曲面及其方程,二次曲面
合集下载
83曲面及其方程
20
一般地,在空间解析几何
z
方程 F(x, y) 0 表示 柱面,
母线 平行于 z 轴;
x 准线 xoy 面上的曲线 l1 : F ( x, y) 0
l1
y
z
l2
方程 G( y, z) 0 表示柱面,
y
母线 平行于 x 轴;
x
准线 yoz 面上的曲线 l2 : G( y, z) 0
观察柱面的形 成过程:
准线
C
母线
17
柱面演示
播放
18
例如: 考虑方程 x2 + y2 = R 2 所表示的曲面.
在xoy面上, x2 + y2 = R2 表示以 原点O为圆心, 半径为R的圆.
曲面可以看作是由平行 于 z 轴的直线L沿xoy面上的 圆x2 + y2 = R2 移动而形成, 称 该曲面为圆柱面.
相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法:
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
以下用截痕法讨论几种常见的二次曲面.
24
(1) 椭球面
z
x2 a2
y2 b2
z2 c2
1
O y
1 用坐标面z = 0 , x = 0和 x y = 0去截割,分别得椭圆
z x2 y2 cot
两边平方
z2 a2( x2 y2 )
o
y
x
---圆锥面的标准方程
13
y2 z2
例6 以 曲 线
a
2
c2
1 为母线,
y 0
一般地,在空间解析几何
z
方程 F(x, y) 0 表示 柱面,
母线 平行于 z 轴;
x 准线 xoy 面上的曲线 l1 : F ( x, y) 0
l1
y
z
l2
方程 G( y, z) 0 表示柱面,
y
母线 平行于 x 轴;
x
准线 yoz 面上的曲线 l2 : G( y, z) 0
观察柱面的形 成过程:
准线
C
母线
17
柱面演示
播放
18
例如: 考虑方程 x2 + y2 = R 2 所表示的曲面.
在xoy面上, x2 + y2 = R2 表示以 原点O为圆心, 半径为R的圆.
曲面可以看作是由平行 于 z 轴的直线L沿xoy面上的 圆x2 + y2 = R2 移动而形成, 称 该曲面为圆柱面.
相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法:
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
以下用截痕法讨论几种常见的二次曲面.
24
(1) 椭球面
z
x2 a2
y2 b2
z2 c2
1
O y
1 用坐标面z = 0 , x = 0和 x y = 0去截割,分别得椭圆
z x2 y2 cot
两边平方
z2 a2( x2 y2 )
o
y
x
---圆锥面的标准方程
13
y2 z2
例6 以 曲 线
a
2
c2
1 为母线,
y 0
7-3曲面方程、曲线方程
的圆锥面方程. 解: 在yoz面上直线L 的方程为
z L
绕z 轴旋转时,圆锥面的方程为
M (0, y, z)
y
两边平方
x
z2 a2( x2 y2 )
例4. 求坐标面 xoz 上的双曲线
分别绕 x
轴和 z 轴旋转一周所生成的旋转曲面方程.
解:绕 x 轴旋转 所成曲面方程为
x2 a2
y2 z2 c2
l
的坐标也满足方程 x2 y2 R2
沿圆C平行于 z 轴的一切直线所形成的曲面称为圆
柱面. 其上所有点的坐标都满足此方程, 故在空间
x2 y2 R2 表示圆柱面
定义3. 平行定直线并沿定曲线 C 移动的直线 l 形成
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
•
表示抛物柱面,
z
y2 1) 2
z2 1 (z 1)2
1
在xoy 面上的投影曲线方程为
x
2
2
y z
2 2 0
y
0
z
C
o
1y
x
又如,
上半球面
和锥面
所围的立体在 xoy 面上的投影区域为: 二者交线在
xoy 面上的投影曲线所围之域 .
二者交线
在 xoy 面上的投影曲线
所围圆域: x2 y2 1, z 0.
母线平行于 z 轴;
准线为xoy 面上的抛物线.
•
x2 a2
y2 b2
1表示母线平行于
z 轴的椭圆柱面.
x
z
C
o
y
z
• x y 0 表示母线平行于
大学数学_7_4 曲面与曲线
z
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b
1曲面方程(轨迹)2曲面形状
x
x 2y z 0
(1)消去z 得投影
x2 5 y2 4xy x 0
,
z 0
(2)消去y 得投影
x2 5z2 2xz 4x 0
,
y 0
(3)消去x
得投影
y2
z2
2
y
z
0 .
x 0
x2 y2 z2 1
例6
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
五、空间曲线及其方程
1、空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
z
例1
x2 y2 1
表示怎样的曲线? S1
2x 3 y 3z 6
S2
交线为椭圆.
C
o
y
x
2、空间曲线的参数方程
x x(t)
y
y(t )
空间曲线的参数方程
z z(t)
当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全
而:z
x2 a2
y2 b2
椭圆抛物面(图7-25)
xo
y
圆锥面:
z a x2 y2
zz
或z2 a(2 x2 y2)
yoz面上直线 z ay 绕z轴旋转 o
x
y
z ay
y2 z2 (例 7.6.4)椭圆 a 2 c2 1绕 y 轴和 z 轴;
x 0
绕 y 轴旋转
y2 x2 z2 a2 c2 1
F(x, y,z) 0 G( x, y, z) 0
x x(t)
y
y(t )
8-3 曲面及其方程
(2)用坐标面 xoz ( y 0)与曲面相截
截得中心在原点的双曲线.
x2 a2
z2 c2
1
y
0
实轴与 x 轴相合, 虚轴与 z 轴相合.
返回
与平面 y y1 ( y1 b) 的交线为双曲线.
x2
a
2
z2 c2
1
y12 b2
双曲线的中心都在 y轴上.
y y1
(1) y12 b2 , 实轴与 x 轴平行, 虚轴与 z 轴平行.
y
o
x
x
抛物柱面
平面
y
y x
返回
从柱面方程:
只含 x, y而缺z的方程F(x, y) 0,在
空间直角坐标系中表示母线平行于 z 轴的柱
面,其准线为 xoy面上曲线C .(其他类推)
实 例
x2 y2 1 a2 b2
椭圆柱面 // z轴
x2 z2 1
双曲柱面 // y轴
a2 c2
y 2 2 px 抛物柱面 // z 轴
椭球面
平面 xk (|k|<a) 与椭球面的交线也是椭圆;
平面 yk (|k|<b) 与椭球面的交线也是椭圆;
返回
椭球面
椭球面 x2 y 2 z 2 1的图形: a2 b2 c2
椭球面的画法:
z
1.选择坐标系;
2.画坐标面与曲面的交线;
c
3.画出轮廓线。
O a x
b y
返回
椭球面的几种特殊情况:
y
0
.
x
返回
z
抛物面
x2 y2 z ( p 与 q 同号) 2 p 2q
椭圆抛物面
o
用截痕法讨论: 设 p 0, q 0 x
高等数学6(6)曲面及其方程
p 0,q 0
21
特殊地 当p q时, 方程变为
x2 y2 z ( p 0)
旋转抛物面
2p 2p
x2 y2 z 2 p 2q
(由 xOz面上的抛物线 x2 2 pz 绕z轴旋转
而成的)
用平面 z z1 (z1 0)去截这曲面,截痕为圆.
x2
y2
2 pz1
z z1
当 z1变动时,这种圆 的中心都在 z 轴上.
特点是: 平方项有一个取负号,另两个取正号.
z z
O
x
yx
O
y
炼油厂、炼焦厂的冷却塔就是单叶双曲面
的形状.
24
x2 a2
y2 b2
z2 c2
1
单叶双曲面
z
类似地, 方程
x 2 a2
y2 b2
z2 c2
1
O
ax22
y2 b2
z2 c2
1
x
y
亦表示 单叶双曲面.
想一想 以上两方程的图形是与此图形 一样吗?
f ( y, x2 z2 ) 0
4
例3 直线L绕另一条与L相交的直线旋转一周
所得旋转曲面称为圆锥面. 两直线的交点称为
圆锥面的顶点, 两直线的夹角 (0 )称为
2 圆锥面的半顶角. 试建立顶点在坐标原点O, 旋
转轴为z轴,半顶角为 的圆锥面的方程.
解 yOz面上直线方程为 z
z
z y cot
z z1
当z1 0时,截痕退缩为原点;当z1 0时, 截痕不存在. 原点叫做椭圆抛物面的顶点.
19
x2 y2 z 2 p 2q
(2) 用坐标面 xOz( y 0)去截这曲面, 截痕为抛物线.
第3节曲面及其方程
18
一般地 :
F ( x , y ) = 0, F ( y , z ) = 0, F ( x , z ) = 0
在空间都表示一个柱面 .
上面方程中缺少哪个变 量, 就 表示此柱面与哪个坐标 轴平行 .
19
四、二次曲面
曲面方程 :
F ( x, y, z ) = 0
如x + ( y − 1) + z = 1
y
d = x + y =| y1 |
将 z = z1 , y1 = ± x 2 + y 2 代入
F( y1, z1) = 0
9
将 z = z1 , y1 = ± x + y
2
2
得方程 F ±
所以
x + y , z = 0, F ( y , z ) = 0 绕 z 轴旋转曲面方程 旋转曲面方程.
2 2
( 2) a = b = c ,
x2 y2 z2 1 球面 2 + 2 + 2 = a a a
方程可写为 x 2 + y 2 + z 2 = a 2 .
24
(二)抛物面
x2 y2 + = z ( p 与 q 同号) 同号) 2 p 2q
椭圆抛物面 用截痕法讨论: 设 p > 0, q > 0 用截痕法讨论: (1)用坐标面 xoy ( z = 0) 与曲面相截 ) 截得一点, 截得一点,即坐标原点 O ( 0,0,0) 原点也叫椭圆抛物面的顶点 原点也叫椭圆抛物面的顶点. 顶点
2 2 2
二次曲面: 三元二次方程所表示的曲面称之. 二次曲面: 三元二次方程所表示的曲面称之.
相应地平面被称为一次曲面. 相应地平面被称为一次曲面. 一次曲面
一般地 :
F ( x , y ) = 0, F ( y , z ) = 0, F ( x , z ) = 0
在空间都表示一个柱面 .
上面方程中缺少哪个变 量, 就 表示此柱面与哪个坐标 轴平行 .
19
四、二次曲面
曲面方程 :
F ( x, y, z ) = 0
如x + ( y − 1) + z = 1
y
d = x + y =| y1 |
将 z = z1 , y1 = ± x 2 + y 2 代入
F( y1, z1) = 0
9
将 z = z1 , y1 = ± x + y
2
2
得方程 F ±
所以
x + y , z = 0, F ( y , z ) = 0 绕 z 轴旋转曲面方程 旋转曲面方程.
2 2
( 2) a = b = c ,
x2 y2 z2 1 球面 2 + 2 + 2 = a a a
方程可写为 x 2 + y 2 + z 2 = a 2 .
24
(二)抛物面
x2 y2 + = z ( p 与 q 同号) 同号) 2 p 2q
椭圆抛物面 用截痕法讨论: 设 p > 0, q > 0 用截痕法讨论: (1)用坐标面 xoy ( z = 0) 与曲面相截 ) 截得一点, 截得一点,即坐标原点 O ( 0,0,0) 原点也叫椭圆抛物面的顶点 原点也叫椭圆抛物面的顶点. 顶点
2 2 2
二次曲面: 三元二次方程所表示的曲面称之. 二次曲面: 三元二次方程所表示的曲面称之.
相应地平面被称为一次曲面. 相应地平面被称为一次曲面. 一次曲面
曲面及其方程、二次曲面-PPT
8
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放
第三节 曲面及其方程 (1,2,3) (2,-1,4)
得到, 见书 P316 )
72
内容小结
1. 空间曲面
三元方程 F (x , y , z) = 0
• 球面 (x − x0 )2 + ( y − y0 )2 + (z − z0 )2 = R2
• 旋转曲面
如,
曲线
⎩⎨⎧
f (y, z) x=0
=
0
绕
z
轴的旋转曲面:
• 柱面
f (± x2 + y2 , z) = 0
(2) 不在曲面 S 上的点的坐标不满足此方程,
则 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
两个基本问题 :
F(x, y, z) = 0
z
S
(1) 已知一曲面作为点的几何轨迹时,
o x
y
求曲面方程.
(2) 已知方程时 , 研究它所表示的几何形状
l
的坐标也满足方程 x2 + y2 = R2
沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆
柱面.其上所有点的坐标都满足此方程,故在空间
x2 + y2 = R2 表示圆柱面
62
2
2013/3/1
定义. 平行定直线并沿定曲线 C 移动的直线 l 形成
的轨迹叫做柱面. C 叫做准线, l 叫做母线.
2013/3/1
第三节 曲面及其方程
一、曲面方程的概念
二、旋转曲面 三、柱面 四、二次曲面
51
一、曲面方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 轨迹方程.
解:设轨迹上的动点为 M (x, y, z) , 则 AM = BM , 即
高等数学(下) 第5讲 理论-2课时
2x 3z 6 表示平面:
z
y o xz
交
2
线
o
y
为:
oy
3 x
x
z a2 x2 y2
例2
方程组
(
x
a )2 2
y2
a2 表示怎样的曲线? 4
解 z a2 x2 y2
表示上半球面,
(x
a )2
y2
a
2
表示圆柱面,
2
4
交线如图:
例3
曲线
一、空间曲线的一般方程
空间曲线C可看作空间两曲面的交线.
F ( x, y, z) 0 S1
G(x, y,z) 0 S2
空间曲线的一般方程 x
z
S1
S2
C
o
y
例1
方程组
x2
y2 1 表示怎样的曲线?
2x 3z 6
z
解 x2 y2 1 表示母线
平行于z轴的圆柱面:
o
y
x
3. 双曲柱面(一支)
y2 x2 1
z
b2 a2
b
o
y
x
六、空间区域简图
例1 由曲面 z 6 x2 y2 与 z x2 y2 围成一个 空间区域, 试作出它的简图.
例2 由曲面 x 0, y 0, z 0, x y 1, y2 z2 1 围 成一个空间区域(在第I卦限部分), 试作出它的简图.
定义3 平行于某定直线的直线L并沿定曲线 C 移动 所 形成的轨迹叫做柱面.
下面我们来分析一下方程
在空间表示怎样的曲面 .
z
y o xz
交
2
线
o
y
为:
oy
3 x
x
z a2 x2 y2
例2
方程组
(
x
a )2 2
y2
a2 表示怎样的曲线? 4
解 z a2 x2 y2
表示上半球面,
(x
a )2
y2
a
2
表示圆柱面,
2
4
交线如图:
例3
曲线
一、空间曲线的一般方程
空间曲线C可看作空间两曲面的交线.
F ( x, y, z) 0 S1
G(x, y,z) 0 S2
空间曲线的一般方程 x
z
S1
S2
C
o
y
例1
方程组
x2
y2 1 表示怎样的曲线?
2x 3z 6
z
解 x2 y2 1 表示母线
平行于z轴的圆柱面:
o
y
x
3. 双曲柱面(一支)
y2 x2 1
z
b2 a2
b
o
y
x
六、空间区域简图
例1 由曲面 z 6 x2 y2 与 z x2 y2 围成一个 空间区域, 试作出它的简图.
例2 由曲面 x 0, y 0, z 0, x y 1, y2 z2 1 围 成一个空间区域(在第I卦限部分), 试作出它的简图.
定义3 平行于某定直线的直线L并沿定曲线 C 移动 所 形成的轨迹叫做柱面.
下面我们来分析一下方程
在空间表示怎样的曲面 .
大学高数第七章7-5曲面方程
x z (1)双曲线 2 2 1分别绕 x 轴和 z 轴; a c
x2 y2 z2 绕 x 轴旋转 2 1 2 a c x y z 2 1 绕 z 轴旋转 2 a c
2 2 2
2
2
旋 转 双 曲 面
( hyperboloid )
下页
上页
返回
-1 -0.5 0
1
0.5 1
0
M (0, y , z ) f ( y, z ) 0 M
d
1 1 1
y
d
x y | y1 |
2 2 2
x
2
将 z z1 , y1 x y 代入
f ( y1 , z1 ) 0
上页 下页 返回
z z1 , y1 x 2 y 2 代入 f ( y1 , z1 ) 0 将
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面。 这条定曲线C叫 柱面的准线 (directrix) ,动直 线L叫柱面的母 线(generatrix).
观察柱面的形 成过程:
播 放
上页
下页
返回
柱面举例
z
z
y 2x
2
平面
o
y
o
y
x
x
y x
抛物柱面
( Cylinder of the second order parabolic )
实轴与 x 轴相合, 虚轴与 z 轴相合.
上页 下页 返回
与平面 y y1 ( y1 b) 的交线为双曲线.
2 x2 z2 y1 2 2 1 2 b 双曲线的中心都在 y 轴上. a c y y 1
高等数学:曲面方程解析
三元二次方程
Ax2 By2 Cz 2 Dxy Eyx Fzx Gx Hy Iz J 0
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面
适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 .
故所求方程为
(x x0 )2 ( y y0 )2 (z z0 )2 R2 z
特别,当M0在原点时,球面方程为
x2 y2 z2 R2
表示上(下)球面 . o x
M0
M
y
2019年12月19日星期四
4
目录
上页
下页
返回
例2 研究方程 的曲面. (课本 例3)
表示怎样
解: 配方得 此方程表示: 球心为
解:设轨迹上的动点为 M (x, y, z), 则 AM BM , 即
(x 1)2 ( y 2)2 (z 3)2 (x 2)2 ( y 1)2 (z 4)2
化简得 说明: 动点轨迹为线段 AB 的垂直平分面.
1:显然在此平面上的点的坐标都满足此方程,
2:不在此平面上的点的坐标不满足此方程.
例如 :
2019年12月19日星期四
6
目录
上页
下页
返回
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C:
若点 M1(0, y1, z1) C, 则有
z
C
当绕 z 轴旋转时, 该点转到
M (x, y, z) , 则有
z z1, x2 y2 y1
故旋转曲面方程为
准线 yoz 面上的曲线 l2 : G(y,z)=0. 3:方程 H (z, x) 0 表示 柱面,
高等数学7.4曲面及其方程
设柱面的准线方程:F(x, y) 0, z 0,母线 / / z轴,求柱面方程
z
解:柱面上M ( x, y, z),则准线上M(0 x0 , y0 , z0 ),
M
使得MM0 / / z轴 ,从而x x0 , y y0
由于F(x0 , y0 ) 0,从而F(x, y) 0
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
二次曲面
曲面方程
旋转曲面
柱面
二次曲面
(1) 椭球面
z
x2 a2
y2 b2
z2 c2
1
O y
1 用坐标面z = 0 , x = 0和 x y = 0去截割,分别得椭圆
x
2
a2
柱面
例3
以曲
线
x a
2 2
z2 c2
1
为母线,
y 0
绕 z 轴旋转而成的曲面方程为
x2 y2 a2
z2 c2
1,
即
x2 a2
y2 a2
z2 c2
1 ——
旋 转 单 叶双曲面
二次曲面
曲面方程
旋转曲面
柱面
例3
以曲线
x2 a2
z2 c2
1 为母线,
y 0
o
的点都在S上;
x
y
那末, 方程F (x, y, z) =0叫做曲面S的方程, 而曲面 S叫做方程F (x, y, z) =0的图形 .
曲面方程
旋转曲面
柱面
几种常见的曲面及其方程二次曲面曲线
O
x y z 2 2 1 2 a a b
y 2 x2 z 2 1 2 2 a b
222aFra biblioteka y
绕 y轴旋转而成的旋转曲面方程为 即
x
x2 y 2 z 2 2 2 1 2 b a b
例3 求
旋转所形成的旋转抛物面(图7-28)的方程。 解 方程 便得到旋转抛物线的方程为
就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
机动 目录 上页 下页 返回 结束
1. 椭球面 x2 y 2 z 2 2 2 1 ( a, b, c 为正数) 2 a b c
(1)范围: x a,
y b,
z c
(2)与坐标面的交线:椭圆
x2 y 2 2 2 1 , 黄a b z0
xoy 面上的抛物线 x ay 2 (a 0) 绕x轴
x ay 2 中的x 不变, 换成 y 2 z 2
x a( y z )
2 2
例4 求 yoz 面上的直线 z ky(k 0) 绕z轴 z 旋转一周而成的圆锥面的方程。
解 所求圆锥面的方程为
即
y
z k x2 y 2
x
l1
y
z
l2
y
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
方程 H ( z, x) 0 表示 柱面,
z
x
l3
x
母线 平行于 y 轴;
y
准线 xoz 面上的曲线 l3.
机动 目录 上页 下页 返回 结束
3.旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转
x y z 2 2 1 2 a a b
y 2 x2 z 2 1 2 2 a b
222aFra biblioteka y
绕 y轴旋转而成的旋转曲面方程为 即
x
x2 y 2 z 2 2 2 1 2 b a b
例3 求
旋转所形成的旋转抛物面(图7-28)的方程。 解 方程 便得到旋转抛物线的方程为
就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
机动 目录 上页 下页 返回 结束
1. 椭球面 x2 y 2 z 2 2 2 1 ( a, b, c 为正数) 2 a b c
(1)范围: x a,
y b,
z c
(2)与坐标面的交线:椭圆
x2 y 2 2 2 1 , 黄a b z0
xoy 面上的抛物线 x ay 2 (a 0) 绕x轴
x ay 2 中的x 不变, 换成 y 2 z 2
x a( y z )
2 2
例4 求 yoz 面上的直线 z ky(k 0) 绕z轴 z 旋转一周而成的圆锥面的方程。
解 所求圆锥面的方程为
即
y
z k x2 y 2
x
l1
y
z
l2
y
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
方程 H ( z, x) 0 表示 柱面,
z
x
l3
x
母线 平行于 y 轴;
y
准线 xoz 面上的曲线 l3.
机动 目录 上页 下页 返回 结束
3.旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转
空间中的曲面和曲线及二次曲面
33
第六章 二次型与二次曲面
§6.3 二次曲面
例3. z = xy. 0 1/2 0 解: xy = (x, y, z) 1/2 0 0 0 0 0
x y , z
1 2 1 2 0 先求得正交矩阵Q = 1 2 1 2 0 , 1 0 0 0 1/2 0 1/2 0 0 使QT 1/2 0 0 Q = 0 1/2 0 , 0 0 0 0 0 0
x = acost y = asint z = vt z
(tR
aO x
y
O x
a y
15
a
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
2. 维维安尼曲线 x = a (1+cost) 2 x 2 + y 2 + z2 = a 2 y = a sint (xa/2)2 + y2 = a2/4 2 t z = asin 2
第六章
§6.2
二次型与二次曲面
空间中的曲面和曲线
§6.3
二次曲面
2011. 12. 22
1
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
§6.2 空间中的曲面和曲线 曲面的一般方程: F(x, y, z) = 0 曲线的一般方程: F(x, y, z) = 0 G(x, y, z) = 0 曲线的参数方程: x = x(t) y = y(t) z = z(t)
b
y
x 2 z2 y = 0, 2 + 2 = 1 a c x2 y2 z = 0, 2 + 2 = 1 a b
当a, b, c中有两个相等时——旋转面 当a = b = c = R时——半径为R的球面
23
第六章 二次型与二次曲面
§6.3 二次曲面
例3. z = xy. 0 1/2 0 解: xy = (x, y, z) 1/2 0 0 0 0 0
x y , z
1 2 1 2 0 先求得正交矩阵Q = 1 2 1 2 0 , 1 0 0 0 1/2 0 1/2 0 0 使QT 1/2 0 0 Q = 0 1/2 0 , 0 0 0 0 0 0
x = acost y = asint z = vt z
(tR
aO x
y
O x
a y
15
a
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
2. 维维安尼曲线 x = a (1+cost) 2 x 2 + y 2 + z2 = a 2 y = a sint (xa/2)2 + y2 = a2/4 2 t z = asin 2
第六章
§6.2
二次型与二次曲面
空间中的曲面和曲线
§6.3
二次曲面
2011. 12. 22
1
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
§6.2 空间中的曲面和曲线 曲面的一般方程: F(x, y, z) = 0 曲线的一般方程: F(x, y, z) = 0 G(x, y, z) = 0 曲线的参数方程: x = x(t) y = y(t) z = z(t)
b
y
x 2 z2 y = 0, 2 + 2 = 1 a c x2 y2 z = 0, 2 + 2 = 1 a b
当a, b, c中有两个相等时——旋转面 当a = b = c = R时——半径为R的球面
23
高等数学几种常见的曲面及其方程
一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。
1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。
1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。
1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。
)。
7.4 曲面及其方程
例如
高等数学
目录 上页 下页 返回 结束
yOz面上曲线C : f ( y, z) 0 绕 z 轴旋转一周而成
的旋转曲面的方程是什么?
给定旋转曲面上任一点 M (x, y, z) ,
z
设其是曲线 C上点 M1(0, y1, z1)
旋转过程中经过的一点
则有 z1 z, y1 x2 y2
y2 b2
z
特别,当a = b 时为绕 z 轴
的旋转抛物面. z k(x2 y2 )
z Oy
x
(2) 双曲抛物面(鞍形曲面-马鞍面) z
x2 y2 a2 b2
z
x2 a2
y2 b2
z
O
x
y
高等数学
目录 上页 下页 返回 结束
3 锥面
(1)圆锥面 z2 a2 ( x2 y2 )
❖
椭圆锥面:
x2 a2
y2 b2
z2
高等数学
双曲抛物面
双叶双曲面
x2 a2
y2 b2
z2 c2
1
圆锥面: z2 a2 ( x2 y2 )
目录 上页 下页 返回 结束
思考与练习
指出下列方程的图形:
方程 x5
平面解析几何中 空间解析几何中 平行于 y 轴的直线 平行于 yOz 面的平面
高等数学
目录 上页 下页 返回 结束
例7.4.4 将xOz面上的抛物线 求所形成的旋转曲面的方程.
绕 z 轴旋转一周,
解 绕z 轴旋转而成的旋转曲面的
方程为 这个曲面称为旋转抛物面
o
y
高等数学
目录 上页 下页 返回 结束
yOz面上曲线C : f ( y, z) 0 绕 z 轴旋转一周而成
的旋转曲面的方程是什么?
给定旋转曲面上任一点 M (x, y, z) ,
z
设其是曲线 C上点 M1(0, y1, z1)
旋转过程中经过的一点
则有 z1 z, y1 x2 y2
y2 b2
z
特别,当a = b 时为绕 z 轴
的旋转抛物面. z k(x2 y2 )
z Oy
x
(2) 双曲抛物面(鞍形曲面-马鞍面) z
x2 y2 a2 b2
z
x2 a2
y2 b2
z
O
x
y
高等数学
目录 上页 下页 返回 结束
3 锥面
(1)圆锥面 z2 a2 ( x2 y2 )
❖
椭圆锥面:
x2 a2
y2 b2
z2
高等数学
双曲抛物面
双叶双曲面
x2 a2
y2 b2
z2 c2
1
圆锥面: z2 a2 ( x2 y2 )
目录 上页 下页 返回 结束
思考与练习
指出下列方程的图形:
方程 x5
平面解析几何中 空间解析几何中 平行于 y 轴的直线 平行于 yOz 面的平面
高等数学
目录 上页 下页 返回 结束
例7.4.4 将xOz面上的抛物线 求所形成的旋转曲面的方程.
绕 z 轴旋转一周,
解 绕z 轴旋转而成的旋转曲面的
方程为 这个曲面称为旋转抛物面
o
y
8.3 曲面及其方程(新)
2 2
(2)曲线 F (x, z) 0 绕 z 轴旋转所成的旋转曲面的方程
F x2 y 2 , z 0
F (x, z ) 0 绕 x 轴旋转呢?
F x, y z
2
2
0
11
例 3 试建立顶点在原点,旋转轴为 z 轴,半顶角 z 为 的圆锥面方程.
解:在 xOy面上,直线 L的方程为
7
二、旋转曲面
定义
以一条平面曲线绕其 平面上的一条直线旋 转一周所成的曲面称 为旋转曲面. 这条定直线叫旋转 曲面的轴.
8
问题 : 求 yoz 面上一条曲线 C : F ( y, z ) 0 绕 z 轴旋转所成的曲面方程. [方法] F ( y1 , z1 ) 0 z 设曲线 C上任一点 M1 (0, y1 , z1 ) d M1 (0, y1 , z1 ) 绕 z 轴旋转, 转到点 M ( x, y, z ). M (1) z z1
x y z 2 1 2 a c
2 2 2
30
x y z 2 2 1 2 a b c
2
2
2
双叶双曲面 注意:双叶双曲面与旋转 双叶双曲面的区别! 旋转双叶双曲面:
x y z 2 1 2 a c
2 2 2
31
作业:8-3 P31
4, 5, 7, 9(3)(4)
32
思考题
即, ( x 1) 2 +( y 2) 2 ( z 3) 2 ( x 2) 2 +( y 1) 2 ( z 4) 2
化简得 2 x 6 y 2 z 7 0.
(表示一个平面)
说明:动点的轨迹为线段 AB的垂直平分面.
(2)曲线 F (x, z) 0 绕 z 轴旋转所成的旋转曲面的方程
F x2 y 2 , z 0
F (x, z ) 0 绕 x 轴旋转呢?
F x, y z
2
2
0
11
例 3 试建立顶点在原点,旋转轴为 z 轴,半顶角 z 为 的圆锥面方程.
解:在 xOy面上,直线 L的方程为
7
二、旋转曲面
定义
以一条平面曲线绕其 平面上的一条直线旋 转一周所成的曲面称 为旋转曲面. 这条定直线叫旋转 曲面的轴.
8
问题 : 求 yoz 面上一条曲线 C : F ( y, z ) 0 绕 z 轴旋转所成的曲面方程. [方法] F ( y1 , z1 ) 0 z 设曲线 C上任一点 M1 (0, y1 , z1 ) d M1 (0, y1 , z1 ) 绕 z 轴旋转, 转到点 M ( x, y, z ). M (1) z z1
x y z 2 1 2 a c
2 2 2
30
x y z 2 2 1 2 a b c
2
2
2
双叶双曲面 注意:双叶双曲面与旋转 双叶双曲面的区别! 旋转双叶双曲面:
x y z 2 1 2 a c
2 2 2
31
作业:8-3 P31
4, 5, 7, 9(3)(4)
32
思考题
即, ( x 1) 2 +( y 2) 2 ( z 3) 2 ( x 2) 2 +( y 1) 2 ( z 4) 2
化简得 2 x 6 y 2 z 7 0.
(表示一个平面)
说明:动点的轨迹为线段 AB的垂直平分面.
第三节 曲面及其方程
( x x0 )2 ( y y0 )2 ( z z0 )2 R
所求方程为
( x x0 ) ( y y0 ) ( z z0 ) R
2 2 2
2
特殊 球心在原点的球面方程
x 2 y 2 z 2 R2
4
曲面及其方程
例 求与原点O及M0 (2,3,4)的距离之比为 1: 2的点 的全体所组成的曲面方程. 解 设M ( x , y , z )是曲面上任一点, | MO | 1 | MM 0 | 2 1 x2 y2 z2 2 2 2 x 2 y 3 z 4 2 所求方程
绕z轴旋转
2 z x y 2 1 2 c a
2
2
旋 转 双 曲 面
13
曲面及其方程
y z (2) yOz坐标面上的椭圆 2 2 1 绕y轴和z轴; a c
2
2
y2 x2 z2 绕 y 轴旋转 2 1 2 a c x2 y2 z2 绕 z 轴旋转 2 1 2 a c
2 4 116 2 x y 1 z 3 3 9
5
2
2
曲面及其方程
研究空间曲面有两个基本问题 (1)已知曲面, 求方程; (讨论旋转曲面) (2)已知方程, 研究图形. (讨论柱面, 二次曲面)
6
曲面及其方程
二、旋转曲面 (surface of revolution)
F ( x , y , z ) 0 有下述关系:
(1) 曲面S上任一点的坐标都满足方程;
x
O
S
y
(2) 不在曲面S上的点的坐标都不满足方程; 那么, 方程F ( x , y, z ) 0 就叫做曲面S的方程, 而曲面S就叫做方程的图形.
几种常见的曲面及其方程(精)
方程 F(x, y) 0 表示柱面,
母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
母线 平行于 y 轴; 准线 xoz 面上的曲线 l3. 0表示母线平行 z 轴的柱面.
又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面
三元二次方程
• 椭球面
• 抛物面:
( p, q 同号)
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2
y2 b2
1
• 椭圆锥面:
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
ay
ay
x
x2 z2 a2 (x 0, z 0) y0
作业
P32 3, 4,5,6, 7, 8, 9,10,11,12
y z l2
x z l3
x
y y
3、旋转曲面
一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
母线 平行于 y 轴; 准线 xoz 面上的曲线 l3. 0表示母线平行 z 轴的柱面.
又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面
三元二次方程
• 椭球面
• 抛物面:
( p, q 同号)
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2
y2 b2
1
• 椭圆锥面:
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
ay
ay
x
x2 z2 a2 (x 0, z 0) y0
作业
P32 3, 4,5,6, 7, 8, 9,10,11,12
y z l2
x z l3
x
y y
3、旋转曲面
一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. Ax By Cz D 0 表示空间的一张平面。
4. yoz平面上的母线
C:
f ( y, z) 0
x
0
绕oz轴旋转得旋转曲面
41
f ( x2 y2 , z) 0
5.
xoy平面上的准线方程
C:
f (x, z 0
y)
0
母线平行于
z
轴的
柱面方程为: f ( x, y) 0
四、二次曲面 三元二次方程所表示的曲面称为二次曲面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
35
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
36
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
32
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
33
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
34
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
f ( y, z) 0(缺x), 表示母线∥?,准线为?的柱面。
40
问:
(1)
y2 b2
z2 c2
1
表示什么曲面?
(2)
x2 a2
z2 c2
1
表示什么曲面?
回顾
1. 三元方程 F(x,y,z)=0表示空间的一张曲面S。
2. Ax2 Ay2 Az2 Bx Cy Dz E 0 表示一张球面。
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
19
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
20
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 z2 c2
1
绕z 轴旋转
x2 y2 a2
z c
2 2
1
•这两种曲面都叫做旋转双曲面.
23
y2 (2)椭圆 a 2
z2 c2
1绕
y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
特殊地:球心在原点时方程为 x2 y2 z2 R2
3
例 2 求与原点O 及M0 (2,3,4)的距离之比为1 : 2 的
点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
旋转椭球面
由椭圆
Hale Waihona Puke x2a2z2 c2
1
或
y2
b2
z2 c2
1
y 0
x 0
绕z轴旋转而成。
(2) a b c,
x2 a2
y2 a2
z2 a2
1
球面
方程可写为 x2 y2 z2 a2
44
(二)抛物面
(1)椭圆抛物面
x2 2p
y2 2q
z
(p与q同号)
用截痕法讨论: 设p与q都大于零。 (1)用坐标面 xoy (z=0) 去截; (2)用平面 z z1(z1 0) 去截; (3)用坐标面 xoz 或 yoz 去截; (4)用平面x x1或y y1去截;
观察柱面的 形成过程:
37
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
38
柱面举例
z
z
y2 2x z 0
平面
o
y
o
y
x
x
抛物柱面
y x
z
0
39
一般地,已知准线方程 f ( x, y) 0
f (x, y) 0
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
11
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
12
半径随c 的增大而增大. 图形上不封顶,下封底.
6
以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程.
(讨论旋转曲面) (2)已知坐标间的关系式,研究曲面形状.
(讨论柱面、二次曲面)
7
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线分 别称为旋转曲面的母 线和旋转轴。
C:
f ( y, z) 0
x
0
绕oy轴旋转得旋转曲面
f ( y, x2 z2 ) 0
3.
xoy平面上的母线
C:
f (x,
z
0
y)
0
绕ox轴旋转得旋转曲面
f (x, y2 z2 ) 0
22
例6 将下列各曲线绕对应的轴旋转一周,求
生成的旋转曲面的方程.
(1)双曲线
x a
2 2
z2 c2
8
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
9
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
10
第五节 曲面及其方程
一、曲面方程的概念 二、旋转曲面 三、柱面 四、二次曲面
一、曲面方程的概念
曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系: (1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.
z
o
x
y
45
椭圆抛物面的图形如下: z
z o y
x
xo
y
p 0, q 0
p 0, q 0
化简得所求方程 2x 6 y 2z 7 0.
5
例4 方程z ( x 1)2 ( y 2)2 1的图形是怎样的?
解 根据题意有 z 1
z
用平面z c 去截图形得圆:
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时,
c
得到一系列圆
o
y
圆心在(1,2,c),半径为 1 c x
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
C:
f ( y, z)
x
0
0
为母线所产生的旋转曲面S的方程为:f ( x2 y2 , z) 0
证明: 旋转曲面如图
z
设M(x, y, z)为旋转曲面S上任意一点, (0, 0, z)
显然,M一定是由母线C上某点 M1(0, y1, z1)旋转得到, 即
观察柱面的 形成过程:
30
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
31
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
C:
z
0
母线平行于 z 轴的柱面方程为:f ( x, y) 0
注意:方程中缺z,表示z可以任意取值,所以方程 f ( x, y) 0
表示母线平行于z轴的柱面。
一般地,在空间直角坐标下
f ( x, y) 0(缺z), 表示母线∥?,准线为?的柱面。 f ( x, z) 0(缺y), 表示母线∥?,准线为?的柱面。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
所求方程为
x
22
y
12
z
42
116 .
3
3 9
4
例 3 已知 A(1,2,3),B(2,1,4),求线段 AB的
垂直平分面的方程.
解 设M( x, y, z)是所求平面上任一点, 根据题意有 | MA || MB |,
x 12 y 22 z 32
x 22 y 12 z 42 ,
x2 z2
a
2