相关分析和一元线性回归分析SPSS报告

合集下载

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”

SPSS数据分析教程线性回归分析总结

SPSS数据分析教程线性回归分析总结

1.29
21.00
47.00
50.00
57.00
49.00
50.00
48.00
2.08
1.14
20.00
53.00
66.00
53.00
59.00
55.00
45.00
1.00
1.00
25.00 64
z1 61.00 59.00 55.00 56.00 59.00 60.00 52.00 56.00 68.00 60.00 64.00 67.00 56.00 53.00 53.00 60.00 54.00
52
53
54
55
56
57
58
59
对多元线性回归,也需要测定方程的拟合 程度、检验回归方程和回归系数的显著性。
(1)拟合优度检验 测定多元线性回归的拟合程度,与一元线 性回归中的判定系数类似,使用多重判定系数, 其定义为
60
(2)回归方程的显著性检验(F检验) 多元线性回归方程的显著性检验一般采用 F检验,利用方差分析的方法进行。
1.00
z8
满意度
1.14
23.00
1.00
26.00
1.00
26.00
1.71
30.00
1.00
25.00
1.14
27.00
1.14
20.00
1.14
26.00
1.00
30.00
1.00
27.00
1.14
18.00
1.00
24.00
1.00
24.00
1.14
19.00
1.43
17.00
1.00

用spss软件进行一元线性回归分析

用spss软件进行一元线性回归分析
【Anova】 (analysisofvariance方差分析)
此表是所用模型的检验结果,一个标准的方差分析表。 Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著
性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。 如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义, 应该换一个模型来进行回归。 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我 们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验 的结果。
勾选“模型拟合度”,在结果中会输出“模型汇总”表 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 在本例中我们勾选95%的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
step1:建立数据文件
打开spss的数据编辑器,编辑变量视图
注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最 小为10才能全部显示。
step1:建立数据文件
编辑数据视图,将excel数据复制粘贴到spss中
step2:做散点图
从菜单上依次点选:图形—旧对话框—散点/点状 定义简单分布,设置Y为年降水量,X为纬度
Case1:降水&纬度
Case1数据说明: 53个台站的年降水量、年蒸发量、纬度和海拔数据 在本例中,把降水量P作为因变量,纬度作为自变量
Case1目的: 分析降水量和纬度之间的数量关系
Case1操作要点: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量关系 对回归方程做显著性检验

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

实验报告四.SPSS一元线性相关回归分析预测

实验报告四.SPSS一元线性相关回归分析预测

a
均值 159.1000 .000 .781 159.2740 .00000 .000 -.038 -.17402 .007 .900 .104 .100
标准 偏差 1.79729 1.000 .308 1.95023 1.75840 .943 1.025 2.10525 1.084 1.583 .133 .176
广东金融学院实验报告
课程名称:市场调查与预测
实验编号 及实验名称 姓 名
实验四:SPSS 一元线性相关回归分析预测 马秀文 实验中心 周刺天
系 班
别 级
工商管理系 市场营销 2 班 4


111521216 2013/12/9 无
实验地点 指导教师
实验日期 同组其他成员
实验时数 成 绩
一、实验目的及要求 利用 SPSS 进行回归分析。 二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等) 通过实验教学中心的教学环境发布相关练习资料。 软件运行环境:操作系统 WindowsXP,办公自动化软件,SPSS 统计分析软件包。 硬件设备:实验室的个人电脑。 三、实验内容及步骤(包含简要的实验步骤流程) 为了了解某地母亲身高 x 与女儿身高 Y 的相关关系,随机测得 10 对母女的身高(见文 件“母女身高.sav”) 。利用 SPSS 软件,完成以下任务: 1.画出 x、Y 散点图,观察因变量与自变量之间关系是否有线性特点; 2.试对 x 与 Y 进行一元线性回归分析,列出一元线性回归预测模型; 3.预测当母亲身高为 161cm 时女儿的身高?
第 2 页 共 7 页
四、实验结果(包括程序或图表(截图) 、 自变量与因变量有线性特点, 即母亲身高和女儿身高有线性特点, 且大致呈正相关的关系。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析

SPSS一元线性相关回归分析预测

SPSS一元线性相关回归分析预测
Standardized Coefficients
t
Sig.
Bபைடு நூலகம்
Std. Error
Beta
1
(Constant)
34.996
42.932
.815
.439
母亲身高
.782
.270
.715
2.891
.020
a. Dependent Variable:女儿身高
女儿身高=34.995798+母亲身高*0.781513
答:1.画出x、Y散点图,观察因变量与自变量之间关系是否有线性特点;
散点图:
有线性关系。由上图可看出,因变量与自变量总体上存在正相关关系,图形大致呈向右上方上升的趋势。
2.试对x与Y进行一元线性回归分析,列出一元线性回归预测模型;
Coefficientsa
Model
Unstandardized Coefficients
六、教师评语
1.□优秀(90~100分):完成所有规定实验内容,实验步骤正确,结果正确;
2.□良好(80~89分):完成绝大部分规定实验内容,实验步骤正确,结果正确;
3.□中等(70~79分):完成绝大部分规定实验内容,实验步骤基本正确,结果基本正确;
4.□及格(60~69分):基本完成规定实验内容,实验步骤基本正确,完成结果基本正确;
硬件设备:实验室的个人电脑。
三、实验内容及步骤(包含简要的实验步骤流程)
为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高(见文件“母女身高.sav”)。利用SPSS软件,完成以下任务:
1.画出x、Y散点图,观察因变量与自变量之间关系是否有线性特点;
2.试对x与Y进行一元线性回归分析,列出一元线性回归预测模型;

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。

一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。

二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。

(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。

以分析变量X对于变量Y的影响程度。

三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。

2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。

四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。

SPSS数据分析教程线性回归分析总结

SPSS数据分析教程线性回归分析总结
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
通过样本数据建立一个回归方程后,不能立 即就用于对某个实际问题的预测。因为,应用 最小二乘法求得的样本回归直线作为对总体回 归直线的近似,这种近似是否合理,必须对其 作各种统计检验。一般经常作以下的统计检验。
31
60.00
56.00
53.00
52.00
51.00
1.08
1.00
21.00
52.00
52.00
69.00
58.00
57.00
62.00
1.00
1.00
23.00
56.00
55.00
57.00
39.00
44.00
46.00
1.69
1.00
15.00
50.00
50.00
68.00
46.00
45.00
56.00
4
• 在回归分析中,因变量y是随机变量,自变 量x可以是随机变量,也可以是非随机的确定 变量;而在相关分析中,变量x和变量y都是随 机变量。
• 相关分析是测定变量之间的关系密切程度, 所使用的工具是相关系数;而回归分析则是侧 重于考察变量之间的数量变化规律,并通过一 定的数学表达式来描述变量之间的关系,进而 确定一个或者几个变量的变化对另一个特定变 量的影响程度。
63
表7-2员工多个心理变量值和员工满意度数据
z1
z2
z3
z4
z5
z6
z7
Z8
满意度
66.00
64.00

相关分析报告与回归分析报告SPSS实现

相关分析报告与回归分析报告SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS 软件进展相关分析和回归分析,具体包括:(1) 皮尔逊pearson 简单相关系数的计算与分析(2) 学会在SPSS 上实现一元与多元回归模型的计算与检验。

(3) 学会回归模型的散点图与样本方程图形。

(4) 学会对所计算结果进展统计分析说明。

(5) 要求试验前,了解回归分析的如下内容。

♦ 参数α、β的估计♦ 回归模型的检验方法:回归系数β的显著性检验〔t -检验〕;回归方程显著性检验〔F -检验〕。

二、试验原理1.相关分析的统计学原理相关分析使用某个指标来明确现象之间相互依存关系的密切程度。

用来测度简单线性相关关系的系数是Pearson 简单相关系数。

2.回归分析的统计学原理相关关系不等于因果关系,要明确因果关系必须借助于回归分析。

回归分析是研究两个变量或多个变量之间因果关系的统计方法。

其根本思想是,在相关分析的根底上,对具有相关关系的两个或多个变量之间数量变化的一般关系进展测定,确立一个适宜的数据模型,以便从一个量推断另一个未知量。

回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进展检验和判断,并进展预测等。

线性回归数学模型如下:i ik k i i i x x x y εββββ+++++= 22110在模型中,回归系数是未知的,可以在已有样本的根底上,使用最小二乘法对回归系数进展估计,得到如下的样本回归函数:iik k i i i e x x x y +++++=ββββˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进展检验。

如果通过检验发现模型有缺陷,如此必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量和解释变量与其函数形式,或者对数据进展加工整理之后再次估计参数。

回归模型的检验包括一级检验和二级检验。

一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进展检验,具体包括序列相关检验、异方差检验等。

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

相关分析和一元线性回归分析SPSS报告

相关分析和一元线性回归分析SPSS报告

用下面的数据做相关分析和一元线性回归分析:选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析1.作散点图普通高等学校毕业生数和高等学校发表科技论文数量的相关图从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。

3.求两变量之间的相关性选择相关系数中的全部,点击确定:Correlations(万人) (篇)Kendall's tau_b (万人)CorrelationCoefficient1.000 1.000** Sig. (2-tailed) . .N 14 14 (篇) CorrelationCoefficient1.000**1.000Sig. (2-tailed) . .N 14 14Spearma n's rho (万人)CorrelationCoefficient1.000 1.000**Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P 值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

两相关变量(毕业生数和发表论文数)的Spearman 相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击确定:Correlations相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p 值0,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。

更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。

P值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。

越小,则相关程度越低。

而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。

三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1)检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

b.在spssd的菜单栏中选择点击,弹出一个对话窗口。

C.在对话窗口中点击ok,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。

人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。

(2)研究人均食品支出与人均收入之间的偏相关关系。

读入数据后:A.点击系统弹出一个对话窗口。

B.点击OK,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。

相关分析和回归分析SPSS讲解

相关分析和回归分析SPSS讲解

Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。
2
2
n x 2 x n y 2 y
2
n xy x y
2
相关系数的计算
• Spearman等级相关系数是对Pearson相关
系数的延伸。用 表示,适用于具有线性关 系的两列等级变量,主要解决称名数据和顺序 数据的相关问题,不必考虑是否正态。
r 1 6 Di2 ,其中 Di2 (Ui Vi )2
n xy x y
2
13 9156173.99 12827.5 7457
2 13 5226399 7457
0.9987
相关系数的显著性检验(概念要点)
检验两个变量之间是否存在线性相关关系 等价于对回归系数 b1的检验 采用 t 检验 检验的步骤为
人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2 2 13 16073323.77 12827.5
相关分析与回归分析
本章内容

用spss软件进行一元线性回归分析

用spss软件进行一元线性回归分析
step4:线性回归结果
【Anova】 (analysisofvariance方差分析) 此表是所用模型的检验结果,一个标准的方差分析表。 Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,应该换一个模型来进行回归。 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结果。 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验,在多元回归中这两者是不同的。
【统计量】按钮
“回归系数”复选框组:定义回归系数的输出情况 勾选“估计”可输出回归系数B及其标准误差,t值和p值 勾选“误差条图的表征”则输出每个回归系数的95%可信区间 勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。 “残差”复选框组: 用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。 “模型拟合度”复选框: 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。 “R方变化”复选框: 显示模型拟合过程中R2、F值和p值的改变情况。 “描述性”复选框: 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自变量间的相关矩阵。 “部分相关和偏相关性”复选框: 显示自变量间的相关、部分相关和偏相关系数。 “共线性诊断”复选框: 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差膨胀因子(VIF)等。 以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用下面的数据做相关分析和一元线性回归分析:
选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析
1.作散点图
普通高等学校毕业生数和高等学校发表科技论文数量的相关图
从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系

把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:
Correlations
普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人)Pearson Correlation1.998**
Sig. (2-tailed).000
N1414
高等学校发表科技论文数量(篇)Pearson Correlation.998**1 Sig. (2-tailed).000
N1414
**. Correlation is significant at the 0.01 level (2-tailed).
两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。

3.求两变量之间的相关性
选择相关系数中的全部,点击确定:
Correlations
(万人)(篇)
Kendall's tau_b(万人)Correlation Coefficient 1.000 1.000**
Sig. (2-tailed)..
N1414
(篇)Correlation Coefficient 1.000** 1.000
Sig. (2-tailed)..
N1414
Spearman's rho(万人)Correlation Coefficient 1.000 1.000**
Sig. (2-tailed)..
N1414
(篇)Correlation Coefficient 1.000** 1.000
Sig. (2-tailed)..
N1414
**. Correlation is significant at the 0.01 level (2-tailed).
注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。

4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
将所求变量移至变量,将控制变量移至控制中,选中显示实际显著性水平,点击确定:
Correlations
普通高等学校毕业生数(万人)高等学校发表科技论文数量(篇)
注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显著。

二、一元线性回归
从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。

1.建立回归方程
Variables Entered/Removed b
Model Variables
Entered
Variables
Removed Method
1(篇)a.Enter
a. All requested variables entered.
b. Dependent Variable: (万人)
此图显示的是回归分析方法引入变量的方式。

Model Summary
Model R R Square Adjusted R
Square
Std. Error of the
Estimate
1.998a.996.99611.707
a. Predictors: (Constant), (篇)
此图是回归方程的拟合优度检验。

注解:上图是回归方程的拟合优度检验。

第二列:两变量(被解释变量和解释变量)的相关系数R=0.998.
第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量可以被模型解释的部分越
多。

第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数=0.996。

这主要适用于多个解释变量的时候。

第五列:回归方程的估计标准误差=11.707.
ANOVA b
Model Sum of Squares df Mean Square F Sig.
1Regression448318.6641448318.6643271.335.000a Residual1644.53512137.045
Total449963.19913
a. Predictors: (Constant), (篇)
b. Dependent Variable: (万人)
第二列:被解释变量(毕业人数)的总离差平方和=449963.199,被分解为两部分:回归平方和=448318.664;剩余平方和=1644.535.
F检验统计量的值=3271.335,对应概率的P值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验的原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线
Coefficients a
Model Unstandardized Coefficients
Standardized
Coefficients
t Sig.
B Std. Error Beta
1(Constant)-316.25914.029-22.543.000 (篇).001.000.99857.196.000 a. Dependent Variable: (万人)
注解:回归方程的回归系数和常数项的估计值,以及回归系数的显著性检验。

第二列:常数项估计值=-316.259;回归系数估计值=0.001.
第三列:回归系数的标准误差=0.000
第四列:标准化回归系数=0.998.
第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P 值=0.000,小于显著性水平0.05,拒绝原假设(回归系数与0不存在显著性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显著的。

于是,回归方程为:
=-316.259+0.001x
2.回归方程的进一步分析
(1)在统计量中选中误差条图的表征,水平百分之95.
点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:
选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵和单侧检验概率值:
Descriptive Statistics
Mean Std. Deviation N
(万人)465.92186.04414
(篇)932780.57221459.01914
Correlations
(万人)(篇)
Pearson Correlation(万人) 1.000.998
(篇).998 1.000
Sig. (1-tailed)(万人)..000
(篇).000.
N(万人)1414
(篇)1414
(2)残差分析
选中统计量中的个案诊断,所有个案,点击继续,然后确定:
Residuals Statistics a
Minimum Maximum Mean Std. Deviation N Predicted Value137.72707.16465.92185.70414 Std. Predicted Value-1.767 1.299.000 1.00014
3.153 6.536
4.320.99514 Standard Error of Predicted
Value
Adjusted Predicted Value139.53713.78466.40185.62014 Residual-26.27619.112.00011.24714 Std. Residual-2.245 1.633.000.96114 Stud. Residual-2.511 1.696-.018 1.04814 Deleted Residual-32.89620.618-.47313.40314 Stud. Deleted Residual-3.491 1.862-.073 1.25914 Mahal. Distance.015 3.123.929.89014 Cook's Distance.000.795.100.20514 Centered Leverage Value.001.240.071.06814 a. Dependent Variable: (万人)
从上表可以看出,第8例的残差和标准化残差最大。

相关文档
最新文档