高一数学高中数学必修红对勾答案

合集下载

(红对勾)人教版高中数学高一必修一答案

(红对勾)人教版高中数学高一必修一答案

人教版高中数学高一必修一答案目录•第一章线性方程与不等式•第二章函数基础•第三章函数的初等函数•第四章三角函数•第五章数列•第六章概率第一章线性方程与不等式1. 解答:(1)解:因为$$ \\begin{aligned} x+y&=-2\\\\ 2x-y&=1 \\end{aligned} $$(2)解得:$$ \\begin{aligned} x&=-\\frac{3}{5}\\\\ y&=-\\frac{7}{5} \\end{aligned} $$(3)所以方程的解为$x=-\\frac{3}{5}$,$y=-\\frac{7}{5}$。

(2)解:因为$$ \\begin{aligned} 2x+y&=-3\\\\ 3x-2y&=4 \\end{aligned} $$(3)解得:$$ \\begin{aligned} x&=-\\frac{11}{5}\\\\ y&=\\frac{7}{5} \\end{aligned} $$(4)所以方程的解为$x=-\\frac{11}{5}$,$y=\\frac{7}{5}$。

2. 解答:(1)解:根据题意,2x−3<4,移项得2x<7,再除以2得$x<\\frac{7}{2}$,所以不等式的解集为$x<\\frac{7}{2}$。

(2)解:根据题意,$3x+2\\leq 5$,移项得$3x\\leq 3$,再除以3得$x\\leq 1$,所以不等式的解集为$x\\leq 1$。

第二章函数基础1. 解答:(1)解:由题意,函数x(x)的定义域是$x\\geq -3$,根据函数的图象可得:当$x\\geq -3$时,x(x)的值为正;当x<−3时,x(x)的值为负。

(2)解:由题意,函数x(x)的定义域是$x\\leq 2$,根据函数的图象可得:当$x\\leq 2$时,x(x)的值为负;当x>2时,x(x)的值为正。

《红对勾》2015-2016学年人教版高中数学必修一习题第1章1.2.2.2函数的表示法

《红对勾》2015-2016学年人教版高中数学必修一习题第1章1.2.2.2函数的表示法

1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:依映射的定义,集合A 中每一元素在B 中都有唯一元素与之对应,选项C 中元素a 同时对应0与1,故C 中对应不是映射.答案:C2.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (43)+f (-43)等于( ) A .-2B .4C .2D .-4解析:f (43)=2×43=83, f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,所以f (43)+f (-43)=83+43=4.答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:由题意知f (0)=2.又f (2)=22+2a ,所以22+2a =4a ,即a =2.答案:24.若A ={2,4,6,8},B ={-1,-3,-5,-7},下列对应关系①f :x →9-2x ;②f :x →1-x ;③f :x →7-x ;④f :x →x -9中,能确定A 到B 的映射的是________.解析:对于①,在A 中取2时,在B 中没有元素与之对应,故①不是映射;②④满足映射的定义,是映射;对于③,在A 中取2,4,6时,在集合B 中均没有元素与之对应,故③不是映射.答案:②④5.已知f (x )=⎩⎪⎨⎪⎧ x +1 (x >0)π (x =0)0 (x <0),求f (f (f (-3))). 解:∵-3<0,∴f (-3)=0,∴f (f (-3))=f (0)=π,又π>0,∴f (f (f (-3)))=f (π)=π+1,即f (f (f (-3)))=π+1.。

【红对勾】人教A版高中数学必修4课时作业18向量数乘运算及其几何意义 Word版含答案[ 高考]

【红对勾】人教A版高中数学必修4课时作业18向量数乘运算及其几何意义 Word版含答案[ 高考]

课时作业18 向量数乘运算及其几何意义时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.点C 在线段AB 上,且AC →=35AB →,则AC →=( ) A.32BC →B.23BC → C .-32BC →D .-23BC →解析:依题意,可得AC =32BC ,又AC →和BC →方向相反,所以AC →=-32BC →.答案:C2.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD =2DC ,则AD →=( )A.23b +13c B.53c -23b C.23b -13cD.13b +23c解析:如图,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=c +23(b -c )=23b +13c .答案:A3.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,则以下一定共线的是( )A.PC →与PB →B.P A →与PB →C.P A →与PC→ D.PC→与AB → 解析:P A →+PB →+PC →=AC →可化为P A →+PB →+PC →+CA →=0,即-2P A →=PB →,所以P A →与PB→共线. 答案:B4.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB→+AC →=mAM →成立,则m 等于( ) A .2 B .3 C .4D .5解析:设BC 的中点为D ,由已知条件可得M 为△ABC 的重心,AB →+AC →=2AD →,又AM →=23AD →,故m =3.答案:B5.点P 是△ABC 所在平面内一点,若CB →=λP A →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:∵CB →=λP A →+PB →,∴CB →-PB →=λP A →.∴CP →=λP A →.∴P 、A 、C 三点共线.∴点P 一定在AC 边所在的直线上. 答案:B6.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP→=( ) A .λ(AB→+AD →),λ∈(0,1) B .λ(AB →+BC →),λ∈(0,22) C .λ(AB→-AD →),λ∈(0,1) D .λ(AB →-BC →),λ∈(0,22) 解析:由向量加法运算法则可知,AC→=AB →+AD →,又点P 在线段AC 上,故AP →与AC →同向,且|AP →|<|AC →|,故AP →=λ(AB →+AD →),λ∈(0,1).答案:A二、填空题(每小题8分,共计24分)7.化简25(a -b )-13(2a +4b )+215(2a +13b )=________.解析:25(a -b )-13(2a +4b )+215(2a +13b )=25a -25b -23a -43b +415a +2615b =(25-23+415)a +(-25-43+2615)b =0a +0b =0+0=0.答案:08.点C 在直线AB 上,且P A →=15PB →+kPC→,则实数k 的值为________.解析:由题意,k +15=1,解得k =45. 答案:45 9.如图所示,在▱ABCD 中,AB→=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN→=________(用a ,b 表示). 解析:MN→=MB →+BA →+AN → =-12BC →+BA →+34AC →=-12AD →-AB →+34(AB →+AD →) =-12b -a +34(a +b ) =14b -14a =14(b -a ). 答案:14(b -a )三、解答题(共计40分,其中10题10分,11、12题各15分) 10.如图,四边形OADB 是以向量OA→=a ,OB →=b 为边的平行四边形.又BM →=13BC →,CN →=13CD →,试用a 、b 表示OM →、ON →、MN →. 解:BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ), 所以OM →=OB →+BM →=b +16a -16b =16a +56b . CN →=13CD →=16OD →,所以ON →=OC →+CN →=12OD →+16OD → =23OD →=23(OA →+OB →)=23(a +b ).MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .11.已知两个非零且不共线的向量e 1、e 2,若AB →=5e 1+4e 2,CD →=-4e 1-75e 2,AC →=6e 1+3e 2,求证A 、B 、D 三点共线. 证明:∵CD →=-4e 1-75e 2,AC →=6e 1+3e 2, ∴AD →=AC →+CD →=6e 1+3e 2-4e 1-75e 2 =2e 1+85e 2=25(5e 1+4e 2)=25AB →.∴AB→∥AD →.又∵AB →、AD →有公共点A , ∴A 、B 、D 三点共线.12.如图,在△ABC 中,D 、E 分别为AC 、AB 边上的点,CD DA =AE EB =12,记BC →=a ,CA →=b . 求证:DE →=13(b -a ). 证明:因为AE →=13AB →=13(CB →-CA →) =13(-a -b ),AD →=23AC →=-23b , 所以DE →=AE →-AD → =-13a -13b +23b =13(b -a ).。

高中数学必修2红对勾的习题答案1-1-1.ppt

高中数学必修2红对勾的习题答案1-1-1.ppt
第一章 立体几何初步
红对勾系列丛书
9.一个正方体的每个面上都写有一个汉字,其平面展 开图如图所示,那么在该正方体中,和“超”相对的字是 ________.
第一章 立体几何初步
红对勾系列丛书
解析:将平面图形还原成空间图形即可判断. 答案:自
第一章 立体几何初步
红对勾系列丛书
三、解答题(本大题共3小题,共40分,解答应写出文 字说明,证明过程或演算步骤)
第一章 立体几何初步
红对勾系列丛书
或直线AC混淆,故是错误的,错误的答案只有③⑤,所 以选D.
答案:D
第一章 立体几何初步
红对勾系列丛书
5.下列不属于构成几何体的基本元素的是( ) A.点 B.线段 C.曲面 D.多边形(不含内部的点)
第一章 立体几何初步
红对勾系列丛书
解析:因为一个几何体是由点、线、面组成的,且线 有直线和曲线之分,面有平面和曲面之分,所以只有D不 属于构成几何体的基本元素.点、线、面是构成几何体的 基本元素,任何一个几何体都是由这些基本元素组成 的.虽然其他图形有时也能构成另外复杂的几何体,但是 不能称之为构成几何体的基本元素.
第一章 立体几何初步
红对勾系列丛书
①平面ABCD;②平面BD;③平面AD;④平面ABC;
⑤AC;⑥平面α.
A.②④
B.②③⑥
C.④⑤⑥
D.③⑤
第一章 立体几何初步
红对勾系列丛书
解析:平面的表示除了用平面图形的顶点字母,如平 面ABCD来表示外,还可用希腊字母α、β、γ等来表示,对 于前一种情况也可简单的用一条对角线上的两个顶点字母 表示,但前面要加“平面”两字.显然①②⑥是正确的, ③用一条边的顶点字母表示不符合要求,④用了三角形的 顶点字母表示平面是完全可以的,⑤虽然用对角线AC的 顶点字母表示,但没加“平面”两字,易与线段AC

【红对勾】2015-2016学年人教版高中数学必修一1.1.1.1

【红对勾】2015-2016学年人教版高中数学必修一1.1.1.1

RJA版· 数学· 必修1
进入导航
第一章·1.1·1.1.1·第1课时
【解析】
思考、讨论集合中元素的性质,对于此类
选择题要逐项判断.判断一组对象能否构成集合,关键是 看是否满足集合元素的确定性. 在选项A、C、D中的元素符合集合的确定性,而选项 B中,难题没有标准,不符合集合元素的确定性,不能构成 集合.
RJA版· 数学· 必修1
进入导航
第一章·1.1·1.1.1·第1课时
2.一个集合能表示成a,a,b,c吗?为什么? 提示:不能.集合中的元素是互不相同的,任何两个 相同的对象在同一个集合中,只能算作这个集合的一个元 素.
RJA版· 数学· 必修1
进入导航
第一章·1.1·1.1.1·第1课时
元素与集合的关系
进入导航
第一章·1.1·1.1.1·第1课时
(1)给出下列几个关系式: 2∈R;0.3∈Q;0∈N;0 1 ∈N+;2∈N+;-π∈Z;-5∈Z.其中正确的关系式的个数 是( ) A.4 C.6 B.5 D.7
(2)设集合A是偶数集,集合B是奇数集.若a∈A,b∈ B,则a+b∈________.
进入导航
RJA版· 数学· 必修1
第一章·1.1·1.1.1·第1课时
解析:(1) 2∈R,0.3∈Q,0∈N,-5∈Z正确,其余错 误. (2)a+b是奇数,所以a+b∈B.
答案:(1)A (2)B
RJA版· 数学· 必修1
进入导航
第一章·1.1·1.1.1·第1课时
集合中元素的特性
【例3】
已知集合A中含有两个元素a和a2,若1∈
答案:C
RJA版· 数学· 必修1
进入导航
第一章·1.1·1.1.1·第1课时

【红对勾】人教A版高中数学必修4课时作业19平面向量基本定理 Word版含答案[ 高考]

【红对勾】人教A版高中数学必修4课时作业19平面向量基本定理 Word版含答案[ 高考]

课时作业19 平面向量基本定理时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,c =-6e 1+2e 2,其中e 1,e 2不共线,则a +b 与c 的关系为( )A .不共线B .共线C .相等D .无法确定解析:∵a +b =3e 1-e 2,∴c =-2(a +b ),∴a +b 与c 共线. 答案:B2.若D 在△ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s =( )A.165 B.125 C.85D.45 解析:由题意得CD →=45CB →=45AB →-45AC →, ∴r =45,s =-45,∴3r +s =85. 答案:C 3.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:取第Ⅲ部分内一点画图易得a >0,b <0. 答案:B4.在△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB →=a ,CA→=b ,|a |=1,|b |=2,则CD →等于( ) A.13a +23b B.23a +13b C.35a +45bD.45a +35b解析:∵CD 平分∠ACB ,∴|CA→||CB →|=|AD →||DB →|=21.∴AD →=2DB →=23AB → =23(CB →-CA →)=23(a -b ). ∴CD →=CA →+AD →=b +23(a -b )=23a +13b . 答案:B5.在△ABC 中,AB→=c ,AC →=b ,若D ,E 分别在BC ,BA 边上,且BD →=2DC →,BE →=2EA →,则向量23b +13c 表示( ) A.AD → B.CE → C.DE → D.ED→ 解析:如图所示,可依次检验答案:对于A 项,AD →=AB →+BD →, ∵BD →=2DC →,∴BD →=23BC →. ∴BD →=23BC →=23(AC →-AB →)=23(b -c ). ∴AD →=AB →+BD →=c +23(b -c ) =23b +13c . 从而A 项正确. 答案:A6.如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 的延长线、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN→,则m +n 的值为( ) A .1 B .2 C.12 D.32解析:连接AO ,AO →=12(AB →+AC →) =m 2AM →+n 2AN →, ∵M 、O 、N 三点共线, ∴m 2+n2=1,∴m +n =2. 答案:B二、填空题(每小题8分,共计24分)7.已知向量a 与b 的夹角是45°,则向量-2a 与-3b 的夹角是________.解析:-2a 、-3b 分别与a 、b 反向,它们所成的角与a 、b 所成的角为对顶角.答案:45°8.已知e 1,e 2是非零的不共线向量,a =k e 1+e 2,b =e 1+k 2e 2,且a ∥b ,则k =________.解析:∵a ∥b ,a =k e 1+e 2,b =e 1+k 2e 2, ∴a =λb ,即k e 1+e 2=λ(e 1+k 2e 2). ∴k e 1+e 2=λe 1+λk 2e 2.∴⎩⎪⎨⎪⎧k =λ,1=λk 2,∴k 3=1.∴k =1. 答案:19.向量a 在基底{e 1,e 2}下可以表示为a =2e 1+3e 2,若a 在基底{e 1+e 2,e 1-e 2}下可表示为a =λ(e 1+e 2)+μ(e 1-e 2),则λ=________,μ=________.解析:由条件可知⎩⎪⎨⎪⎧λ+μ=2,λ-μ=3,解得⎩⎪⎨⎪⎧λ=52,μ=-12.答案:52 -12三、解答题(共计40分,其中10题10分,11、12题各15分) 10.如图,已知E ,F 分别是矩形ABCD 的边BC ,CD 的中点,EF 与AC 交于点G ,若AB→=a ,AD →=b ,用a ,b 表示AG →.解:易知CF →=12CD →,CE →=12CB →. 设CG→=λCA →,则由平行四边形法则可得 CG→=λ(CB →+CD →)=2λCE →+2λCF →, 由于E ,G ,F 三点共线,则2λ+2λ=1, 即λ=14,从而CG →=14CA →, 从而AG →=34AC →=34(a +b ). 11.如图,在▱ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE 与BF 的交点,若AB→=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →,CG →. 解:DE→=AE →-AD →=AB →+BE →-AD → =a +12b -b =a -12b , BF→=AF →-AB →=AD →+DF →-AB → =b +12a -a =b -12a . 因为G 是△CBD 的重心,所以CG →=13CA →=-13AC →=-13(AB →+BC →)=-a 3-b 3.12.已知△ABC 内一点P 满足AP →=λAB →+μAC →,若△P AB 的面积与△ABC 的面积之比为,△P AC 的面积与△ABC 的面积之比为,求实数λ,μ的值.解:如图,过P 作PM ∥AC ,PN ∥AB , 则AP→=AM →+AN →, 即得AM→=λAB →,AN →=μAC →.作PG ⊥AC 于G ,BH ⊥AC 于H , 因为S △P AC S △ABC =14,所以PG BH =14.又△PNG ∽△BAH ,所以PG BH =PN AB =14, 即AM AB =14,所以λ=14,同理μ=13.。

《红对勾》2015-2016学年人教版高中数学必修一习题第1章课时作业8函数的表示法

《红对勾》2015-2016学年人教版高中数学必修一习题第1章课时作业8函数的表示法

课时作业8 函数的表示法时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.设f (x )=2x +3,g (x )=f (x -2),则g (x )等于( ) A .2x +1 B .2x -1 C .2x -3D .2x +7解析:∵f (x )=2x +3,∴f (x -2)=2(x -2)+3=2x -1,即g (x )=2x -1,故选B.答案:B2.已知f (x )是一次函数,且满足3f (x +1)=2x +17,则f (x )等于( )A.23x +5 B.23x +1 C .2x -3D .2x +1解析:∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0), 由3f (x +1)=2x +17,得3=2x +17, 整理得:3ax +3(a +b )=2x +17,∴⎩⎪⎨⎪⎧3a =2,3(a +b )=17,∴⎩⎨⎧a =23,b =5,故选A.答案:A3.已知f ⎝⎛⎭⎪⎫x 2-1=2x +3,则f (6)的值为( )A .15B .7C .31D .17解析:令x2-1=6,则x=14,则f(6)=2×14+3=31.答案:C4.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为()A.y=x2-1 B.y=-(x-1)2+1C.y=(x-1)2+1 D.y=(x-1)2-1解析:设二次函数为y=a(x-1)2+1,将(2,2)代入上式,得a=1.所以y=(x-1)2+1.答案:C5.某学生离开家去学校,为了锻炼身体,开始跑步前进,跑累了再走余下的路程,图中d轴表示离学校的距离,t轴表示所用的时间,则符合学生走法的只可能是()解析:t=0时,学生在家,离学校的距离d≠0,因此排除A、C;学生先跑后走,因此d随t的变化是先快后慢,故选D.答案:D6.设f,g都是由A到A的函数,其对应法则如下表(从上到下):表1函数f的对应法则表2函数g则与f相同的是A .gB .gC .gD .g解析:f =f (4)=1,g =g (3)=1,故选A. 答案:A二、填空题(每小题8分,共计24分)7.已知函数f (x )的图象如图所示,则此函数的定义域是________,值域是________.解析:结合图象知,f (x )的定义域为,值域为. 答案:8.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.解析:y =(10+x )x ·80=80x 2+800x (x >0). 答案:y =80x 2+800x (x >0)9.已知函数f (x )对任意实数x ,y 均有f (xy )=f (x )+f (y ),且f (2)=1,则f (1)=__________,f ⎝ ⎛⎭⎪⎫12=__________.解析:∵f (2)=f (2×1)=f (2)+f (1),∴f (1)=0. 又f (1)=f ⎝ ⎛⎭⎪⎫2×12=f (2)+f ⎝ ⎛⎭⎪⎫12=0,∴f ⎝ ⎛⎭⎪⎫12=-1.答案:0 -1三、解答题(共计40分)10.(10分)作出下列函数的图象. (1)y =1-x ,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3. 解:11.(15分)某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:函数的定义域是{1,2,3,…,10},值域是{3 000,6 000,9 000,…,30 000},可直接列表、画图表示,分析题意得到表示y与x 关系的解析式,注意定义域.解:(1)列表法如下:(2)(3)解析法:y=3 000x,x∈{1,2,3,…,10}.——能力提升——12.(15分)已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f (0)与f (1)的值; (2)求证:f (1x )=-f (x );(3)若f (2)=p ,f (3)=q (p ,q 均为常数),求f (36)的值.解:(1)令a =b =0,得f (0)=f (0)+f (0),解得f (0)=0;令a =1,b =0,得f (0)=f (1)+f (0),解得f (1)=0.(2)证明:令a =1x ,b =x ,得f (1)=f (1x )+f (x )=0, ∴f (1x )=-f (x ).(3)令a =b =2,得f (4)=f (2)+f (2)=2p , 令a =b =3,得f (9)=f (3)+f (3)=2q . 令a =4,b =9,得f (36)=f (4)+f (9)=2p +2q .。

《红对勾》2016人教版高中数学必修一模块综合评估Word版含答案

《红对勾》2016人教版高中数学必修一模块综合评估Word版含答案

模块综合评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ) A .∅ B .{x |0<x <3} C .{x |1<x <3}D .{x |2<x <3}2.设U 是全集,集合A ,B 满足A B ,则下列式子中不成立的是( )A .A ∪(∁UB )=U B .A ∪B =BC .(∁U A )∪B =UD .A ∩B =A3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f [f (2)]等于( ) A .0 B .1 C .2D .34.下列函数中,随x 增大而增大速度最快的是( ) A .y =2 006ln x B .y =x 2 006 C .y =e x2 006 D .y =2 006·2x5.设a =0.7 12 ,b =0.8 12,c =log 30.7,则()A .c <b <aB .c <a <bC .a <b <cD .b <a <c6.函数y =a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1)D .(2,2)7.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( )A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)8.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x =n ,则log a y 等于( )A .m +nB .m -n C.12(m +n )D.12(m -n )9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( )A .1.55B .1.65C .1.75D .1.8510.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________.15.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0.上述结论中正确结论的序号是________. 16.已知函数f (x )=log 0.5(x +1x ),下列说法①f (x )的定义域为(0,+∞);②f (x )的值域为[-1,+∞);③f (x )是奇函数;④f (x )在(0,1)上单调递增.其中正确的是________.答案1.D N ={x |x >2},∴用数轴表示集合可得M ∩N ={x |2<x <3},选D.2.A 依题意作出Venn 图,易知A 不成立.3.C ∵f (2)=log 3(22-1)=1, ∴f [f (2)]=f (1)=2e 1-1=2.4.C 根据幂函数、指数函数、对数函数的变化趋势即得答案.5.B ∵幂函数y =x12在[0,+∞)上是增函数, 又∵0.7<0.8,∴0<0.712 <0.812 .又log 30.7<0,∴log 30.7<0.712 <0.812,即c <a <b ,选B.6.D 由指数与对数函数的图象性质即得答案.7.A 本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2,故选A.8.D 由m -n =log a (1+x )-log a 11-x =log a (1-x 2)=log a y 2=2log a y ,所以log a y =12(m -n ).故选D.9.C 经计算知函数零点的近似值可取为1.75.10.C f (x )=a x 与g (x )=log a x 有相同的单调性,排除A ,D ;又当a >1时,f (3)g (3)>0,排除B ,当0<a <1时,f (3)g (3)<0,选C.11.A 由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x-12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x在(-∞,+∞)上是增函数.12.D 由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.13.-3解析:∵∁U A ={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根,∴m =-3. 14.0或13解析:由题意得m =0或Δ=4-12m =0,即m =0或m =13. 15.②③解析:本题考查对数函数的性质.函数f (x )=ln x 满足ln(x 1·x 2)=ln(x 1)+ln(x 2);由函数f (x )=ln x 是增函数,知ln x 1-ln x 2x 1-x 2,即f (x 1)-f (x 2)x 1-x 2>0成立.故②③正确.16.①④解析:f (x )=log 0.5(x 2+1x ); ∴x >0,即定义域为(0,+∞);又∵f (x )=log 0.5(x +1x ),定义域不关于原点对称,则f (x )为非奇非偶函数;又∵x +1x ≥2,∴log 0.5(x +1x )≤log 0.52=-1. ∴值域为(-∞,-1],②错; 又∵x +1x 在(0,1)上为递减函数,∴log 0.5(x +1x )在(0,1)上为递增函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设A ={-3,4},B ={x |x 2-2ax +b =0},B ≠∅且B ⊆A ,求a ,b .(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间.答案17.解:由B ≠∅,B ⊆A 知B ={-3}或{4}或B ={-3,4}. 当B ={-3}时,a =-3,b =9; 当B ={4}时,a =4,b =16; 当B ={-3,4}时,a =12,b =-12. 18.解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2. 又∵f (x )为奇函数,∴f (-x )=-f (x ).∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).———————————————————————————— 19.(12分)已知二次函数f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),且满足f (-2+x )=f (-2-x )(x ∈R ).(1)求该二次函数的解析式及函数的零点;(2)已知函数在(t -1,+∞)上为增函数,求实数t 的取值范围.20.(12分)已知函数f (x )=2x 2+2x +a(-2≤x ≤2).(1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值.答案19.解:(1)因为二次函数为f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),故c =1.①又因为函数f (x )满足f (-2+x )=f (-2-x )(x ∈R ),故x =-22a =-2.②由①②得:a =12,c =1.故二次函数的解析式为:f (x )=12x 2+2x +1.由f (x )=0,可得函数的零点为:-2+2,-2- 2.(2)因为函数在(t -1,+∞)上为增函数,且函数图象的对称轴为x =-2,由二次函数的图象可知:t -1≥-2,故t ≥-1.20.解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2),∴在[-2,-1]上,f (x )为减函数; 在[-1,2]上,f (x )为增函数. 即f (x )的减区间是[-2,-1], f (x )的增区间是[-1,2].(2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1.∵28+a =64,∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.————————————————————————————21.(12分)已知函数f (x )=log a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a -2x +1在区间[1,2]上恒为正,求实数a 的取值范围.22.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点; (2)求证:f (x )是(0,+∞)上的减函数; (3)当f (2)=12时,解不等式f (ax +4)>1.答案21.解:当a >1时,y =⎝⎛⎭⎪⎫1a -2x +1是减函数,故⎝⎛⎭⎪⎫1a -2·2+1>1,则a <12,矛盾.当0<a <1时,0<⎝ ⎛⎭⎪⎫1a -2x +1<1,设y =⎝ ⎛⎭⎪⎫1a -2x +1,分类讨论1a -2的取值,得12<a <23.22.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点.(2)证明:设0<x 1<x 2,∵f (mn )=f (m )+f (n ), ∴f (mn )-f (m )=f (n ).∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1.而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数.(3)因为f (4)=f (2)+f (2)=1,所以不等式f (ax +4)>1可以转化为f (ax +4)>f (4).因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4.当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0, 解集为{x |-4a <x <0};当a <0时,-4<ax <0,即0<x <-4a , 解集为{x |0<x <-4a }.。

《红对勾》2015-2016学年人教版高中数学必修一习题第3章3.1.2用二分法求方程的近似解

《红对勾》2015-2016学年人教版高中数学必修一习题第3章3.1.2用二分法求方程的近似解

1.下列图象与x 轴均有交点,其中不能用二分法求函数零点的是( )解析:A 选项的零点不是变号零点. 答案:A2.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( ) A . B . C .D .解析:∵f (-2)=-8+5=-3<0,f (1)=1+5=6>0,∴初始区间可为.答案:A3.用二分法求方程x 2=⎝ ⎛⎭⎪⎫12x -2的近似解时,所取的初始区间可以是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:设f (x )=x 2-⎝ ⎛⎭⎪⎫12x -2,则f (0)=-4<0,f (1)=1-2=-1<0,f (2)=4-1=3>0,f (3)=172>0,f (4)=634>0,∴f (x )在(1,2)内有零点,即方程x 2=⎝ ⎛⎭⎪⎫12x -2的解在(1,2)内.答案:B4.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下部分对应值表:解析:因为f (2)>0, f (3)>0, f (4)>0, f (5)<0,∴f (2)·f (3)<0, f (3)·f (4)<0, f (4)·f (5)< 0,故f (x )的零点至少有3个. 答案:5.用二分法求方程2x +3x =7的近似解(精确度0.1).解:原方程即2x +3x -7=0,令f (x )=2x +3x -7,易知f (x )为增函数,用计算器或计算机作出函数f (x )=2x +3x -7的对应值表:x 0. 取区间(1,2)的中点x 1=1.5,用计算器算得f (1.5)≈0.33.因为f (1)·f (1.5)<0,所以x 0∈(1,1.5),再取(1,1.5)的中点x 2=1.25, 用计算器求得f (1.25)≈-0.87,因此f (1.25)·f (1.5)<0,所以x 0∈(1.25,1.5).同理可得x 0∈(1.375,1.5),x 0∈(1.375,1.437 5),|1.375-1.437 5|=0.062 5<0.1,所以原方程的近似解可取为1.437 5.。

高中数学必修2红对勾的习题答案 1-1-1

高中数学必修2红对勾的习题答案 1-1-1

第一章 立体几何初步
红对勾系列丛书
解析:把握平面的三个特点: 无限延展; 解析 : 把握平面的三个特点: ①平 ;② 无限延展 ; ③ 没有厚薄,就可知仅有 正确 正确. 没有厚薄,就可知仅有D正确. 答案: 答案:D
第一章 立体几何初步
红对勾系列丛书
2.在空间中,下列说法正确的是( .在空间中,下列说法正确的是 A.一个点运动形成直线 . B.直线平行移动形成平面 . C.直线绕定点转动可以形成锥面 .
红对勾系列丛书
A.0个 . 个 C.2个 . 个
B.1个 . 个 D.3个 . 个
解析: 不正确 我们用平行四边形来表示平面, 不正确. 解析:(1)不正确.我们用平行四边形来表示平面,但 不能说平行四边形是一个平面.平行四边形仅是平面上四 不能说平行四边形是一个平面. 条线段构成的图形,它是不能无限延展的. 条线段构成的图形,它是不能无限延展的.
第一章 立体几何初步
红对勾系列丛书
3. 逐步掌握立体几何中的三种语言 文字语言 、 符 . 逐步掌握立体几何中的三种语言——文字语言 文字语言、 号语言、图形语言,及这三种语言之间的相互转化. 号语言、图形语言,及这三种语言之间的相互转化. 4.培养学习立体几何的兴趣,树立能学好立体几何的 .培养学习立体几何的兴趣, 信心. 信心.
第一章 立体几何初步
红对勾系列丛书
点、线、面、体之间的生成关系和位置关系,是认识几何 体之间的生成关系和位置关系, 体的结构特征所必需的. 体的结构特征所必需的. 答案: 答案:C
第一章 立体几何初步
红对勾系列丛书
3.下列说法中正确的个数是( .下列说法中正确的个数是 (1)平行四边形是一个平面; 平行四边形是一个平面; 平行四边形是一个平面

2023红对勾高中数学必修一检测—— 集合 答案

2023红对勾高中数学必修一检测—— 集合 答案

高三数学参考答案一、考点篇第一章 集合与常用逻辑用语考点练1集合1.D 因为S 是由我和我的祖国 中的所有字组成的集合,所以S 中一共有5个元素,所以S 的非空真子集的个数是25-2=30.故选D .2.C 由题意知∁R A ={x |x 2-2x -3ɤ0}={x |-1ɤx ɤ3},故选C .3.D ȵB ={x |-2<x <4},ʑ∁UB ={x |x ɤ-2或x ȡ4},又A ={x |x 2<9}={x |-3<x <3},ʑA ɘ(∁UB )={x |-3<x ɤ-2}.故选D .4.C 根据题意x +y =2,y =x 2,解得x =1,y =1 或x =-2,y =4.故选C .5.C 因为A ={x |x 2-3x ȡ0}={x |x ɤ0或x ȡ3},B ={x |1<x ɤ3},所以A ɣB ={x |x >1或x ɤ0},所以题图中阴影部分表示的集合为∁U (A ɣB )=(0,1],故选C .6.C 因为集合M =x k x >-1,且-3ɪM ,所以k-3>-1,解得k <3,所以k 的取值范围是(-ɕ,3).7.B C D 若A ⊆B ,则∀x ɪA ,x ɪB ,故不存在x ɪA ,x ∉B ,即A 错误;若B ={1,2},A ={1,2,3}时,满足 ∃x ɪA ,x ∉B ,此时A ɘB ={1,2}ʂ⌀,即B 正确;若B ={1,2},A ={1,2,3}时,满足 ∃x ɪA ,x ∉B ,此时B ⊆A ,即C 正确;若A ={1,2},B ={3,4}时满足条件 ∃x ɪA ,x ∉B 且有A ɘB =⌀,则D 正确.故选BCD .8.C D 在A 中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故错误;在B 中,M ={(3,1)},P ={(1,3)}表示的不是同一个点的集合,二者不是同一集合,故错误;在C 中,M ={y |y =|x |-1}={y |y ȡ-1},P ={t |t =|x |-1}={t |t ȡ-1},二者表示同一集合,故正确;在D 中,M ={m |m ȡ4,m ɪR },即M 中元素为大于或等于4的所有实数,P ={y |y =(x +1)2+4},y =(x +1)2+4ȡ4,所以P 中元素也为大于或等于4的所有实数,故M ,P 表示同一集合,故正确.故选C D .9.(-2,2]解析:由题意得B ={x |y =lg (x -2)}=(2,+ɕ),ʑ∁R B =(-ɕ,2],ʑA ɘ(∁RB )=(-2,2].10.-1,0 4解析:解方程x 2+x =0得x =-1或x =0,所以集合A ={x |x 2+x =0,x ɪR }={-1,0}.故集合A 中的元素为-1,0.因为集合B 满足B ⊆A ,所以集合B 的个数为22=4.11.{a |a ȡ2}解析:因为B ={x |1<x <2},所以∁RB ={x |x ɤ1或x ȡ2},又A ={x |x <a },A ɣ(∁RB )=R ,所以a ȡ2.12.2解析:ȵA ={-1,a },B = e ae,2,且A ɘB ʂ⌀,ʑ当e a e=a 时,ae=l n a ,解得a =e ,满足条件.当a =2时,易知满足条件.则满足条件的实数a 的个数为2.13.解:(1)a =1时,A ={x |0ɤx ɤ2},B ={x |1ɤx ɤ3},A ɣB ={x |0ɤx ɤ3},∁UB ={x |x >3或x <1}.(2)当A =⌀时,1+a <1-a ,解得a <0;当A ʂ⌀时,1-a ɤ1+a ,1-a ȡ1,1+a ɤ3,解得a =0.综上得a ɤ0,即a 的取值范围为(-ɕ,0].14.解:由已知得A ={x |-1ɤx ɤ3},B ={x |m -2ɤx ɤm +2}.(1)因为A ɘB =[0,3],所以m -2=0,m +2ȡ3,解得m =2,即实数m 的值为2.(2)∁R B ={x |x <m -2或x >m +2},因为A ⊆(∁R B ),所以m -2>3或m +2<-1,解得m >5或m <-3,即实数m 的取值范围是(-ɕ,-3)ɣ(5,+ɕ).[素养提升]1.C 由题意得B ⫋(A ɘC ),故A 错误;A 与C 互不包含,故B 错误;由B ={钝角}⫋{小于180ʎ的角},所以B ɣC =C ,故C 正确;由以上分析可知D 错误.故选C .2.D 由V e n n 图,元素属于N 但不属于M ,即阴影部分对应的集合为(∁U M )ɘN ,故选D .3.D 由题意,得集合A ㊁B 均为点集,所以,所求A ɘB 即求两直线的交点即可,由y =-4x +6,y =5x -3, 解得x =1,y =2,所以交点为(1,2).故选D .4.C 因为x 2-5x +6>0,即(x -2)(x -3)>0,解得x >3或x <2,即A ={x |x 2-5x +6>0}={x |x >3或x <2}.由l o g 2(x -1)>0即l o g 2(x -1)>l o g 21,所以x -1>1,解得x >2,所以B ={x |l o g 2(x -1)>0}={x |x >2}.所以A ɘB ={x |x >3}.故选C .5.D 由x >16,得l o g 4x >l o g 416=2,所以A ={y |y =l o g 4x ,x >16}={y |y >2},所以∁RA ={y |y ɤ2}.因为B ={x |y =x 14}={x |x ȡ0},所以(∁RA )ɘB =[0,2].故选D .6.C 由A ɘC ={1,2},可得(A ɘC )ɣB ={1,2,3}.故选C .7.B 由l o g 2(x +1)<2可知0<x +1<4,得A ={x |-1<x <3}.由2x 2-5x -3ɤ0可知(2x +1)(x -3)ɤ0,得B =x -12ɤx ɤ3.所以A ɣB ={x |-1<x ɤ3}.故选B .8.A 因为A ={x |x 2>2x }={x |x >2或x <0},B ={x |a <x <a +1},A ɘB =⌀,所以a ȡ0且a +1ɤ2,解得0ɤa ɤ1.故选A .9.A C D A ={x |2x +1ȡ0,x ɪZ }=x x ȡ-12,x ɪZ,B ={-1,0,1,2},A ɘB ={0,1,2},故A 正确;A ɣB =321高三数学{x |x ȡ-1,x ɪZ },故B 错误;∁U A ={x |x <-12,x ɪZ },所以(∁U A )ɘB ={-1},故C 正确;由A ɘB ={0,1,2},得A ɘB 的真子集个数是23-1=7,故D 正确.故选A C D .10.A C 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2ɪN *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2ɪA ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n 1=n 2时,x 1-x 2∉A ,所以减法不满足条件,B 错误;x 1x 2=m 1m 2+3n 1n 2+3(m 1n 2+m 2n 1),x 1x 2ɪA ,所以乘法满足条件,C 正确;x 1x 2=m 1+3n 1m 2+3n 2,当m 1m 2=n 1n 2=λ(λ>0)时,x 1x 2∉A ,所以除法不满足条件,D 错误.故选A C .11.A B C 由已知得A ={x |-3<x <6},令g (x )=x 2+a x +a 2-27.A ,若A =B ,即-3,6是方程g (x )=0的两个根,则a =-3,a 2-27=-18,得a =-3,正确;B ,若A ⊆B ,则g (-3)=a 2-3a -18ɤ0,g (6)=a 2+6a +9ɤ0,解得a =-3,正确;C ,当B =⌀时,Δ=a 2-4(a 2-27)ɤ0,解得a ɤ-6或a ȡ6,正确;D ,当a =3时,有B ={x ɪR |x 2+3x -18<0}={x |-6<x <3},所以A ɘB ={x |-3<x <3},错误.故选A B C .12.B C D A ,G =N 时,不满足③,若I =0,则由1+b =0得b =-1∉G ,若I ɪN *⊆N ,则在G 中设a >I ,由a +b =I 得b =I -a <0∉G ,所以(N , )不能构成群;B ,G 为正有理数集,①任意两个正有理数的积仍然为正有理数,②显然1ɪG ,对任意a ɪG ,a 1=a =1 a ,③对任意正有理数a ,1a 也是正有理数,且a 1a =1=1a a ,即I =1,④有理数的乘数满足结合律,可构成群;C ,G ={-1,1,-i,i }(i 为虚数单位),①可验证G 中任意两数(可相等)的乘积仍然属于G ;②I =1,满足任意a ɪG ,有a 1=1 a =a ;③I =1,满足任意a ɪG ,存在b ɪG ,有a b =b a =1,实质上有-1ˑ(-1)=1ˑ1=i ˑ(-i )=1;④复数的乘法运算满足结合律,可构成群;D ,G ={0,1,2,3,4,5,6},①任意两个整数的和还是整数,它除以7的余数一定属于G ,②I =0,满足对任意a ɪG ,a I =I a =a ,③I =0,0+0=0,1+6=2+5=3+4=7除以7余数为0,④加法满足交换律,又a +b 除以7的余数等于a 除以7的余数加b 除以7的余数的和再除以7所得余数,因此∀a ,b ,c ɪG ,(a b ) c =a (b c ),可构成群.故选B C D .13.{(1,1),(1,2),(1,3),(2,3)}解析:适合条件2x -2<y ɤ3的所有正整数解是:令y =3,可得x =1,2;令y =2,可得x =1;令y =1,可得x =1.综上可得,点(x ,y )构成的集合为{(1,1),(1,2),(1,3),(2,3)}.14.3解析:若f (g (x ))=0,则g (x )=0或g (x )=1或g (x )=-1(舍去),ʑA ={-1,0,1,2},若g (f (x ))=0,则f (x )=0或f (x )=2(舍去),ʑB ={-1,0,1},ʑA ɘB ={-1,0,1}.故A ɘB 中有3个元素.15.1,53ɣ(9,25]解析:因为3ɪM ,将x =3代入,不等式成立,所以3a -59-a <0,解得a <53或a >9①;因为5∉M ,将x =5代入,不等式不成立,所以5a -525-aȡ0或a -25=0,解得1ɤa ɤ25②.所以①②取交集得实数a 的取值范围是1,53ɣ(9,25].16.26解析:依题意,足球爱好者比羽毛球爱好者人数少,所以同时爱好这两项的人最多有30人;当足球爱好者与羽毛球爱好者的并集为全集时,同时爱好这两项运动的人最少,设同时爱好两项运动的人有x 人,则只爱足球者有(30-x )人,只爱羽毛球者有(32-x )人,则(30-x )+(32-x )+x =58,解得x =4,即n ɪ[4,30],所以q -p 的最大值为26.[新题展示]1.C 用集合A 表示除草优秀的学生,B 表示植树优秀的学生,全班学生用全集U 表示,则∁U A 表示除草合格的学生,则∁U B 表示植树合格的学生,作出V e n n 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得20-x +x +30-x +y =45,x =y +5,因为y m a x =10,所以x m a x =10+5=15.故选C .2.A 当x =-1,y =0时,z =(-1)2ˑ(0-1)=-1;当x =-1,y =2时,z =(-1)2ˑ(2-1)=1;当x =1,y =0时,z =12ˑ(0-1)=-1;当x =1,y =2时,z =12ˑ(2-1)=1;所以A ㊃B ={-1,1},所以A ㊃B 中所有元素之和为0,故选A .3.660解析:S (3)=s s =a i 1+a i 2+a i33,1ɤi 1<i 2<i 3ɤ10 =s s =i 1+i 2+i 33,1ɤi 1<i 2<i 3ɤ1,则S (3)中的每个元素就是从1,2, ,10中挑选3个出来求平均值,1,2, ,10每个数被选出的次数是相同的,若i (1ɤi ɤ10)被选中,则共有C 29种选法,即1,2, ,10每个数被选出的次数为C 29,则S (3)的所有元素之和为C 29㊃(1+2+ +10)3=9ˑ82ˑ10ˑ(1+10)23=660.4.②④解析:对于①:取k =12,点(1,1)ɪ{(x ,y )|x 2ȡy },但12,12∉{(x ,y )|x 2ȡy },故①是不具有性质P 的点集.对于②:∀(x ,y )ɪ{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(k x ,k y )也在椭圆2x 2+y 2=1的内部,即(k x ,k y )ɪ{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:取k =12,x +122+(y +1)2=54,点12,-12 在此圆上,但点14,-14 不在此圆上,故③是不具有性质P 的点集.对于④:∀(x ,y )ɪ{(x ,y )|x 3+y 3-x 2y =0},对于k ɪ421高三数学(0,1),因为(k x )3+(k y )3-(k x )2㊃(k y )=k 3㊃(x 3+y 3-x 2y )=0,所以(k x ,k y )ɪ{(x ,y )|x 3+y 3-x 2y =0},故④是具有性质P 的点集.综上,具有性质P 的点集是②④.考点练2常用逻辑用语1.A 因为烟台市是山东省的一个地级市,所以如果游客甲在烟台市,那么游客甲必在山东省,反之不成立,故 游客甲在烟台市 是 游客甲在山东省 的充分不必要条件.故选A .2.B 存在量词命题的否定是全称量词命题,将存在量词改变后还要对结论否定,故选B .3.A 充分性:由共线定理即可判断充分性成立;必要性:若b =0,a ʂ0,则向量a ,b 共线,但不存在实数λ,使得a =λb ,即必要性不成立.故选A .4.B 由p :1x 2-x -2>0得p :x >2或x <-1,ʑ p 对应的x 的取值范围是{x |-1ɤx ɤ2},故选B .5.A 由题意可知,若f (x )=-x 2-3m x -4的图象在x 轴的下方,则Δ=(-3m )2-4ˑ4<0,解得-43<m <43,因为(-1,0)真包含于-43,43,所以-1<m <0 是 关于x 的不等式-x 2-3m x -4ȡ0的解集为⌀ 的充分不必要条件,故选A .6.C 当该命题是真命题时,只需当-1ɤx ɤ1时,a ȡ(x 2)m a x .因为-1ɤx ɤ1时,y =x 2的最大值是1,所以a ȡ1.因为a ȡ1⇒a ȡ10,a ȡ10⇒a ȡ1,所以C 符合要求.A 为充要条件,B 为必要条件,D 是既不充分也不必要条件.故选C .7.B C D 对于A 选项,取x =1,y =-1,则x >y ,但x 2=y 2,即 x 2>y 2不是 x >y 的必要条件;对于B 选项,若x >10,则x >5,即 x >5 是 x >10的必要条件;对于C 选项,若a =b ,则a c =b c ,即 a c =b c 是 a =b 的必要条件;对于D 选项,若x =y ,则2x +1=2y +1,即 2x +1=2y +1 是 x =y 的必要条件.故选B C D .8.A C D ∀x ɪR ,2x -1>0,根据指数函数值域知A 正确;∀x ɪN *,(x -1)2>0,取x =1,计算知(x -1)2=0,B 错误;∃x ɪR ,l g x <1,取x =1,计算l g x =0<1,故C 正确;∃x ɪR ,t a n x =2,y =t a n x 的值域为R ,故D 正确.故选A C D .9.充要解析:由A =B ,且在әA B C 中,A ,B 不同时等于π2,得t a n A=t a n B ,反之,若t a n A =t a n B ,则A =B +k π,k ɪZ .因为0<A <π,0<B <π,所以A =B ,故 A =B 是 t a n A =t a n B 的充要条件.10.[1+3,+ɕ)解析:因为命题的否定是假命题,故原命题为真,即不等式1+t a n x ɤm 对∀x ɪ0,π3恒成立,又y =1+t a n x在x ɪ0,π3上为增函数,ʑ(1+t a n x )m a x =1+ta n π3=1+3,即m ȡ1+3,实数m 的取值范围是[1+3,+ɕ).11.m ȡ1或m ɤ-7解析:p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B ⫋A ,ʑm ȡ1或m +3ɤ-4,即m ȡ1或m ɤ-7.12.54,2解析:当命题p 成立时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,ʑΔ=1-4(a -1)<0,解得a >54.当命题q 成立时,2a ɤ(2x)m a x ,x ɪ[-2,2],ʑa ɤ2.故54<a ɤ2,ʑa 的取值范围是54,213.解:易知M ɘN ʂ⌀的充要条件是方程组y 2=2x ,(x -a )2+y 2=9至少有一组实数解,且x ȡ0,即x 2+2(1-a )x +a 2-9=0至少有一个非负实根.设其两实根为x 1,x 2,则Δȡ0,x 1x 2ɤ0或Δȡ0,x 1x 2>0,x 1+x 2>0,解得-3ɤa ɤ3或3<a ɤ5,从而所求充要条件是-3ɤa ɤ5.14.解:ȵs i n x +c o s x =2s i n x +π4ȡ-2,ʑ当r 是真命题时,m <-2.当对任意的x ɪR ,s 为真命题,即x 2+m x +1>0恒成立时,Δ=m 2-4<0,解得-2<m <2.当r 为真,s 为假时,需满足m <-2且m ɤ-2或m ȡ2,ʑm ɤ-2;当r 为假,s 为真时,需满足m ȡ-2且-2<m <2,ʑ-2ɤm <2.综上,m 的取值范围是{m |m ɤ-2或-2ɤm <2}.[素养提升]1.B 命题p :若四边形为菱形,则它的四条边相等,则 p :存在一个四边形为菱形,它的四条边不相等.故选B .2.C 命题 定义域为R 的函数f (x )不是奇函数 是 定义域为R 的函数f (x )是奇函数 的否定,而定义域为R 的函数f (x )是奇函数满足∀x ɪR ,f (-x )=-f (x ),所以它的否定形式为∃x ɪR ,f (-x )ʂ-f (x ).故选C .3.A 对于A ,函数f (x )=e x -1-x -1(x ɪR ),f'(x )=e x -1-1,令f '(x )>0得x >1,令f '(x )<0得x <1,所以f (x )在(1,+ɕ)上为增函数,在(-ɕ,1)上为减函数,所以f (x )在x =1时有最小值,即f (1)=e 0-1-1=-1<0,f (4)=e 3-4-1=e 3-5>0,f (-2)=e -3+2-1=e -3+1>0,所以f (x )有两个零点,正确;对于B , ∃x ɪR ,e x>x 的否定是 ∀x ɪR ,e xɤx ,错误;对于C ,1a -1b=b -a a b ,因为a <b <0,所以b -a >0,a b >0,所以1a -1b>0,1a >1b ,错误;对于D ,由已知得m 2-m -1=1,m 2-2m -3<0,解得m =2,错误.故选A .4.C ①若m =2,n =-5,满足m >n ,但m 2<n 2,故①错误;②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,正确;③对角线互相平分且相等的四边形是矩形,错误;④在同圆成等圆中,如果两条弧相等,那么它们所对的圆心角相等,正确;⑤若a 2=a ,则a ȡ0,错误.②④正确,故选C .5.A 由向量的基本定理知:同一基底下,一个向量的表示方式唯一,故p 1正确;a ʊc ,则a =λc ,(a ㊃b )㊃c =(λc ㊃b )㊃c =521。

《红对勾》2016人教A版高中数学必修一练习第一章单元质量评估1Word版含答案

《红对勾》2016人教A版高中数学必修一练习第一章单元质量评估1Word版含答案

第一章单元质量评估(一)时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2.如图可作为函数y =f (x )的图象的是( )3.已知集合M ={y |y =x 2-1,x ∈R },N ={x |y =2-x 2},则M ∩N =( )A .-1,+∞)B .-1,2]C .2,+∞)D .∅4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3D .1或35.设函数f (x )=⎩⎨⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15B .3C.23D.1396.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x7.已知A ={0,1},B ={-1,0,1},f 是从A 到B 映射的对应关系,则满足f (0)>f (1)的映射有( )A .3个B .4个C .5个D .6个8.若函数y =f (x )的定义域是-2,4],则函数g (x )=f (x )+f (-x )的定义域是( )A .-4,4]B .-2,2]C .-4,-2]D .2,4]9.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )10.已知函数f (x )=12x 2-kx -8在区间2,8]上具有单调性,则实数k 的取值范围是( )A .(-∞,2]B .8,+∞)C .(-∞,2]∪8,+∞)D .∅11.已知某种产品的购买量y (单位:吨)与单价x (单位:元)之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元,若一客户购买400吨,则单价应该是( )A .820元B .840元C .860元D .880元12.对于任意两个正整数m ,n 定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合M ={(a ,b )|a ※b =12,a ∈N *,b ∈N *}中的元素个数是( )A .10B .15C .16D .18二、填空题(每小题5分,共20分) 13.函数y =x +1x 的定义域为________.14.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f (x +2),x <0,则f (-3)=________.15.已知二次函数f (x )=ax 2+2ax +1在区间-3,2]上的最大值为4,则a 的值为________.答案1.C 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.(∁U A )∪B ={0,4}∪{2,4}={0,2,4}.2.D 只有选项D 中对定义域内任意x 都有唯一的y 值与之对应.3.B 根据题意知集合M 是函数y =x 2-1,x ∈R 的值域-1,+∞),集合N 是函数y =2-x 2的定义域-2,2],所以M ∩N =-1,2].4.B 依据并集的概念及A ∪B =A 可知,m =3或m =m ,由m =m 解得m =0或m =1.当m =0或m =3时,符合题意;当m =1时,不满足集合中元素的互异性,因此应舍去.综上可知m =0或m =3.5.D 由题意得f (3)=23,从而f (f (3))=f (23)=(23)2+1=139. 6.C 将选项中的函数逐个代入f (2x )=2f (x )去验证.f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x ),故A ,B ,D 满足条件.7.A 当f (0)=1时,f (1)的值为0或-1都能满足f (0)>f (1);当f (0)=0时,只有f (1)=-1满足f (0)>f (1);当f (0)=-1时,没有f (1)的值满足f (0)>f (1),故有3个.8.B 由⎩⎪⎨⎪⎧-2≤x ≤4,-2≤-x ≤4,得-2≤x ≤2.9.B 取h =H 2,由图象可知,此时注水量V 大于容器容积的12,故选B.10.C f (x )=12x 2-kx -8的单调增区间是k ,+∞),单调减区间是(-∞,k ],由f (x )在区间2,8]上具有单调性可知2,8]⊆k ,+∞)或2,8]⊆(-∞,k ],所以k ≤2或k ≥8.11.C 设y =kx +b (k ≠0),由题意得⎩⎪⎨⎪⎧1 000=800k +b ,2 000=700k +b ,解得k =-10,b =9 000. ∴y =-10x +9 000,当y =400时,得x =860.12.B 当m ,n 都为正偶数或正奇数时,m +n =12,故对应的元素为(1,11),(2,10),(3,9),(4,8),…,(10,2),(11,1),共11个;当m ,n 中一个为正偶数,另一个为正奇数时,mn =12,故对应的元素为(1,12),(3,4),(4,3),(12,1),共4个.故集合M 中的元素共15个.13.{x |x ≥-1,且x ≠0}解析:求函数的定义域就是求使解析式有意义的自变量的取值集合,本小题涉及分式,要注意分母不能等于0,偶次根式被开方数是非负数.由⎩⎪⎨⎪⎧x +1≥0,x ≠0得函数的定义域为{x |x ≥-1,且x ≠0}.14.2解析:f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2. 15.-3或38解析:f (x )的对称轴为x =-1,当a >0时, f (x )max =f (2)=4,解得a =38;当a <0时,f (x )max =f (-1)=4,解得a =-3.———————————————————————————— 16.若函数f (x )同时满足①对于定义域上的任意x ,恒有f (x )+f (-x )=0;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有f (x 1)-f (x 2)x 1-x 2<0,则称函数f (x )为“理想函数”.给出下列三个函数中:(1)f (x )=1x .(2)f (x )=x 2.(3)f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0.能被称为“理想函数”的有________(填相应的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)已知全集U=R,集合A={y|y=3-x2,x∈R,且x≠0},集合B是函数y=x-2+25-x的定义域,集合C={x|5-a<x<a}.(1)求集合A∪(∁U B)(结果用区间表示);(2)若C⊆(A∩B),求实数a的取值范围.(12分)已知函数f(x)=|x-1|.(1)用分段函数的形式表示该函数;(2)在平面直角坐标系中画出该函数的图象;(3)写出该函数的定义域、值域、奇偶性和单调区间(不要求证明).答案16.(3)解析:①要求函数f (x )为奇函数,②要求函数f (x )为减函数,(1)是奇函数但不是定义域上的减函数,(2)是偶函数而且也不是定义域上的减函数,只有(3)既是奇函数又是定义域上的减函数.17.解:(1)由已知得 A ={x |x <3},B ={x |2≤x <5}, ∴∁U B ={x |x <2,或x ≥5},∴A ∪(∁U B )={x |x <3,或x ≥5}=(-∞,3)∪5,+∞). (2)由(1)知A ∩B ={x |2≤x <3},当C =∅时,满足C ⊆(A ∩B ),此时5-a ≥a ,解得a ≤52; 当C ≠∅时,要满足C ⊆(A ∩B ), 则⎩⎪⎨⎪⎧5-a <a ,5-a ≥2,a ≤3,解得52<a ≤3.综上可得a ≤3.18.解:(1)f (x )=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1.(2)图象如图所示:(3)函数f (x )的定义域为R ,值域为0,+∞),它既不是奇函数也不是偶函数,单调减区间为(-∞,1),单调增区间为1,+∞).———————————————————————————— 19.(12分)已知函数f (x )=2x +1x +1,(1)判断函数在区间1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间1,4]上的最大值与最小值.20. (12分)已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0.(1)求实数m 的值;(2)若函数f (x )在区间-1,a -2]上单调递增,求实数a 的取值范围.答案19.解:(1)函数f (x )在1,+∞)上是增函数. 任取x 1,x 2∈1,+∞),且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在1,+∞)上是增函数.(2)由(1)知函数f (x )在1,4]上是增函数,最大值f (4)=95,最小值f (1)=32.20.解:(1)当x <0时,-x >0,∴f (-x )=-(-x )2+2(-x )=-x 2-2x ,又f (x )是奇函数,∴f (-x )=-f (x ),于是当x <0时,f (x )=x 2+2x =x 2+mx ,∴m =2.(2)结合f (x )的图象(图略)可知,要使f (x )在-1,a -2]上单调递增,需⎩⎪⎨⎪⎧a -2>-1,a -2≤1,解得1<a ≤3. 故实数a 的取值范围为(1,3].————————————————————————————21.(12分)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y).(1)求f(0)的值;(2)求证:f(x)为奇函数;(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.22. (12分)已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间2a,a+1]上不单调,求实数a的取值范围;(3)在区间-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.答案21.解:(1)令x=y=0,则f(0)=f(0)+f(0)⇒f(0)=0.(2)证明:令y=-x,则f(0)=f(x)+f(-x)⇒f(-x)=-f(x),所以f(x)为R上的奇函数.(3)令x=y=1,则f(1+1)=f(2)=f(1)+f(1)=2,∴f(2a)>f(a-1)+2⇔f(2a)>f(a-1)+f(2)⇒f(2a)>f(a+1).又因为f(x)是R上的增函数,所以2a>a+1⇒a>1,所以a的取值范围是(1,+∞).22.解:(1)由题意设f(x)=a(x-1)2+1,代入(2,3)得a=2,所以f(x)=2(x-1)2+1=2x2-4x+3.(2)对称轴为x =1,所以2a <1<a +1,所以0<a <12.(3)f (x )-2x -2m -1=2x 2-6x -2m +2,由题意得2x 2-6x -2m +2>0对于任意x ∈-1,1]恒成立, 所以x 2-3x +1>m 对于任意x ∈-1,1]恒成立, 令g (x )=x 2-3x +1,x ∈-1,1],则g (x )min =-1,所以m <-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故 PC=2,NC=45.
解:设此长方体的长、宽、高分别为 x、y、z,体 对角线长为 l,则由题意得
2xy+yz+zx=11,

4x+y+z=24, ②
由②得 x+y+z=6,从而由长方体的体对角线性质

l= x2+y2+z2 = x+y+z2-2xy+yz+zx = 62-11=5, ∴长方体的体对角线长为 5.
11.(本小题满分14分)一个正三棱柱的底面边长是4, 高是6,过下底面的一条棱和该棱所对的上底面的顶点作 截面,求此截面的面积.
体有7个顶点.
答案:B
6.如图,已知长方体ABCD-A1B1C1D1,过BC和AD 分别作一个平面交底面A1B1C1D1于EF、PQ,则长方体被 分成的三个几何体中,棱柱的个数是( )
A.0个
B.1个
C.2个
D.3个
解 析 : 共 有 3 个 : 棱 柱 AA1P - DD1Q , 棱 柱 ABEP - DCFQ,棱柱BEB1-CFC1.
B.1个
C.2个
D.3个
解析:由直棱柱的定义,知①为真命题;正棱柱是底 面为正多边形的直棱柱,②为假命题;由棱柱的定义知其 侧面是平行四边形,故③为真命题.
答案:C
5.下图是一个简单多面体的表面展开图(沿图中虚线 拆叠即可还原),则这个多面体的顶点数为( )
A.6
B.7
C.8
D.9
解析:还原几何体,如图所示.由图观察知,该几何
解析:如图,正三棱柱 ABC-A′B′C′,符合 题意的截面为△A′BC.在 Rt△A′B′B 中,A′B′ =4,BB′=6,所以 A′B= A′B′2+BB′2=
42+62=2 13.
在等腰三角形 A′BC 中,O 为 BC 的中点,连接 A′O,
BO

1 2
×4

2.


A′O ⊥ BC , 所 以
答案:D
二、填空题(本大题共3小题,每小题8分,共24分) 7 . 在 正 方 形 ABCD 中 , E 、 F 分 别 为 BC 、 CD 的 中 点.沿AE、AF、EF将其折成一个多面体,则此多面体是 ________.
解析:如图折起后,由题设条件可知三点D、C、B重 合,所以折起后能构成三棱锥.
答案:三棱锥
8.如图所示,一个正方体的表面展开图的五个正方形 为阴影部分,第六个正方形在编号为1~5的适当位置,则 所有可能的位置编号为________.
答案:1或4或5
9.正方体ABCD-A1B1C1D1的棱长为a,P为AA1的中 点 , Q 为 棱 BB1 上 任 意 一 点 , 则 PQ + QC 的 最 小 值 是 ________.
底面是矩形的四棱柱可能是斜四棱柱,长方体则要求 是直四棱柱,所以C不正确;
六个面都是矩形的六面体,以任意相对的两个面为底 面,都可以是一个直平行六面体,它符合长方体的定义, 故D正确.
答案:D
2.下列说法错误的是( ) A.若棱柱的底面边长相等,则它的各个侧面全等 B.九棱柱有九条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的底面是三角形 答案:A
第一章 立体几何初步
1.1 空间几何体
1.1.2 棱柱、棱锥和棱台的结构特征
第一课时 多面体与棱柱
时间:45分钟
总分:100分
作业目标
1.结合模型、动态的或静态的直观图,了解、认识和 研究多面体、棱柱的结构特征.
2.了解棱柱的分类,学会表示它们的方法,初步了解 它们的一些性质.
3.认识直棱柱、正棱柱这些特殊多面体的结构特征和 性质.
3.已知集合A={棱柱},集合B={正棱柱},集合C= {斜棱柱},集合D={直棱柱},则( )
A.A⊇C⊇B
B.A⊇D⊇B
C.A⊇C⊇D
D.A⊇D⊇C
答案:B
4.下列三种说法中,正确的个数是( )
①侧棱垂直于底面的棱柱是直棱柱 ②底面是正多边 形的棱柱是正棱柱 ③棱柱的侧面都是平行四边形
A.0个
一、选择题(本大题共6小题,每小题6分,共36分) 1.下列命题中正确的是( ) A.四棱柱是平行六面体 B.直平行六面体是长方体 C.底面是矩形的四棱柱是长方体 D.六个面都是矩形的六面体是长方体
解析:四棱柱的底面可以为任意四边形,而平行六面 体的底面一定是平行四边形,所以A不正确;
直平行六面体的底面可为平行四边形,而长方体则要 求直平行六面体的底面为矩形,所以B不正确;
解析:如下图所示,将侧面AA1B1B和侧面BB1C1C展 开到同一平面内,可知当PQ和QC连成一线时,PQ+QC 将最小.
PC′= 2a2+a22= 217a. 答案: 217a
三、解答题(本大题共3小题,共40分,解答应写出文 字说明,证明过程或演算步骤)
10.(本小题满分12分)长方体的全面积为11,十二条 棱长度之和为24,求这个长方体的体对角线长.
(1)该三棱柱的侧面展开图的对角线长; (2)PC和NC的长.
解析:(1)正三棱柱 ABC-A1B1C1 的侧面展开图是 一个长为 9、宽为 4 的矩形,其对角线长为 92+42= 97.
(2)如图所 CC1 到点 M 的最短路径为线段 MP.设 PC=x,在 Rt△MAP 中,有(3+x)2+22=( 29)2⇒x=2,
A′O =
A′B2-BO2 =
2 132-22= 4
3.所以
S

A′BC

1 2
BC·A′O=12×4×4 3=8 3.所以截面的面积为 8 3.
12.(本小题满分 14 分)如图所示,在正三棱柱 ABC -A1B1C1 中,AB=3,AA1=4,M 为 AA1 的中点,P 是 BC 上一点,且由 P 沿棱柱侧面经过棱 CC1 到 M 的最短 路线长为 29,设这条最短路线与 CC1 的交点为 N.求:
相关文档
最新文档