总是和物体的冷热程度联系在⼀起的,⽽描述冷热程度的物理量就是温度。

⼀切处于相互热平衡的物体,都有相同的温度。

(科学定义)温标的定义种类:理想⽓体状态⽅程:确定系统状态的⼀组独⽴参量与温度的函数关系式pV=νRT§ 3.3过程功1、过程热⼒学过程:热⼒学系统的状态随时间⽽变化时,表现为⼀系列连续变化的状态叫做热⼒学过程。

准静态过程(如果过程进⾏得⼗分缓慢,以⾄系统连续地经历着⼀系列的平衡态,这样的过程称为准静态过程)和⾮静态过程准静态过程的P-V 图像2、功准静态过程当中的功:当系统的体积由V 1变为V 2时,外界对系统所做的功为§ 3.4内能热⼒学第⼀定律焦⽿实验证明:借助机械⽣热法和电的热效应使物体温度升⾼了与传递给它1cal 热量,相同的温度上升量时,都必须对物体做4.18J 的功。

1、内能绝热过程的定义:内能定义:任何⼀个热⼒学系统都存在⼀个被称为内能的态函数,当这个系统从平衡态1经过任⼀绝热过程到另⼀平衡态2,它的内能的增加等于过程中外界对它所做的功WS 。

大学物理课件第3章 动量与角动量

大学物理课件第3章 动量与角动量

§3.3 动量守恒定律 质点系所受合外力为零, Σ 时间改变,即
Fi = 0 总动量不随
N P pi 常矢量
i 1
1. 合外力为零,或外力与内力相比小很多;
2. 合外力沿某一方向为零;
p i
i
const .
3. 只适用于惯性系; 4. 比牛顿定律更普遍的最基本的定律。
M r F

M F d F r sin
提问:力矩为0的情况?
力矩
Lrp
动量
N m 矢量性: r F
单位:
三、角动量定理
pr p v pr F Lr 角动量定理: r F M (力矩)
q
v
V
v sinq
v cosq V

解:设车相对地面的反冲速度为V,方向水平向左 炮弹相对地面的速度水平分量为 v cosq V mv cosq 水平方向动量守恒 m(v cosq V ) MV 0 解得V
炮弹相对地面的速度竖直分量为 v sinq
m M
v sinq tg v cosq V
t2
mg
3秒时物是否被拉起?
F cos f 0 N F sin mg 0 f N t1 1.9 s
I x 0.62 Kgm / s
t1
F
x
dt 1.12t (cos sin ) mg dt
3
I x mvx 0 0.62Kgm / s
6
h
v
0
N =
m 2gh
τ
m 工件
mg

大学物理第三章动量与角动量分解

大学物理第三章动量与角动量分解

相碰时的相互作用内力为 f 和f
同时受系统外其它物体的作用外力为 F1和F 2
d P1 对质点m1: F1 f dt d P2 对质点m2:F2 f dt
两式相加,得
13
f f
d P1 d P2 F1 F2 f f dt dt
d F1 F2 ( P1 P2 ) dt ( F1 F2 )dt d ( P1 P2 ) ( m1 1 m2 2 ) ( m1 10 m2 20 )
由牛顿第三定律有: f ij 0
i j i
15
d t d pi 所以有: ( Fi) i i 令 Fi F外 , pi P
则有:
F外 d t d P
F外 dP dt
i
i

质点系动量定理 (微分形式)

t2 F t1 外
m’ N
已知μs
解:箱子是否下滑,决定于物体坠入 箱子时,在冲力的作用下箱子的受力 是否
mgsin f s mg cos s tg
当一物体竖直坠入箱中,在冲力作用下,时的瞬间应满足:
s ( mg cos F cos ) ( mg sin F sin ) ma
力在时间上的积累效应:
平动 冲量,改变动量 转动 冲量矩,改变角动量
2
1、冲量(impulse)
定义:力对一段时间的积累
t2 大小: I = Fdt
t1
F F
方向:速度变化的方向 单位:N· s 0 t
量纲:MLT-1
微分形式: d I F d t d p
v 2 gh 2 9.80 2 6.26 m/s

大学物理——第3章-角动量定理和刚体的转动

大学物理——第3章-角动量定理和刚体的转动

M
α
I
有何联系?
13
实验指出,定轴转动的刚体的角加速度 α与刚体所受的合外 力矩 M 成正比,与刚体的转动惯量 I 成反比.
v dω v M = Iα = I dt
v
定轴转动定理
v v F = ma
定轴转动定律在转动问题中的地 位相当于平动时的牛顿第二定律
应用转动定理解题步骤与牛顿第二定律时完全相同.
1 1 2 2 2 Eki = miυi = mi ri ω 2 2
质点质量 整个刚体的动能:
N
圆周运动的速率和半径
1 N 2 2 Ek = ∑Eki = (∑mi ri )ω 2 i=1 i=1
刚体对转轴的转动惯量:I
7
刚体定轴转动动能公式
物体的平动动能(质点动能)
1 2 Ek = Iω 2
角速度 ω 转动惯量 I 物体绕轴的转动惯性
λ :质量线密度 σ :质量面密度 ρ :质量体密度
10
I = ∫ r 2dm
单位: kg m2
转动惯量的大小取决于刚体的质量,质量分布及转轴的位置.
O
O l/2 O′
1 I= ml2 12
O
O O′
1 2 I = ml 3
r
O′
1 I = mr2 4
O′
1 I = mr2 2
11
平行轴
垂直轴
平行轴定理 质量为 m 的刚体,如果对其质心轴的转动惯量为 IC,则对任 一与该轴平行,相距为 d 的转轴的转动惯量:
2 θ 3Rω0 n= = 2π 16π g
26
讨论
用定轴转动的动能定理较之用转动定律求解, 省去了求角加速度,而直接求得,更为简捷.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量的增量等于系统所受合外力在这段时间内的冲量!这就是质点系的动量定理
例$!$!一辆装煤车以5:.H.6的速率从煤斗下面通过*见图.!#+!每秒钟落 入车厢的煤为$:<$$MN#如果使车厢的速率保持不变!应用多大的牵引力拉车 厢2 *车厢与钢轨间的摩擦力忽略不计#+
解!以$ 表示在时刻(煤车和已经落进煤车的 煤的总质量!此后G(时间内又有质量为G$ 的煤落 入车厢#取$ 和G$ 为研究的系统*质点系+!则这 一系统在时刻(的水平总动量为
平均冲力的大小为"@<M*!约为汽车本身重量的"8倍!瞬时最大冲力还要大很
& <@ &
多#这种巨大的冲力是车祸致命的根源!冲力随时间的急速变化也是造成人身伤害
的原因之一#
通常情况下!研究对象往往包含多个物体!将它们整体考虑称之为物体系统*简
称为系统+#系统外的其他物体统称为外界#系统内物体间的相互作用称为内力!系
该质点系在这段时间内的总动量保持不变#
系统所受合外力为零!也就是说该系统不受外界影响#这样的系统称为孤立系
统#一个孤立系统在运动过程中其总动量一定保持不变这是动量守恒定律的另
一种表述方式#
应用动量守恒定律分析解决问题时!应律的前提条件是系统所受合外力为零#但真实系统与外界多多
*.!"#+
*.";.#+G(:G*2";2#+
*.!".+
推广-若系统是由< 个质点组成的质点系!可仿照上式写出其动量定理微分式
<
<
*).;+G(* G*)2;+
;*"
;*"
*.!"8+
其中!.;!2; 分别为第;个质点所受的外力及其动量!)< .;!)< 2; 分别为系统所受 的合外力及其总动量#注意!这里的合外力和总动量是;*矢"量和;*#"上式表明-系统总动
第$章!动量和动量守恒定律
"""""""""""""""""""""""""""""""""""""""
!!第#章讨论了质点运动状态变化的原因及其规律!即牛顿运动定律!尤其是牛顿 第二定律!定量地描述了力和受力物体加速度的瞬时对应关系#实际上!力对物体的 作用总是持续一段时间或一定距离的#无论持续时间或空间的长短!力的变化也总 是复杂的!进而引起受力物体运动状态的变化也是复杂的#
例$!"!力8 作用在质量$:",$MN的质点上!使之沿% 轴做直线运动!质点运 动学方程为%:(.;.(#;"!求该力在$86时间内的力的冲量!以及这段时间内的 平均冲力的大小#
解!由冲量定义和牛顿第二定律!有
8
8
& & = * 8G(* $9G(
$
$

其中!
9:GG(#%# :@(;@

将式代入式!可得
上式表明!力的冲量等于力. 在这段3时*&间((#"间.隔*(+内G(对时间的定积分#
*.!8+
若一个质点受到多个力时!则合外力的冲量可写为
(#
(# <
< (#
<
即质点所受合外力=的*&冲量(".等G(于*各&个(" ;分)*"力.;在G(给*定;)时*&"间("内.;冲G(量*的;)矢*"3量;和#
N : E$A5
其中!负号表示小车的速度与人的速度方向相反# 依据相对运动!设人相对于小车的速度为
则 51!
图 例 图 $!$! .!8 !
51:5EN:
*$;A+5 A
设人在(时间内从小车的一端走到另一端!则
& & D *
(
51G(*
$
*$
+
A
+( 5G(
A
$
在这段时间内!人相对于地面走过的距离为
图$!%!火箭飞行原理 !
解!如图.!8所示!设某时刻(火箭*包括火箭体和尚存的燃料+质量为A!速率 为5!此后经过G(时间!火箭喷射出质量为GA 的气体!其喷射的速率相对于火箭为 4#在(;G(时刻!火箭的速率增为5;G5#
统外物体对系统内任一物体的作用力称为外力#例如!把地球和月球看做一个系统!
地球和月球之间的相互作用称为内力!而系统外太阳对地球和月球的作用力称为外
力#接下来!讨论多个质点组成的质点系的动量定理#
设两个质点的质量分别为$"!$#!他们除了受到相互作 用力内力 * +1"#和1#"外!还受到外界对其作用力*外力+." 和 .# 的作用!如图.!"所示#分别对两质点应用动量定理!得
$5&#
>$5&"
*.!%+
(#
对质点动量定理的理解=!'需*&要(注"8意'G以(*下几$5点'#->$5'" *"+动量定理定量描述了力对物体作用在时间上的累积效果!即引起物体动量 的变化#因此!冲量的方向与物体动量增量的方向相同# *#+质点在某一方向上的动量增量!仅与该方向上所受合外力的冲量有关# *.+质点动量改变的原因是力在时间上的累积作用#使得质点动量发生同样变 化的可以用较大力作用较短时间!也可以用较小力作用较长时间#例如!玻璃杯掉在 水泥地上比掉在毛毯上更易破碎!工业生产中用冲床冲压钢板!就是利用极短时间产 生巨大的冲力# *8+与牛顿运动定律相比!应用动量定理的便捷之处在于它只注重力作用在物 体上的始末状态!与其细节无关#动量定理常应用于碰撞过程!即物体间相互作用时 间极短的过程!例如球拍反击乒乓球的力等# 例$!#!在汽车碰撞试验中!一质量为"#$$MN的汽车垂直冲向一固定墙!碰撞 前的速率为"<,$ H.6!碰撞后以",< H.6的速率退回!碰撞时间为$,"#$6!求*"+汽车受到的冲量,*#+汽车受固定墙壁的平均冲力# 解!以汽车碰撞前的速度方向为正方向!则碰撞前的速度为5$:"<,$ 碰 H.6! 撞后的速度为5":E",<$H.6!由动量定理可知*"+汽车受到墙壁的冲量为
H&6E"#
为了反映力对受力物体的时间累积效应!引入冲量的概念!定义为力和力的作用 时间的乘积!通常用3 表示!单位是*&6!量纲为,0OE"#
设从(" 到(# 时间内!恒力. 持续作用于质点上!则该力在这段时间内的冲量为
3:.*(#E("+:.(
*.!#+
那么!对于变力的冲量!就不能直接用上式计算冲量#但是!依据微积分思想!可
!
8:<$$C.:",<C"$.**+
由质点系的动量定理可得动量守恒的条件# 式*.!"8+可改写为
<
<
G*)2;+
).; *
;*"
;*"
G(
若 则 <
).; *!!
;*"
即系统总动量是一个常矢量!
<
G*)2;+
;*"
G(
*!
*.!"<+ *.!"@+
常矢量 <
)2; *
*.!"A+
这就是质点系的动量守恒定律!即;在*"某一时间间隔内!当质点系所受合外力为零时!
方向上的总动量是守恒的#例如!一个物体在空中爆炸后碎裂成许多块!在忽略空气
& <B &
阻力的情况下!这些碎块在水平方向上是不受力的#因此!系统的总动量在水平方向 上的分量是守恒的#
*.+动量守恒定律是在牛顿运动定律的基础上推导出来的!因此动量守恒定律 只在惯性系中成立#动量守恒定理是自然界的基本规律之一#大量实验和理论分析 表明!在自然界中!大到天体间的相互作用!小到质子"中子和电子等微观粒子的相互 作用!都遵循动量守恒定律#甚至对那些内部相互作用无法用力描述的系统所发生 的过程!例如光子和电子的碰撞过程*康普顿散射+!只要系统不受外界影响!也是符 合动量守恒定律的#当研究某一物理现象看似与动量守恒定律相违背时!这并不意 味着动量守恒定理的失败!往往意味着新的发现或新的物理!例如泡利的中微子假说 以及查德威克发现中子等#
所以
(
& % * 5G( $
%:$ ;AAD
小车相对于地面走过的距离为
O:$ ;$AD
& <% &
例$!&!火箭是一种利用燃料燃烧后喷出的气体产生的反推力的飞行器#它自 带燃料和助燃剂!因此可以在空间任何地方飞行#空气在自由空间飞行!不受引力和 空气阻力的影响#设火箭在外层空气飞行!火箭在($ 时刻速度为5$!火箭*包括燃 料+的总质量为$$!热气体相对火箭的喷射速度为4!燃料用尽后火箭质量为$!求 火箭在全部燃料用完后获得的速度5#
$5;G$&$:$5
在时刻(;G(的水平总动量为
$5;5G$:*$;G$+5
相关文档
最新文档