浙大概率论与数理统计课件(免费)

合集下载

概率论与数理统计(浙大版)第一章课件

概率论与数理统计(浙大版)第一章课件
然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科.
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
8
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
4
实例2 用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为: 1, 2, 3, 4, 5 或 6.
察出现的点数.
5
实例4 从一批含有正品
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
其结果可能为:
正品 、次品.
则 C A B AB 格”,B=“直径合格”.
30
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
n
称 Ak 为 n 个 事 件 A1 , A2 , , An 的 积 事 件 ;
事件 A 发生 事件B 发生
实例 A=“长度不合格” 必然导致 B=“产品不合格” 所以 A B
27
2.事件的相等
若两个事件 A 和B 相互包 含,则称这两个事件相等, 记为 A .B
A B A =B
A B且B A
A B
A 和 B 同时发生或者同时不发生
28
3.事件的和(并)

浙大概率论与数理统计课件 概率1-3 频率与概率

浙大概率论与数理统计课件 概率1-3 频率与概率
表 1
概率论
试验 序号
1 2 3 4 5 6 7 8 9 10
n =5
nH 2 3 1 5 1 2 4 2 3 3 fn(H) 0.4 0.6 0.2 1.0 0.2 0.4 0.8 0.4 0.6 0.6 nH 22 25 21 25 24 21 18 24 27 31
n =50
fn(H) 0.44 0.50 0.42 0.50 0.48 0.42 0.36 0.48 0.54 0.62
1

1由于 A、B 互斥 , 所以
B A

于是 所以
BA B
P BA P B
1 2 .
A
B
A、B 互斥
概率论
2 因为 A B , 所以
P BA P B A P B P A
1 2 1 4 1 4 .
B
A
数的增加而逐渐稳定在0.5 这个数值上 .
可见, 在大量重复的试验中,随机事件出现的频率具 有稳定性.即通常所说的统计规律性.
定义 在不变的一组条件下进行大量的重复试验 ,
随机事件 A 出现的频率

会稳定地在某个固定的
n 的数值 p 的附近摆动, 我们称这个稳定值 p 为随机
事件 A 的概率 ,即 P A p . 这个定义也称为 概率的统计定义 .
1 P A 0 ; 非负性 2 P S 1 ; 规范性
3 对于两两互斥事件 A1 , A2 ,, 有 P A1 A2 P A1 P A2
可列可加性
概率论
由概率的公理化定义可推得概率的下列性质 . 性质1 P 0 .
A S

《概率论与数理统计》浙大内部课件(全套).PPT

《概率论与数理统计》浙大内部课件(全套).PPT
S
“和”、“交”关系式
n i 1
A
n
A
Ai=A1 A2 An;
Ai
n i 1
Ai A1
A2
An;
Ai
n i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则: A B {甲、乙至少有一人来} A B {甲、乙都来} A B AB {甲、乙都不来} A B AB {甲、乙至少有一人不来}
16
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:



抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
4



随着18、19世纪科学的发展,人们注意到某些生物、物理 和社会现象与机会游戏相似,从而由机会游戏起源的概率 论被应用到这些领域中,同时也大大推动了概率论本身的 发展。 法国数学家拉普拉斯将古典概率论向近代概率论进行推进, 他首先明确给出了概率的古典定义,并在概率论中引入了 更有力的数学分析工具,将概率论推向一个新的发展阶段。 他还证明了“煤莫弗——拉普拉斯定理”.拉普拉斯于 1812年出版了他的著作《分析的概率理论》,这是一部继 往开来的作品。这时候人们最想知道的就是概率论是否会 有更大的应用价值?是否能有更大的发展成为严谨的学科 概率论在20世纪再度迅速地发展起来,则是由于科学技术 发展的迫切需要而产生的。1906年,俄国数学家马尔科夫 提出了所谓“马尔科夫链”的数学模型。1934年,前苏联 数学家辛钦又提出一种在时间中均匀进行着的平稳过程理有极重要的地位,现 今仍在常用的许多统计方法,就是建立在“所研 究的量具有或近似地具有正态分布”这个假定的 基础上,而经验和理论(概率论中所谓“中心极 限定理”)都表明这个假定的现实性,现实世界 许多现象看来是杂乱无章的,如不同的人有不同 的身高、体重。大批生产的产品,其质量指标各 有差异 。看来毫无规则,但它们在总体上服从正 态分布。这一点,显示在纷乱中有一种秩序存在, 提出正态分布的高斯,一生在多个领域里面有不 少重大的贡献,但在德国10马克的有高斯图像的 钞票上,单只画出了正态曲线,以此可以看出人 们对他这一贡献评价之高。

概率论与数理统计教学PPT浙大第三版

概率论与数理统计教学PPT浙大第三版

数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计

浙江大学《概率论与数理统计》课件ch3

浙江大学《概率论与数理统计》课件ch3

1 0.04 0.0375 0.035 0.1125
P ( X i)
0 1 2
P (Y j )
0.80 0.15 0.05 1
16
( 人 吸 ) 2 P 患 病X 中或 2烟Y P 1 |
P X 1或 2 | Y 1 1 0 .0 3 7 5 0 .0 3 5 P X 0 .0 或 5 Y0 .0 1 13 7 2 | 3 5 0 .6 4 4 0 .6 4 4 4 1 2 5 0 .1 0 .0 3 7 5 0 .1 1 2 5 .0 3 5 0 .6 4 4 4 0 .1 1 2 5
1 2 X 0 解 :1 由 题 意 可 得 : p 0.80 0.15 0.05
P Y 1 | X 0 0 .0 5, P Y 1 | X 1 0 .2 5, P
.2 5, P Y 1 | X 2 0 .7 0
X \Y
0 0.76 0.1125 0.015 0.8875
1
二元随机变量
问题的提出
例1:研究某一地区学龄儿童的发育情况。仅研
究身高H的分布或仅研究体重W的分布是不够的。
需要同时考察每个儿童的身高和体重值,研究
身高和体重之间的关系,这就要引入定义在同
一样本空间的两个随机变量。
例2:研究某种型号炮弹的弹着点分布。每枚
炮弹的弹着点位置需要由横坐标和纵坐标来确
t2
t 1 。 试 写 出 X 1 , X 2的
解 : P N t k
e
t
t
k!
k
, k 0 ,1, 2 ,
P X 1 i , X 2 j P X 1 i P X 2 j | X 1 i

浙江大学概率论与数理统计(免费)ppt课件

浙江大学概率论与数理统计(免费)ppt课件
12
(三) 事件的关系及运算 事件的关系(包含、相等)
1 A B : 事 件 A 发 生 一 定 导 致 B 发 生
AB 2A = B BA
B A
S
例: BA 记A={明天天晴},B={明天无雨}
BA 记A={至少有10人候车},B={至少有5人候车}
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 n A —A发生的次数(频数);n—总试验次 数。称f n ( A ) 为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
一次,则在这n次试验中“冲击亚洲”这事件发生的频率为 1 n;
不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定

例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
9
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
BA
13


事件的运算
A与B的和事件,记为 AB
A与B的积事件,记为 A B ,A B ,A B
A B A B { x | x A 且 x B } : A 与 B 同 时 发 生 。
n i 1 n i 1
S A B
A B { x | x A 或 x B } : A 与 B 至 少 有 一 发 生 。

浙大概率论与数理统计课件数理统计 共76页

浙大概率论与数理统计课件数理统计 共76页

§2 中心极限定理
背景:
有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。
9
定 理 5 . 4 独 立 同 分 布 的 中 心 极 限 定 理
设随机变量X1, X2, , Xn, 相互独立同分布,
E Xi , D Xi 2,i 1, 2,
n
Xi n
则前n个变量的和的标准化变量为:Yn i1 n
思考题:
X

1 n
n
由 于 n A X 1 X 2 X n ,
n p (1 p )
由 定 理 5 .4 ,n l im P an n p A ( 1 n p p ) b a b
1e t2 2d t 2
即 : n A (近 似 )~ N (n p ,n p ( 1 p )).
1 2.3210.01 答案:0.937
13
例4:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。
解 : 设 机 器 出 故 障 的 台 数 为 X , 则 X b 4 0 0 , 0 . 0 2 , 分 别 用 三 种 方 法 计 算 :
P X 2 1 P X 0 P X 1 1 0 .0 0 0 3 3 5 0 .0 0 2 6 8 4 0 .9 9 6 9
3 . 用 正 态 分 布 近 似 计 算

浙江大学概率论与数理统计ppt课件

浙江大学概率论与数理统计ppt课件

e e dy
(
x1 )2 212
1 2(1 2
)
y2 2
x1 1
2
1
e
(
x1 )2 212
21
1
e dy
1
2
2 2
(1
2
)
y
2
2 1
(
x1
)
2
2 2 1 2
1
( x1 )2
e 212
x
即二维正态分布的 两个边缘分布都是
2 1
一维正态分布,
同理 fY ( y)
记为
P( X xi ) P( X xi,Y ) pij == pi• i 1, 2,
j 1
注意:
X Y y1
… y2
yj
… P X xi
记号pi•表示是由pij关于j求和 后得到的;同样p• j是由pij关于 i求和后得到的.
xp 1 11
xp
2
21

xp i i1 …
p
12

p
1j
FX (x) F(x, )
x
f
(t,
y)dydt
同理:
x
fX (t)dt
FY ( y) F(, y)
y
f
( x, t )dx dt
y
fY (t)dt
17
例1:对一群体的吸烟及健康状况进行调查,引入随机变量
0, 健康
0, 不吸烟
X 和Y如下:X 1, 一般 , Y 10, 一天吸烟不多于15支
由条件概率公式可得:
P( X
xi
|Y
yj)
f (x, y) 0,

浙大概率论与数理统计课件——数理统计

浙大概率论与数理统计课件——数理统计

多元线性回归分析的原理
探讨多元线性回归分析的原理和 应用。
一元线性回归分析的求解 方法
介绍一元线性数理统计的重要性
强调概率论与数理统计在现实生活中的重要作用。
数理统计的应用领域和未来发展趋势
展示数理统计在不同领域的应用和未来的发展趋势。
对于实际问题解决的建议和探讨
提供解决实际问题的建议和探讨。
1
假设检验的定义
介绍假设检验的基本概念和作用。
假设检验的基本原理和方法
2
解释假设检验的基本原理和主要方法。
3
参数检验和非参数检验的区别
比较参数检验和非参数检验的异同。
假设检验的解释和判断
4
讨论如何解释和判断假设检验的结果。
线性回归分析
简单线性回归分析的基本 概念
介绍简单线性回归分析的基本原 理和步骤。
浙大概率论与数理统计课 件——数理统计
数理统计是概率论与数理统计课程的重要组成部分,通过本课程的学习,你 将了解到概率论与数理统计的基本概念、数据分析方法、假设检验原理以及 线性回归分析等内容。
基本概念
概率论与数理统计的定义
介绍概率论与数理统计的基本概念和研究对象。
数据集合的定义
探讨数据集合的概念和重要性。
参数与统计量的区别
解释参数与统计量之间的区别和作用。
抽样与样本的定义
讲解抽样和样本的概念以及抽样方法的应用。
数据分析
数据的标记与分类
介绍数据的标记方法和不同的 分类方式。
描述统计学概念
讲解描述统计学的基本概念和 数据分析方法。
统计学中数据的可视 化方法
探讨统计学中常用的数据可视 化方法。
假设检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设每次摸到各球的概率相等,每次从袋中摸一球,
不放回地摸n次。
设 Ak { 第k次摸到红球 },k=1,2,…,n.求 P( Ak )g 解1:
可设想将n个球进行编号:① ② … n
其中 ① —— a 号球为红球,将n个人也编号为1,2,…,n.
, , ,, 12 k n
可以是①号球, 亦可以是②号 球……是 n 号 球
S AB

A的逆事件记为A,

A
U
A

S
,
A A

A A
U B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
I U U I n
Ai
n
Ai A1 U A2 UL U An;
n
n
Ai Ai=A1A2 L
i 1
i 1
An;
i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
Ak
)

C C k nk D ND
/ CNn ,
k
0,1,L
,n
(注:当L>m或L<0时,记 CmL 0)
24
例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒
的概率相同,且各盒可放的球数不限,
记A={ 恰有n个盒子各有一球 },求P(A).
解: ① ②……n


12
n =500 nH fn(H) 251 0.502 249 0.498 256 0.512 253 0.506 251 0.502 246 0.492 244 0.488 258 0.516 262 0.524 247 0.494
实验者
德·摩根 蒲丰 K·皮尔逊 K·皮尔逊
表2
n
nH
2048
1061
21
4 等可能概型(古典概型)
定义:若试验E满足:
1. S中样本点有限(有限性) 2. 出现每一样本点的概率相等(等可能性)
P A
A所包含的样本点数 S中的样本点数
称这种试验为等可能概型(或古典概型)。
22
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A).

样本点使 Ak
发生,
P( Ak )

C a1 n1
/ Cna

a ab
解3:
原 来
将第k次摸到的球号作为一样本点:
此值不仅与k

S={
P(
解4:
①,②,…,n
Ak
)

a n

a
a},Ak
b
{ ①,②,…,a
}
无关,且与 a, b都无关,若a =0呢?对吗?
为什么?
不 是 等 可 能 概
S
B A
✓ 记A={至少有10人候车},B={至少有5人候车} B A
✓ 一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
❖ 事件的运算
✓ A与B的和事件,记为 A B
A B { x | x A 或 x B }:A与B至少有一发生。
✓ A与B的积事件,记为 A B, A B, AB
i 1
i 1
称P(A)为事件A的概率。
20
性质:
1o P( A) 1 P( A)
P(A) 0不能 A ; P(A) 1不能 A S;
Q A U A S P( A) P( A) 1 P() 0
2o 若A B,则有 P(B A) P(B) P( A) P(B) P( A)
S={0,1,2,…};
➢ 记录某地一昼夜最高温度x,最低温度y S={(x,y)|T0≤y≤x≤T1};
➢ 记录一批产品的寿命x S={ x|a≤x≤b } 11
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
N
12
N


① 12
……

N
12
N
即当n=2时,共有N2个样本点;一般地,n个球放入N个盒子中,总
样本点数为Nn,使A发生的样本点数

C
n N
n!

P( A)

CNn
n!/
N
n
若取n=64,N=365 P( A) 1 CNn n!/ N n 0.997
可解析为一个64人的班上,至少有两人在同一天过生日的概率为 99.7%.
例:
➢ 中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
一次,则在这n次试验中“冲击亚洲”这事件发生的频1率n为;
➢ 某人一共听了17次“fn概(A率) 统15计1”7 课88,%其中有15次迟到,记 A={听课迟到},则
fn ( A)
# 频率 反映了事件A发生的频繁程度。
16
例:抛硬币出现的正面的频率
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
10
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
i1
i1
且 fn (A) 随n的增大渐趋稳定,记稳定值为p.
19
(二) 概率
定义1:fn ( A)的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 0 P( A) 1
2。 P(S) 1
k
k
U 3。 若A1, A2,…,Ak两两互不相容,则 P( Ai ) P( Ai )
A B { x | x A 且 x B }:A与B同时发生。
n
U Ai:A1, A2 ,An至少有一发生
i 1 n
I Ai:A1, A 2 , An同时发生
i 1
S AB
S AB
✓ 当AB=Φ时,称事件A与B不相容的,或互斥的。
S
AB
14
✓ A B AB { x| xA 且 xB }
4040
2048
12000
6019
24000
12012
fn(H) 0.5181 0.5069 0.5016 0.5005
18
** 频率的性质:
1。 0 fn ( A) 1
2。 fn (S) 1
k
k
U 3。 若A1, A2,…,Ak两两互不相容,则 fn ( Ai ) fn (Ai )
概率论与数理统计
2020/3/4
1
概率论与数理统计是研究随机现象 数量规律的一门学科。
2
第一章 概率论的基本概念
1.1 随机试验 1.2 样本空间 1.3 概率和频率 1.4 等可能概型(古典概型) 1.5 条件概率 1.6 独立性
第二章 随机变量及其分布
2.1 随机变量 2.2 离散型随机变量及其分布 2.3 随机变量的分布函数 2.4 连续型随机变量及其概率密度 2.5 随机变量的函数的分布
AU B {甲、乙至少有一人来}
AI B {甲、乙都来}
A U B AB {甲、乙都不来}
A U B AB {甲、乙至少有一人不来}
15
§3 频率与概率
(一)频率
定义:记
fn ( A)
nA ; n

其 数中 。称n Afn—( AA)为发A生在的这次n次数试(频验数中)发;生n—的总频试率验。次
25
例5:一单位有5个员工,一星期共七天, 老板让每位员工独立地挑一天休息, 求不出现至少有2人在同一天休息的
概率。 解:将5为员工看成5个不同的球,
7天看成7个不同的盒子, 记A={ 无2人在同一天休息 },
则由上例知:
P

A

C75 5! 75

3.7%
26
例6: (抽签问题)一袋中有a个红球,b个白球,记a+b=n.
第十二章 平稳随机过程
12.1 平稳随机过程的概念
12.2 各态历经性
12.3 相关函数的性质
12.4 平稳过程的功率谱密度
6
概率论
7
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
8
§1 随机试验
确定性现象
自然界与社会生活中的两类现象
第九章 方差分析及回归分析
5
• 9.1 单因素试验的方差分析
第十章 随机过程及其统计描述
10.1 随机过程的概念 10.2 随机过程的统计描述 10.3 泊松过程及维纳过程
第十一章 马尔可夫链
11.1 马尔可夫过程及其概率分布 11.2 多步转移概率的确定 11.3 遍历性
记第k次摸到的球的颜色为一样本点:

S={红色,白色},Ak {红色} P( Ak ) 1 2
28
例7:某接待站在某一周曾接待12次来访,已知所有这12次 接待都是在周二和周四进行的,问是否可以推断接待时间是 有规定的?
相关文档
最新文档