计算流体力学课件完整版

合集下载

计算流体力学基础ppt课件

计算流体力学基础ppt课件
s x ds y ds
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。

计算流体力学绪论课件

计算流体力学绪论课件

求解器多样
OpenFOAM提供了多种求解器,如 稳态求解器、瞬态求解器、非牛顿流 求解器等。
社区支持
OpenFOAM拥有庞大的用户社区, 提供了丰富的资源和支持,方便用户 学习和交流。
05
计算流体力学研究前沿与 展望
多尺度模拟
总结词
多尺度模拟是计算流体力学领域的重要 研究方向,旨在模拟和分析不同尺度下 的流体运动现象。
03
数值模拟方法
有限差分法
有限差分法是一种将偏微分方程离散化为差分方 程的方法,适用于求解偏微分方程。
优点:简单易行,适用于多种类型的偏微分方程 ,可以处理复杂的边界条件。
有限差分法的基本思想是将连续的偏微分方程离 散化为差分方程,通过求解差分方程来近似求解 原偏微分方程。这种方法在计算流体力学中广泛 应用于求解流体动力学方程。
有限元法
优点
精度较高,适用于处理复杂的偏微分 方程和边界条件。
缺点
计算量大,需要较大的存储空间和计 算资源,对于大规模问题的求解可能 存在挑战。
有限体积法
• 有限体积法是一种将偏微分方程离散化为有限体积方程的方法,适用于求解流体动力学方程。
• 有限体积法的基本思想是将连续的流体域离散化为有限个小的体积单元,在每个体积单元上近似解,然后通过求解有限体积方程来近似求解原偏微分方程。这种方法在计算流体力学中 广泛应用于流体动力学模拟。
详细描述
复杂流动模拟与控制涉及流体运动的多种复杂现象,如湍流、多相流、非牛顿流等。通 过模拟和分析这些复杂流动现象,可以为实际工程中的流体控制提供重要的理论依据和 技术支持。同时,复杂流动模拟与控制还能够为流体工程、航空航天、环境科学等领域
提供更加精准的预测和控制方法。

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

计算流体力学CFD课件

计算流体力学CFD课件

随流体运动的有限控制体模型
连续性方程
质量守恒定律
有限控制体的总质量为:
m dV V
随流体运动的有限控制 体模型
随流体运动的有限控制体模型
连续性方程:
D Dt
V
dV
0
随流体运动的有限控制 体模型
空间位置固定的无穷小微团模型
空间位置固定的无穷小微团模型
连续性方程
质量守恒定律
流出微团的质量流量 =微团内质量的减少
动量方程
表面力的两个 来源: 1)压力 2)粘性力
动量方程
粘性力的两个 来源:
1)正应力 2)切应力
动量方程
切应力:与流体剪切变形的时间变化率有关, 如下图中的xy
动量方程
正应力:与流体微团体积的时间变化率有关, 如下图中的xx
动量方程
作用在单位质量流体微团 上的体积力记做 f ,其X
方向的分量为 f x
随流体运动的有限控制 体,同一批流体质点始 终位于同一控制体内
速度散度及其物理意义
速度散度的物理意义:
是每单位体积运动着
的流体微团,体积相对变化的时间变化率。
连续性方程
空间位置固定的有限控制体模型
空间位置固定的有限控制体模型
连续性方程
质量守恒定律
通过控制面S流出控制体的净质量流量 =控制体内质量减少的时间变化率
流体微团在流场中的 运动-物质导数的示 意图
物质导数(运动流体微团的时间变化率)
物质导数D/Dt与偏导数/t不同 ,/t是在固定点1时观 察密度变化的时间变化率,该变化由流场瞬间的起伏所引起。
流体微团在流场中的 运动-物质导数的示 意图
物质导数(运动流体微团的时间变化率)

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

计算流体力学电子教案ppt课件

计算流体力学电子教案ppt课件
27
解:由于板在y、z方向为无限大,因此可作为一维问题 处理,即只考虑x方向。相对于无源问题,控制方程中增 加了源项。即
d dx
(k
dT dx
)

q

0
第一步:生成离散网格(先控制体后节点),生成5个单元
aPP aWW aEE Su (2 8)
aW

w
xWP
Aw
,
aE

e

k x
A,
aP
aW
aE SP
SP


2k x
A,Su

2k x
A
TB
23
根据以上过程可以得到左右边界控制体的离散方程:
左端控制体
kA(T2

x
T1
)

kA(T1 TA ) x / 2

0
右端控制体
kA(TB x
T5
/2
)

kA(T5 T4 ) x

0
(T2 T1) (2T1 2TA ) 0 (2TB 2T5 ) (T5 T4 ) 0
计算流体力学电子教案
1
目录
• 第一章 绪论 • 第二章 扩散问题的有限体积法 • 第三章 对流扩散问题的有限体积法 • 第四章 差分格式问题 • 第五章 压力--速度耦合问题的有限体积法 • 第六章 有限体积法离散方程的解法 • 第七章 非稳态流动问题的有限体积法 • 第八章 边界条件处理
2
第二章 扩散问题的有限体积法

kA(T2 T1 ) x

kA(T1 TA ) x / 2

0
在上述过程中有一假定:认为A点的温度梯度dT/dx与A

计算流体力学课件-part1

计算流体力学课件-part1
➢模型方程:具有原控制方程的基本特征,但是往往可以 得到精确解,依次来揭示原控制方程的一些数学特征
2024/2/28
19
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的概念
➢完整方程
连续方程
动量方程
能量方程
2024/2/28
20
❖Computational Fluid Dynamics
沿特征线,扰动波的幅值不变,传播速度为c
则在t>0时,传播过程如下图:
2024/2/28
27
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征
➢单波方程
➢c>0时,传播沿x正向 ➢C<0时,传播沿x负向 ❖扰动波以有限速度传播是双曲型方程的重要 特征(波形和波幅可能会变化,此处为什么不 变?)
如何表达初始形状三角形
如何存储数据 如何积分
数值积分,HOW?
如何显示结果
TECPLOT
尝试改变几个常数,看看结果有何变化,常数反映了什么?
2024/2/28
22Biblioteka ❖Computational Fluid Dynamics
回顾
控制方程
模型方程
➢NS ➢EULER ➢Impressible NS ➢RANS
➢单波方程可以模拟EULER方程的一些特征
2024/2/28
28
❖Computational Fluid Dynamics
计算流体流体力学
第二讲 典型模型方程的数学性质
模型方程的特征

计算流体力学课件概述

计算流体力学课件概述

2018/12/24
13
能源工业:图a是CFD模拟的500 [Mwe]电站煤粉锅炉炉内
燃烧。结果显示了在燃烧器喷流交叉形成的高温、高氧区, NOX生成速率大。
图b显示的是管壳换热器的流线及温度分布。同时考虑管外 流体、管内流体、以及管壁部分的耦合传热。
图c是模拟燃料电池中氧浓度的分布。用户开发了专门的电 化学反应模型,通过催化层的电化学反应速率模拟当地的电 流密度。
2018/12/24 8
CFD拥有包括流体流动、传热、辐射、多相流 、化学反应、燃烧等问题丰富的通用物理模 型;还拥有诸如气蚀、凝固、沸腾、多孔介 质、相间传质、非牛顿流、喷雾干燥、动静 干涉、真实气体等大批复杂
现象的实用模型。
2018/12/24
9
航空航天:图a为模拟美国F22战斗机的结果,图中 显示的是对称面上的马赫数分布。计算共采用了 260万个网格单元。模拟的升力、阻力及力矩系数 都与实验值吻合的很好。 图b是某飞机多段翼周围的压力分布 图c是美国J-31型涡轮喷气发动机的整机模拟。包 括进气道、压缩机、燃烧室、尾喷管四个部分。
图c 模拟出添加剂的浓度分布。改变添加剂的投放位置,用 CFD模拟来优化添加剂浓度分布,以达到最好的防腐效果
2018/12/24
15
冶金工业:图a 模拟的钢水铸造过程,图中显示的是铸造
模具内的流线及表面温度分布 图b是模拟连续加热炉,该炉采用直接加热方式,从图中温度 分布可以看出,钢带有一角的温度过高,这会影响钢产品的 质量。 图c是模拟优化铸造炉内烧嘴的类型和位置。很好地模拟出了 融池内因浮力驱动产生的二次流现象,及诸如回流区、涡、 表面波的发展、温度分布的不均匀性等设计缺陷。
2018/12/24
10

流体力学课件 ppt

流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。

计算流体力学课件

计算流体力学课件
计算流体力学课件
• 引言 • 基本概念与原理 • 数值模拟方法 • 计算流体力学软件介绍 • 计算流体力学在工程中的应用 • 计算流体力学的未来发展与挑战
目录
Part
01
引言
流体力学的重要性
流体力学是物理学的一个重要分支,它研究流体(液体和气体)的运动规律、热力 学性质以及流体与其他物质的相互作用。
Part
04
计算流体力学软件介绍
Fluent软件介绍
1
商业化的计算流体动力学 软件
4
提供丰富的物理模型和材 料库,方便用户进行模拟 和分析
2
支持多种求解器和网格生
成技术
3
广泛应用于流体动力学模
拟、燃烧模拟等领域
CFX软件介绍
英国AEA公司开发的计算流体动 力学软件
提供丰富的物理模型和材料库, 方便用户进行模拟和分析
迭代法
通过迭代的方式求解离散 化的方程组,得到数值解 。
有限差分法
有限差分法的基本思想
将偏微分方程转化为差分方程,通过 求解差分方程得到数值解。
有限差分法的步骤
建立差分方程、求解差分方程、误差 估计等。
有限元法
有限元法的基本思想
将连续的物理量离散为有限个单元,通过求解每个单元的近似解得到整个问题 的数值解。
规模的流动模拟。
大涡模拟
总结词
大涡模拟是一种针对湍流中大尺度涡旋进行模拟的方法,通过过滤掉小尺度涡旋 的影响,降低计算量。
详细描述
大涡模拟只关注大尺度涡旋的运动规律,忽略小尺度涡旋的影响。这种方法能够 显著减少计算量,适用于较大尺度的流动模拟。然而,由于忽略了小尺度涡旋的 影响,大涡模拟的精度和适用范围有限。
水流模拟

计算流体力学课件完整版

计算流体力学课件完整版
●真实可靠、是发现流动规律、检验理论和为流体机 械设计提供数据的基本手段。
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
ijkcyl.plt X Y
Z
-0.4 -0.2 Y0 0.2 0.4
1
0.8
0.6
0.4
0.2
0 -0.4 -0.2 0 X 0.2 0.4
Z
jetflow.plXt Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
轴流叶轮计算与实验叶片表面极限流线
计算流体力学
轴流叶轮计算与实验性能比较
计算流体力学
轴流叶轮计算与实验流场结构比较
计算流体力学
第二章 流体力学数值计算数学模型及定解条件
☆本章所涉及的基本方程有两类: ●流体力学基本方程,基本出发点:质量守恒、动量守恒和能

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体运动学上计算流体力学PPT课件

流体运动学上计算流体力学PPT课件

层流(laminar flow):流速 较低,红墨水迹线平稳。水质 点沿轴向分层平稳流动。
不稳定流动:红墨水迹线波动。 水质点不稳定,有轴向和垂向 的分速度。
湍流(turbulent flow):流速超 过某值时,红墨水迹线破裂。 各层流体质点相互掺混,出现 不规则、随机脉动速度。
laminar
实验表明:粘性流动存在两种
vr va,b,c,t
ta,b,c
加速度:
av aa,b,c,t
ta,b,c .
7
3.2.2 Euler法
基本思想:考察空间每一点上的物理量及其变化。 所谓空间一点上的物理量是指占据该空间点的流体质点的物理量。
独立变量:空间点坐标 (q1,q2,q3)
vv(q1,q,2,q3,t) p ,p(q1,q2,q3,t) (q1,q2,q3,t)
流体质点和空间点是二个完全不同的概念。
3.2.3 质点导数
——流体质点的物理量对时间的变化率。
Lagrange法: 若 B a ,b ,c ,t v (a ,b ,c ,t)
v(a,b,c,t)a(a,b,c,t) (质点加速度)
t
.
8
Euler法:
时t刻位于空间点 M的(r流)
体质点经 时间后t 物理量
h 11 ,h 2R ,h 3R sin
D Dt tvR RvR Rsvin.
aR a a
Dv R Dt Dv Dt Dv
Dt
v2 R v v R R vR v
R
v2
R v2 ctg
R v v ctg
R
11
3.3 流体运动的描述
1. 定常、非定常流动(steady and unsteady flow)

计算流体力学基础ppt课件

计算流体力学基础ppt课件
可利用计算机进行各种数值试验,例如,选择不同流动参数进行 物理方程中各项有效性和敏感性试验,从而进行方案比较
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否

显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的

计算流体力学part基础知识PPT课件

计算流体力学part基础知识PPT课件
矢量场中的旋度相当于标量场中的梯度。
①在直角坐标系中:A P(x, y, z)i Q(x, y, z) j R(x, y, z)k
i rotA
x P
jk y z Q R 第18页/共56页
(21)
一、向量分析初步
5、向量场的环量及旋度
rot A 0 有旋运动, rot A 0 无旋运动。应当指出,流体微团 是否作有旋运动,需视微团是否围绕着通过流体微团的瞬时 轴旋转,而并非决定于流体微团轨迹的几何形状。
a(t) ax (t)i ay (t) j az (t)k (10) 结论:
向量导数在坐标轴上的投影等于相应的向量投 影的导数。
向量的导数在几何上为一切向矢量。
da(t) a(t) dt
第10页/共56页
一、向量分析初步
2、向量函数对于数变量的导数
一个流体微团在空间的位置可用坐标 x, y, z 确定,也可用向径确定:
一、向量分析初步
2、向量函数对于数变量的导数
da(t) lim a(t) dt t0 t
lim
t0
ax (t t
)
i
ay (t) t
j
az (t) t
k
dax (t) i day (t) j daz (t) k
dt
dt
dt
第9页/共56页
一、向量分析初步
2、向量函数对于数变量的导数
dx i dt
dy dt
j
dz dt
k
vxi vy j vzk
第11页/共56页
(11)
一、向量分析初步
3、数量场的梯度
若在数量场 x, y, z 中的一点 p
处,存在着矢量 G ,其方向为函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12 cylinder.plt
10
8 6
Z
Z
Y(M)
Y
-2 -4 -6 -8
0
5
10
15
20
X
0 .5
0
-0 .5
0 Y 0.5
1
1
-1 0 0. 5 X
4 2 0 -2
0
5 X(M)
X 10
15
计算流体力学 (2D) 16 Feb 2003 Data Alteration
Y18 16 dataltr.plt
计算流体力学
涡轮叶片通道内三维流计算实例
计算流体力学
压气机转静子表面压力分布
计算流体力学
涡轮通道内速度分布
16 Feb 2003 Space Vehicle
Y) 16 Feb 2003 Time versus Concentratio(3nD) 16 Feb 2003 Circle
Z
0.5
14
12
10
V2
8
6
4
2
0 0
5
10
15
V1
D) 16 Feb 2003 Example: FE-VZ olume Tet(r2aDh)edra1l6DFaetab 2003 Triangles
fetetra.plXt Y
100
50
0
Z
-50
-50 Y0 50
-100
-50 0
X 50
YYYYY
0.036
●建立数学模型:根据流动特点建立适当的数学模型(控制 方程)
●确定计算方法 1)控制方程的离散方法:将流体力学基本方程转化成可
用计算机语言描述的形式,称为离散方程,有限元、有限差 分、有限体积等。
计算流体力学
2)边界条件的处理:有/无滑移、壁面等温/绝热等。 ●编制计算机程序或运用已有程序进行计算
1.2 流场数值模拟概念
计算流体力学
☆流场数值模拟概念
●也称为流场计算机模拟,是以计算机为手段,通过数值 计算以数据和图像显示,再现研究对象及其内在规律。
●数值模拟可理解为用计算机做实验。比如一个机翼绕流 问题,通过计算可得到其升力、阻力数值;绕流流线、激 波位置、流动分离、涡的生成和传播
☆流场数值模拟几个步骤
所对应的流体力学方程理论分析
2.1 可压缩非定常粘性流数学模型
连续方程: 运动方程:
(V )
0Байду номын сангаас
t
DV
F
p
[( ui u j )
V ]
Dt
x j x j xi
ij
能量方程:
D Dt
(e V 2 2
)
F V
( ij
V ) (kT )
q
上述基本方程构成了Navier-Stokes(简称NS)方程 。
●真实可靠、是发现流动规律、检验理论和为流体机 械设计提供数据的基本手段。
●实验要受测量技术限制,实验周期长、费用高。
☆ 理论研究 ●在研究流体流动规律的基础上,建立了流体流动基 本方程。 ●对于一些简单流动,通过简化求出研究问题的解析 解。
计算流体力学
●对于实际流动问题,通常需运用流体力学基本方程, 借助于计算机求数值解(计算机数值模拟)— 计算流体力学CFD。
4
3
2
1
0 4 6 8 10 12
Contour Plots
Y(M)
6
Mesh Plots
5
4
3
2
1
0
-1
2
3
4
5
6
7
8
9
X(M)
0 Vector Plots
1.0
0.5
40
Shade Plots 35
30
50
25
0
20
-50
Scatter Plots
0.0
-1
-0.5
-1.0
-0.5
0.0
-10.5
计算流体力学
●美国自上二十世纪八十年代后期,由于CFD方法应用, 使一台发动机设计时间从10-15年降到5-8年,试验样机数 从40-50台降到10台左右。美国NASA主持建立了推进系
统数值仿真系统。
☆ 数值模拟与实验研究、理论分析关系 ●三者相互依赖、相互促进 ●数值模拟所占份额会越来越大(计算机技术迅速发展、 计算方法的不断改进)。
(2D) 16 Feb 2003 Internally created dataset(3D) 16 Feb 2003 Internally creaZted dataset(2D) 16 Feb 2003 CYLINDER
10
8 create.plt
6 4 2 0
creatvol.pX lt Y 3 2 .5 2 1 .5 1
slice.plt X Y
0.6 0.5 0.4 0.3 0.2 0.1
0 0 Y0.1 0.2
-0.6 -0.4 -0.2 0 X 0.2 0.4 0.6
(3D) 16 Feb 2003 3D FE DATASZ ET
3dfe.plt X Y
2
0
0 2
Y4
0
5
10 X 15
(2D) 16 Feb 2003 Smooth
0.25
0.2 nozzle.plt
6
5 polar2d.plt
polay3d.XplltY
4.5
4 position.plt
0.15 0.1
0.05 0
0.05 -0.1
0
0.1
0.2
0.3
0.4
X
Y
4 3 2 1 0
0
2
4
6
X
3
2
-1
1
0
1 0
2
Y 3
-1 4
-1 5
0 X
6 1
Z
Y1
3.5
3
2.5
fetriang.plt 0.035
0.034
0.033
0.032
0.031
0.03
0.029
0.028
0.027
0.026
0.025
0.005
0.01
XXXXX
(3D) 16 Feb 2003 Internally creaZted dataset(3D) 16 Feb 2003 IJK-Ordered DZ ata
☆ 计算机数值模拟 ●数值模拟耗费小、时间短、省人力,并能对实验难以 测量的流动进行模拟,如燃烧室、转子通道内。 ●在航空航天、核工业、天气预报、海浪和风暴潮预报 等方面有极广泛应用。 ●在航空航天方面,可用于计算飞行器飞行过程中周围 流场(计算出升力、阻力)。计算航空发动机各部件 内部流场,以及整台发动机三维流场。目前国内有一 些使用较多的商用软件,如fluent、Star-CD、numeca等。
Z
skirt.plt X Y
75 50 25
0 -25 -50 -75
-2
Y(M) 0
2
0 2 4 6 10 8 X(M) 12 14
D) 16 Feb 2003 Velocity Vectors
4.5
4 velocity.plt
3.5
3
2.5
2
1.5
Z
Z
(3D) 16 Feb 2003 IJK-Ordered DZ ata
Z
febrick.pltX Y
Y
fetetra2.plt X 6 exchng.plt 5
ijkortho.plXt Y
-10
-5
-0.5
0
2
X
1
5
0 X(M)0.5
4
Y(M)
3
2 0.4
Z(M)
0.2
1
0
10
8
6
4
2 2
4
Z
Vectors with Scatter Symbols
Anchored at MidPoint
(XY) 16 Feb 2003 Multiple Zone XY Data (2D) 16 Feb 2003 Cylinder M=0.1 RE
3000
2500 month.plt
2000
0.03 multizn.plt
0.02 0.01
Y(M)
Y
1500
0
1000 500
-0.01 -0.02 -0.03
1
0.4 chem.plt 0.9
0.3
0.8
circle.pltX Y
0.2
0.7
Concentration
0.1
0.6
Z
0
0.5
-0.1
0.4
-0.2
0.3
-0.3
0.2
-0.4
0.1
-0.5
0
0.25
0.5
0.75
1
Time
0.2
0.1
0 5 10 15 Y 20 25 30 35
0 0 5 10 15 20 X 25 30 35
计算流体力学
计 算 流 体 力 学基础
计算流体力学
★ 课时安排: 总学时32小时,24小时讲课;8+8小时上机练习。
★ 主要相关前修课程
计算机语言、工程流体力学、高等数学
★ 主要内容
介绍流场计算的基本概念、基本方法和简单算例
第一章 概 述
计算流体力学
1.1 计算流体力学的发展及特点简述
相关文档
最新文档