解直角三角形的应用课件

合集下载

解直角三角形的应用ppt课件

解直角三角形的应用ppt课件
(结果保留一位小数).
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).

题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结


(1)仰角和俯角是视线相对于水平视线而言的,可巧记

单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要

读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.

∴tan30°=


=

+
=

,解得

x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m

26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角


题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则


题 DG=BH=30 m,DH=BG.设 BC=x m,

在 Rt△ABC 中,∠ACB=45°,


∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

解直角三角形的应用举例课件

解直角三角形的应用举例课件
1 直角三角形的两条直角边相互垂直。 2 直角三角形的斜边是直角边的对边。 3 直角三角形的两条直角边的和等于斜边的长。
直角三角形的边和角的关系
1 正弦定理:sin(边/邻边
2 余弦定理:cos(A) =
邻边/斜边,cos(B) = 对边/斜边,cos(C) = 对边/邻边
解直角三角形的应用举例 ppt课件
直角三角形是一种特殊的三角形,它具有很多实用的应用。本课件将介绍直 角三角形的定义、特点、边和角的关系,以及直角三角形在测量、几何图形 和实际生活中的常见应用举例。
直角三角形的定义
1 对于一个三角形来说,如果有一个角是直角(90°角),则该三角形是直角三角形。
直角三角形的特点
直角三角形在实际生活中的应用举例
航海导航
用直角三角形的海图与经纬线相交确定位置。
建筑施工
用直角三角形测量建筑物的角度和比例,确保施 工的准确性。
飞行导航
用直角三角形计算飞机航线、飞行高度、地平线 角度等。
摄影测量
使用直角三角形测量物体的距离和高度,帮助摄 影师选择拍摄的角度和位置。
3
测量斜率
直角三角形可以用来测量地面的斜率, 帮助工程师确定在不同地形上的施工方 法。
直角三角形在几何图形中的应用举例
图形拼接
将多个直角三角形拼接在一起, 可以创建各种几何图形,例如正 方形、长方形和平行四边形。
金字塔
金字塔是由多个直角三角形堆叠 而成,是古代建筑中常见的形式 之一。
三棱柱
三棱柱的两个底面都是直角三角 形,是几何学中常见的立体图形。
直角三角形的特性被电路设计 师用于计算电阻、电流和电压 的关系,对电路的分析和设计 提供了便利。
直角三角形在测量中的应用举例

解直角三角形应用举例》1课件例例例

解直角三角形应用举例》1课件例例例

确定测量目标:选择需要测量的直角三角形 准备测量工具:直尺、量角器、卷尺等 测量角度:使用量角器测量直角三角形的两个直角 测量边长:使用直尺测量直角三角形的三条边长 计算结果:根据测量结果,使用解直角三角形公式计算未知边长或角度 复核结果:对计算结果进行复核,确保准确性
确定已知条件:直角三角形的 边长、角度等
画图时,注意角度的准确性,避免误差过大 画图时,注意长度的准确性,避免误差过大 画图时,注意比例的准确性,避免误差过大 画图时,注意图形的完整性,避免遗漏重要信息
确保直角三角形的边长和角度测量准确,避免误差
使用直角三角形工具时,注意安全操作,避免受伤
解直角三角形时,注意不要混淆角度和边长,避免错误 解直角三角形时,注意不要忽略特殊三角形(如等腰直角三角形) 的性质,避免错误
测量工具的选择:选择精度高的测量工具,如电子尺、游标卡尺等 测量方法的选择:选择合适的测量方法,如直接测量、间接测量等 测量环境的影响:注意测量环境的温度、湿度、光照等对测量结果的影响 测量数据的处理:对测量数据进行处理,如剔除异常值、进行误差分析等
计算过程中需要注意小数点的位数,避免因小数点位数不足导致的误差 在计算过程中,需要注意三角函数的取值范围,避免因取值范围错误导致的误差 在计算过程中,需要注意三角函数的正负号,避免因正负号错误导致的误差 在计算过程中,需要注意三角函数的周期性,避免因周期性错误导致的误差
正割定理: secA=1/co sA
余割定理: cscA=1/si nA
勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方 应用:在解直角三角形时,可以利用勾股定理求解未知边长 例题:已知直角三角形的两条直角边长分别为3和4,求斜边长 解题步骤:利用勾股定理,计算斜边长为5,得出解直角三角形的结论

《解直角三角形应用举例》课件

《解直角三角形应用举例》课件
一号的组合体在离地球表面 343 km 的圆形轨道上运行.
如图,当组合体运行到地球表面
P 点的正上方时,从中能直接看到的地球
表面最远的点在什么位置?最远点与 P 点
的距离是多少 (地球半径约为 6 400 km,π
取 3.142,结果取整数)?
F
P
FQ 是☉O 的切线,
∠FQO 为直角
Q
最远点
O
෢ 的长,要先
解:在 Rt△AOC 中,∵sin75°=


,
∴OC ≈ 38.8 cm.
在 Rt△BOC 中,∵tan30°=

,

∴BC ≈ 67.3 cm.
答:该台灯照亮水平面的宽度 BC 约为67.3 cm.
易错警示:注意结果必须根据题目要求精确到0.1cm.
技巧点拨:
借助公共边解双直角三角形
面的夹角是 30°,拉索 CD 与水平桥面的夹角是 60°,
两拉索顶端的距离 BC 为 2米.两拉索底端的距离 AD 为
20米,请求出立柱 BH 的长.(结果精确到0.1米, 3≈1.732)
解:设 DH =x 米. ∵ ∠CDH =60° ,∠H =90°,
∴ CH =DH·tan60°= 3x 米,
∴ 此时南楼的影子落在北楼上约 3.5 m 高.
解:(2)如图,若使每层楼在冬天都受阳光照射,则
DC =0 m,即点 C 与点 D 重合.
当点 C 与点 D 重合时,
tan∠ACB
∴ BD=

= ,即


tan32°
=
tan32°=
16
tan32°



≈ 25.6 (m),

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

沪科版数学九年级上册23.2第1课时解直角三角形 课件(共19张PPT)

沪科版数学九年级上册23.2第1课时解直角三角形  课件(共19张PPT)
D
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表

解直角三角形及其应用教育课件市公开课一等奖省优质课获奖课件

解直角三角形及其应用教育课件市公开课一等奖省优质课获奖课件

45°
2
2
2
2
1
60°
3 2
1 2
3
第3页
新课讲解
在进行测量时,从下向上看,视线与水平 线夹角叫做仰角; 从上往下看,视线与水平线夹角叫做俯角.
视线
铅 仰角 直 线 俯角
水平线
视线
第4页
例题分析
例1 如图,直升飞机在跨江大桥AB上方P点处,此 时飞机离地面高度PO=450米,且A、B、O三点在一条直线 上,测得大桥两端俯角分别为α=30°,β=45°,求大桥长AB .
第14页
课堂练习
书本P126练习
第15页
课堂小结
实际问题中仰角俯角问题处理.
第16页
解:由题意得,在Rt△PAO与Rt△PBO中
PAO 30, PBO 45
PO tan 30, PO tan 45
OA
OB
OA 450 450 3,
tan 30
P
α β
OB 450 450 tan 45
450米
AB OA OB (450 3 450)(m)
答:大桥长AB为 (450 3 450)m. O
P
答案: (100 3 300米)
C
O
30° A
45°
200米
B
第7页
例题分析
P
C
O
解法1
30°
A
200米
45°
B
C
30°
45°
200米
O
解法2
第8页
例题分析
P
30°
A
200米 45°
O
B
解法3
C
第9页

解直角三角形的应用ppt课件

解直角三角形的应用ppt课件
为点E、 F,由题意可知BE=CF=23m , EF=BC=6m.
在Rt△ABE中,
∵=



= ,
∴ = 3 = 3 × 23 = 69(m)
在Rt△DCF中,同理可得 =


=

.
∴ = 2.5 = 2.5 × 23 = 57.5(m)
∴ = + + = 69 + 6 + 57.5 = 132.5(m)
在Rt△ABE中,由勾股定理可得
∴ = 2 + 2 = 692 + 232 ≈ 72.7(m)
故坝底AD的长度为132.5m,斜坡AB的长度为72.7m.
例2 如图,在山坡上种树,要求株距(相邻
两树间的水平距离)是5.5米,测得斜坡的坡
角是30°,求斜坡上相邻两树间的坡面距
离是多少米?(结果精确到0.01m)
(2)坡面与水平面的夹角 叫坡角
2.坡度与坡角 的关系
h
i tan
l
显然,坡度越大,坡角
就越大,坡面就越
水库
五、课后作业
1、课本60练习1,2
2.习题2.5 1-12
B
C
30°
(
5.5
A
解:由题意得
AC=5.5m,∠A=30°,
∠C=90°
在Rt △ ABC中, C 90
AC 5.5
3
cos A


AB AB
2
11 3
AB
6.35 m
3
∴相邻两颗树之间的坡面距离约为6.35m。
三、课堂练习
1.如图,在东西方向的海岸线上有A,B两个港口,甲货船

九年级数学《解直角三角形的应用(测物体长度)》课件

九年级数学《解直角三角形的应用(测物体长度)》课件
解直角三角形的应用
复习导入
A
已知:△ABC中,B 30,C 45,AB 6
解△ABC
B
30 °
45 C °
总结:解一般三角形的思想是围绕特殊角添加辅 助线构造直角三角形,利用解直角三角形解决问 题
学习目标
1、通过例4掌握构建直角三角形的方法和原 则 2、通过例4感受方程思想在数学中的应用 3、能从实物图中抽取出数学模型
AB AB1 B1B 68 1 69
师 当友 堂展检示测
1、如图,某幢大楼顶部有一块广告牌CD,甲、 乙两人分别在相距10米的A,B两处测得点D 和点C的仰角分别为30°和45°,且A,B,E 三点在一条直线上,若BE=26米,求这块广 告牌的高度.
(精确到0.1米, 2 ≈1.414, 3 ≈1.732.)
2、如图,平台AB高为12米,在B处测得楼房
CD顶部点D的仰角为45°,底部点C的俯角
为30°,求楼房CD的高度。3( ≈1.7)
45°
30°
根据自学思考题,师友对议再组议交流上面问题
师 自友 学展练示习
如图,某直升飞机于空中A处观测 到其正前方地面控制点C的俯角为 30∘ 若飞机航向不变,继续向前飞行1000 米至B处时,观测到其正前方地面控 制点C的俯角为45∘,问飞机再向前飞 行多少米与地面控制点C的距离最 近?(结果保留根号)
师友展示
方法1:设AB1 X 在RtAC1B1中,由AC1B1 45,得
方法2:设AB1 X 在RtAD1B1中,由AD1B1 30,得
C1B1 AB1 X 在RtAD1B1中,由AD1B1 30,得
D1B1
A B1 tanAD1B1
3X
tanAD1B1

解直角三角形(共30张)PPT课件

解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。

4.4 解直角三角形的应用 课件 2024-2025学年数学湘教版九年级上册

4.4 解直角三角形的应用 课件 2024-2025学年数学湘教版九年级上册
∴∠CBA=15°.∴AC=AB=20 m.
答:斜坡新起点C与原起点A之间的距离为20 m.
利用方位角解直角三角形
[例 2] (2023 邵阳)如图所示,一艘轮船从点 A 处以 30 km/h 的速度向正东方向航行,在 A 处
测得灯塔 C 在北偏东 60°方向上,继续航行 1 h 到达 B 处,这时测得灯塔 C 在北偏东 45°方
向上,已知在灯塔 C 的四周 40 km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说
明理由(参考数据: ≈1.414, ≈1.732).
解:安全.理由如下:过点 C 作 CD 垂直 AB 于点 D,如图所示.
由题意,可得∠CAD=90°-60°=30°,
∠CBD=90°-45°=45°,AB=30×1=30(km),
m(结果精确到1 m.参考数据:sin 83°≈
0.99,cos 83°≈0.12,tan 83°≈8.14).
2.(2023淮安)如图所示,湖边A,B两点由两段笔直的观景栈道AC和CB相连.为了计算A,B两点
之间的距离,经测量得∠BAC=37°,∠ABC=58°,AC=80 m,求A,B两点之间的距离(参考数据:
答:“一心阁”CH 的高度约为 27.3 m.
第2课时
与坡度、方位角有关的应用问题
1.坡度与坡角
(1)坡面的 铅直 高度 h 和 水平 长度 l 的比叫作坡度,用字母 i 表示,即 i=

(坡度通
常写成 1∶m 的形式). 坡面 与 水平面 的夹角叫作坡角,记作α,坡度等于坡角的 正切 ,

即 i= =



= .∴AD= CD=20 (m).


∴AB=AD-BD=20 -20≈14.6(m).

26.4 解直角三角形的应用 - 第2课时坡度、坡角问题课件(共17张PPT)

26.4 解直角三角形的应用 - 第2课时坡度、坡角问题课件(共17张PPT)
第二十六章 解直角三角形
26.4 解直角三角形的应用
第2课时 坡度、坡角问题
学习目标
学习重难点
重点
难点
1..加强对坡度、坡角、坡面概念的理解和认识,了解坡度与坡面陡峭程度间的关系.2.能把一些较复杂的图形转化为解直角三角形的问题.3.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.
第3题图
第4题图
B
A
5.水库拦水坝的横断面是四边形ABCD,AD∥BC,背水坡CD的坡比i=1∶1,已知背水坡的坡长CD=24 m,则背水坡的坡角α为____,拦水坝的高度为_______ m.6.如图,在坡比为i=1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是______米.
创设情境
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
新知引入
如图,在筑坝、开渠、挖河和修路时,设计图纸上都要注明斜坡的倾斜程度.我们通常把坡面的垂直高度h和水平宽度l的比叫做坡面的坡度(或坡比),坡面与水平面的夹角α叫做坡角.显然,tanα=.
知识点 坡度、坡角
例题示范
第1题图
第2题图
B
C
3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A. 米 B. 米 C.5sinα 米 D. 米4.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. 米 B.12米 C. 米 D.10米
坡度、坡角、坡面的概念,了解坡度与坡面陡峭程度间的关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一段河坝的 横断面为等 腰三角形 ABCD,试 根据下图中 的数据求出 坡角α和坝 底宽AD。 (单位是米, 结果保留根
B 6 A E
4
C F
i 1: 3
α
D
例5:水库大坝的横断面是梯形,坝 顶宽6米,坝高23米,斜坡AB的坡 度i =1:3,斜坡CD的坡度i =1:2.5. 求 斜坡AB的坡角α,坝底宽 AD和斜坡 AB的长(精确到0.1米)
解直角三角形的应用
在RtABC中,C 90
2 2 2

A b
90度
) 1.三边关系 a b c (勾股定理
2.锐角关系 3. 边角关系
c
A B 90

C
a
B
a b sin A , cos A , tan A c c b a sin B , cos A , tan B c c
A高楼
l
B C
解: (1)过点A作AD垂直于BC,垂足为D
ABC 300 , AB 160米 在RtABD中,解得AD 80米 100米, 所以受噪声影响。
以点A为圆心, 100米长为半径画圆弧分别 交BC于E,F两点 线段EF为受影响的路段 .
2.在RtAED中,由勾股定理求出 ED 60米,EF 2ED 120米 2 120 180 分钟 40秒 3
SOS
A
B
C每小时30km探源自二:这座五星级宾馆A附近有一条马路为直线l,现有一辆 大型货车由B处沿直线往C方向行驶,测得 ABC 30 AB 160米 ,如果货车周围100米内建筑将受噪声
0
影响,试问客车在行驶过程中宾馆A是否受噪声影响?
(1)如果受噪声影响,请指出受影响的路段。 (2)如果客车的速度每分钟800米,求出宾馆受噪声影响的时间 (3)为减少或消除噪声对宾馆的影响,有什么整改建议?
宾馆受噪声影响的时间 为40秒。 3 ( . a) .安装隔音板
(b)高楼与马路之间种植绿 化
(c)受影响路段改为地下通 道等
练习(1)一段坡面的坡角为60°,则坡度 i=______;
______,坡角α______度. 一段河坝的横断面为等腰三角形ABCD, 试根据下图中的数据求出坡角α和坝底宽 AD。(单位是米,结果保留根号)
A
B
24
30° E D
1.5
C
例2.河的对岸有水塔AB, 今在C处测 得塔顶A的仰角为30°,前进 20米到D 处,又测得塔顶A的仰角为60°.求塔高 AB.
A
30°
60°
D B
C
2、 山顶上 有一旗杆, 在地面上一 点A处测得杆 顶B的仰角为 600,杆底C 的仰角为450, 已知旗杆高 BC=20米,求 山高CD。
a , cot A b b , cot B a
b a a b
1.仰角与俯角的定义
在视线与水平线所成的角中规定: 视线在水平线上方的叫做仰角, 视线在水平线下方的叫做俯角。
视线
铅 垂 线
仰角 俯角
水平线
视线
1、 在升旗仪式上,一位同学站在离旗 杆24米处,行注目礼,当国旗升至旗杆 顶端时,该同学视线的仰角恰为30度, 若两眼离地面1.5米,则旗杆的高度是否 可求?若可求,求出旗杆的高,若不可 求,说明理由.(精确到0.1米)
4:由于过度采伐森林和破坏植被,使我国某些地区受到 沙尘暴的侵袭,近日A市气象局测得沙尘暴中心在A市正 东方向400km的B处,正在向正西北方向转移(如图所示), 距沙尘暴中心300km的范围内将受到其影响.问A市是否 会受到这次沙尘暴的影响?
北 D
C
45
A
0

B
3、一渔船在航行中不幸遇险,发出警报后,在遇险地点西南 方向12km处,有一只货轮收到警报后立即前往营救,发现这 只渔船向南偏东450航行,并以每小时18km的速度向某小岛靠 近,如果要在30分钟内把渔船抢救出来,求货轮的航向和速度。
B 20 C
x
60
D
45
A
甲、乙两楼相距78米,从乙楼底 望甲楼顶的仰角为45º ,从甲楼顶 望乙楼顶的俯角为30º ,则甲楼和 A 乙楼高为? 30º
D

B

45º
?乙
78 C
如图8,两建筑物AB、CD的水平距离 BC=32.6米,从A点测得D点的俯角 α=35°12′,C点的俯角β=43°24′,求两个 建筑物的高AB和CD(精确到0.1m).
沿水库拦河坝的背水坡将坝顶加宽2 米,坡度由原来的1:2改为1:2.5, 已知坝高6米,坝长50米。 (1)求加宽部分横断面AFEB (2)完成这一工程需要多少方土?
F
2A 6
D
E
B
N
M
相关文档
最新文档