6.3 实数 课件10(数学人教版七年级下册)

合集下载

6.3实数的概念和分类

6.3实数的概念和分类

O
1
2
3 O′ 4
OO′= π
O′的坐标是 π
无理数π可以用数轴上的点表示
2、以单位长度为边长画一个正方形,以 原点为圆心,正方形对角线为半径画弧,与数 轴的交点表示什么?2 Nhomakorabea2
-2 -1 0 1 2 3 4
说明:每一个无理数都可以用数轴
上的一个点来表示。数轴上的点有些表 示有理数,有些表示无理数。
5

0. 5
11
90
9
事实上,任何一个有理数都可以写成 有限小数或无限循环小数
.
设x=0.3=0.333…① 则10x=3.333…② 则②-①得9x=3,即x=1/3
..
根据上面提供的方法,你能把0.125,0.21 化成分数吗?
想一想是不是任何无限循环小数都可以化成分数?
0.125
负整数 正分数
负分数
无理数
正无理数 负无理数
无限不循环小数 (1)含π 的数
2开方开不尽的数
一般有三种情况 (3)有规律但不循环的无限小数
也可以按正负来分类:
正实数
正有理数


0
正无理数
负有理数
负实数
负无理数
随堂练习
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9

0.6

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

人教版七年级下册数学第六章实数课件:6.3 实数

人教版七年级下册数学第六章实数课件:6.3 实数

正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4

0.6
(6)实数集合: 9 3 5

0.6
3 4
3 9 3 0.13
64

0.6
3
3
4
0.13

3 9

64 3

3 9

实数课件人教版数学七年级下册[2]

实数课件人教版数学七年级下册[2]

12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动), 圆上的一点由原点到达点O′,点O′所对应的数值是__π__.
13.有一个数值转换器,原理如下:当输入的 x 为 64 时,输出的 y 是 ___8______.
14.请将图中数轴上标有字母的各点与下列实数对应起来. 2 ,-0.5,- 3 , 5 ,π,3.
有限小数或无限循环小数
正无理数
无理数
无限不循环小数
负无理数
(2)按大小分:
正实数 实数 0
负实数
正有理数 正无理数
负有理数 负无理数
实数的分类有不同 的方法,但不论用 哪一种分类方法, 都要做到不重不漏.
(1)对实数进行分类时,某些数应先进行计算或化简, 然后根据最后结果进行分类,不能看到带根号的数, 就认为是无理数,不能看到有分数线的数,就认为 是有理数. (2)在实数范围内,一个数不是有理数, 那么它一定是无理数,反之亦成立.
④无理数一定都是实数.其中正确的有________.
有理数和无理数统称为实数.
整数、小数、分数、百分数. 12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是____.
无理数都是无限小数,但无限小数不一定是无理数,只有无限不循环小数才是无理数. 事实上,如果把整数看成小数点后是 0 的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.
巩固新知
把下列各数填在相应的大括号内.
非负整数:{ 整数:{ 负分数:{
…}; …}; …};
把下列各数填在相应的大括号内.
|a|>4
B.
(1)对实数进行分类时,某些数应先进行计算或化简,然后根据最后结果进行分类,不能看到带根号的数,就认为是无理数,不能看到有分数线的数,就认为是有理数.

6.3实数

6.3实数
即实数和数轴上的点是一一对应的。 在数轴上的两个点,右边的点表示的实数 总比左边的点表示的实数大。
运用新知
例题2、把下列各数填入相应的集合内:
15 ,4

16
,2
,3
27
,0.15

7.5

π
,0

,2.3

3
①有理数集合:{
…};
②无理数集合:{
…};
③正实数集合:{
…};
④负实数集合:{
…}.
5 0.5 9
有限小数和无限循环小数叫有理数
探究新知
把下列各数写成小数的形式:
2 1.4142 3 3 1.442
3 1.7320
3 5 1.710
5 2.2360 3 7 1.913
3.14159265
无限不循环小数叫无理数
探究新知
思考:π是无理数吗?1.010 010 001 00001…
运用新知
例3 在数轴上表示下列各点,比较它们的大小, 并用“<”连接它们.
1 2 -2 5 3
-2 -1 0 1 2 3
-2< 3 < 1< 2 < 5
例4 估计 5 1 位于( B )
A.0~1之间 B.1~2之间 C.2~3之间
D.3~4之间
归纳 熟记一些常见数的算术平方根;或用计算器估计.
旧知回顾
3、有理数包括哪些数?
整数
正有理数
有理数
分数
有理数
零 负有理数
像 5,
2 5

27
8,
6
13
11 , 90 ,
8
9.

实数课件人教版数学七年级下册3

实数课件人教版数学七年级下册3

填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);

(4)a+(-a) = (-a)+a = 0

(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.

七年级数学人教版下册第六章6.3.1实数及其分类课件

七年级数学人教版下册第六章6.3.1实数及其分类课件
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数



0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};

,∴
是有理数.∵

8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8

1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介

6.3实数(课件)七年级数学下册(人教版)

6.3实数(课件)七年级数学下册(人教版)







-2
-1

●●
0
π
1
2



3
4
从图中可以看出,OO’的长是这个圆的周长π,所以点O’对应的数是π.
这样,无理数π可以用数轴上的点表示出来.
探究新知
人教版数学七年级下册
数轴上的点可以表示有理数,那它可以表示无理数吗,
你能在数轴上画出表示 的点吗?
2
-2
2-1
0
1
2
2
当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应
例1 (1)分别写出− 和π-3.14的相反数;
(2)指出− , −

��分别是什么数的相反数;

(3)求 −的绝对值;
(4)已知一个数的绝对值是 ,求这个数.
解:(1)因为
( 6) 6 ,-(π-3.14)=3.14-π,
所以, 6 ,π-3.14的相反数分别为 6 ,3.14-π.
人教版数学七年级下册
人教版数学七年级下册
第6.3 实数
学习目标
人教版数学七年级下册
1.理解无理数和实数的概念.
2.对实数进行分类,判断一个数是有理数还是无理数.
3.理解实数和数轴上的点一一对应.
4.掌握实数的运算法则及运算律.
情境引入
人教版数学七年级下册
探究
我们知道有理数包括整数和分数,请把下列分数写成
例题讲解
例2
人教版数学七年级下册
计算下列各式的值:
(1)( 3
2)
2; (2)3 3 2 3
解:
(1)( 3 2) 2

人教版数学七年级下册课件6.3实数(共20张PPT)

人教版数学七年级下册课件6.3实数(共20张PPT)

实数的大小比较
实数也有大小,其比较方法与有理数大小的比较方法相同.
1.两个正实数比较大小绝对值大的较大; 2.两个负实数比较大小绝对值大的反而小; 3.正实数都大于0,负实数都小于0,即正实数>0>负实数.
如: π__<_ 3.146
3 _<__1.732
实数的运算
实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方 运算,而且正数和0可以进行开平方运算,任意一个实数可以进行 开立方运算.
第六章 实数
6.3 实数
复习引入 (1)
即设 a 表示一个实数,则: (1)
例1 (1)分别写出
的相反数;
(跟2有)理数一样是什,无么理的数是相也反有有数正理;负之数分?,如有理数可以如何分类?
一一个个负 负实实数数的的绝绝对对值值是是整它它数的的相相和反反数数分;;数统称为有理数
(3)求
的绝对值;
有理数的运算法则和运算性质同样适用于实数. 实数的混合运算顺序:先乘方、开方,再乘除,后加减.
例2 计算下列各式的值:
(1) ( 3 2) 2
3 2 2
3 0 3;
(2) 3 3 2 3
3 2 3
5 3.
加法结合律 分配律
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理数, 再进行计算.
反过来,任何有限小数或无限循环小数也都是有理数.
无理数
前边我们学习了平方根和立方根,我们知道很多数的平方根或立方 根都是无限不循环小数.
我们把无限不循环小数叫做无理数.
例如, 2, 5, 3 2, 3 3 等都是无理数,π=3.14159265…也是无理数 .

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:

6.3.1实数-人教版七年级数学下册课件

6.3.1实数-人教版七年级数学下册课件

你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数

人教版七年级数学下册_6.3实数

人教版七年级数学下册_6.3实数

算乘方、开方,再算乘除,最后算加减,同级运算按照
自左向右的顺序进行,有括号先算括号里面的.
感悟新知
2. 实数的运算律: 加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+ (b+c); 乘法交换律:ab=ba; 乘法结合律: (ab)c=a (bc); 乘法分配律: (a+b)c=ac+bc.
●引入无理数后,数的范围由原来的 有理数扩大到实数,今后我们研究 问题时,若没有特殊说明,就应在 实数范围内进行.
知2-讲
感悟新知
(1)按定义分类:
知2-讲
正整数
整数 0
实数
有理数
分数
负整数 正 负分 分数 数
有限小数或无线循环小数
无理数
正无理数 负无理数
无限不循环小数
感悟新知
1. 相关概念:
特别提醒 在有理数范围内的一些基本概
念(如相反数、倒数、绝对值) 在实数 范围内依然适用.
知4-讲
感悟新知
知4-讲
(1)相反数:实数a 的相反数为-a,若a,b 互为相反
数,则a+b=0;
(2)倒数:非零实数a 的倒数为 1 ,若a,b 互为倒数,
a
则ab=1;
(3)绝对值:|a|=
知5-讲
感悟新知
3. 运算种类: 运算级别 运算名称 运算结果
第一级 加减 和差
知5-讲
第二级
第三级
乘 除 乘方 开方
积 商 幂 方根
感悟新知
特别提醒
知5-讲
有理数的运算律在实数范围内仍然适用,在进行实
数运算的过程中,要做到:
一“看”——看算式的结构特点,能否运用运算律

七年级下册数学 人教版课件 6.3 实数

七年级下册数学 人教版课件  6.3 实数

4 3
,0.

5
7• ,
4 ,- π,
0.1010010001……(相邻两个1之间0的 个数逐次加1).
1.探究新知
我们知道,每个有理数都可以用数轴上的点 来表示,那么无理数是否也可以用数轴上的 点表示出来呢?你能在数轴上找到表示无理 数的点吗?
1.探究新知 直径为1个单位长度的圆从原点沿数轴向 右滚动一周,圆上的一点由原点到达点O, 点O' 对应的数是多少?
3 .运用新知
解: (1) 6 的相反数是 6 ;
π 3.14 的相反数是 3.14 π . (2) 5 的相反数是 5 ;
1 3 3 的相反数是 3 3 1. (3)3 64 的绝对值是4. (4) 绝对值是 3 的数是 3 或 3 .
3.运用新知
例2 计算下列各式的值: (1) ( 3 2 ) 2
正有理数
有理数0
有限小数或无限循环小数
实数
负有理数
无理数负正无无理理数数无限不循环小数
1.探究新知
因为非零有理数和无理数都有正负之分,那 么你能类比有理数的分类方法,按大小关系 对实数分类吗?
正实数 实数0
负实数
1.探究新知
例1 下列实数中,哪些是有理数?哪些是 无理数?
5,3.14,0, 3 ,
为什么?
2.运用新知
判断正误,并说明理由. (1)无理数都是无限小数; (2) 实数包括正实数、0、负实数; (3)不带根号的数都是有理数; (4)所有有理数都可以用数轴上的点表示, 反过来,数轴上所有的点都表示有理数.
2.运用新知
把下列各数填入相应的集合内:
15 ,4

16
,2
,3

人教版数学七年级下册 6.3 实数 课件

人教版数学七年级下册 6.3 实数 课件

2,
2,求 − 的平方根.
得 + 2=3 + 2,
∵, 是有理数,
∴比较 + 2=3 + 2等号两边,得 = 3, = 1.
∴ − பைடு நூலகம் = 3 − 1 = 2,
∴ − 的平方根是± 2.
【例题4】 .设a与b互为相反数,c与d互为倒数,m的倒数等于它本身,化简

13−1
2
3
和 2;
解: (1)用求差法.
∵ 13 < 4.

13−1
3

2
2

13−1
2
=
3
<2.
13−1−3
2
=
13 − 4
2
< 0.
(2)
13−1
5

.
2
2
(2)平方和求差综合法
13−1
2

又∵
> 0,
13−1
2
2
5
2
=
> 0.
14−2 13
4
=
7− 13
5

2
2
2
=
2.5
.
2
∵ 13 < 4.
1 1
= +2 − 2 + −
3 9
2
= .
9
5.若实数a,b互为相反数,c,d互为倒数,m是9的平方根,则− + +
3
5或17
+( − 1)2 = _______________.
无限不循环小数叫做无理数.
有理数和无理数统称为实数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无理数的概念 新知
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168…
3 =1.73205080756887729352744… π=3.1415926535897932384626… 1.010010001…(两个1之间依次多一个0)
无限不循环小数 叫做无理数.
0
在实数范围内,相反数、倒数、绝对值的意义 和有理数范围内的相反数、倒数、绝对值的意义 完全一样。
(1)a是一个实数,它的相反数为
绝对值为
a
a
1 a


(2)如果a 0,那么它的倒数为

0
( 3 ) 正实数的绝对值是 它本身 ,0的绝对值是 负实数的绝对值是 它的相反数.

练习、填空:
1 2 (1) 2 1 的相反数是__________
3
3
3
64
= -4 = 4
-64
=
-4
(2)因为 √ 3 = √ 3 -√ 3 =√ 3 所以绝对值为√ 3 的数是√ 3 或 √ -
探究 问题1.无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右滚 动一周,圆上一点从原点到达A点,则点A的坐标为多少?-4源自-3-2-1
0
1
2
试一试
想一想, 觉得无理数都有那些形式? 把下列各数分别填入相应的集合内: 3 22 3 , 8, 0.101, , 9 , 64 3 , 3 7
3 ,
开不尽的方根 20
2.1 21,
1
圆周率 π 9

16
0.3737737773
人为构造的数
...
...
有理数集合
无理数集合
有理数和无理数统称实数.
实数的分类
有理数和无理数统称实数.
整数 有理数 实数 无理数 正实数 分数 无限不循环小数 正有理数 有限小数和无限循环小数
实数
正无理数 0 负实数 负有理数 负无理数
练一练
当数从有理数扩充到实数以后,有理数关 于相反数和绝对值的意义同样适合于实数.
P84
2
0
2

2013.3.25
回顾 探究 有理数包括哪些数?
正有理数 用计算器计算,把下列有理数写成小 整数 数的形式 有理数 . 有理数 零 分数 负有理数
9 47 11 3 47 5 3 像 = 5.875 , 3, = 0.6 , 3= 3.0,5 , , , , . 8 11 9 9 8 5 . . . . 9 5 11 = 0.5. = 0.81 , = 0.12 , 9 11 9 一个有理数都可以写成有限小数或无 限循环小数的形式.
3A
4
无理数 可以用数轴上的点来表示.
问题2.你能在数轴上表示出 2 吗?
探究 问题2.你能在数轴上表示出 2 吗?
2
-2
- 2 -1
0
1
2
2
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数。
★实数和数轴上的点是一一对应的.
P86 随堂练习:
解:点A表示-1.5; 点C表示 点E表示
11 的倒数是__ 2 11 的平方 是___ 2 3.14 3.14 |=___________ (3)| 6 (4)绝对值等于 6 的数是 _________ 3 1 (5) 1 3 绝对值是 _________
(2)
(6) 比较大小:-7
4 3
1
解:(1)因为√ -64 = 所以
点B表示 ; 点D表示3;
2
;
5

.
课堂小结
有理数 无理数

实数


★实数和数轴上的点是一一对应的.
★有序实数对和直角坐标系中的点是一 一对应的.
四、总结反思 无理数的特征: 无理数的特征: 1.圆周率 及一些含有
的数
2.开不尽方的数 3.有一定的规律,但不循环的无限小数 注意:带根号的数不一定是无理数
相关文档
最新文档