隐函数定理及其在几何上的应用
隐函数定理与逆函数定理
隐函数定理与逆函数定理是微积分学中的两个重要定理。
它们在解决函数关系问题和求解方程的过程中有着重要的应用。
本文将阐述这两个定理的定义、性质及应用,并将举一些具体的例子来说明它们在实际问题中的应用。
一、隐函数定理隐函数定理是用来求解形如 $f(x,y)=0$ 的隐函数的定理。
它是微积分学中的一个重要结果,粗略地说,它告诉我们:如果一个函数可以表示为 $f(x,y)=0$ 的形式,且满足一定的条件,那么该函数在某个区域内必然存在、唯一存在一些函数关系 $y=g(x)$,使得 $f(x,g(x))=0$.具体来说,设函数 $z=f(x,y)$ 满足下列三个条件:(1) $f(x_0,y_0)=0$;(2) $f(x,y)$ 在点 $(x_0,y_0)$ 的某一邻域内具有一阶连续偏导数;(3) $\frac{\partial f}{\partial y}(x_0,y_0)\neq 0$.则存在一个 $y$ 的函数 $g(x)$,在 $x_0$ 的某个邻域内连续可微,且满足 $y=g(x)$,并能表示成 $f(x,g(x))=0$ 的形式。
这个定理的物理意义在于,它说明了在某些复杂情况下,我们可以通过一些特殊的方法,将隐含在函数关系中的某个未知量,转化为某个已知量的函数。
这为我们研究一些实际问题提供了便利。
二、逆函数定理逆函数定理是微积分学中求全局反函数、研究反函数性质的重要工具。
它的表述如下:设 $y=f(x)$ 是一个连续可微、单调的函数,那么在点 $x_0$ 处若 $f'(x_0)\neq 0$,则其反函数 $x=g(y)$ 在点 $y_0=f(x_0)$ 处连续可微,并且有 $g'(y_0)=\frac{1}{f'(x_0)}$。
几何上讲,逆函数定理就是告诉我们:函数 $y=f(x)$ 在点$(x_0,y_0)$ 处的切线的斜率恰好等于其反函数 $x=g(y)$ 在点$(y_0,x_0)$ 处的切线的倒数。
隐函数存在定理几何解释
隐函数存在定理几何解释
隐函数存在定理是微积分学中的一个重要定理,它告诉我们,如果给定一组方程,其中至少有一个方程无法表示成 y=f(x) 的形式,但是这组方程在一定条件下仍然能够确定一个函数 y=f(x),那么这
个函数就是隐函数存在的。
这个定理在数学上有着重要的应用,但是它的几何解释也非常有趣。
我们可以将隐函数存在定理的几何解释简单地描述为以下三步:
1. 给定一个曲面 S,它的方程可以用 f(x,y,z)=0 来表示。
2. 假设我们想要在曲面 S 上找到一个函数 z=f(x,y)。
3. 如果在曲面 S 上每个点 (x,y,z) 的某个邻域内,存在唯一
的 z=f(x,y) 与 f(x,y,z)=0 同时成立,那么 z=f(x,y) 就是隐函数存在的。
这个几何解释告诉我们,如果一个曲面在某些点上不是 y=f(x) 的形式,但是在这些点的某个邻域内,曲面上的每个点都可以用
y=f(x) 的形式表示,那么这个曲面就存在一个隐函数 y=f(x)。
这个隐函数与曲面的几何形状密切相关,它可以帮助我们理解曲面的特征。
隐函数存在定理的几何解释提供了一种直观、有趣的方法来理解这个重要的数学定理。
它让我们看到了数学与几何之间的紧密联系,同时也让我们认识到了数学的实用性。
- 1 -。
《隐函数定理及应用》课件
对隐函数定理应用的反思与展望
在应用隐函数定理的过程中,我发现理论与实践相结合是非常重要的。通过解决实际问题,我能够更好地理解和掌握隐函数 定理的应用技巧和方法。同时,我也意识到在应用过程中需要注意一些细节问题,如初始条件的设定、参数的取值范围等, 以确保结果的准确性和可靠性。
展望未来,我认为隐函数定理还有很大的应用潜力。随着科学技术的发展,越来越多的领域需要用到隐函数定理来解决实际 问题。因此,我希望能够进一步深入研究隐函数定理的原理和应用技巧,为未来的科学研究和技术创新做出更大的贡献。同 时,我也希望能够将隐函数定理应用到更多的领域中,为解决实际问题提供更加有效的方法和工具。
隐函数定理的数学表达
如果一个方程组满足一定条件,则存在一个 唯一的隐函数,使得方程组的解满足该隐函 数的性质。
隐函数定理的重要性
数学分析的基础
隐函数定理是数学分析中的基础 定理之一,对于研究函数的性质 、极限、连续性等方面具有重要 意义。
应用广泛
隐函数定理在经济学、物理学、 工程学等领域都有广泛的应用, 例如在研究经济均衡、物理场论 、电路分析等方面都需要用到隐 函数定理。
详细描述
在计算某些复杂图形的面积时,有时候需要 将图形转化为更容易处理的形状。利用隐函 数定理,可以证明这种转化是可行的,并且 能够准确地计算出图形的面积。例如,在计 算某些曲线围成的区域的面积时,可以利用 隐函数定理将问题转化为求极坐标系下面积
的问题,从而简化计算过程。
04
隐函数定理的推广与展 望
际问题,提高工程设计的可靠性和安全性。
05
总结与思考
对隐函数定理的理解与思考
隐函数定理是微分学中的重要定理之一,它揭示了函数之间的关系和变化规律。通过学习隐函数定理 ,我深入理解了函数的可微性和连续性的关系,以及如何利用导数研究函数的性质。
第十八章 隐函数定理及其应用
∂z f ′ + yz ⋅ f2′ = 1 ∂x 1 − f1′ − xy ⋅ f 2′
x3 + y 3 + z 3 = 3 xyz
x , 所确定的隐函数,求 u ′ . x 解:在方程两端对 求导,其中视 z 为 x, y 的函数,
′ 3 x 2 + 3 z 2 ⋅ z′ x = 3 yz + 3 xy ⋅ z x ,
z′ x =
由此得
x 2 − yz xy − z 2 .
⎞ ⎟ ⎠.
− a 2 − y 2 (a + a 2 − y 2 )
a − y2
2
,
d2 y = d x2 从而
− a2 − y2 ⋅
dy y2 dy + ⋅ 2 2 dx a − y dx a2 y = a2 − y2 (a 2 − y 2 )2
- 2 -
∂z ∂z (5) x + y + z − 2x + 2 y − 4z − 5 = 0 ,求 ∂x , ∂y ; 2 2 2 解:设 F ( x, y, z) = x + y + z − 2x + 2 y − 4z − 5 ,则
=
y a 2 − y 2 (a + a 2 − y 2 )
−ay 2 − a 2 a 2 − y 2 − a (a 2 − y 2 ) + ay 2 + y 2 a 2 − y 2
Ch 18 隐函数定理及其应用
S F 01(数)Ch 18 隐函数定理及其应用计 6 时231Ch 18 隐函数定理及其应用 ( 6 时 )§ 1 隐函数 ( 2 时 )一. 隐函数概念:隐函数是表达函数的又一种方法.1. 隐函数及其几何意义: 以0),(=y x F 为例作介绍.2.隐函数的两个问题: ⅰ> 隐函数的存在性; ⅱ> 隐函数的解析性质.二. 隐函数存在条件的直观意义:三. 隐函数定理:Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件:ⅰ> 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ; ⅱ> ),(00y x F 0=; ( 通常称这一条件为初始条件 ) ⅲ> 在D 内存在连续的偏导数),(y x F y ; ⅳ> ),(00y x F y 0=/.则在点0P 的某邻域 (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得⑴ )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F . ⑵ 函数)(x f 在区间) , (00αα+-x x 内连续 . ( 证 )四. 隐函数可微性定理:Th 2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续 . 则隐函数)(x f y =在区间) , (00αα+-x x 内可导 , 且232),(),()(y x F y x F x f y x -='. ( 证 )例 1 验证方程0sin 21),(=--=y x y y x F 在点) 0 , 0 (满足隐函数存在唯一性定理的条件 , 并求隐函数的导数 . [1]P 194 E1 例2 2221x y z -=. 其中)(x f y =为由方程0333=-+axy y x 所确定的隐函数 . 求dxdz . [1]P 195 E2 ( 仿 )例3 ( 反函数存在性及其导数 ) 设函数)(x f y =在点0x 的某邻域内有连续的导函数)(x f ', 且00)(y x f =, 0)(0≠'x f . 用隐函数定理验证存在反函数 , 并求反函数的导数. [1]P 196 E4五. n 元隐函数: [1]P 194 Th3例40),,(323=-++=z y x xyzz y x F . 验证在点) 0 , 0 , 0 (存在z 是),(y x的隐函数 , 并求偏导数 . [1]P 196 E3Ex [1]P 197 1,2,3⑴—⑶,4,5.(4和5题只求一阶偏导数 )§ 2 隐函数组 ( 2 时 )一. 隐函数组:从四个未知数两个方程的方程组⎩⎨⎧=++++=++++.0 , 022********e y d x c v b u a e y d x c v b u a入手介绍隐函数组 ,一般形式为 ⎩⎨⎧==.0),,,(, 0),,,(v u y x G v u y x F *)二. 隐函数组定理:分析从上述线性方程组中解出 u 和v 的条件入手 , 对方程组*)在一定条件下拟233线性化 , 分析可解出u 和v 的条件 , 得出以下定理 .Th 1 ( 隐函数组定理 ) [1]P 199 Th 4.关于Jacobi .例1 [1]P 200 E 1.三. 反函数组和坐标变换:1. 反函数组存在定理:Th 2 (反函数组定理 ) [1]P 202 Th 52.坐标变换: 两个重要的坐标变换.例2 , 3 [1]P 203—204 E 2 , 3 .Ex [1]P 205 1,2,3,5⑵.§ 3几何应用 ( 1 时 )一. 平面曲线的切线与法线 : 设平面曲线方程为0),(=y x F . 有yx F F x f -=')(.切线方程为 ),(00y x F x +-)(0x x ),(00y x F y 0)(0=-y y , 法线方程为 ),(00y x F y --)(0x x ),(00y x F x 0)(0=-y y .例1 求Descartes 叶形线 09)(233=-+xy y x 在点) 1 , 2 (处的切线和法线 . [1]P 207 E 1.二. 空间曲线的切线与法平面 :1.曲线由参数式给出 : βαχ≤≤===t t z z t y y t x L , )( , )( , )( : .234切线的方向数与方向余弦. 切线方程为)()()(000000t z z z t y y y t x x '-='-='-χ.法平面方程为 0))(())(())((000000=-'+-'+-'z z t z y y t y x x t χ.2. 曲线由两面交线式给出 : 设曲线L 的方程为 ⎩⎨⎧==.0),,( , 0),,(z y x G z y x F 点),,(0000z y x P 在L 上. 推导切线公式. [1]P 209.切线方程为),(),(),(),(),(),(000P P P y x G F z z x z G F y y z y G F x x ∂∂-=∂∂-=∂∂-.法平面方程为0)(),(),()(),(),()(),(),(0000=-∂∂+-∂∂+-∂∂z z y x G F y y x z G F x x z y G F P P P .例2 [1]P 210 E2 .三. 曲面的切平面与法线 :设曲面∑的方程为0),,(=z y x F , 点),,(0000z y x P 在∑上. 推导切面公式. [1]P 211. 切平面方程为 0))(())(())((000000=-+-+-z z P F y y P F x x P F z y x .法定义域线方程为 )()()(000000P F z z P F y y P F x x z y x -=-=-.例3 [1]P 211 E3 .Ex [1]P 212 1—6 .§ 3条件极值 ( 1 时 )一.条件极值问题 : 先提出下例:例 要设计一个容积为V 的长方体形开口水箱 . 确定长、宽和高 , 使水箱的235表面积最小 .分别以x 、y 和z 表示水箱的长、宽和高 , 该例可表述为 : 在约束条件V xyz =之下求函数xy yz xz z y x S ++=)(2),,(的最小值 .条件极值问题的一般陈述 .二. 条件极值点的必要条件 :设在约束条件0),(=y x ϕ之下求函数=z ),(y x f 的极值 . 当满足约束条件 的点),(00y x 是函数),(y x f 的条件极值点 , 且在该点函数),(y x ϕ满足隐函数存在条件时, 由方程0),(=y x ϕ决定隐函数)(x g y =, 于是点0x 就是一元函数())( , x g x f z =的 极限点 , 有0)(='+=x g f f d xd z y x .代入 ),(),()(00000y x y x x g y x ϕϕ-=', 就有0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ,( 以下x f 、y f 、x ϕ、y ϕ均表示相应偏导数在点),(00y x 的值 . ) 即 x f y ϕ—y f x ϕ0= , 亦即 (x f , y f ) (⋅y ϕ ,x ϕ-)0= .可见向量(x f , y f )与向量(y ϕ , x ϕ-)正交. 注意到向量(x ϕ , y ϕ)也与向量(y ϕ , x ϕ-)正交, 即得向量(x f , y f )与向量(x ϕ , y ϕ)线性相关, 即存在实数λ,使(x f , y f ) + λ(x ϕ , y ϕ)0=.236亦即 ⎩⎨⎧=+=+., 0y y x x f f λϕλϕ二. Lagrange 乘数法 :由上述讨论可见 , 函数=z ),(y x f 在约束条件0),(=y x ϕ之下的条件极值点应是方程组 ⎪⎩⎪⎨⎧==+=+.0),(, 0),(),(, 0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ 的解.倘引进所谓Lagrange 函数),(),(),,(y x y x f y x L λϕλ+=,( 称其中的实数λ为Lagrange 乘数 )则上述方程组即为方程组⎪⎩⎪⎨⎧===.0),,( , 0),,( , 0),,(λλλλy x L y x L y x L y x以三元函数 , 两个约束条件为例介绍Lagrange 乘数法的一般情况 .四. 用Lagrange 乘数法解应用问题举例 :例1 求容积为V 的长方体形开口水箱的最小表面积 . [1]P 216 E1例2 抛物面z y x =+22被平面1=++z y x 截成一个椭圆. 求该椭圆到坐标原点的最长和最短距离 . [1]P 217 E2例3 求函数xyz z y x f =),,(在条件)0,0,0,0( 1111>>>>=++r z y x rz y x下的极小值 . 并证明不等式 311113a b c c b a ≤⎪⎭⎫⎝⎛++- , 其中 c b a , , 为任意正常数 . [1]P 218 E3Ex [1]P 220 1⑴⑶, 2,3 .。
分析方法 第十八章 隐函数定理及其应用
2)F ( x0 , y0 ) 0; 3)Fy ( x0 , y0 ) 0,
则在点P0 ( x0 , y0 )的某邻域U ( P0 )内方程F ( x, y) 0确定唯一一个有连续导 数的隐函数
y f ( x),且f ( x) Fx ( x, y) . Fy ( x, y)
F ( x, y, u, v) 0 G( x, y, u, v) 0
既有恒等式组
成立, 则该方程组确定了定义 在D上的一组隐函数 , 分别表示为 u f ( x, y), v g ( x, y)
F ( x, y, f ( x, y), g ( x, y)) 0 , G( x, y, f ( x, y), g ( x, y)) 0
于是在原点的某邻域内 方程F ( x, y) 0确定了唯一一个有连续 导数的隐函数 y f ( x),
且 f ( x)
Fx 1 2 . Fy 1 1 cos y 2 cos y 2 例2 讨论笛卡尔叶形线 x3 y3 3axy 0所确定的隐函数 y f ( x)的一阶与二阶导数 .
4 1)在以P ( x , y , u , v ) 为内点的区域 V R 内具有一阶连续偏导; 0 0 0 0 0
2) F ( x0 , y0 , u0 , v0 ) 0, G( x0 , y0 , u0 , v0 ) 0(称为初始条件 );
( F , G) 3) J 0. (u , v ) P0
第十八章 隐函数定理及其应用
一 隐函数概念 以前我们学习的函数都 是用一个解析表达式给 出的, 如
§1一个方程所确定的隐函数
y 2x3 3x sin 2 x e x , z 3x 2 y 5e xy 6 sin xy 1.
第十八章 隐函数定理及其应用
第十八章 隐函数定值及其应用§1 隐函数教学目的 掌握隐函数概念,理解隐函数定理,学会隐函数求导法. 教学要求(1)掌握隐函数存在的条件,理解隐函数定理的证明要点;学会隐函数求导法. (2)掌握隐函数定理的证明. 教学建议(1) 本节的重点是隐函数定理,学会隐函数求导法.要求学生必须熟记隐函数定理的条件与结论,了解隐函数定理的证明要点.(2) 本节的难点是隐函数定理的严格证明,对较好学生在这方面提出要求. 教学程序一、 隐函数概念:隐函数是表达函数的又一种方法. (一)、隐函数及其几何意义: 以0),(=y x F 为例作介绍.(二)、隐函数的两个问题: 1 隐函数的存在性; 2 隐函数的解析性质. 二、 隐函数存在条件的直观意义: 三、 隐函数定理:定理: ( 隐函数存在唯一性定理 ) 若满足下列条件:1 函数),(y x F 在以),(000y x P 为内点的某一区域D 2R ⊂上连续 ;2 ),(00y x F 0=; ( 通常称这一条件为初始条件 )3 在D 内存在连续的偏导数),(y x F y ;4 ),(00y x F y 0=/.则在点0P 的某邻域Y (0P )⊂D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间) , (00αα+-x x 内的隐函数)(x f y =, 使得1 )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x Y (0P )且()0)( , ≡x f x F .2 函数)(x f 在区间) , (00αα+-x x 内连续 .例1 设vw x =2,uw y =2,uv z =2 及 ),,(),,(w v u F z y x f =,证明w v u z y x wF vF uF zf yf xf ++=++证 方程组 ⎪⎩⎪⎨⎧===uvz uw y vw x 222 确定了函数组 ⎪⎩⎪⎨⎧===),,(),,(),,(w v u z z w v u y y w v u x x ,先求这个函数组对各变元的偏导数,为此,对方程组求微分得⎪⎩⎪⎨⎧+=+=+=udv vdu zdz udw wdu ydy vdw wdv xdx 222, 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=dv zu du z v dz dw y u du y w dy dw x v dv x w dx 222222 故 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂w z v z u z w y v y u y w x v x u x ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0 2 2 2 0 2 2 2 0 z uz v y u yw x v x w 将函数组代入方程),,(),,(w v u F z y x f =,得关于变元w v u ,,的方程),,()),,(),,,(),,,((w v u F w v u z w v u y w v u x f =,在这方程两边分别对w v u ,,求偏导,得 u z y xF u z f u y f u x f =∂∂+∂∂+∂∂, v z y x F v z f v y f v x f =∂∂+∂∂+∂∂, w z y x F wz f w y f w x f =∂∂+∂∂+∂∂, 将上面三式分别乘以w v u ,,后再相加,得 ++z uv f y uw f z y22zuvf x vw f z x 22+y uw f x vw f y x 22++,w v u wF vF uF ++=.将vw x =2,uw y =2,uv z =2代入即得w v u z y x wF vF uF zf yf xf ++=++.例2 若),(y x f z =有连续二阶偏导数,满足方程222222)(y x z yz x z ∂∂∂=∂∂∂∂,证明:若把),(y x f z =中y 看成z x ,的函数,则它满足同样形状的方程 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 证 由),(y x f z =确定y 是z x ,的函数,则有)),(,(z x y x f z =,方程两边分别对z x ,求偏导,得xyy f x f ∂∂∂∂+∂∂=0, (1) zyy f ∂∂∂∂=1 , (2) (1)式再分别对z x ,求偏导,得22222222)(20x yy f x y y f x y y x f xf ∂∂∂∂+∂∂∂∂+∂∂∂∂∂+∂∂= , (3) z x yy f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=22220, (4) (2)式再对z 求偏导,得22222)(0z yy f z y y f ∂∂∂∂+∂∂∂∂= , (5) 由(3)(5)式22222)(z y y f x f ∂∂∂∂∂∂])(2[22222222x yy f x y y f x y y x f z y y f ∂∂∂∂+∂∂∂∂+∂∂∂∂∂∂∂∂∂= ])(2[)(22222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂= ])(2[)()(222222222222x y y f x y y x f z y y f y f z y x y ∂∂∂∂+∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂= (由(5)式)]2[)(2222222222z yx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂=, 由(4)式222222)()(zx y y f z y x y y f z y y x f ∂∂∂∂∂+∂∂∂∂∂∂=∂∂∂∂∂z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂=222222222)()( ]2[)(2222222z x yy f z y x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=,因为222222)(y x z yz x z ∂∂∂=∂∂∂∂,则]2[)(2222222222zyx y y f z y y x f z y x y y f y f z y x y ∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂-∂∂∂∂∂∂ ]2[)(2222222z x y y f zy x y y f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂=, 结合(4)式得22222)(y f z y x y ∂∂∂∂∂∂][2)(22222222z x yy f z y x y y f z y y x f z y x y y f z x y y f ∂∂∂∂∂+∂∂∂∂∂∂+∂∂∂∂∂∂∂∂∂∂∂+∂∂∂∂∂= 22)(zx y y f ∂∂∂∂∂=. 即 222222)(z x y z y x y ∂∂∂=∂∂∂∂. 例3 设 ⎪⎩⎪⎨⎧===0),(0),,(),,,(t z h t z y g t z y x f u ,问什么条件下u 是y x ,的函数啊?求y u x u ∂∂∂∂,。
隐函数定理及其应用
隐函数定理及其应用
隐函数定理是微积分学中的一个重要定理,也是微分几何和微分拓扑等数学分支的基础。
隐函数定理的基本内容是:给定一个多元函数方程组
$f(x_1,x_2,...,x_m,y_1,y_2,...,y_n)=0$,如果在某点
$(x_0,y_0)$处,该方程组满足一定的条件,则在该点附近存在一个函数$y=f(x)$,使得$f(x,f(x))=0$。
这个函数$f(x)$称为隐函数。
隐函数定理的应用非常广泛。
以下是几个常见的应用:
1. 曲线的参数化:对于一个曲线方程$f(x,y)=0$,如果存在一个函数$x=g(t)$和$y=h(t)$,满足$f(g(t),h(t))=0$,则可以用该函数表示原曲线。
这一方法在计算曲线的弧长、曲率等物理量时非常有用。
2. 求解方程:有时候某个方程的显式解法非常困难,可以用隐函数定理将方程转化成隐函数的形式,然后再求解。
3. 函数的导数和高阶导数:由于隐函数和其自变量之间没有显式的表达式,因此难以直接求其导数,但是隐函数定理可以提供求导的一般方法。
在求高阶导数的时候,隐函数定理更是非常重要的工具。
隐函数求导的几何意义与应用
隐函数求导的几何意义与应用隐函数是一种通过等式来定义的函数,其中自变量和因变量之间的关系不是显式地表达出来的。
在数学中,隐函数存在于许多问题中,并且经常需要求取其导数。
隐函数求导在解析几何学、物理学以及工程学等领域中有着重要的几何意义和广泛的应用。
本文将探讨隐函数求导的几何意义以及一些实际应用。
一、隐函数求导的几何意义隐函数求导的几何意义在于揭示了曲线或曲面的切线和法线的性质,以及曲线或曲面上某一点的局部几何特性。
通过对隐函数求导,我们可以了解到曲线的斜率、曲率以及曲面上的切平面和法线。
1. 曲线的切线和斜率对于给定的隐函数,若能求得其导数,即可获得曲线上任一点的切线斜率。
设隐函数为 F(x, y) = 0,其中 y 是 x 的函数。
根据隐函数定理,如果 F(x, y) 在某一点 (a, b) 处连续且具有连续偏导数,且偏导数不同时都不为零,那么在点 (a, b) 处必然存在一条唯一的切线。
这条切线的斜率可以通过对隐函数隐含地对 x 求导而得到。
2. 曲线的曲率除了切线的斜率,我们还可以通过隐函数的二阶导数来求取曲线的曲率。
曲率可以用来衡量曲线的弯曲程度。
通过对隐函数的一阶和二阶求导,我们可以得到曲线上任一点的曲率。
曲率的计算可以帮助我们分析曲线的几何形状,并研究曲线的特性。
3. 曲面的切平面和法线对于二元隐函数 F(x, y, z) = 0,其中 z 是 x 和 y 的函数,我们可以通过隐函数求导来求取曲面上任一点的切平面和法线。
与曲线类似,隐函数的一阶偏导数可以给出切平面的方程,而法线则是切平面的垂线。
二、隐函数求导的应用隐函数求导在许多实际问题中具有重要的应用。
以下是几个常见的应用例子:1. 几何分析通过隐函数求导,我们可以分析曲线和曲面的几何性质。
例如,在解析几何中,通过对平面曲线的隐函数求导,可以求取切线的斜率,从而揭示曲线的切线方向和斜率变化。
一些特殊曲线的求导结果,如圆的导数等,可以帮助我们研究曲线的性质和特征。
数学《隐函数定理及其应用》讲义
第十八章 隐函数定理及其应用§1 隐函数一、隐函数概念设X R ⊂,Y R ⊂, 函数:F X Y R ⨯→, 对方程(,)0F x y =,若存在集合I X ⊂,J Y ⊂,使得对任何x I ∈,存在唯一的y J ∈满足方程(,)0F x y =,则称(,)0F x y =确定了一个隐函数:f I J →, 记为()y f x =,x I ∈.此时, (,())0F x f x ≡,x I ∈恒成立. 相对地, 形如()y f x =的函数称为显函数.我们说隐函数的产生也是很自然的, 如函数73()y g x x x x ==++严格增, 因而其有反函数, 但不易求出显函数1()x g y -=, 此时只能说方程730y y y x ++-=能确定隐函数1()()dy g x f x -==. 当然, 显函数也可以写成隐函数的形式(,)()0F x y y f x =-=. 显函数的几何意义就是平面上的曲线. 而方程(,)0F x y =确定的隐函数()y f x =在几何意义上就是曲面(,)z F x y =与平面0z =相交得到一条曲线(()y f x =), 此曲线投影到x 轴, 投影为I , 而对每个x I ∈,有唯一的点(,)x y 在该曲线上.注 并不是每一个方程都可以确定一个隐函数,如2210x y ++=.关于隐函数, 我们主要关心两个问题: 1) 隐函数的存在性;2) 隐函数的性质(如连续和可微性等). 二、隐函数存在的直观分析从几何上看, 方程(,)0F x y =确定函数()y f x =.相当于曲线(,)0F x y =与直线0x x =有且仅有一个交点, 这就要求0(,)0F x y =恰好有一个解, 当然至少要有一个解, 即1︒ 00(,)x y ∃, 使得00(,)0F x y =.其次, 若要求曲线(,)0F x y =连续, 则需要假设2︒ 在00(,)x y 的某邻域内, F 连续.最后, 从隐函数的定义, 对一个x , 只能有一个y 满足(,)0F x y =. 这相当于F 作为y 的函数是单射. 因而我们要求F 关于y 严格单调, 或者条件3︒00(,)0y F x y ≠, 且y F 连续 (此时在00(,)x y 的某邻域内,F 关于y 严格单调).如果要求确定的隐函数可微, 则当F 可微时, 由链式法则有0x y F F y '+⋅=, 此时/x y y F F '=-, 即隐函数()y f x =可微. 而要保证F 可微, 一般需假设4︒x F 连续. 三、一元隐函数定理下面我们给出一元隐函数定理. 定理 若下列条件满足1) 函数(,)F x y 在000(,)P x y 为内点的某一区域2D R ⊂上连续; 2) 00(,)0F x y =(初始条件);3) 在D 内存在连续的偏导数(,)y F x y , 且00(,)0y F x y ≠,则在点0P 的某邻域0()U P D ⊂内, 方程(,)0F x y =唯一地确定了一个定义在某区间00(,)x x αα-+上的隐函数()y f x =, 满足1︒ 00()f x y =,00(,)x x x αα∈-+时, 0(,())()x f x U P ∈, 且(,())0F x f x =; 2︒ ()f x 在00(,)x x αα-+上连续.进一步, 若F 在D 上还存在连续的偏导数(,)x F x y , 则方程(,)0F x y =所确定的隐函数3︒ ()y f x =在00(,)x x αα-+内有连续导函数, 且(,)()(,)x y F x y f x F x y '=-.注 a) 为证1︒,2︒, 只需条件: 1) 00(,)0F x y =; 2) 在00(,)x y 的某邻域内F 连续; 3) F 关于y 严格单调.b) 定理中的条件充分而不必要. 如330y x -=在(0,0)不满足(0,0)0y F ≠,但仍确定函数y x =.c) 若条件改为00(,)0x F x y ≠, 则可确定函数()x g y =. 又若00(,)0x F x y ≠与00(,)0y F x y ≠同时成立, 则方程(,)0F x y =将同时确定函数()y f x =和()x g y =,使(,())((),)0F x f x F g y y ==,由于,x y 的对应关系唯一,故它们互为反函数, 且x y F dydx F =-将不变号(如果变号,dy dx 将有零点,在该点dx dy 不存在,与g 可微矛盾), 即隐函数严格单调.例1 反函数存在性定理及其导数.例2 设(,)sin 0F x y y y x ε=--=, 01ε<<. 求dy dx , 22d ydx.例3 讨论Descartes 叶形线3330x y axy +-=所确定的隐函数()y f x =的一阶与二阶导数.例4 设2212z y x =-, 其中()y f x =为方程3330x y xy +-=所确定的隐函数. 求dz dx ,22d z dx.例5 证明: 1) 在(0,0)附近方程2sin()0x y xy ++=可确定函数()y f x =;2) 求f 的导数; 3) (0)f 为极大值.四、n 元隐函数定理下面我们来讨论n 元隐函数定理.定理 设1) 函数12(,,,,)n F x x x y ⋅⋅⋅在以点0000012(,,,,)n P x x x y ⋅⋅⋅为内点的区域1n D R +⊂上连续;2) 000012(,,,,)0n F x x x y ⋅⋅⋅=; 3) 偏导数12,,,,n x x x y F F F F ⋅⋅⋅在D 内存在且连续;4) 000012(,,,,)0y n F x x x y ⋅⋅⋅≠,则在点0P 的某邻域0()U P D ⊂内方程12(,,,,)0n F x x x y ⋅⋅⋅=唯一地确定了一个定义在000012(,,,)n Q x x x ⋅⋅⋅的某邻域0()n U Q R ⊂内的n 元连续函数(隐函数) 12(,,,)n y f x x x =⋅⋅⋅,使得1︒.当120(,,,)()n x x x U Q ⋅⋅⋅∈时, 12120(,,,,(,,,))()n n x x x f x x x U P ⋅⋅⋅⋅⋅⋅∈; 2︒.12(,,,)n y f x x x =⋅⋅⋅在0()U Q 内有连续偏导数12,,,n x x x f f f ⋅⋅⋅, 且11,x x yF f F =-22,,n n x x x x yyF F f f F F =-⋅⋅⋅=-.即若F 关于某个变量偏导数不等于0, 则存在以之为因变量的隐函数.例6 讨论方程323(,,)0F x y z xyz x y z =++-=在原点附近所确定的二元隐函数(,)z f x y =及其偏导数.例7 设方程(,,)0F x x y x y z +++=确定(,)z f x y =.求,x y z z .例8 求由方程(,,)0F x y y z z x ---=所确定的函数(,)z z x y =的微分.例9 设(,)u f x ut y ut =+-,求,,x y t u u u .例10 证明: 由方程()()y x z z ϕψ=+所确定的函数(,)z z x y =满足方程2222222()2()0z z z z z z z y x y x y x x y∂∂∂∂∂∂∂⋅-⋅⋅⋅+⋅=∂∂∂∂⋅∂∂∂∂.§2 隐函数组给出线性方程组111122220a xb yc ud v a x b y c u d v +++=⎧⎨+++=⎩ 何时可从中解出(,)u f x y =, (,)v g x y =? 给定一般形式方程组(,,,)0(1)(,,,)0(2)F x y u vG x y u v =⎧⎨=⎩何时可从中解出(,)u f x y =, (,)v g x y =?一、隐函数组定理定理 1 设2,A B R ⊂, ,:F G A B R ⨯→. 00000(,,,)P x y u v =.若1) 00()()0F P G P ==;2) 在0P 的某邻域内, 1,F G C ∈; 3) Jacobi 行列式(,)(,)F G J u v ∂=∂在0P 处值不为0,则存在00(,)x y 的邻域U 及U 上的唯一一组1C 类函数,f g , 使得(,)u f x y =, (,)v g x y =满足1︒ 000(,)u f x y =,000(,)v g x y =,(,,(,),(,))0F x y f x y g x y ≡, (,,(,),(,))0G x y f x y g x y ≡, (,)x y U ∀∈,2︒ 1(,)(,)x F G u J x v ∂=-⋅∂,1(,)(,)y F G u J y v ∂=-⋅∂,1(,)(,)x F G v J u x ∂=-⋅∂,1(,)(,)y F G v J u y ∂=-⋅∂. [()11(,)()(,)xx v xvx v x v x vvF G G F F G u F G G F J J J x v F ψψ+⋅-∂=-==⋅-=-⋅∂]注 若定理条件3) 改为(,)0(,)P F G y v ∂≠∂, 则方程(1), (2)可确定的隐函数组为(,)(,)y y x u v v x u =⎧⎨=⎩. 更一般地, 可先求出,,,x y u v F F F F ,,,,x y u v G G G G , 如0u v uvF FG G ≠, 则可对(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩, 两边关于,x y 求偏导. 如对x 求偏导, 则x u x v x x u x v x F F u F v G G u G v +⋅+⋅=⎧⎨+⋅+⋅=⎩,从而u x v x xu x v x xF u F v FG u G v G ⋅+⋅=-⎧⎨⋅+⋅=-⎩⇒(,)(,)(,)(,)x u x u x u v u vF F FG G G x v u F G F F u v G G -∂-∂==-∂∂, (,)(,)(,)(,)x F G u x v F G u v ∂∂=-∂∂, 类似可以求出,y y u v .例1 讨论方程组222(,,,)0(,,,)10 F x y u v u v x y G x y u v u v xy ⎧=+--=⎨=-+-+=⎩, 在点0(2,1,1,2)P 附近能确定怎样的隐函数组, 并求其偏导数.例2 1) 已知01xu yv yu xv +=⎧⎨+=⎩, 求x u , y u , x v , y v ;2) 设2(,)(,)u f ux v y v g u x v y =+⎧⎨=-⎩, 求,u ux y ∂∂∂∂.3) 设函数(,)u u x y =由方程(,,,)(,,)0 (,)0 u f x y z t g y z t h z t =⎧⎪=⎨⎪=⎩确定. 求,u u x y∂∂∂∂.二、反函数组定理给定(,)(,)u f x y v g x y =⎧⎨=⎩, 何时有(,)(,)x u v y u v ϕψ=⎧⎨=⎩?设(,,,)(,)0(,,,)(,)0 F x y u v f x y u G x y u v g x y v =-=⎧⎨=-=⎩,00000(,,,)P x y u v =, 由隐函数组定理条件为1) 00()()0F P G P ==, 即000(,)u f x y =, 000(,)v g x y =;2) 在0P 的某邻域内, 1,F G C ∈, 由于1u v F G ==-, 0v u F G ==连续, 故条件2)为在00(,)x y 的某邻域内1,f g C ∈.3)0000(,)(,)(,)(,)0(,)(,)x y x yx y x y f f F G u v g g x y x y ∂∂==≠∂∂.因而我们可得到下面的反函数组定理. 定理2 若1) 000(,)u f x y =, 000(,)v g x y =;2) 在00(,)x y 的某邻域内1,f g C ∈; 3)00(,)(,)0(,)x y u v x y ∂≠∂,则存在00(,)u v 的邻域U 及唯一的一组1C 函数(,)x u v ϕ=,(,)y u v ψ=.((,)u v U ∈), 使得1︒ ((,),(,))u f u v u v ϕψ=, ((,),(,))v g u v u v ϕψ=, 000000(,),(,)x u v y u v ϕψ==; 2︒(,)(,)1(,)(,)u v x y x y u v ∂∂⋅=∂∂. [(,)/(,)x v u v u y x y ∂∂∂=∂∂∂, (,)/(,)x u u v vy x y ∂∂∂=-∂∂∂, (,)/(,)y u u v u x x y ∂∂∂=-∂∂∂, (,)/(,)y u u v v x x y ∂∂∂=∂∂∂.]例3 设sin cos u ux e u vy e u v ⎧=+⎨=-⎩, 求,,,x y x y u u v v .例4 求cos sin x r y r θθ=⎧⎨=⎩的反函数组.例5 求sin cos sin sin cos x r y r z r θϕθϕθ=⎧⎪=⎨⎪=⎩的反函数组.例6 利用sin cos x r θϕ=, sin sin y r θϕ=, cos z r θ=变换2221u u x u y u z ∆=++.例6 已知经过代换2u x yv x ay =-⎧⎨=+⎩后, 方程60zz xy yy z z z +-=化为方程0uv z =,求a 的值.§3 几何应用一、平面曲线的切线与法线平面曲线()y f x =, 在000(,)P x y 处的切线方程000()()y y f x x x '-=-. 若平面曲线由方程(,)0F x y =给出, (,)F x y 在点000(,)P x y 的某邻域内满足隐函数定理条件, 故其在0P 附近可确定连续可微函数()y f x =(或()x g y =). 注意到()y f x =与(,)0F x y =表示的是同一曲线, 故曲线(,)0F x y =在0P 处的切线和法线方程分别为000()()y y f x x x '-=-与0001()()y y x x f x -=--' (或000()()x x g y y y '-=-与0001()()x x y y g y -=--') 又()xy F f x F '=-(或()y xF g y F '=-), 则曲线(,)0F x y =在000(,)P x y 处的切线方程: 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线方程: 000000(,)()(,)()0y x F x y x x F x y y y ---=.例1 求Descartes 叶形线 332()90x y xy +-= 在(2,1)处的切线与法线方程.二、空间曲线的切线与法平面 1、 曲线由参数方程给出.设 :(),(),()L x x t y y t z z t ===, ()t αβ≤≤. (1) 下面求L 在其上某点0000(,,)P x y z 处的切线与法线方程, 这里00()x x t =,00()y y t =,00()z z t =,0()t αβ≤≤.假设(1)中三个函数均在0t 处可导且222000(())(())(())0x t y t z t '''++≠,在L 上0P 附近任取一点(,,)P x y z =000(,,)P x x y y z z +∆+∆+∆, 从而连接0P 与P 的割线方程为000x x y y z z x y z---==∆∆∆, 其中00()()x x t t x t ∆=+∆-, 00()()y y t t y t ∆=+∆-, 00()()z z t t z t ∆=+∆-, 又000x x y y z z x y z t t t---==∆∆∆∆∆∆, 令0t ∆→, 则0P P →, 且曲线L 在0P 处的切线方程为000000()()()x x y y z z x t y t z t ---=='''. 进而曲线L 在0P 处的法平面方程为000000()()()()()()0x t x x y t y y z t z z '''-+-+-=.2、曲线由两曲面给出设曲线L 的方程为 (,,)0(,,)0F x y z G x y z =⎧⎨=⎩ (2)设1,F G C ∈, 且0(,)0(,)P F G J x y ∂=≠∂. 则由隐函数组定理, 在0P 附近能确定唯一的连续可微函数()x z ϕ=, ()y z ψ=使得1)00()x z ϕ=, 00()y z ψ=,2)1(,)(,)dx F G dz J z y ∂=-⋅∂, 1(,)(,)dy F G dz J x z ∂=-⋅∂. 故曲线L 在0P 处的切线方程为000001P P x x y y z z dx dy dz dz ---==, 即 000000(,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂,而L 在0P 处的法平面方程为000000(,)(,)(,)()()()0(,)(,)(,)P P P F G F G F G x x y y z z y z z x x y ∂∂∂-+-+-=∂∂∂.例 2 求曲线22250x y z ++=与锥面222x y z +=所截得的曲线在点(3,4,5)处的 切线与法平面方程.三、曲线的切平面与法线方程设曲面方程由 (,,)0F x y z = (3)给出, 其在0000(,,)P x y z 的某邻域内满足隐函数定理条件. 设000(,,)z F x y z 0≠, 则方程(3)在0P 附近确定唯一1C 函数(,)z f x y =使得000(,)z f x y =且x z F z x F ∂=-∂, y zF zy F ∂=-∂, 从而该曲面在0P 处有切平面与法线其方程分别为000000000000000(,,)(,,)()()(,,)(,,)y x z z F x y z F x y z z z x x y y F x y z F x y z -=----,即 000000()()()()()()0x y z F P x x F P y y F P z z -+-+-= 与000000()()()x y z x x y y z z F P F P F P ---==. 例3 求椭球面222236x y z ++=在(1,1,1)处的切平面方程与法线方程.例4 =(0)a >的切平面在坐标轴上截距之和为常数.§4 条件极值一、条件极值极值问题↔定义域↔条件的限制例 1 设计一个容量为V 的长方形开口水箱, 试问水箱的长x , 宽y , 高z 分别为多少时其表面积最小.(,,)2()S x y z xz yz xy =++ (0,0,0)x y z >>>满足条件 xyz V = ———— 条件极值问题条件极值问题 求(目标)函数()u f x =, 12(,,,)n n x x x x D R =⋅⋅⋅∈⊂在 (约束)条件()0i g x =, 1,2,,i m =⋅⋅⋅, m n <下的极值.设{,()0,1,2,,}i E x D g x i m =∈==⋅⋅⋅, a E ∈. 若存在开球(,)B a r D ⊂,使(,)x E B a r ∈⋂时,()()f x f a ≥(或()()f x f a ≤), 则称f 在a 达到(满足条件()0i g x =)的条件极小(极大)值.例1的解二、条件极值的必要条件 (3n =,2m ≥来讨论)设3D R ⊂为开域, 12,,:f g g D R →为1C 函数, 123(,,)x x x x D =∈. 若f 在点123(,,)a a a a =处达到条件极值, 且111123222123rank 2ag g g xx x g g g x x x ∂∂∂⎛⎫ ⎪∂∂∂⎪= ⎪∂∂∂ ⎪∂∂∂⎝⎭,(1grad ()g a ,2grad ()g a 线性无关). 则存在12,R λλ∈, 使得1212()()()0j j jg g fa a a x x x λλ∂∂∂++=∂∂∂, 1,2,3j =. 即a 是Lagrange 函数1122L f g g λλ=++的驻点.三、Lagrange 乘法求()u f x =, 1(,,)n n x x x D R =⋅⋅⋅∈⊂在条件()0i g x =, (1,2,,)i m =⋅⋅⋅下的极值.方法为1︒ 作Lagrange 函数1111(,,,,,)()()()n m m m L x x f x g x g x λλλλ⋅⋅⋅⋅⋅⋅=++⋅⋅⋅+, x D ∈.2︒ 令0 (1,,)iLi n x ∂==⋅⋅⋅∂, 0 (1,,)j L j m λ∂==⋅⋅⋅∂, 求驻点. (m n +个方程, m n +个未知量)3︒ 求D 中使1,,,m f g g ⋅⋅⋅不为1C 的点, 及使1rank(grad ,,grad )m g g m ⋅⋅⋅<的点.(这些点与驻点成为可能的极值点).4︒ 用无条件极值方法判断上述可能点是否为极值点. 例2 重解例1.例3 求抛物面22x y z +=被平面1x y z ++=截成一个椭圆, 求该椭圆到原点的最长和最短距离.例4 求(,,)f x y z xy yz =+在条件222x y +=, 2y z +=下的极值.例5 求平面一点00(,)x y 到直线0Ax By C ++=的最短距离.例6 求(,,)f x y z xyz =在条件1111x y z r++= (,,,)x y z r R +∈下的极小值, 并证明11113()a b c-++≤, ,,a b c R +∀∈.例7 求目标函数222000(,,)()()()f x y z x x y y z z =-+-+-在约束条件Ax By ++0Cz D +=下的最小值.例8 求1212(,,,)n n f x x x x x x ⋅⋅⋅=⋅⋅⋅在12n x x x a ++⋅⋅⋅+=约束条件下的最大值.例9 已知12(,,),(,,),(,)G x y z G x y z f x y 都是可微的,(,)(,,(,))i i g x y G x y f x y =, 1,2i =.求证:121112221(,)(,)x y xy z xyzf fg g G G G x y G G G --∂=∂.例11 183P , 5.例10 183P 11二次型, 特征值问题.例12 183P , 12.例13 184P , 14.若函数组(,),(,)u u x y v v x y ==有连续的偏导数, 而(,),(,)x x s t y y s t ==有连续偏导数, 则(,)(,)(,)(,)(,)(,)u v u v x y s t x y s t ∂∂∂=⋅∂∂∂. [设(),()y f x x t ϕ==, 则dy dy dx dt dx dt=⋅.]Jacobi 行列式的几何意义一元 ()y f x =, 0x , 0x x x =+∆, 00()()y f x x f x ∆=+∆-称||||y x ∆∆为f 在0x 到0x x +∆的平均伸缩系数.若0x ∆→, 极限00000()()||limlim |()|||x x f x x f x y f x x x∆→∆→+∆-∆'==∆∆, 则称0|()|f x '为映射f 在0x 处的伸缩系数. (导数的几何意义)若函数组(,),(,)u u x y v v x y ==在开区域G 存在连续的偏导数且(,)x y G ∀∈,(,)(,)0(,)u v J x y x y ∂=≠∂. 函数组将xy 平面的开区域G 变换成uv 平面上的开区域1G ,点00(,)x y G ∈映为点10000((,),(,))u x y v x y G ∈, 则包含点00(,)u v 的面积微元d σ'与对应的包含点00(,)x y 的面积微元d σ之比为00|(,)|J x y . 即0000(,)(,)|(,)|(,)x y d u v J x y d x y σσ'∂==∂.。
隐函数定理附其应用
第十八章 隐函数定理及其应用一、证明题1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有2.设tgxy u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算()()y ,x v ,u ∂∂和()()v ,u y ,x ∂∂并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()ϕθ,,r 的形式:2221z u y u x u u ⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∆, 2222222zu y u x u u ∂∂+∂∂+∂∂=∆. 4.证明对任意常数ρ,ϕ,球面2222z y x ρ=++与锥面2222z tg y x ⋅ϕ=+是正交的.5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).6.证明:在n 个正数的和为定值条件x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n nha .并由此结果推出n 个正数的几何中值不大于算术中值.≤⋅⋅⋅⋅n n 21x x x nx x x n 21+⋅⋅⋅++二、计算题1.方程 能否在原点的某邻域内确定隐函数 或 .2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数.3.求下列方程所确定的隐函数的偏导数:(1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数;(2)F(x,x+y,x+y+z)=0,求 , 和 .4.设f 是一元函数,试问应对f 提出什么条件,方程2f(xy)= f(x)+f(x)在点(1,1)的邻域内就能确定出唯一的y 为x 的函数?1.试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 22y 在点(1,-1,2)的附近能否确定形如x=f(z),y=g(z)的隐函数组.5.求下列方程组所确定的隐函数组的导数:(1)⎪⎩⎪⎨⎧=+=++axy x a z y x 222222, 求x y ∂∂,x z ∂∂; (2)⎪⎩⎪⎨⎧=--=--0xu v y 0yv u x 2222, 求x u ∂∂,x v ∂∂,y u ∂∂,y v ∂∂. (3)()()⎩⎨⎧-=+=y v ,x u g v y v .ux f u 2, 求x u ∂∂,x v ∂∂. 6.求下列函数组所确定的反函数组的偏导数:(1)⎪⎩⎪⎨⎧-=+=,v cos u e y ,v sin u e x u u 求y x y x v ,v ,u ,u ; (2)⎪⎩⎪⎨⎧+==+=3322v u z v u y ,v u x ,求x z .7.设函数z=z(x,y)由方程组v u e x +=,v u e y -=,uv z =(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.8.设u,v 为新的自变量变换下列方程:(1)()()0yz y x x z y x =∂∂--∂∂+,设22y x ln u +=, x y arctg v =; (2)0y z y x z x 222222=∂∂-∂∂,设xy u =,y x v =. 9.设函数u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,求x u ∂∂和yu ∂∂. 10.设2r x u =,2r y v =,2rz w =,其中222z y x r ++=, (1)试求以u,v,w 为自变量的反函数组;(2)计算()()z ,y ,x w ,v ,u ∂∂. 11.求平面曲线323232a y x =+()0a >上任何一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长.12.求下列曲线在所示点处的切线方程与法平面:(1)t sin a x 2=,t cos sin b y =,t cos c z 2=在点4t π=; (2)9z y 3x 2222=++.222y x 3z +=,在点(1,-1,2).13.求下列曲线在所示点处的切平面与切线:(1)0e y z x 2==-,在点(1,1,2); (2)1c z b y a x 222222=++,在点(3a ,3b 3c ). 14.求曲面上过点21z 3y 2x 222=++的切平面,使它平行于平面0z 6y 4x =++.15.在曲线x=t,2t y =,3t z =上求出一点,使曲线在此点处的切线平行于平面x+2y+z=4.16.求函数222z y x x u ++=在点M(1,2,-2)处沿曲线x=t,2t 2y =,4t 2z -=在该点切线方向上的方向导数. 17.确定正数λ,使曲面λ=xyz 与椭球面++2222b y a x 1cz 22=在某一点相切. 18.求曲面x z y x 222=++的切平面,使其垂直于平面2z 21y x =--和2z y x =--. 19.求两曲面F(x,y,z)=0,G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.20.应用拉格朗日乘数法,求下列函数的条件极值:(1)f(x,y)=22y x +,若x+y-1=0(2)f(x,y,z,t)=x+y+z+t,若xyzt=c 4(其中x,y,z,t>0,c>0);(3)f(x,y,z)=xyz,若222z y x ++=1,x+y+z=0.21.(1)求表面积一定而体积最大的长方体.(2)求体积一定而表面积最小的长方体.22.(1)求空间一点()000z ,y ,x 到平面Ax+By+Cz+D=0的最短距离.(2)求原点到二平面1111d z c y b x a =++, ++y b x a 22 22d z c =的交线的最短距离.23.设a 1,a 2,…,a n 为已知的n 个正数,求()n 21x ,,x ,x f ⋅⋅⋅=∑=n1k k k x a 在限制条件1x x x 2n 2221≤+⋅⋅⋅++ 下的最大值.24.求函数 ()n 21x ,,x ,x f ⋅⋅⋅=2n 2221x x x +⋅⋅⋅++在条件∑==n1k k k 1x a,()n ,,2,1k ,0a k ⋅⋅⋅=> 下的最小值.三、考研复习题1.方程()222x 1x y --=0在那些点的邻域内可唯一地确定连续可导的隐函数y=()x f ?2.设函数f(x)在区间(a,b)内连续,函数()y ϕ在区间(c,d)内连续,而()0y >ϕ'.问在怎样的条件下,方程()()x f y =ϕ能确定函数y=()()x f 1-ϕ.并研究例子:(Ⅰ)siny+shy=x;(Ⅱ)x sin e 2y -=-. 3.设f(x,y,z)=0,z=g(x,y),试求dx dy ,dxdz . 4.已知G 1(x,y,z),G 2(x,y,z),f(x,y)都是可微的, g i (x,y)= G i (x,y, f (x,y)),(i=1,2) 证明: ()()y ,x g ,g 21∂∂=2z2y 2x 1z 1y 1x y x G G G G G G 1 f ,f --. 5.设x=f(u,v,w),y=g(u,v,w),z=h(u,v,w).求x u ∂∂,y u ∂∂,zu ∂∂.6.试求下列方程所确定的函数的偏导数x u ∂∂,yu ∂∂: (1)x 2+u 2=f(x,u)+g(x,y,u)(2)u=f(x+u,yu)7.据理说明:在点(0,1)近傍是否存在连续可微的f(x,y)和g(x,y).满足f(0,1)=1,g(0,1)=-1,且()[]3y ,x f +xg(x,y)-y=0, ()[]3y ,x g +yf(x,y)-x=0.8.设()0000u ,z ,y ,x 满足方程组()()()()u F z f y f x f =++()()()()u G z g y g x g =++()()()()u H z h y h x h =++这里所有的函数假定有连续的导数.(1)说出一个能在该点邻域内确定x,y,z 作为u 的函数的充分条件;(2)在f(x)=x.,g(x)=x 2,h(x)=x 3的情形下,上述条件相当于什么?9.求下列由方程所确定的陷函数的极值:(1)1y 2xy 2x 22=++(2)()()222222y x a y x -=+,(a>0) 10.设f=F(x)和一组函数()v ,u x ϕ=,()v ,u y φ=,那么由方程()()()v ,u F v ,u ϕ=ϕ可以确定函数v=v(u).试用u,v ,du dv ,22du v d 表示dx dy ,22dx y d . 11.试证明:二次型()z ,y ,x f =Fxy 2Ezx 2Dyz 2Cz By Ax 222+++++在单位球面 1z y x 222=+上的最大值和最小值恰好是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ΦC D E D B F E F A 的最大特征值和最小特征值.12.设n 为自然数,0y ,x ≥,用条件极值方法证明:2y x n n + ()2y x n+≥ 13.求出椭球22a x +22b y +22cz =1在第一卦限中的切平面与三个坐标面所成四面体的最小体积. 14.设()0000z ,y ,x P 是曲面F(x,y,z)=1的非奇异点,F 在U(p 0)可微,且为n 次齐次函数.证明:此曲面在P 0处的切平面方程为()0x P XF +()0y P yF +()0z P ZF =n.。
11.4隐函数存在定理在几何方面的应用
z = z[u ( x, y ), v ( x, y )].
求曲面S上点 M ( x0 , y0 , z0 ) 的切平面方程.首先 求曲面S在点M的法向量 ( z ′ ( x0 , y0 ), z ′y ( x0 , y0 ), −1) x 由隐函数的求导法则(注意,z是x,y的 函数,而x,y又是u,v的函数),有
(9)
由(6)式得曲线在 P0 处的法平面方程为 ∂( F , G) ∂( F , G) ( X − x0 ) + (Y − y0 ) ∂ ( y, z ) P0 ∂ ( z , x) P0
∂( F , G) + ( Z − z0 ) = 0. ∂ ( x, y ) P0
(10)
∂( F , G) ∂( F , G) 同样可推出:当 或 在P0 处不为 ∂ ( z, y ) ∂ ( z ,) 零时, 曲线在P0 处的切线与法平面方程仍然分别取
它们也可分别写成如下形式:
Fx ( x0 , y0 , z0 )( X − x0 ) + Fy ( x0 , y0 , z0 )(Y − y0 ) + Fz ( x0 , y0 , z0 )( Z − z0 ) = 0
与
(12)
X − x0 Y − y0 Z − z0 = = . Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )
1.设曲面由方程为 设曲面由方程为 (11) F ( x, y , z ) = 0 它在点 P0 ( x0 , y0 , z0 ) 的某邻域内满足隐函数定理的 条件(这里不妨设 Fz ( x0 , y0 , z0 ) ≠ 0 ).于是方程(11)在 点 P0 附近确定唯一连续可微的隐函数 z = f ( x, y ) 使得 z0 = f ( x0 , y0 ), 且
隐函数存在定理在几何方面的应用.
§11.4. 隐函数存在定理在几何方面的应用一、空间曲线的切线与法平面1. 设空间曲线C的参数方程是x=x(t),y=y(t),z=z(t),t∈I(区间).它们在区间I可导,且∀t∈I,有x'2(t)+y'2(t)+z'2(t)≠(即0x'(t),y'(t),z'(t)不同时为0).取定t0∈I,对应曲线C上一点P0(x0,y0,z0)=P0[x(t0),y(t0),z(t0)].任取改变量∆t≠0,使t0+∆t∈I,对应曲线C上另一点P1(x0+∆x,y0+∆y,z0+∆z)=P1[x(t0+∆t),y(t0+∆t),z(t0+∆t)].由空间解析几何知,过曲线C上两点P0与P1割线方程是或 x-x0y-y0z-z0==, ∆x∆y∆zx-x0y-y0z-z0==. ∆x∆y∆z∆t∆t∆t当点P1沿曲线C无限趋近于点P即∆t→0,割线P0P1的极限位置就是曲0时,线C上点P0的切线.于是,曲线C上点P0的切线方程是 x-x(t0)y-y(t0)z-z(t0)==. x'(t0)y'(t0)z'(t0)切线的方向向量T[x'(t0),y'(t0),z'(t0)]称为曲线C在点P0的切向量. 一个平面通过空间曲线C上一点P且与过点P称此0的切线垂直,0(x0y0,z0),平面是空间曲线C在点P0的法平面.如图11.4.于是切线的切向量就是法平面的法向量.若在法平面上任取一点P(x,y,z),则向量P0P=(x-x0,y-y0,z-z0)与切线的切向量T[x'(t0),y'(t0),z'(t0)]垂直,即(x'(t0),y'(t0),z'(t0))⋅(x-x0,y-y0,z-z0)=0. 由向量的内积(向量的数量积)公式,法平面的方程是 1x'(t0)(x-x0)+y'(t0)(y-y0)+z'(t0)(z-z0)=0 或 x'(t0)[x-x(t0)]+y'(t0)[y-y(t0)]+z'(t0)[z-z(t0)]=0.在t0=例1. 求螺旋线x=acost,y=asint,z=btπ3处的切线方程与法线方程.解: x'=-asint,y'=acost,z'=b. 切线方程是x-acosπ=y-asinacosπ=z-bbπ.-asinx-33πayz-b. ==即b2 法线方程是⎛a⎫a⎛⎫⎛π⎫x-⎪+ y-+bz-b⎪=0. ⎪⎪⎝2⎭2⎝⎭⎝3⎭2. 设三维欧氏空间R3的曲线C是由函数方程组F1(x,y,z)=0,F2(x,y,z)=0上所确定,即曲线C是这两个曲面的交线.在空间曲线C上任取一个定点P(x0,y0,z0),即F1(x0,y0,z0)=0与F2(x0,y0,z0)=0.设F1(x,y,z)与F2(x,y,z)对x,y,z的偏导数在点P的邻域内都连续,且∂(F1,F2)∂(F1,F2)∂(F1,F2)不同,,∂(x,y)P∂(y,z)P∂(z,x)P时为零,不防设∂(F1,F2)≠0.根据§11.1定理4,在点x0某邻域,空间曲线C∂(y,z)P可表为 y=y(x) 与 z=z(x). 于是,空间曲线C可表为以x为参数的参数方程 x=x, y=y(x),z=z(x).dydzdydz,),下面求,. dxdxdxdx从而,空间曲线C在点P的切线向量是T(1,由隐函数的求导公式,有⎧∂F1∂F1dy∂F1dz⎪∂x+∂ydx+∂zdx=0,⎪⎨⎪∂F2+∂F2dy+∂F2dz=0.⎪∂ydx∂zdx⎩∂x∂(F1,F2)∂(F1,F2)dydz∂(z,x)∂(x,y)=解得, =. dxdx1212∂(y,z)∂(y,z)由切线方程的公式,三维欧氏空间R3曲线C在点P(x0,y0,z0)的切线方程是 x-x0y-y0z-z0 ==1∂(F1,F2)∂(F1,F2)∂(z,x)P∂(x,y)P∂(F1,F2)∂(y,z)P∂(F1,F2)∂(y,z)P或 x-x0y-y0z-z0. (1)==∂(F1,F2)∂(F1,F2)∂(F1,F2)∂(y,z)P∂(z,x)P∂(x,y)P三维欧氏空间R3曲线C在点P(x0,y0,z0)的法平面方程是∂(F1,F2)∂(F1,F2)∂(F1,F2) (x-x0)+(y-y0)+(z-z0)=0. (2)∂(y,z)P∂(z,x)P∂(x,y)P例2. 求曲线x2+y2+z2=6,x+y+z=0在点P(1,-2,1)的切线方程与法平面方程.解: F1=x2+y2+z2-6,∂F1=2x,∂x∂F2=1,∂xF2=x+y+z. ∂F1=2z, ∂z∂F2=1. ∂z∂F1=2y,∂y∂F2=1,∂y∂(F1,F2)∂(F1,F2)∂(F1,F2)=-6 =0 =6 ∂(y,z)p∂(z,x)p∂(x,y)p由公式(1)与(2),曲线在点P(1,-2,1)的切线方程与法平面方程分别是x-1y+2z-1==. -606与 -6(x-1)+6(z-1)=0 或 x-z=0.二、曲面的切平面与法线1. 设三维欧氏空间R3曲面S的方程是z=f(x,y), (x,∈y)(区域)D由§10.3定理3知,若二元函数z=f(x,y)在点(x0,y0)∈D可微,则曲面S上点M(x0,y0,z0)(z=f(x0,y0))的切平面方程是fx'(x0,y0)(x-x0)+fy'(x0,y0)(y-y0)-(z-z0)=0,即切平面的法向量是n(fx'(x0,y0),fy'(x0,y0),-1).于是,法线方程是 x-x0y-y0z-z0==. fx'(x0,y0)fy'x(0y,0)-12. 设曲面S的方程是F(x,y,z)=0.在曲面S上任取一点M(x0,y0,z0),即F(x0,y0,z0)=0.若三元函数F(x,y,z)所有的偏导数在点M的邻域连续,且∂F∂F∂F∂F,,在点M不同时为零.设∂x∂y∂z∂z≠0.根M据§11.1定理2,在点(x0,y0)的某邻域,曲面S可表为z=f(x,y),0z=f(0x,0 y).求曲面S上点M(x0,y0,z0)的切平面方程.首先求曲面S在点M的法向量n(fx'(x0,y0),fy'(x0,y0),-1).由隐函数求导数公式,有∂F∂F∂z+=0,∂x∂z∂x∂F∂F∂z=0. ∂y∂z∂y∂F∂z解得 =fx'(x,y)=-∂x∂z∂F∂z∂y ,=fy'x(y,=-)∂y∂z.由切平面方程公式,曲面S上点M(x0,y0,z0)的切平面方程是 4∂F-∂F∂zM∂F∂y(x-x)-0∂F∂z(y-My-)(-zz=) 0,或∂F∂x(x-x0)+M∂F∂yy(-y0+)M∂F∂zz(-z0=)M0. (3)曲面S上点M(x0,y0,z0)的法线方程是x-x0y-y0z-z0(4) ==∂F∂F∂F∂xM∂zM∂yM2323例3. 求曲面x+y+z=a上在点P(x0,y0,z0)的切平面方程与法线方程. 解: F(x,y,z=) 232323x+23y+23z- a.2311--2-122Fx'=x3, Fy'=y3, Fz'=z3.333于是,曲面在点P(x0,y0,z0)的切平面方程与法线方程分别是 x0(x-x-0y)+z(-z0)+y0(y与x-x0x013-13-13131300z)==y-0y=1y03130z-0z 1z03130或 x0(x-x-0y)=z(-z 0z).0)=y(y3. 设曲面S是参数方程x=x(u,v),y=y(u,v),z=z(u,v)(u,v)∈D(区域).取定一点Q(u0,v0)∈D,对应曲面S上一点M(x0,y0,z0),即 x0=x(u=0,v0),y0y(uv),=z0,00 ,v).z(0u若上述函数组的所有偏导数在点Q(u0,v0)的邻域都连续,且∂(x,y)∂(y,z),,∂(u,v)Q∂(u,v)Q∂(z,x)∂(x,y)≠0.根据§11.1定理3的推论,函数组不同时为0.不妨设∂(u,v)Q∂(u,v)Qx=x(u,v),y=y(u,v)在点(x0,y0)邻域存在有连续偏导数的反函数组u=u(x,y),v=v(x,y).将它们代入z=z(u,v)之中,有 [u(x,y),v(x, y) z=z求曲面S上点M(x0,y0,z0)的切平面方程.首先求曲面S在点M的法向量'n(z'x(x0,y0),zy(x0,y0),-1). 由隐函数的求导法则(注意,z是x,y的函数,而x,y又是u,v的函数),有⎧∂z∂z∂x∂z+⎪∂u=∂x∂u∂y∂⎪⎨∂∂z⎪∂z=∂z∂x+⎪∂⎩∂v∂x∂v∂y∂(y,z)∂z∂(u,v)=,解得∂(x,y)∂x∂(u,v)--∂y,v y.v∂z(x,)∂z∂u(v,)=. ∂(x,y)∂y∂(u,v)由切平面方程公式,曲面S在点M(x0,y0,z0)的切平面方程是-∂(y,z∂(u,vQ-(y-y0)+∂z(x,)∂u(v,Q)z-z0=∂(x,y∂(u,vQ∂x(y,)∂u(v,Q)y(-y0 )或∂(y,z∂(z,)∂x(y,)0 (5) (x-x)(y-y)(z-0z)=00∂(u,vQ∂(u,Q)∂u(v,Q)曲面S在点M(x0,y0,z0)的法线方程是x-xy-0y0==∂(y,z∂(z,)∂∂(u,vQ∂(u,Q)∂z-0z. (6) x(y,)u(v,Q)例4. 求曲面x=u+v,y=u2+v2,z=u3+v3在点Q(0,2)对应曲面上的点的切平面方程与法线方程.解:点Q(0,2)对应曲面上的点P(2,4,8).∂x=1,∂u∂x=1,∂v∂y=2u,∂u∂y=2v,∂v∂z=3u2,∂u∂z=3v2. ∂v∂(y,z)∂(z,x)∂(x,y)=0, =-12,=4. ∂(u,v)Q∂(u,v)Q∂(u,v)Q由公式(5)与(6),曲面在点P(2,4,8)的切平面方程与法线方程分别是(-4+)z4-(=8) -12y 或 3y-z=4与x-2y-4z-8x-2y-4z-8==== 或 . 0-1240-31。
数学分析18.3隐函数定理及其应用之几何应用
第十八章 隐函数定理及其定理3几何应用一、平面曲线的切线与法线设平面曲线由方程F(x,y)=0给出,它在点P 0(x 0,y 0)的某邻域上满足隐函数定理条件,于是在点P 0附近所确定的连续可微隐函数y=f(x)(或x=g(y))和F(x,y)=0在点P 0附近表示同一曲线,从而该曲线在P 0存在切线和法线,其方程分别为:y-y 0=f ’(x 0)(x-x 0) 或(x-x 0=g ’(y 0)(y-y 0)) 与y-y 0=-)(x f 10'(x-x 0) 或(x-x 0=-)(y g 10'(y-y 0)). ∵f ’(x)=-y x F F (或g ’(y)=-xy F F ),∴F(x,y)=0在点P 0的切线与法线方程为:F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-y 0)=0与F y (x 0,y 0)(x-x 0)-F x (x 0,y 0)(y-y 0)=0.例1:求笛卡儿叶形线2(x 3+y 3)-9xy=0在点(2,1)的切线与法线. 解:记F=2(x 3+y 3)-9xy, 则F x =6x 2-9y, F y =6y 2-9x 在R 2连续,且 F x (2,1)=15≠0, F y (2,1)=-12≠0, ∴曲线在(2,1)的切线与法线分别为: 15(x-2)-12(y-1)=0, 即5x-4y-6=0,与-12(x-2)-15(y-1)=0, 即4x+5y-13=0.二、空间曲线的切线与法平面由参数方程x=x(t), y=y(t), z=z(t), α≤t ≤β确定的空间曲线L 上一点P 0(x 0,y 0,z 0),有x 0=x(t 0),y 0=y(t 0),z 0=z(t 0), α≤t 0≤β,假定它们都在t 0处可导,且[x ’(t 0)]2+[y ’(t 0)]2+[z ’(t 0)]2≠0. 在L 上点P 0附近选取一点 P(x,y,z)=P(x 0+△x,y 0+△y,z 0+△z), 割线P 0P 为:x x -x 0∆=y y -y 0∆=zz -z 0∆,其中△x=x(t 0+△t)-x(t 0), △y=y(t 0+△t)-y(t 0), △z=z(t 0+△t)-y(t 0), 又t x/x -x 0∆∆=t y/y -y 0∆∆=t z/z -z 0∆∆,当△t →0时, P →P 0,且t x ∆∆→x ’(t 0), ty∆∆→y ’(t 0), tz∆∆→z ’(t 0), 即得曲线L 在P 0处的切线方程为:)t (x x -x 00'=)t (y y -y 00'=)t (z z -z 00'.可知,当x ’(t 0), y ’(t 0), z ’(t 0)不全为0时,它们组成了该切线的方向数. 过P 0与切线l 垂直的平面称为曲线L 在点P 0的法平面, 其方程为: x ’(t 0)(x-x 0)+y ’(t 0)(y-y 0)+z ’(t 0)(z-z 0)=0.当空间曲线L 由方程组⎩⎨⎧==0z)y,G(x,0z)y,F(x,给出时,若它在点P 0(x 0,y 0,z 0)的某邻域上满足隐函数组定理的条件(不妨设条件(4)为P y),x ()G (F,∂∂≠0),则该方程组在点P 0附近能确定惟一连续可微的隐函数组x=φ(z),y=ψ(z),使 x 0=φ(z 0),y 0=ψ(z 0),且zx ∂∂=-y),z ()G (F,∂∂/y),x ()G (F,∂∂, z y ∂∂=-z),x ()G (F,∂∂/y),x ()G (F,∂∂. 又在点P 0附近,原方程组和由其确定的隐函数组表示同一空间曲线, ∴以z 为参量时,可得点P 0附近曲线L 的参量方程:x=φ(z),y=ψ(z),z=z. ∴曲线L 在P 0处的切线方程为:)P (x x -x 0z 0=)P (y y -y 0z 0=1z -z 0,即0P 0z),y ()G (F,x -x ∂∂=0P 0x),z ()G (F,y -y ∂∂=0P 0y),x ()G (F,z -z ∂∂.曲线L 在P 0处的法平面方程为:0P z),y ()G (F,∂∂(x-x 0)+0P x),z ()G (F,∂∂(y-y 0)+0P y),x ()G (F,∂∂(z-z 0)=0.同理可推得,当0P z),y ()G (F,∂∂≠0或0P x),z ()G (F,∂∂≠0时,结论相同.可见,当0P y),x ()G (F,∂∂,0P z),y ()G (F,∂∂,0P x),z ()G (F,∂∂不全为0时,它们是L 在P 0处的切线的方向数.例2:求球面x 2+y 2+z 2=50与锥面x 2+y 2=z 2所截出的曲线在(3,4,5)处的切线与法平面方程.解:记F=x 2+y 2+z 2-50, G=x 2+y 2-z 2,∵F x =G x =2x, F y =G y =2y, F z =2z, G z =-2z 在(3,4,5)都连续, 又y),x ()G (F,∂∂=0, 0P z),y ()G (F,∂∂=-160, 0P x),z ()G (F,∂∂=120, ∴曲线在P 0处的切线方程为:1603-x -=1204-y =05-z , 即⎩⎨⎧==+5z 04)-4(y 3)-3(x ;法平面方程为:-4(x-3)+3(y-4)+0(z-5)=0, 即4x-3y=0.三、曲面的切平面与法线设曲面由方程F(x,y,z)=0给出,它在点以P 0(x 0,y 0,z 0)的某邻域内满足隐函数定理条件(不妨设F z (x 0,y 0,z 0)≠0),则该方程在点P 0附近确定惟一连续可微的隐函数z=f(x,y),使得z 0=f(x 0,y 0), 且z x ∂∂=-)z y,(x ,F )z y,(x ,F zx , z y ∂∂=-)z y,(x,F )z y,(x,F z y .由于在点P 0附近F(x,y,z)=0与z=f(x,y)表示同一曲面, 从而该曲面在P 0处有切平面方程为:z-z 0=-)z ,y ,(x F )z ,y ,(x F 000z 000x (x-x 0)-)z ,y ,(x F )z ,y ,(x F 000z 000y (y-y 0)或F x (x 0,y 0,z 0)(x-x 0)+F y (x 0,y 0,z 0)(y-y 0)+F z (x 0,y 0,z 0)(z-z 0)=0. 法线方程为:)z ,y ,(x F )z ,y ,(x F x -x 000z 000x 0-=)z ,y ,(x F )z ,y ,(x F y -y 000z 000y 0-=1z -z 0- 或)z ,y ,(x F x -x 000x 0=)z ,y ,(x F y -y 000y 0=)z ,y ,(x F z -z 000z 0.其中,两方程的第二种形式对F x (x 0,y 0,z 0)≠0或F y (x 0,y 0,z 0)≠0也适合.注:1、函数F(x,y,z)在点P(x,y,z)的梯度gradF(P)就是等值面F(x,y,z)=c 在点P 的法向量n=(F x (P),F y (P),F z (P)). 2、将曲线L :⎩⎨⎧==0z)y,G(x,0z)y,F(x,看成两个曲面F(x,y,z)=0和G(x,y,z)=0的交线,则L 在点P 0的切线与两个曲面在P 0的法线都垂直,这两个法向量为n 1=(F x ,F y ,F z )|0P 与n 2=(G x ,G y ,G z )|0P ,即 L 在P 0的切向量可取n 1与n 2的向量积τ=n 1×n 2=)()()()()()(000000P G P G P G P F P F P F kj i z y x z y x =i P 0)z (y,)G (F,∂∂+j P 0)x (z,)G (F,∂∂+k P 0)y (x,)G (F,∂∂.例3:求椭球面x 2+2y 2+3z 2=6在(1,1,1)处的切平面方程与法线方程. 解:设F(x,y,z)=x 2+2y 2+3z 2-6, F x =2x, F y =4y, F z =6z 在全空间上处处连续, 在(1,1,1)处,F x =2, F y =4, F z =6,∴切平面方程为2(x-1)+4(y-1)+6(z-1)=0, 法线方程为:11-x =21-y =31-z .例4:证明:曲面f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x =0的任一切平面都过某个定点,其中f 是连续可微函数. 解:令F(x,y,z)=f ⎪⎭⎫⎝⎛c -z b -y ,c -z a -x ,∵(F x ,F y ,F z )=⎪⎪⎭⎫⎝⎛+-22121c)-(z b)f -(y a)f -(x ,c -z f ,c -z f , ∴曲面在其上任意一点P 0(x 0,y 0,z 0)的法向量可取为: n=⎪⎪⎭⎫⎝⎛+-c -z )(b)f -(y )(a)f -(x ),(f ),(f 00200100201P P P P , 由此可得切平面方程: f 1(P 0)(x-x 0)+f 2(P 0)(y-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(z-z 0)=0.以(x,y,z)=(a,b,c)代入切平面方程,可得:f 1(P 0)(a-x 0)+f 2(P 0)(b-y 0)-c-z )(b)f -(y )(a)f -(x 0020010P P +(c-z 0)≡0,即定点(a,b,c)在曲面的任一切平面上.习题1、求平面曲线32x +32y =32a (a>0)上任一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长. 解:记F(x,y)=32x +32y -32a , 则F x =3x32, F y =3y32,∴曲线上任一点(x 0,y 0)处的切线方程为:3x 1(x-x 0)+3y 1(y-y 0)=0, 即3x x+3y y=32a . 切线与在坐标轴上的截距分别为320a x 与320a y ,∴切线被坐标轴所截取的线段为()()23202320a y a x +=a, 得证!2、求下列曲线在所示点处的切线与法平面: (1)x=asin 2t, y=bsintcost, z=ccos 2t, 在点t=4π; (2)2x 2+3y 2+z 2=9,z 2=3x 2+y 2, 在点(1,-1,2). 解:(1)∵x ’(4π)=a, y ’(4π)=0, z ’(4π)=-c,∴切线方程为:a 2a -x =02b -y =c 2c -z -, 即⎪⎩⎪⎨⎧==+2b y 1c z a x .法平面方程为:a(2a -x )-c(2c -z )=0, 即ax-cz=21(a 2-c 2).(2)记F(x,y,z)=2x 2+3y 2+z 2-9, G(x,y,z)=3x 2+y 2-z 2, 则 F x =4x,F y =6y,F z =2z; G x =6x,G y =2y,G z =-2z; ∴(1,-1,2)y),x ()G (F,∂∂=28; (1,-1,2)z),y ()G (F,∂∂=32;(1,-1,2)x),z ()G (F,∂∂=40;∴切线方程为:81-x =101y +=72-z . 法平面方程为:8(x-1)+10(y+1)+7(z-2)=0.3、求下列曲面在所示点处的切平面与法线: (1)y-e2x-z=0, 在点(1,1,2);(2)222222c z b y a x ++=1, 在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a . 解:(1)记F=y-e 2x-z , 则F x (1,1,2)=-2, F y (1,1,2)=1, F z (1,1,2)=1, ∴切平面方程为:-2(x-1)+(y-1)+(z-2)=0; 法线方程为:2-1-x =y-1=z-2. (2)记F=222222c z b y a x ++-1, 则在点⎪⎪⎭⎫⎝⎛3c ,3b ,3a , F x =a 32, F y =b 32, F z =c 32. ∴切平面方程为:a1(x-3a )+b 1(y-3b )+c 1(z-3c )=0, 即a x +b y +c z=3;法线方程为:a(x-3a )=b(y-3b )=c(z-3c ).4、证明对任意常数ρ,φ,球面x 2+y 2+z 2=ρ2与锥面x 2+y 2=z 2tan 2φ正交. 证:设(x,y,z)是球面与锥面交线上的任一点,则 球面上该点的法向量为1n =(2x,2y,2z), 锥面上该点的法向量为2n =(2x,2y,-2ztan 2φ),∵21n n =4x 2+4y 2-4z 2tan 2φ=0, ∴对任意常数ρ,φ,球面与锥面正交.5、求曲面x 2+2y 2+3z 2=21的切平面,使它平行于平面x+4y+6z=0. 解:记F(x,y,z)=x 2+2y 2+3z 2-21, 在曲面上的任一点(x 0,y 0,z 0)有, F x (x 0,y 0,z 0)=2x 0, F y (x 0,y 0,z 0)=4y 0, F z (x 0,y 0,z 0)=6z 0,∴曲面在该点的切平面方程为:2x 0(x-x 0)+4y 0(y-y 0)+6z 0(z-z 0)=0, 即 x 0x+2y 0y+3z 0z-21=0. ∵2x 0=y 0=z 0, 代入曲面方程得:x 02+8x 02+4x 02=21, 解得:x 0=±1,∴曲平面在(1,2,2)和(-1,-2,-2)处有符合条件的切平面:x+4y+6z=±21.6、在曲线x=t, y=t 2, z=t 3上求出一点,使曲线在此点的切线平行于平面x+2y+z=4.解:∵x t =1, y t =2t, z=3t 2, 设在t=t 0处切线平行于平面x+2y+z=4, 则(1,2t 0,3t 02)(1,2,1)=0, 即1+4t 0+3t 02=0,解得t 0=-1或t 0=-31. ∴所求的点为(-1,1,-1)或(-31,91,-271).7、求函数u=222z y x x ++在点M(1,2,-2)沿曲线x=t, y=2t 2, z=-2t 4在该点切线的方向导数.解 :∵曲线过点(1,2,-2), ∴t 0=1; ∵x t (t 0)=1, y t (t 0)=4, z t (t 0)=-8. ∴曲线在点M 的切线的方向余弦为:91, 94, -98. 又 u x (M)=278, u y (M)=-272, u z (M)=272; ∴所f 求方向导数为: 91278⋅+94272⋅⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⋅98272=-24316.8、试证明:函数F(x,y)在点P 0(x 0,y 0)的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).证: F 的等值线为F(x,y)=c, 它在点P 0的切线方程为: F x (x 0,y 0)(x-x 0)+F y (x 0,y 0)(y-x 0)=0. ∴等值线在点P 0的法向量为: (F x (x 0,y 0),F y (x 0,y 0)), 恰为函数F 在点P 0梯度,得证!9、确定正数λ, 使曲面xyz=λ与椭球面22a x +22b y +22cz =1在某一点相切(即在该点有公共切平面).解:设两曲面在点P 0(x 0,y 0,z 0)相切,则曲面xyz=λ在点P 0的切平面: y 0z 0(x-x 0)+x 0z 0(y-y 0)+x 0y 0(z-z 0)=0与椭球面在点P 0的切平面:20a x (x-x 0)+20b y (y-y 0)+2c z (z-z 0)=0是同一平面,∴0020z y a x =0020z x b y =0020y x c z , 即220a x =220b y =220c z , 又220a x +220b y +220c z =1, ∴220a x =220b y =220cz =31,∴x 02y 02z 02=271a 2b 2c 2,∴λ=x 0y 0z 0=33|abc |.10、求x 2+y 2+z 2=x 的切平面, 使其垂直于平面x-y-21z=2和x-y-z=2. 解:设曲面在点P 0(x 0,y 0,z 0)处的切平面垂直于所给两平面,由 曲面在P 0处切平面方程:(2x 0-1)(x-x 0)+2y 0(y-y 0)+2z 0(z-z 0)=0知P 0应满足:⎪⎪⎩⎪⎪⎨⎧=++=--⋅-=--⋅-0202020000000xz y x 0)1,1,1()z 2,y 2,1x 2(0)21,1,1()z 2,y 2,1x 2(, 解得:x 0=422±, y 0=42±, z 0=0, ∴所求切平面为:x+y=221±.11、求双曲面F(x,y,z)=0, G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.解:对方程组F(x,y,z)=0, G(x,y,z)=0关于z 求导得:⎪⎩⎪⎨⎧=++=++00z y x z y x G dz dy G dzdx G F dz dy F dz dx F , 解得:dz dx =),(),(z y G F ∂∂/),(),(y x G F ∂∂,dz dy =),(),(x z G F ∂∂/),(),(y x G F ∂∂, ∴交线在xy 平面上的投影曲线的切线方程为: (x-x 0)/0P dz dx =(y-y 0)/0P dzdy ,即(x-x 0)/),(),(P z y G F ∂∂=(y-y 0)/),(),(P x z G F ∂∂.。
隐函数有关定理及其应用
1 隐函数1.1隐函数的定义设,X R Y R ⊂⊂,函数:.F X Y R ⨯→对于方程(,)0F x y = ()1若存在集合I X J Y ⊂⊂与对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1),则称由方程(1)确定一个在I 上,值域含于J 的隐函数.若把它记为(),,,f x y x I y J =∈∈则成立恒等式(,())0F x f x ≡,x I ∈.例如方程10xy y +-=能确定一个定义在(,1)(1,)-∞-⋃-+∞上的隐函数.1.2. 隐函数存在定理定理1 若满足下列条件1)(,)F x y 在以000(,)P x y 为内点的某一区域2R D ⊂上连续; 2)00(,)0F x y =;3)(,)y F x y 在D 内连续;4)0,()0y o F x y ≠.则在0()U P D ⊂内,方程(,)0F x y =惟一地确定了一个定义在00(,)x x αα-+内的隐函数()y f x =,使得00001(),(,)f x y x x x αα=∈-+时0(,())()x f x U P ∈且(,())0F x f x ≡. 02()f x 在00(,)x x αα-+内连续.这里有几点需要注意,i )定理的条件只是充分的,ii ).定理的条件(3),(4)还可减弱.iii )定理的条件(3),(4)换为:x F 连续,0()0x F P ≠,则可确定隐函数()x f y =.1.3. 隐函数的可导条件定理2 若(1)(,)F x y 在以000(,)P x y 为内点的某一区域2R D ⊂上连续; (2)(,)F x y ;(3)(,)(,)y x F x y F x y 在D 内连续;(4)0()0y F P ≠.则(,)0F x y =确定的隐函数()y f x =,在00(,)x x αα-+内有连续的导数,且 ()xyF f x F '=-.若已知(,)0F x y =存在连续可微的隐函数()y f x =,利用复合函数求导法则,也求出'()f x .例 1 讨论笛卡儿叶形线3330x y axy +-=所确定的函数()yf x =的一阶与二阶导数解 由隐函数定理知,在使得23()0y F y ax =-≠的点(,)x y 附近,方程确定隐函数()y f x =.方程两边对x 求导并整理可得,22ay x y y ax -'=- 2()0y ax -≠ .两边再对x 求导,并将上式代入可得:3232()a xyy y ay ''=--.例2 讨论方程323(,,)0F x y z xyz x y z =++-=在原点附近所确定的二元隐数及其偏导数.解 (0,0,0)0,(0,0,0)10z F F ==-≠且,,x y z F F F F 处处连续,因此在原点(0,0,0)附近能惟一地确定连续可微的隐函数(,)z f x y =,且可求得它的偏导数如下:32213x z x y F yz z F xyz ∂+=-=∂- , 322313y z y z F xz y F xyz∂+=-=∂-. 2.隐函数组2.1 隐函数组概念设(,,,),(,,,)F x y u v G x y u v 为定义在4R 上的四元函数.若存在2D R ⊂,对任意(,)x y D ∈,都有惟一确定的,u v ,使(,,,)0(,,,)0F x y u v G x y u v =⎧⎨=⎩成立,则在D 上定义了两个函数:(,),(,)u f x y v g x y ==.称它们是由方程确定的隐函数组.2.2 隐函数组存在条件定理3 若(1) (,,,),(,,,)F x y u v G x y u v 在以00000(,,,)P x y u v =为内点的区域4V R ⊂内连续(2) 00000000(,,,)0,(,,,)0F x y u v G x y u v ==;(3) 在V 内,,F G 有连续的偏导数;(4)(,)(,)F G J U V ∂=∂在点0P 不等于零. 则在点0P 的某一邻域0()U P V ⊂内,方程组惟一地确定了定义点000(,)Q x y 的某一邻域0()U Q 内的两个二元隐函数:(,),(,)u f x y v g x y ==.使得1. 000000(,),(,),u f x y v g x y ==(,,(,),(,))0F x y f x y g x y ≡(,,(,),(,))0.G x y f x y g x y ≡.2 .(,),(,)u f x y v g x y ==在0()U Q 内有连续的偏导数,且:1(,)1(,),,(,)(,)u u x F G F G J x v y J y v ∂∂∂∂=-⋅=-⋅∂∂∂∂1(,)1(,),(,)(,)v v x y F G F G J u x J u y ∂∂∂∂=-⋅=-⋅∂∂∂∂例3 讨论方程组2222(,,,)0(,,,)10F x y u v u v x yG x y u v u v x y ⎧=+--=⎨=-+-+=⎩ 在点0(2,1,1,2)P 的邻域能确定怎样的隐函数组,并求其偏导数.解 00()()0F P G P ==且2,1,2,2.x y u v x F x F F u F v G y =-=-===-,,y G x =- 1,1u v G G =-=.在点0P 处的所有雅可比行列式中仅有(,)0(,)F G x v ∂=∂因此,仅有(,)x v 不能断定能否作为以(,)y u 为自变量的隐函数.除此之外,在点0P 附近,任意两个变量都可作为以其余两个变量为自变量的隐函数.如,要求(,),(,)x f u v y g u v ==的偏导数,对方程组分别关于,u v 求偏导数,得22010u u u u u xx y yx xy --=⎧⎨---=⎩, 22010v v v v v xxy xy yx --=⎧⎨--=⎩分别解之,得221,2u xu x x y +=- 221;2v xvx x y -=- 222,2u x yu y x y +=--222.2v x yvy x y -=-3 隐函数的几何应用本节的重点是掌握用隐函数和隐函数组求导法求平面曲线的切线与法线,空间曲线的切线与法平面以及求曲面的切平面与法线.3.1 平面曲线的切线与法线设平面曲线的方程为 (,)0F x y =,F 在000(,)P x y 的某邻域内满足隐函数定理的条件.隐函数 ()y f x =在0x 的导数 '000()()/()x y f x F P F P =-.曲线在0x 的切线方程为0000()()()()0x y F P x x F P y y -+-=.法线方程为0000()()()()0y x F P x x F P y y ---=.例4 求曲线 332()90x y xy +-=在(2,1)处的切线与法线. 解 设33(,)2()9F x y x y xy =+-,则2269,69x y F x y F y x =-=-处处连续, 且(2,1)15,(2,1)12x y F F ==-.因此曲线在(2,1)处的切线与法线分别为5460,x y --=及45130x y +-=3.2 空间曲线的切线与法平面设有空间曲线 []0:(),(),(),,,L x x t y t z z t t P L αβ===∈∈.且 []000000000(,,)((),(),()),,P x y z P x t y t z t t αβ=∈.再设L 为光滑曲线.在L 上任取一点0000(,,)P x x y y z z +∆+∆+∆,则割线 0P P 的方程为00,x x y yz z x y z ---==∆∆∆因此:00o x x y y z zx y z z t t---==∆∆∆∆∆∆令 0t ∆→,则由L 为光滑曲线知,0p p →.所以L 在0p 的切线方程是000000()()()x x y y z z x t y t z t ---=='''.过0p 与切线垂直的平面称为L 在0p 的法平面,其方程为 000000()()()()()()0x t x x y t y y z t z z '''-+-+-=.(,,)0:(,,)0F x y z LG x y z =⎧⎨=⎩ 且在0000(,,)P x y z 的某一个邻域内满足隐函数组定理的条件(不妨设0(0(,)P x y ∂≠∂F,G)) 方程组在0P 附近确定惟一连续可微的隐函数组:(),()x z y z ϕψ==.则()()x z y z z z ϕψ=⎧⎪=⎨⎪=⎩.且 (,)(,),(,)(,)x z F G d z y F G d x y ∂∂=-∂∂ (,)(,)(,)(,)y z F G d x z F G d x y ∂∂=∂∂ 所以L 在0P 的切线方程是000(,)(,)(,)(,)(,)(,)x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂. 例5:求曲线22222250x y z x y z⎧++=⎪⎨+=⎪⎩在(3,4,5)处的切线与法平面. 解:令22222250,F x y z G x y z =++-=+-.在(3,4,5)处,6,x F = 8,y F = 10,z F = 6,x G = 8,y G = 10z G =- (,)160,(,)F G y z ∂=-∂ (,)120,(,)F G z x ∂=∂ (,)0(,)F G x y ∂=∂ 所求切线为3451601200x y z ---==- . 所求法平面为430x y -= .3.3空间曲面的切平面与法线设曲面S 的方程是:0000(,,)0,(,,)F x y z P x y z S =∈.在0()U p 内满足隐函数定理的条件,不妨设0()0z F p ≠.方程在0p 附近确定隐函数 (,)z f x y =,且0000()(,),()x x z F p f x y F p =- 0000()(,)()y y z F p f x y F p =-由此得S 在0p 处的切平面为000000()()()()()()0y x z F P x x F P y y F P z z -+-+-=.法线为000000()()()x y z x x y y z z F P F P F P ---==.例6.求曲面:222236x y z ++=在点(1,1,1)处的切平面与法线方程. 解:设222(,,)236F x y z x y z =++-,则在(1,1,1)处,2,4,6x y z F F F ===. 因此,切平面方程2(1)4(1)6(1)0x y z -+-+-=即236x y z ++=. 所得法线方程:111123x y z ---==.。
隐函数定理及其应用中几何应用的空间曲线的切线与法平面
3
计算变换后图形上任意一点的切线和法平面,从而分析变换对图形的影响
4
物理模拟:在物理模拟中,隐函数定理可以用于计算物理现象的几何特征。 例如,在流体动力学模拟中,通过计算流场中任意一点的切线和法平面,
可以分析流体的速度、方向和压力等特征
计算机视觉:在计算机视觉中,隐函数定理可以用于图像处理和分析。例 如,通过分析图像中像素点的切线和法平面,可以提取图像的特征、进行
-
感谢观看
汇报人:XXXX
指导老师:XXX
隐函数定理及其应用中几何应用的空间曲理提供了对曲面和曲线进行精确描述和计算的有效工具。在 实际应用中,我们经常需要处理复杂的曲面和曲线,如自由曲面、NURBS曲面等。这 些曲面和曲线在计算机图形学、CAD/CAM、动画制作等领域具有广泛的应用 利用隐函数定理,我们可以将复杂的曲面和曲线表示为隐函数的形式,进而方便地计算其 在任意一点的切线和法平面。这为几何建模带来了极大的便利,使得我们可以更加高效地 进行曲面拼接、裁剪、光顺性分析等操作
隐函数定理及其应用中几何应用的空间曲线的切线与法平面
隐函数定理在几何中的应用
隐函数定理在几何中的应用非常广泛,它可以用于解决许多与曲面、曲线和几何变换相关 的问题。以下是一些具体的应用示例
曲面绘制:在计算机图形学中,隐函数定理被广泛应用于绘制复杂的曲面。通 过将曲面表示为隐函数的形式,可以方便地计算曲面上任意一点的切线和法平 面,从而生成光滑的曲面
隐函数定理及其应用中几何应用的空间曲线的切线与法平面
2
曲线分析:在分析几何学中,隐函数定理可以用于研究曲线的性质和变化 规律。例如,通过分析曲线在某一点的切线和法平面,可以确定曲线在该
点的曲率、方向和变化趋势等
第十八章 隐函数定理及其应用
这种形式的函数称为显函数.但在不少场合常会 遇到另一种形式的函数,其自变量与因变量之间的对 应法则是由一个方程式所决定的.这种形式的函数称 为隐函数.
设X R,Y R, 函数 F : X Y R.
对于方程
F ( x, y ) 0
(1)
若存在集合 I X , J Y , 使得对于任何 x I, 恒有唯一确定的 y J, 它与x一起 满足方程(1),则称由方程确定的一个定义 在I上,值域含于J的隐函数. 例如 方程
1 f ( x 0 ) y0 , x ( x0 , x0 ) 时, ( x, f ( x )) U ( P0 ) 且 F ( x , f ( x )) 0;
o
2 f ( x ) 在 ( x0 , x0 ) 内连续.
o
则在点 P0 的某邻域U ( P0 ) 内,方程 F ( x, y ) 0 唯一地确 定一个定义在某区间 ( y0 , y0 ) 内的函数 (隐函数) x g( y ),使得
三 、隐函数定理
一个方程所确定的隐函数及其导数
则在点 P0 的某邻域U ( P0 ) 内,方程 F ( x, y ) 0 唯一地确 定一个定义在某区间 ( x0 , x0 ) 内的函数 (隐函数) y f ( x ),使得
定理18.1 (隐函数存在唯一性定 理) 设F ( x, y)满足 (i) 函数 F 在以 P0 ( x0 , y0 ) 为内点的区域 D 上连续; Fy ( x , y )在 D 内连续; (iv) Fy ( x0 , y0 ) 0,
x y 1
2 2
确定了定义在 (-1,1) 上的隐函数
y 1 x
2
隐函数存在定理在几何方面的应用
1.切线方程 法平面的方程 2.切平面方程 法线方程
作业: P259 1(2), 3, 4(2), 5
例2 求曲线 在点 法平面方程: 切线方程: 解 处的切线及法平面方程。
例3 求曲面 上点 的切平面的方程与法线方程. 解 切平面方程与法线方程分别为 与
3 设曲面S的方程是
取定
对应曲面上的点
若函数组 满足11.1定理
极限位置就是曲线在点 的切线.
则切线方程为
切线的方向向量
称为曲线C在点 的切向量。
一个平面通过空间曲线C上的一点
且与点 的切线垂直,称此平面是空间
曲线C在点 的法平面。
在法平面上任取一点
,则
与切向量垂直.即
法平面方程
法平面方程是
或 例1 求螺旋线 在 处的切线方程与法平面方程. 解:
第八节 隐函数存在定理的几何应用
单击此处添加文本具体内容
演讲人姓名
CLICK HERE TO ADD A TITLE
01
空间曲线的切线与法平面
03
它们在 可导,且
05
取定曲线上一点
02
设空间曲线C的参数方程为:
04
过曲线C上两点 的割线方程为
或
当 沿曲线C 时,即 割线 的
则在点 的邻域存在连续偏
导数的反函数组
代入 有
曲面S在点M的法向量为
3的推论,
对u,v求偏导 解方程组,得 它的在点 的切平面方程是
B
ห้องสมุดไป่ตู้
D
F
A
C
E
法线方程是
例4 求曲面
方程与法线方程.
它在点
切平面方程
法线方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隐函数定理及其在几何上的应用【摘要】 隐函数(组)是函数关系的另一种表现形式。
讨论隐函数(组)的存在性、连续性与可微性,是深刻了解这类函数本身的需要。
同时在求以隐函数(组)的形式为方程出现的曲线和曲面的切线或切平面时,都要用到隐函数(组)的微分法。
【关键词】隐函数存在惟一性定理、隐函数可微性定理 、隐函数组定理、隐函数定理在几何上的应用 1 定理及证明隐函数存在惟一性定理设方程 ()0,=y x F 中的函数()y x F ,满足以下四个条件: (i) 在以 为内点的某一区域D 上连续 ;(ii); (初始条件 );(iii) 在D 内存在连续的偏导数;(iv).则在点0P 的某邻域()D P U ∈0内 , 方程()y x F ,=0唯一地确定一个定义在某区间()αα+-∈00,x x x 内的隐函数()x f y =,使得 ⑴ 当()00y x f = ,()αα+-∈00,x x x 时, 有(())()0,P U x f x ∈且()()0,≡x f x F ;⑵ 函数()x f 在区间()αα+-∈00,x x x 内连续。
证 首先证明隐函数的存在与惟一性. 证明过程归结起来有以下四个步骤(a) “一点正, 一片正 ” 由条件 (iv), 不妨设()0,00>y x F y 因为()y x F y ,连续,所以根据保号性0>∃β 使得()0,>y x F y ,()S y x ∈,其中[][]D y y x x S ⊂+-⨯+-=ββββ0000,, (b) “正、负上下分 ” 因()0,>y x F y ,()S y x ∈,,故[]ββ+-∈∀00,x x x ,把()y x F ,看做y 的函数, 它在[]ββ+-00,y y 上严格递增,且连续(据条件 (i)) 特别对于函数()y x F ,0,由条件可知()0,00<-βy x F ,()0,00>+βy x F(c) “同号两边伸”因为()β-0,y x F ,()β+0,y x F 关于x 连续,故由(b )的结论,根据保号性α∃,()βα≤<0,使得()β-0,y x F <0,()β+0,y x F >0,()αα+-∈00,x x x(a) 一点正,一片正++++++++++++++++++++++++++++++++++++++++ x 0x 0x β-0x β+•0y 0y β-0y β+y SO (b) 正、负上下分+++•••_ _ _ +_0 xyO 0x β-0x β+0x y β+y β-0y (c) 同号两边伸•++++- - -- x 0x yy O 0x α-0x α+-y βy β+••(d) “利用介值性”()αα+-∈∀00,ˆx x x,因()y x F ,ˆ关于y 连续, 且严格递增,故由(c )的结论,依据介值定理,存在惟一 的()ββ+-∈00,ˆy y y,满足()0ˆ,ˆ=y x F 由xˆ的任意性,这就证得存在惟一的隐函数: ()x f y =,其中{()().,,,0000ββαα+-=∈+-=∈y y J y x x I x 若记()J I P U ⨯=0,则定理结论[1]得证。
下面再来证明上述隐函数的连续性:即()αα+-∈∀00,x x x ,欲证上述()x f 在x 连续。
如右图所示,0>∀ε,取ε足够小,使得βεεβ+≤+<-≤-00y y y y ,其中()x f y =.由()y x F ,对y 严格增,而()0,=y x F ,推知()0,<-εy x F ,()0,>+εy x F . 类似于前面(c ),0>∃δ,使得()()ααδδ+-⊂+-00,,x x x x , 且当()δδ+-∈x x x ,时,有()0,<-εy x F ,()0,>+εy x F .类似于前面(d ),由于隐函数惟一,故有()εε+<<-y x f y ,()δδ+-∈x x x ,, 因此()x f 在x 连续。
由x 的任意性,便得证()x f 在()αα+-00,x x 上处处连续。
..x xOyδ-x δ+x y ε-y ε+y β-0y β+0y ++++ ---- 0P . .(d) 利用介值性++++ - -- - x0x y0y O 0x α-0x α+0()U P0y β-0y β+()y f =•••隐函数可微性定理设函数满足隐函数存在唯一性定理的条件 , 又设在D 内存在且连续 . 则隐函数在区间内可导 ,且()()()y x F y x F x f y x ,,-=' . 证 设{()().,,,0000ββαα+-=∈+-=∈y y J y x x I x ,且x x ∆+∈I ,则()J x x f y y ∈∆+=∆+.由条件易知F 可微,并有()0,=y x F ,()0,=∆+∆+y y x x F . 使用微分中值定理,θ∃()10<<θ,使得()()()()y y y x x F x y y x x F y x F y y x x F y x ∆∆+∆++∆∆+∆+=-∆+∆+=θθθθ,,,,0,⇒()()y y x x F y y x x F y xy x ∆+∆+∆+∆+-=∆∆θθθθ,, . 因y x F F f ,,都是连续函数,故0y 0→∆→∆时x ,并有()()()y y x x F y y x x F y x x f yx x x ∆+∆+∆+∆+-=∆∆='→∆→∆θθθθ,,lim lim00=()()y x F y x F y x ,,-,()J I y x ⨯∈,.显然()x f '也是连续函数。
隐函数组定理设方程组 {),,,(0),,,(==v u y x G v u y x F ,中的函数F 与 G 满足下列条件:①在以点()00000,,,v u y x P 为内点的某区域4R V ⊂上连续;②()()000==P G P F ,(初始条件); ③在 V 内存在连续的一阶偏导数;④()()0,,0≠∂∂=P P v u G F J. 则有如下结论成立:a. 存在邻域()()()V W U Q U P U ⊂⨯=000,其中()()000000,,,v u W y x Q ==,使得()()()()00,!,,W U v u Q U y x ∈∃∈∀即有 {()()y x v v y x u u ,,==,()()()()00,,,W U v u Q U y x ∈∈;且满足()000,y x u u =,()000,y x v v =以及{()()()()()(),0,,,,,,0,,,,,≡≡y x v y x u y x G y x v y x u y x F ()()()()00,,,W U v u Q U y x ∈∈. b. ()()y x v y x u ,,,在()0Q U 上连续.c. ()()y x v y x u ,,,在()0Q U 上存在一阶连续偏导数,且有()()()()()()()()y u G F J y v v y G F Jy u x u G F J x v v x G F J x u ,,1,,,1,,1,,,1∂∂-=∂∂∂∂-=∂∂∂∂-=∂∂∂∂-=∂∂ .2 隐函数定理在几何上的应用 应用一:平面曲线的切线与法线设平面曲线方程为. 有.切线方程为 ,法线方程为 .例1 求笛卡尔叶形线在点处的切线和法线 .解:设()()xy y x y x F 92,33-+=,易得在点处满足隐函数定理条件。
易算出)12,15(),(-=y x F F ,于是所求切线与法线方程为:()()()().01354,0115212;0645,0112215=-+=-+-=--=---y x y x y x y x 即即应用二: 空间曲线的切线与法平面(1) 曲线由参数式给出 :.切线的方向数与方向余弦.切线方程为 .法平面方程为 .例2 求曲线⎪⎪⎩⎪⎪⎨⎧=-=-=.2sin 4,cos 1,sin tz t y t t x 在2π=t 的点处的切线与法平面方程。
解 曲线的切向量函数为(1cos ,sin ,2cos )2t t t -,在2π=t 对应点的切向量为2)。
于是曲线在2π=t 对应点的切线方程为222112-=-=+-z y x π, 法平面方程为(1)(1)2(22)2x y z π-++-+-=2402x y z π++--=.(2) 曲线由两面交线式给出 :设曲线 :点在 上.切线方程为 .法平面方程为.例3 求曲线⎩⎨⎧=++=++.6,0222z y x z y x 在)1,2,1(-点处的切线与法平面方程。
解 曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为(6,0,6)-。
于是曲线在)1,2,1(-点的切线方程为⎩⎨⎧-==+22y z x ,法平面方程为 z x =应用三:曲面的切平面与法线设曲面 的方程为 , 点在 上.切平面方程为.法线方程为 .例4 求曲面3432y x z +=,在点)35,1,2(的切平面与法线方程:解 曲面的法向量函数为32(8,9,1)x y -,以(,,)(2,1,35)x y z =代入,得到(64,9,1)-,所以切平面方程为0)35()1(9)2(64=---+-z y x ,即 6491020x y z +--=,法线方程为13591642--=-=-z y x . 【参考文献】1 同济大学应用数学系.《数学分析》.第3版.北京:高等教育出版社,2 华中科技大学数学系.《<数学分析>教材辅导与习题详解》.北京:高等教育出版社.。