广州大学城分布式能源站报告
中国华电分布式能源报告
![中国华电分布式能源报告](https://img.taocdn.com/s3/m/b4f7736ecaaedd3383c4d37b.png)
进步和发展。
中国华电集团公司分布式能源报告目 录1.分布式能源发展概况1.1 世界分布式能源发展概况 21.2 我国分布式能源发展概况 71.3 中国华电分布式能源发展概况 81.4 挑战与责任 122. 责任与行动责任聚焦:“小系统”显示“大能耐”——广州大学城分布式能源站 162.1 安全 212.1.1建设管理 212.1.2运行管理 222.2 节能 232.2.1设计理念 232.2.2设计优化 242.2.3运营优化 252.3 环保 262.3.1环境管理 262.3.2噪音治理 262.3.3废气治理 272.3.4废水治理 273. 未来展望 281分布式能源发展概况分布式能源系统是指将能源系统以小规模、小容量、模块化、分散化的方式布置在用户端,可独立地传输冷、热、电能的系统,是相对于传统的集中式供电方式而言的一种新型的能源系统。
1.1 世界分布式能源发展概况中国华电集团公司分布式能源报告分布式能源的起源可追溯到20世纪80年代。
早在1982年,美国纽约就出现以工厂余热发电满足自身及周边建筑电热负荷的系统,成为分布式能源的雏形。
后来,主要应用于大型电厂和工业领域的热电联供进一步发展起来。
随着热源驱动的吸收式制冷机的出现,冷热电三联供取得重大突破,一次能源利用效率进一步提高到80%以上。
随着经济可持续发展及能源环境的迫切需要,分布式能源逐渐成为一个重要能源领域。
分布式能源包括太阳能利用、风能利用、燃料电池和天然气冷热电三联供等多种形式,其中天然气冷热电三联供因其具有传统能源的高效利用、促进节能减排的优点,已经在国际上得到了广泛的应用,在我国处于起步推广阶段。
多能源输出供冷并供热技术分布式能源转换图3分布式能源发展概况5中国华电集团公司分布式能源报告分布式能源在能源系统中的比例不断提高,给能源工业带来革命性的变化,特别是近年来,随着信息技术与新能源特别是分布式能源利用的结合,分布式能源有可能取代集中式能源,成为未来能源工业发展的主力军之一。
广州大学城分布式能源站报告
![广州大学城分布式能源站报告](https://img.taocdn.com/s3/m/b7a2e11059eef8c75fbfb3cb.png)
项目运行情况
3、以创新为原动力,科技兴企 公司紧紧抓住创新这一主线,以
科学技术作为发展力,充分发挥 主观能动性,在原有资源的基础 上,通过资源的再配置再整合, 进行技术创新、生产创新、经营 创新,走出了一条技术进步与应 用革新的现代化企业发展道路。 公司于2011年荣获广东省高新技 术企业认证、广东省企业创新纪 录金奖。
大学城能源站生产运行情况
大学城能源站值投产以来:。
----累计实现发电量18亿千瓦时,供应热水180万吨,低压蒸
汽近10万吉焦; ---- 强化安全生产,至 2012 年 7 月 31 日,累计实现安全生产 1020天; ----2010年,通过集团公司“三星级”企业审查,2011 年通 过集团公司“四星级”企业审查,2012年,力争达到集团公 司“五星级”企业标准。 ---- 强化科技创新及管理创新,取得独立自主的知识产权, 2011成功获得“高新科技企业”评定,并授予广东省管理创 新金奖企业,2011年被集团公司授予管理创新先进企业。
大学城能源站生产运行情况
实现能源高效梯级利用,能源综合利用效率高达
78%: -----燃机发电做功,燃机发电效率41%; -----燃机发电做功后产生的500 ℃高温余热,带动 蒸汽机组发电做功能源效率26%; -----从余热锅炉抽低压蒸汽供应热水及低压蒸汽, 能源利用效率6%; -----通过热水型溴化锂机组制冷,能源利用效率3%; -----排放到大气的130 ℃高温烟气,通过换热制成 90--95 ℃的烟气热媒水,能源利用效率2%
大学城能源站生产运行情况
2、锤炼检修队伍,提升维护水平
树立“以人为本、可控在控、本质安全”
的理念,以落实各级安全生产责任制、消 除管理中存在的各种不安全因素、提高设 备可靠性和效率为宗旨,不断总结经验, 大力提高队伍技能水平,以实践为指导, 磨练专业技能,按计划完成两套机组小修 ,消除各类缺陷共779余项,机组运行可 靠性、经济性得到了明显改善,锻造了一 支适应分布式能源特色的检修队伍,为以 后承担起同类型项目的检修任务打下了坚 实的基础。
广州大学城分布式能源站
![广州大学城分布式能源站](https://img.taocdn.com/s3/m/085d05960066f5335b81213b.png)
一、能源站概要广州大学城分布式能源站位于广州市番禺区南村镇,与广州大学城一江之隔,占地面积约为11万平方米,是广州大学城配套建设项目,为广州大学城18平方公里区域提供冷、热、电三联供,也是全国最大的分布式能源站。
中国华电集团新能源发展有限公司和广州大学城能源发展有限公司按55%和45%的比例共同出资成立广州大学城华电新能源有限公司,负责广州大学城分布式能源站项目的投资、建设及经营管理。
二、装机规模能源站总体规划为4×78MW,分二期建设,一期2×78MW于2008年7月28日正式开工建设,2009年10月20日通过72小时和“72+24”小时试运行,满足并网运行条件,正式投入商业运营。
能源站内景图三、主要设备能源站采用的燃气轮机发电机组为美国普惠公司的FT8-3 Swift Pac 双联机组(60MW);余热锅炉为中国船舶重工集团公司第七○三研究所生产的两台中压和低压蒸汽带自除氧、尾部制热水、卧式自然循环、无补燃型、露天布置的余热锅炉;蒸汽轮机发电机组供货商为中国长江动力公司(集团),分别选用一套带调整抽汽的抽汽凝汽式蒸汽轮机发电机组和一套双压补汽式蒸汽轮机发电机组,配套18MW 和25MW 发电机各一台。
三、主要设备能源站采用的燃气轮机发电机组为美国普惠公司的FT8-3 Swift Pac双联机组(60MW);余热锅炉为中国船舶重工集团公司第七○三研究所生产的两台中压和低压蒸汽带自除氧、尾部制热水、卧式自然循环、无补燃型、露天布置的余热锅炉;蒸汽轮机发电机组供货商为中国长江动力公司(集团),分别选用一套带调整抽汽的抽汽凝汽式蒸汽轮机发电机组和一套双压补汽式蒸汽轮机发电机组,配套18MW 和25MW 发电机各一台。
四、生产流程燃气-蒸汽联合循环机组发电工作原理是由两台燃气轮机和一台发电机组成--两台燃气轮机通过联轴器直接连接一台双端驱动发电机(额定出力60MW),通过叶轮式压气机从外部吸收空气,压缩后送入燃烧室。
广州大学城生活热水系统智慧能源服务模式
![广州大学城生活热水系统智慧能源服务模式](https://img.taocdn.com/s3/m/1df9ca7ecec789eb172ded630b1c59eef9c79a1f.png)
64 | 创新世界周刊 | 2023.12广州大学城能源发展有限公司成立于2004年4月,注册资本3.25亿元,是广州大学城投资经营管理有限公司的全资子公司,隶属于广州市城市建设投资集团有限公司。
作为全国区域能源专业委员会副理事长单位,公司已通过ISO 9001∶2015 国际质量管理体系认证,拥有中国设备维修企业制冷空调行业A 类Ⅰ级和通用类(Ⅰ类)一级资质等证书,主营业务包括为广州大学城区域集中供应冷气、生活热水和部分市政设施及商业设施的投资、建设和经营管理等。
广州大学城区域集中生活热水系统主要是利用大学城分布式能源站(燃气电厂)的尾部烟气余热进行生活热水制备和供应。
系统包括热水制备站1座,分散热力站14座,一、二次热水供水管网长约110千米,末端用户IC 卡热水表约4万块,设计日最高生活热水负荷3200吉焦,供水量达15000立方米;年生活热水负荷44.5万吉焦,供水量达344万立方米,可满足大学城24万人口的生活热水需求。
党的十八大特别是党的十九大以来,公司管理层秉承“知冷知热、贴心服务”的质量管理方针,坚持总结、推广先进的管理创新成果和经验,不断提升企业管理水平,重点推进大型节能环保项目、新型市政配套设施的投资、运营。
同时,通过与高校建立“产学研”合作关系,强化行业技术优势,努力打造领先的区域集中供应冷气、生活热水服务品牌。
一、实施背景近年来,随着我国区域集中生活热水系统飞速发展和人民群众对生活热水供应服务的要求越来越高,公司面临诸多挑战,亟需通过现代化管理方法和先进的技术手段进行有效应对。
(一)新形势带来的管理理念挑战在2004年广州大学城建设之初,所有高校生活区都用上了集中生活热水。
然而,由于供应区域广,用户遇到问题不知道找谁,反映的问题也不能及时处理,用户使用体验差。
近年来,随着经济社会的不断发展和生活水平的不断提高,人民群众对热水质量和服务提出了更高的要求。
对此,广州大学城能源发展有限公司迫切需要从管理理念更新出发,建立以客户需求为导向的运营管理体系,通过 “精心”维护、“贴心”服务,进一步提高用热客户的满意度。
分布式能源
![分布式能源](https://img.taocdn.com/s3/m/f92f4690dd88d0d233d46acd.png)
燃用天然气分布式供能系统
以天然气为燃料的分布式供能系统是以天然气为一 次能源同时产生冷、 电三种二次能的联供系统。 次能源同时产生冷、热、电三种二次能的联供系统。 该系统以小型燃气发电设备为核心,以燃气发电设 该系统以小型燃气发电设备为核心, 备排放出来的高温尾气或以该尾气通过余热锅炉产 生的蒸汽或热水供热, 生的蒸汽或热水供热,并以此热量驱动吸收式制冷 从而满足用户对热电冷的各种需求。 机,从而满足用户对热电冷的各种需求。该系统能 源效率高、 源效率高、可靠性强及污染物的低排放具有相当的 竞争优势,近年来在国外取得了迅速发展,国内也 竞争优势,近年来在国外取得了迅速发展, 已经开始起步。不同应用领域对冷、 已经开始起步。不同应用领域对冷、热及电的需求 各不相同,天然气冷、 各不相同,天然气冷、热、电联供系统在不同应用 领域的配置模式有很大不同。 领域的配置模式有很大不同。
3、新开发的城区和新规划的城市 、
特点:为达到能源结构调整的要求,新开发的 特点:为达到能源结构调整的要求, 城镇过程不应当走烧煤污染或低效率单烧液化天然 气的老路,也不应当采用分体式空调或窗式空调。 气的老路,也不应当采用分体式空调或窗式空调。 优势: 优势:热电冷三联供技术能够产生良好的经济 效益,对环境保护、能源结构优化也能够产生积极 效益,对环境保护、 的作用。 的作用。
与新能源相关的系统方案
1、太阳能热动力电热冷联供系统 、 系统的热力循环在发电的同时,产生的废热温度 系统的热力循环在发电的同时 产生的废热温度 还高达450K左右 具有很高的利用价值。利用一个 左右,具有很高的利用价值 还高达 左右 具有很高的利用价值。 气气换热器加热送风系统的空气,可以直接作为热源 气气换热器加热送风系统的空气 可以直接作为热源, 可以直接作为热源 在寒冷时通过管路和散热器对建筑进行供热,或者利 在寒冷时通过管路和散热器对建筑进行供热 或者利 用气水换热器加热供水,对建筑进行热水供暖或供热 用气水换热器加热供水 对建筑进行热水供暖或供热 在炎热时,利用这部分余热和余热制冷系统连接 利用这部分余热和余热制冷系统连接, 水。在炎热时 利用这部分余热和余热制冷系统连接 驱动热泵对建筑供冷。余热被充分利用的同时,还将 驱动热泵对建筑供冷。余热被充分利用的同时 还将 提高整个系统的热效率。 提高整个系统的热效率。
【VIP专享】广州大学城天然气分布式能源项目简介
![【VIP专享】广州大学城天然气分布式能源项目简介](https://img.taocdn.com/s3/m/0a388533960590c69ec376a6.png)
广州大学城分布式能源站一、能源站概要广州大学城分布式能源站位于广州市番禺区南村镇,与广州大学城一江之隔,占地面积约为11万平方米,是广州大学城配套建设项目,为广州大学城18平方公里区域提供冷、热、电三联供,也是全国最大的分布式能源站。
中国华电集团新能源发展有限公司和广州大学城能源发展有限公司按55%和45%的比例共同出资成立广州大学城华电新能源有限公司,负责广州大学城分布式能源站项目的投资、建设及经营管理。
能源站鸟瞰图二、装机规模能源站总体规划为4×78MW,分二期建设,一期2×78MW于2008年7月28日正式开工建设,2009年10月20日通过72小时和“72+24”小时试运行,满足并网运行条件,正式投入商业运营。
能源站内景图三、主要设备能源站采用的燃气轮机发电机组为美国普惠公司的FT8-3 Swift Pac双联机组(60MW);余热锅炉为中国船舶重工集团公司第七○三研究所生产的两台中压和低压蒸汽带自除氧、尾部制热水、卧式自然循环、无补燃型、露天布置的余热锅炉;蒸汽轮机发电机组供货商为中国长江动力公司(集团),分别选用一套带调整抽汽的抽汽凝汽式蒸汽轮机发电机组和一套双压补汽式蒸汽轮机发电机组,配套18MW 和25MW 发电机各一台。
四、生产流程燃气-蒸汽联合循环机组发电工作原理是由两台燃气轮机和一台发电机组成--两台燃气轮机通过联轴器直接连接一台双端驱动发电机(额定出力60MW),通过叶轮式压气机从外部吸收空气,压缩后送入燃烧室。
同时气体燃料也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧,生成的高温高压烟气进入燃气轮机膨胀做功,推动动力叶片高速旋转带动发电机,燃机效率可达39%,排出的479℃烟气进入余热锅炉循环利用。
余热锅炉再生产出蒸汽供应给汽轮发电机进行发电。
发电后的尾部烟气余热再生产高温热水,制造生活热水和空调冷冻水。
五、能源的梯级利用能源站为了充分利用一次能源,提高机组的热效率,在燃气-蒸汽联合循环的基础上,还采取了以下措施实现能源的梯级利用,进一步提高能源的利用效率。
广东工业大学-热能与动力工程-热电-广州大学城华电新能源有限公司-江门市新会双水发电厂-实习报告
![广东工业大学-热能与动力工程-热电-广州大学城华电新能源有限公司-江门市新会双水发电厂-实习报告](https://img.taocdn.com/s3/m/17913aaef12d2af90342e615.png)
电厂生产实习报告新学期开始,继大三学校给我们安排的电厂参观实习之后,我们又迎来了学校安排的校外实习。
有所不同的是,这次是生产实习,相对于参观实习要学习得更加深入,也更接近以后的实际工作。
实习的地点为广东省的两个知名电厂:广州大学城华电新能源有限公司和江门市新会双水发电厂。
在实习期间,我们到了电厂的各个地方,如集控室、生产车间、运行现场等。
同时,我们通过参观和咨询,认识了很多生产设备、零件和工具,更加懂得了电厂的生产流程。
我们通过询问生产工人和领班师傅,并结合所学的专业知识,从理性到感性上得到了很大的收获。
短短的两周时间,我们两次亲自目睹了整个电厂的运作流程以及各个细节的工作。
虽然动手机会不多,甚至几乎没有,但是经过针对具体问题的提问和带队师傅的细心讲解,我们收获了很多电厂工作的知识,校外实习虽苦,但是我们苦中作乐,从工作中寻找乐趣,从疑惑中感悟真知,从汗水中感悟出来工作的种种艰辛,可谓不虚此行。
一、实习总安排本次生产实习从9月2号开始为期一个月,由于人数关系,热电专业两个班级100个同学将分为两批,我们热电二班先去广州大学城华电新能源有限公司,一班则先去江门市新会双水发电厂,实习完再调换过来。
行程安排如下:1、8月30号,全体同学进行生产实习安全教育。
2、9月2号至9月6号,到广州大学城华电新能源有限公司实习。
3、9月6号至9月21号,休息并写实报告。
4、9月22号至9月27号,到江门市新会双水发电厂实习。
5、9月28号至9月30号,完成实习报告。
二、广州大学城华电新能源有限公司实习公司简介:广州大学城分布式能源站位于广州市番禺区南村镇,与广州大学城一江之隔,占地面积11万㎡,是广州大学城配套建设项目,为广州大学城18平方公里区域内10所大学及周边20万用户提供全部电力、生活热水和空调制冷,实现冷、热、电三联供,也是全国最大的分布式能源站。
中国华电集团新能源发展有限公司和广州大学城能源发展有限公司按55%和45%的比例共同出资成立广州大学城华电新能源有限公司,负责广州大学城分布式能源站项目的投资、建设及经营管理。
广州大学城分布式冷热电联供项目的启示_华贲
![广州大学城分布式冷热电联供项目的启示_华贲](https://img.taocdn.com/s3/m/f93e96ab0029bd64783e2cf3.png)
第5卷第2期2009年4月沈阳工程学院学报(自然科学版)Journal of Shenyang I nstitute of Engineering (Natural Science )Vol 15No 12Ap r .2009收稿日期:2008-09-05作者简介:华 贲(1937-),男,沈阳人,教授,博士生导师,973计划项目首席科学家,主要从事过程系统能量分析和综合优化的理论研究.广州大学城分布式冷热电联供项目的启示华 贲(华南理工大学强化传热与过程节能教育部重点实验室,广州510640)摘 要:简介了广州大学城冷热电三联供能源系统(DES/CCHP )项目的背景、技术方案、效益和运作机制以及项目的进程;分析了项目进展曲折在法律、机制等方面的内在因素.同时初步归纳出几点有益的启示:①电力系统的早期规划、早期协议非常重要;②规模化、大型的DES/CCHP 适合中国;③南方地区基于区域供冷和集中供热水的大规模DES/CCHP 是高效的、可行的.最后,基于CCHP 项目收益对天然气价格的灵敏度分析数据,指出了DES/CCHP 对将会占天然气下游市场一半左右的工商业用户来说,是最高效利用天然气的系统集成技术;也是中国能够承受进口高价天然气的关键.关键词:分布式能源;天然气利用;广州大学城中图分类号:TK01 文献标识码:A 文章编号:1673-1603(2009)02-0097-061 项目建设的背景、规划、进程1.1 项目建设的背景2003年1月,广东省政府按照现代城市规划、建设和管理理念,高标准地建设了一个占地18k m 2、容纳25万大学生的大学城.由于广州市98%以上的煤炭和油品需从省外调入,电力主要依靠省网供应,夏季峰期空调负荷比率高达40%以上,峰电缺口达100多万k W ;以煤为主的能源结构,使全省酸控区面积已达63%,直接经济损失40亿元/年;“生态系统处于亚健康状况,能源结构、水环境等都离生态城市有一定的距离”[1].鉴于此,广州大学城建设指挥部委托华南理工大学等单位,制订了《广州大学城能源规划》,包括800万m 2建筑物主体节能设计规范、基于区域供冷(DCS )的冷热电三联供的分布式能源系统(DES/CCHP )、可再生能源利用方案和能源系统建设运营机制等内容.DES/CCHP 和DCS 方案先后于2003年6月和7月通过了国内权威专家的评审,随后付诸实施.1.2 项目规划的技术方案[2]广州大学城区域能源站一期,是以2×78MW 燃气-蒸汽联合循环机组为基础的天然气冷热电三联供系统.燃气能的38%先经燃气轮机转换为电能,500℃左右的烟气在余热锅炉产生4.0MPa 蒸汽,然后进抽凝式汽轮机进一步作功发电;可以抽出部分0.5MPa 蒸汽供给第一制冷站的溴化锂吸收制冷机.余热锅炉排出的约50℃~100℃烟气用于加热生活用水,不足热量用蒸汽透平冷凝潜热补充;集中生活热水系统60℃,供应24万人.燃气能源利用效率达到80%以上.其中,分布式能源系统为2×78MW 燃气轮机—余热锅炉—汽轮机分布式能源站DES,包括电力接入系统和热水部分的建设总投资为12亿元,等价可满足大学城17万k W 的高峰电力负荷.按照测算的大学城电网峰荷为18万k W ,以传统的电力建设模式(电厂+主干电网的投资1万元/k W 、输送损失7%)计,须增加初投资为19亿元;采用DES/CCHP 可节约投资约7亿元,同时可节约一次能源7.7万tec /a,节能25%.区域供冷系统DCS,总容量为11万冷吨(RT ),规划4个带有冰蓄冷系统的冷站,一期承担350万m 2建筑物的空调负荷.其中,与能源站在一起的第一制冷站部分采用蒸汽吸收制冷;其余3个冷站由能源站直供电压缩制冷.各站均设有蓄冰装置,采用内置翅片换热器外融冰式金属盘管共计342套.系统通过蓄冰可降低高峰负荷用电量,实现削峰填谷,同时实现大温差供冷,加上水泵采用变频控制技术,可大大降低冷量的输送能耗.冷冻水主干管网采用直埋地敷设的DN200至DN1000预制发泡聚氨酯保温的碳钢管,总长约110km;末端换热间总数283间.自控部分采用工业以太网硬冗余系统,以光纤和电缆介质组建大型Pr ofibus 现场总线通讯网络,控制点数超过11000点.自控系统能自动、实时采集系统所有机电设备的运行状态、末端・98 ・沈阳工程学院学报(自然科学版)第5卷负荷状态等参数,并实施过程控制;采用先进的空调负荷预测和优化控制软件,系统可满足末端用户波动较大的冷量需求[3].DES/CCHP 的流程如图1所示.图1 广州大学城分布式能源站规划流程[2]1.3 规划的效益和运作机制按照规划,DCS 和DES -热水系统总投资分别为7亿元和12亿元,10年左右可以回收投资.各大学冷、热用户可以获得比市场价便宜5%的优惠.与传统的火电厂、单体建筑设置传统的中央空调系统、锅炉供热系统相比,制冷总装机容量大约减少45%~55%,电力装机容量减少50MW ;与设置分体空调相比可减少电力装机容量120MW.同时节约了用地和建筑面积,10所大学共节省设备用房面积3.9万m 2,仅此就节省投资约8.6亿元.此外,项目可减排CO 2:24万t/a 、S O 2:6000t/a,NO X 的排放比常规燃煤电厂减少80%,比燃气电厂的国家排放标准减少36%;并且极大地降低了噪声污染,达到了高效节能、优化能源结构、控制污染、改善环境的目标[3].规划提出了按照社会化和市场机制进行投资、建设和经营管理的分布式区域能源系统发展模式,并在此基础上进行投资主体招标建设.由中标团组组建广州大学城能源服务公司,为完全按照市场机制运作的独立法人机构;所有制多元化,即由政府主导的大学城投资公司牵头,鼓励外资、系统集成商、设备供应商投资占股,鼓励用户参股.建成后,由政府(大学城管理委员会)协议下的能源服务公司特许经营.专营权经营期为25年,政府负责统筹协调能源服务公司与电网公司的协议(购电、上网电价)和能源站用的天然气价格.空调冷水和生活热水供应价格由政府—能源服务公司—用户三方协议,按照当年广州市物价局和相关立法部门规定的听证会决定.该项目依靠高科技和现代化的科学经营管理,达到了用户、公司、电网、市政“四赢”的目标[2].2 项目建设的进程2.1 招标和流标按照上述规划安排,2003年8月由大学城建设指挥部公布了基于上述能源规划方案的《广州大学城区域能源站招标书》,并附技术文件[4].这是国内首个同类的招标项目.在1个月的时间内,先后有包括美、日、法、马来西亚、新加坡、香港和内地多家公司的10个组团购买了招标文件,初步形成了3个组团激烈竞争的局面.然而在投标截止日期的前夕,以某电力集团为首、实力最强的组团放弃了投标.余下的2个投标组团与招标代理方多次协商未果,最终宣布流标.2.2 供冷、热系统的建设和过渡方案运行情况招标失败后,广州大学城建设指挥部组建了由大学城能源投资公司与广州永大集团公司、迪森公司合组的“广州大学城能源发展公司”,按照原定的进度计划,开始了上述方案中集中供热和区域供冷DCS 部分的建设.DCS 部分在2004年8月配合主体建筑物施工完成过渡方案,向第一批入校学生供冷;2005年8月第2期华 贲:广州大学城分布式冷热电联供项目的启示・99 ・建成2#、3#、4#3个冷站,共装设双工况离心式冷水机组25套,形成了7.7万冷吨的总装机容量.在能源站未竣工投运之前暂用网电制冷,但系统控制和冰蓄冷部分迄今未投用.在能源站未竣工投运之前,生活热水暂以附近市头电厂低压蒸汽为热源,通过16台换热器加热储存于65000m3的蓄水箱.热水用泵经约26k m长的主干管网和支管输送到用户.最高日供应量约16000m3,年供应量350万m3.主干管网采用DN450直埋管到综合管沟,在综合管沟内形成环形;支管由综合管沟呈放射状直埋接至各大学校区内的14座分散热力站.站内设置加压水泵、电辅助加热装置和共计1500m3的蓄水箱.在各末端用户安装约4万块I C卡热水计量水表,按量收费.该热源也在2004年第一批大学生入校后陆续投用.2.3 能源站建设的波折能源站的建设于2004年招标,确定了采用普惠公司2×78MW FT-8双联机组设备和相应的热水生产方案.但受到天然气供应、电力供应机制、建设模式3个因素的影响和制约,工程建设一直未能开展.规划中天然气依靠将在2006年投运的进口澳大利亚LNG接收站项目供气,气价1.5元/m3;在能源站建成到2006年之前的1年多期间,曾拟购买槽车运输的广汇LNG 为过渡气源,气价2.2元/m3.因建设推迟,未构成制约.电力供应机制是主要的制约.由于大学城项目建设进度极快,2003年7月,南方电网公司完成了岛上原有电力设施的拆除工作,付出了1亿多元的费用;并已经开始设计和着手建造220/110/10kV的输变电系统、10kV的到各用户10k V/380V变压器电缆.而DES/CCHP是一种全新的电力供应模式.显然,能源站方面应当在政府支持下主动与电网公司协商,变更输变电系统设计方案,达成DES与电网公司联网的接入系统方案、相互支持的运营方案,以及购、售电价格等技术和经济关系的合作协议.由于大学城能源站方面没有及时和主动沟通,随着按照原方案设计建造的输变电项目的不断进展,电网公司对DES项目的态度也越来越强硬,坚持执行电力法第25条,不准DES向各大学直供电,所发的电必须上网售给电网公司.在这种情况下,从2004年开始,在许多专家致信省领导、省政协委员提出提案等的敦促下,广东省政府先后4次召开广东电网公司与大学城DES的协调会,发布制定“广东省电力体制改革试点方案”的文件[5].经委托国电公司动经所起草,几易其稿,于2006年8月由省政府发布[6].这是一个妥协方案,规定一期DES发电除可直供制冷站外,余电须售给电网公司,上网价格为成本加微利.各大学仍由电网公司供电;DES南岸二期工程可直供用户.与此同时,建设模式也经历了几番变化.2005年7月,中国节能投资公司有意向接收大学城DES项目.经过几个月的考察与谈判,最终没有达成协议.2006年夏,法国达尔凯国际股份公司、中国华电工程(集团)有限公司经与广州大学城能源发展公司谈判,于8月8日在北京签订了合资意向书.协议规定由法方占股60%,其他二方各占20%,10月份组建合资公司并开始建设.后来因控股问题,协议废除.直到2007年11月,达成由电集团新能源发展公司投资占股55%,华电工程清洁能源公司EPC承包建设的协议.目前工程建设已经开始,将于2009年2月建成投运.3 广州大学城D ES/CCHP项目的启示2003年8月,国际招标网上广州大学城DES/ CCHP项目招标的消息,在国际的业界产生了巨大的反响;各国相关的公司纷纷前来.几个组团的标书,都以上述规划方案为基础,给出了较好的投入产出分析评价.鉴于该项目的内容、规模和区位条件,如果能够按计划招标、建设,成功投运,无疑将会极大地促进中国以天然气为一次能源的冷热电联供分布式能源系统的建设和推广应用.同时对天然气下游市场的开拓、城市能源供应系统的革新、电力建设的战略走向,都将产生深刻的影响.然而近5年时间过去了,在国际石油天然气价格暴涨的格局下,项目迟迟不能完成和给出全面的示范效果,加上种种原因造成过渡方案运营的售冷价格较高,使人们对该项目的可行性产生了许多疑问,并对后来陆续拟上的项目产生了负面的影响.因此,很有必要总结迄今为止的经验教训,从中得到重要的启示.3.1 电力系统的早期规划、早期协议非常重要在DES方案刚刚通过评审的2003年6月末,电网公司为了配合新上任的省委书记亲自抓的大学城重点工程,对供电系统建设抓得很紧,对DES的态度也比较积极.广东分公司技术开发部的负责人员表示,只要DES方面尽快沟通,双方共同修改输变电系统设计方案,不致影响非常紧迫的施工进度计划,在技术上是没有问题的.根据国外的DES/CCHP与电网公司多年交锋和磨合的经验,在广州大学城DES的具体条件下,双方必须尽可能早议定的事项有以下几点:・100 ・沈阳工程学院学报(自然科学版)第5卷1)建设阶段,由能源站而不是电网公司投建岛上110/10k V变电站,在110k V与电网联接,并自建10 k V供各用户的电缆网络.原来设施的拆迁费用,由省财政负担,不让电网公司吃亏.2)正常运行时,能源站通过自建10k V系统向各大学直供电,不足部分按市场价格从110k V侧向电网公司购电,并应按照季节、昼夜负荷变化规律提交年用电计划,以利于电网调度平衡负荷.3)DES停机,需由电网临时供应较大负荷时,按照国外惯例以正常电价的110%~115%支付电费; 110/10k V备用变压器的容量电费,双方协议确定,该缴就缴.4)7、8月暑假期间,DES充当电网的调峰机组,按电网调度开停机,亦按峰电价格上网.上述既是DES的成功安全运行所必须,也是双方互利双赢的前提.如果当时能够意识到在上述各点与电网公司沟通,在省政府的支持下,第一时间与电网公司达成协议,电网公司是有可能成为大学城DES项目的支持者和合作者的.因为在它的辖区内新增190MW 峰荷和8亿k W h/a的供电量,它既可以省去数亿元建设110/10kV级(以及扩充500或220/110级)输、变电设施的资金,又能够坐收容量电费和补充供电的电度电费,还可以在暑假峰荷期间得到1个2×78MW的调峰电源.这样的好事为什么不干呢!电网公司完全知道,它可以依据《电力法》第25条,阻挠能源站向大学供电,但类似的直供事实上并不乏先例.南方某大城市的1个数k m2的城区由一家电厂部分直供电,电网公司补充的部分电量也由该厂“代收电费”至今已有20年;许多大型企业也一直向附近居民售电.可见,任何法律的修改,如果没有相当多“合理但不合法”的成功实例为佐证,也都是难以推进的,何况又是省领导明确让自己支持的重点工程.问题是,由于对DES电力部分的实践经验不足,在《广州大学城能源规划》和DES方案中,没有特别阐明上述1)、3)两点具体安排,没有考虑电网公司利益的实施步骤.在规划实施的初期,也未能坚持说服决策方,抓住领导支持的有利时机与电网公司沟通解决问题.这是可供后来者借鉴的.3.2 规模化、大型的D ES/CCHP适合中国[6]国外大型的分布式能源系统(DES)数目不多,但容量很大.以美国1999年的统计数据为例,平均装机容量78MW的大型DES有27座,只占全国DES总数的2.8%,发电容量却占42.8%.而平均装机容量0.7MW的小型DES有770座,占总数的78.6%,发电容量却只占10.3%.就是说,1个大型的DES就抵得上100个小型的或更多微型的DES;但投资的经济和节能效果则好得多.我国人口众多,居住密集,90%的城市居民住在公寓而不是别墅中.目前正值城市化快速发展的历史时期,城镇化、新城区建设快速发展,现有公用建筑能量系统的改造已提上日程.采用规模为50 MW或更大的DES/CCHP系统,配合几万RT的DCS、几百万m2住房的DHS(集中供暖系统),形成高效、规模化的分布式冷热电联供系统,乃是我国建筑节能和天然气高效利用的一条极重要的战略途径,也是国际能源组织(I EA)给中国天然气市场开拓的重要建议.对广州大学城已投运的DCS和将完成的CCHP部分的调查和经济分析可以肯定上述论断.近年来正在建设及策划的几个大型DES的规划数据也表明,因同时提供冷、热水服务而获得的能效和经济收益均约为发电收益的50%以上,大大提高了天然气发电的利用效率和经济效益.随着按国家能源战略加速开发和进口的天然气陆续进入各大城市,在中国必将掀起一个建设大型DES/CCHP系统的高潮[7].3.3 南方地区基于DCS和集中供热水的大规模D ES/CCHP高效、可行[8]上世纪60年代开始出现,90年代开始在国内外大规模快速发展的区域供冷系统(D istrict Cooling Sys2 te m,DCS),类似于北方的城市集中供热系统(DHS),是在一定规模的区域内,由专门的制冷站集中制造冷冻水,通过二次管网络向各用冷建筑物输送,从而提供制冷空调服务的系统.DCS可视为超大规模的中央空调系统,不同的是,它可以包括公寓、写字楼、酒店、商场、机关、医院以及住宅等多个用户.但它比传统的中央空调有很多优势:多个大型制冷机,总在高负荷率下运行,效率高.向同时使用系数可以小到0.7的不同种类和用冷特性的建筑物供冷,主机的装机容量和初投资可节省30%.运行管理人员少,维护质量高.噪音少,可采用氨等环境友好的制冷剂,消除CFC等对臭氧层的破坏,减少城市热岛效应,有利于采用水源热泵的地方环保优势更明显.有利于大规模采用蓄冷技术,更好地帮助电网“移峰填谷”.可提高建筑美观性和空间利用率,节省75%的在建筑内安装设备室所需的空间.目前我国的中央空调系统与家用空调能源均为电驱动,致使夏季各大电网的峰谷差越来越大.2004年上海的最高用电负荷达到16G W,其中空调负荷为第2期华 贲:广州大学城分布式冷热电联供项目的启示・101 ・8G W.2005年广东的统计也类似.规模化的DES/ CCHP梯级利用一次能源,既发电,又通过供冷和生活热水节电,再加上利用夜间低谷电制冰蓄冷,帮助电网调峰的作用很大.在广州大学城18k m2的小谷围岛上,DCS的上述6个优势除第5项外都已经得到体现.随着设计先进的控制系统的投用、运行管理的改进完善、冷负荷不断增加,以及能源站的建成,DCS系统方案的先进性和示范作用必将充分展现.最新的研究表明,采用大型DCS采用串极制冷、二次冷水11℃~15℃大温差循环、新风换冷、除湿与空间降温梯级用冷的末端新技术,可以把二次水循环系统的总费用降低30%以上,DCS的优越性将更显著[9].3.4 D ES/CCHP项目建设运营机制的思考如前所述,广州大学城DES/CCHP项目未能充分按照原定的市场机制运作.虽然成立了大学城能源发展公司,但实际上还是以政府机制开展招标、建设和运营.政府运作较多着眼于政治考虑,成本控制较松,建设进程中超预算较多.例如因设备参数、材质选择过大、过高而增加的投资不少.2#、3#、4#3个冷站的冷机全部一次到货安装完毕,而供冷负荷4年来才从20%增到50%;仅闲置设备积压资金的利息,每年就须付上千万元;因工程项目迟迟未收尾而致运行费用增加的负担也很沉重.项目5年来的经历表明,如果以包括设备公司、电力公司、工程公司、DES/DCS运营公司等的股份多元化的能源服务公司能按照市场机制来投资、建设和运营,这些都是可以避免的.4 高天然气价下的D ES/CCHP广州大学城DES/CCHP规划所依据的进口澳大利亚LNG项目的离岸价为2.85美元/MMbtu,折合到能源站的天然气价为1.6~1.7元/m3.而就在这几年里,国际能源价格经历了前所未有的持续涨价.我国最近签订的LNG长期合同的离岸价已超过9美元/ MMbtu,而国内电价并没有大的变化.这就难免使许多人对天然气DES/CCHP项目是否还能在经济上可行产生了疑问.4.1 如何认识国内天然气的消费价格发达国家从30年前开始大规模使用天然气,一直到本世纪初都在享用很低的天然气价格,当国际油价涨到60美元/桶时,发达国家如美国天然气的终端消费价格是0.33美元/m3,也不过占收入的1.65%(注意:终端消费价格并非与离岸价呈线性关系[10]).虽然增加了负担,但他们可以承受.中国则完全不同,既未发达,又须进口国际石油天然气.0.33美元/m3的价格,即使按照美元/人民币汇率7来折算,也是2.3元/ m3了.实际上广州居民炊事用天然气价为3.8元/m3,而贫困家庭月入不过1000元人民币,就算省着烧,20 m3/月,也得76元/月,占收入的7.6%.事实上中国的广大城市居民大部分还在使用价格比天然气高得多的LPG,这也是中国的恩格尔系数高的原因之一.中国对高天然气价格的承受能力,只能随着因经济快速发展而致的人民币汇率渐渐提高而逐渐增强,但这是一个渐进的、相当长的过程.中国内地四川、新疆、陕西等产气地区的消费者,曾经享受到0.5元/m3左右的低价.去年发改委宣布天然气出场价上涨0.4元/m3后,也不过1元/m3多一点.这些产气地区恰好也是经济欠发达地区,那里的天然气价格保持比广州等东南沿海稍低一个差值是可以的.这个差值应当是在两地经济发展程度对天然气价格承受能力之差所需,和西部天然气输送到东南沿海的成本两者之间,不可能过大.因为一方面,中国人均天然气资源只有世界人均的7%,进口不可避免.另一方面,过低的价格会造成浪费.因此,逐步完善征收资源税机制,可使国产与进口石油天然气价格按照市场机制的协调一致[11].4.2 D ES/CCHP是承受高天然气价格的关键技术1973年第一次“能源危机”以来,逐渐提高的能源价格,促使发达国家一直在努力提高能源利用效率.分布式冷热电联供能源系统———DES/CCHP,就是美国在1978年开始发展的.DES/CCHP是高效利用天然气的最重要途径,是节能减排的最重要手段已成共识.美国商务部的数据显示,其节能率为46%,CO2减排为30%.不论用于工业还是商业用户,都是如此.2006年所做的南方某5km2新城区一期DES/CCHP工程规划中,按照当前的经济数据对天然气价格影响系统的经济性分析表明,DES/CCHP比联合循环发电能够承受更高的天然气价格,是因为联产和就地联供的冷和热水使项目经济收益大大增加,并且天然气价格越高联供冷热的收益比重越大(见表1).4.3 D ES/CCHP在天然气下游用户中的位置我国迄今进口LNG项目的规划,都把下游用户定位于发电和城市民用.20~30年前LNG较便宜时,为了适应LNG项目“照付不议”的特点,项目初期这样安排是不得已的.而目前,在成熟的世界天然气下游消费市场中(90%是在美欧日韩等发达国家和中东、俄罗斯等产气国家),天然气主要是用作能源.其中,发・102 ・沈阳工程学院学报(自然科学版)第5卷表1 天然气价格对D ES/CCHP系统经济性的影响[12]天然气价格(元/Nm3)2.32.52.7发电税前成本(元/k W h)0.6610.7010.742扣除成本后年发电净收益(万元)1374977608年供吸收制冷用蒸汽净收益(万元)294294294年供生活热水净收益(万元)540540540总年净收益(万元)218018111442动态投资回收期(年)4.525.266.29内部收益率26.5%23.0%19.4%电和民用约占5成,其余5成是工商业的燃料,如加热炉、锅炉、采暖设施等.天然气要起到替代燃煤、节能减排的作用,民用市场容量有限,单纯发电在我国更是无法与煤电竞争,因而天然气进入工商业燃料市场,替代大量的锅炉燃料是不可避免的.简单地把燃煤锅炉改用天然气,单位热值能源价格提高3倍,任何用户都难以承担.只有抓住当前推行新型工业化道路、循环经济、节能减排、城镇化、建筑节能等的有利时机,大力采用DES/CCHP,特别是规模化的工业和建筑物DES/ CCHP,以大幅度提高能效来消化高价,降低成本,才能使我国的天然气产业快速、健康发展[13].参考文献[1]广州市城市生态可持续发展规划[R].广州:广州大学城建设指挥部,2003.[2]华 贲.广州大学城区域能源规划[R].广州:华南理工大学,2003.[3]广州大学城集约化建设中节能、环保、数字技术的集成应用—能源集约化综合利用[R].广州:广州大学城建设指挥部,2008.[4]广州大学城建设指挥部.广州大学城区域能源站BOT项目招标文件[G].广州:广州大学城建设指挥部,2003. [5]广州大学城分布式能源站供电改革试点实施方案[R].广州:广州大学城建设指挥部,2006.[6]华 贲.解读分布式能源的规模效应[J].博燃资讯,2006(18).[7]王振铭.分布式能源[C].中国电机工程协会热电联产专业委员会,2005.[8]康英姿,华 贲.区域供冷与分布式冷热电联供系统[J].沈阳工程学院学报:自然科学版,2006,2(4):289-293.[9]华 贲.集成创新可使中国建筑物能效加倍[J].建筑科学,2007,23(2):9-14.[10]华 贲.试论国际LNG价格走势与下游供气成本控制及价格策略[J].国际石油经济,2006(12).[11]华 贲.中国天然气产业发展刍议I———资源、价格、上游市场[J].天然气技术,2008(2).[12]华 贲.萝岗中心区能源规划[R].广州:华南理工大学,2006.[13]华 贲,龚 婕.分布式能源与天然气产业在中国协同发展的历史机遇[J].能源政策研究,2007(5):14-20.An i n spi rati on to guangzhou un i versity town’s DES/CCHP projectHUA B en(The Key La b o f Enha nce d He a t Tra n sfe r and Ene rgy Co n se rva ti o n,M i n istry o f Educa ti o n,So u th C h i na U n i ve rs ity o f Techno l o gy,Guangzho u510640,C h i na)Abstract:This paper introduced the background,schem e,p lanned perfor m ing m echanis m,as w ell as the p rogress of guangzhou un iversity tow n’s D ES/CCH P p roject;analyzed the facto rs w hich frustrated the p ro ject.Som e lesson and revelation w ere deduced:1)Early p lan and agreem ent of electricity connection to grid is significant;2)L arge scope CCH P fitted C hina;3)D ES based on D CS and hot w ater net w ork in sou thern C hina is high efficien t.Finally,based on the sensibility analysis,it’s po inted out that D ES/CCH P is the highest integrated technology w hich enab les C hina to undertake the high p rice of natural gas i m p orted from international m arket.Key words:distributed energy;gas u tilization;guangzhou university tow n。
大学城分布式能源站一号冷站及其机房项目第三方检测服务
![大学城分布式能源站一号冷站及其机房项目第三方检测服务](https://img.taocdn.com/s3/m/7d0fb0c9aef8941ea76e053c.png)
大学城分布式能源站一号冷站及其机房项目第三方检测服务(1标)技术服务合同合同编号:项目名称:大学城分布式能源站一号冷站及其机房项目第三方检测服务(1标)委托方:广州大学城能源发展有限公司(项目业主)广州新中轴建设有限公司(建设管理单位)受托方:签定日期:2019年月日目录一、技术服务合同二、附件1:工程量清单三、附件2:项目检测人员四、附件3:廉政责任书五、附件4:保密责任书技术服务合同委托方(全称):广州大学城能源发展有限公司(项目业主)广州新中轴建设有限公司(建设管理单位)受托方(全称):依据《中华人民共和国建筑法》和《中华人民共和国合同法》的有关规定,结合本工程的具体情况,为明确责任、协作配合,委托方、受托方就大学城分布式能源站一号冷站及其机房项目第三方检测服务(1标)工作,经协商一致,签订本合同,共同遵守。
一.工程概况本项目建设一栋总建筑面积为42605平方米的建筑(占地5134平方米,地上八层、地下一层,建筑高度为46.8米,有容纳约5000个柜规模的IDC机房)(具体检测范围以图纸和工程量清单为准,详见附件)。
二.服务内容、方式和要求(一)本次招标内容为建设工程主管部门、监督部门要求的,具有质量监控作用的检测项目,以便为安全施工及工程验收提供依据,具体包括:施工过程中的所有材料设备见证取样检测[主要包括水泥物理力学性能检测、钢筋(含焊接与机械连接)力学性能检测及混凝土、砂浆性能检测]、地基基础检测(主要包括地基及复合地基承载力静载检测、锚杆锁定力检测、桩的承载力检测及桩身完整性检测)、主体结构工程现场检测(主要包括钢筋保护层厚度检测、混凝土预制构件结构性能检测)、其他满足本项目验收所需的需业主委托的各类检测项目等。
(内容以招标文件、工程量清单及相关验收规范或标准规定为准)。
(二)服务范围除以上工程检测、试验工作外,还包括:1.结合项目实际情况,编制检测方案,并确保检测方案符合有关规范要求及通过工程所在行政区域的相关建设行政主管部门和监督部门的审批,同时负责协调相关工作,保证技术成果能够通过相关部门认可,确保不因检测工作影响本工程项目的建设进度和竣工验收,相关费用已包含在合同总价中,不再另行计取;2.在进行检测服务过程中,与该工程相关的施工、监理、设计、咨询等相关单位及建设协调行政主管部门和监督部门协调,投标人需在投标报价中综合考虑该项协调工作费用,不再另行计取。
大学城分布式能源站一号冷站及其机房项目
![大学城分布式能源站一号冷站及其机房项目](https://img.taocdn.com/s3/m/0b330f5c90c69ec3d5bb75ed.png)
大学城分布式能源站一号冷站及其机房项目基坑监测技术服务合同合同编号:项目名称:大学城分布式能源站一号冷站及其机房项目基坑监测委托方:广州大学城能源发展有限公司(项目业主)广州新中轴建设有限公司(建设管理单位)受托方:签定日期:年月日目录一、技术服务合同二、附件:大学城分布式能源站一号冷站及其机房项目基坑监测服务招标澄清及答疑文件三、附件:大学城分布式能源站一号冷站及其机房项目基坑监测服务清单四、附件:项目监测人员名单五、附件:廉政责任书六、附件:保密责任书七、附件:安全生产合同委托方(全称):广州大学城能源发展有限公司(项目业主)广州新中轴建设有限公司(建设管理单位)受托方(全称):根据《中华人民共和国合同法》和《建设工程勘察设计合同条例》及其他有关法律、法规,遵循平等、自愿、公平、和诚实守信的原则,结合本工程实际,就委托方委托受托方承担大学城分布式能源站一号冷站及其机房项目基坑监测服务事宜,经双方协商一致,签订本合同。
第一条工程概况本项目建设一栋总建筑面积为平方米的建筑(占地平方米,地上八层、地下一层,建筑高度为米,有容纳约个柜规模的机房)(具体以招标文件、招标图纸、工程量清单及相关资料为准)。
第二条监测范围、工作内容及工作要求监测范围、工作内容座落于番禺区南村镇市新北路号,大学城分布式能源站一号冷站及其机房项目工程(大学城分布式能源站东北角)受影响的相关区域。
监测时间基坑开挖工程开工前天至基坑全部回填完成日,建筑物沉降观测服务至沉降稳定为止。
部分监测内容须待场地问题解决后方能开始实施,服务周期必须满足实际施工要求。
开挖基坑区内支护结构顶部水平位移监测;开挖基坑区内支护顶部竖向位移监测;开挖基坑区内支撑轴力(每组个)监测;开挖基坑区内支撑水平位移监测;开挖基坑区内地下水位监测;开挖基坑区内立柱沉降监测;开挖基坑区外周边环境沉降监测;开挖基坑区测斜观测点;开挖基坑对周围建构筑物影响的监测;除以上监测工作外,还包括:、须与工程所在行政区域的相关建设行政主管部门和监督部门进行监测工作的协调,申报监测技术成果及监测报告的审批,保证技术成果及监测报告能够通过相关部门认可,监测方案须经委托方审核通过,确保不因监测工作影响本工程项目的建设进度和竣工验收,受托方需在投标报价中综合考虑该项协调及评审工作的费用。
CCHP系统介绍
![CCHP系统介绍](https://img.taocdn.com/s3/m/ce336f7676eeaeaad0f33076.png)
楼宇型项目案例: ——北京铁路南站能源中心 面积约14万m2
天
然
太阳能电池板
气
空气
余热烟气
燃气发电机组 补燃天然气
国内首个污水源热泵、太阳 能、燃气三联供集成项目
发电3000kW,并网运行
电力负荷 余热回收装置
空气
定义:1)分布在用户周边;2)真正实现
了对能源的梯级利用;3)系统全年能源
天
利用率不低于70%。
然
气
燃气发电机组
(30%) (50%)
余热烟气
补燃天然气
余热回收装置
电力负荷
热水负荷 采暖负荷 制冷负荷
能源设施:从大到小、从远到近
大型电厂发电效率40~50% 50%的能源以废热形式排放 冷热传输受距离限制
4
8
12
16
20
24
小时(hr)
热负荷(kW)
对负荷需要更精准的分析
负荷分析软件:Energy Plus 1.或2等,及国内开发的软件
天然气冷热电三联供设备构成
发电设备
燃气微燃机
35-1000KW
燃气内燃机
200-10000KW
燃气轮机
3MW-300MW
开普斯通 英格索兰
褒曼 康明斯 彦巴赫
卡特彼勒 GE 美国索拉 川崎重工
.7JC 吨! 5 8 Z. l
咆饥~~ "e ff-fill &揭宦
但二 k唱, . . .
火电 24 2~ I l!tl97. 7
亿 kW· h I
玛巴 为
3006. 3
£ kW· h
广州大学城区域能源规划的实践与思考
![广州大学城区域能源规划的实践与思考](https://img.taocdn.com/s3/m/0c2d560da9114431b90d6c85ec3a87c240288a68.png)
广州大学城区域能源规划的实践与思考傅建平;巫术胜【摘要】首先对广州大学城区域能源规划的背景、指导思想以及规划成果进行了介绍,然后对广州大学城区域能源相关项目的建设和运营实践进行了说明,最后列举了作为广州大学城能源项目建设者和运营管理者对区域能源规划的一些思考。
%Firstly the background guideline of Guangzhou University Town energy planning were introduced.Secondly,the energy plan achievements and the implementation of relevant energy projects based on the energy plan were stated.Finally,the thinks on energy plan from constructors operators were listed.【期刊名称】《建筑热能通风空调》【年(卷),期】2011(030)004【总页数】3页(P42-44)【关键词】能源规划;分布式能源;规划【作者】傅建平;巫术胜【作者单位】广州大学城能源发展有限公到,510006;广州大学城能源发展有限公到,510006【正文语种】中文【中图分类】TU242.30 引言改革开放以来,我国经济高速持续发展,大大地推动了城镇化的进展,新城区、开发区、新型园区的建设在各地蓬勃展开。
为提高区域建设和运营水平,建设能源节约型和环境友好型社会,国内学者对区域能源规划的发展方向、思路以及能源供给方式等问题进行了研究,取得了一定的成果[1~3]。
广州大学城是广州建设现代化生态城市目标规划中的重要组成部分。
在广州大学城项目工程建设的起步阶段,建设单位组织相关专家以高效、节能、洁净环保为目标,对区域能源利用进行了规划,该规划方案在大学城建设中得到了较好的实施,本文就该规划在大学城的实践进行论述。
广州大学城“三联供”能源站调研报告
![广州大学城“三联供”能源站调研报告](https://img.taocdn.com/s3/m/5b235b6931b765ce05081447.png)
广州大学城“三联供”能源站调研报告一、为解决公司机房项目供电需深入调研“三联供”为解决我公司机房建设项目供电问题,在可研报告中提出建立“三联供”能源站是方案之一。
但对建立“三联供”能源站的投入、占地、规模、运营等理解不多。
公司领导决定对该项目再做深入调研,并安排对目前国内标志性工程广州大学城的分布式“三联供”能源站进行调研。
随即确立由宋汉民、陈明哲、范平组成调研组开始工作。
9月6日经过联系广州大学城华电新能源有限公司总部朱主任安排,我们一行三人与九月11日傍晚到达广州大学城。
第二天广州大学城华电新能源站曾总派车接我们至“三联供”能源站,并安排站里安监部长陪同参观。
看到花园式的站区、整洁的站房、安静的环境、漂亮的主控大楼不觉肃然起敬。
站区布置井然有序,远处有燃气计量间、冷却塔、制水车间、维修间,近处很紧凑的放置燃汽轮机(双轮发电机)间、余热锅炉间、蒸汽轮机(发电机)间、制冷机间。
为减少噪声干扰整个车间都是被隔音板封闭。
四台入网升压变压器露天整齐摆放。
设备布置相当合理,占地约4万平方米。
安监部长带领我们边参观边介绍,从能源站系统流程到投资建设及运营智能化管理,介绍的非常清晰。
又带我们进入生产区参观了余热锅炉、燃气发电设备、4台上网升压变压器、输电控制间、制冷室间及总控室。
看到总控室里电脑自动随机显示的各分区的温度、压力等数据,真是感到该“三联供”能源站的分散控制,集中智能化管理的运行是多么的先进。
随后我们又和总控室的技术人员进行了技术交流和索取了一些文字资料。
下午我们返回驻地。
第二天,我们调研小组对调研情况进一步深入学习及讨论,形成了许多共识。
我们于14日晚回到北京。
二、广州大学城分布式能源站“三联供”介绍广州大学城分布式“三联供”能源站占地11万平方米为广州大学城18平方公里区域内10所大学20万人提供、热、冷、电能,是目前全国最大的分布式能源站。
该能源站规划容量为4x78MW(4x7.8万kW),分两期建设。
分布式能源站设备无故障周期管理的探索
![分布式能源站设备无故障周期管理的探索](https://img.taocdn.com/s3/m/304b7a63d5bbfd0a7856732b.png)
科技风 2019 年 9 月
分布式能源站设备无故障周期管理的探索
何伟雄Βιβλιοθήκη 广州大学城华电新能源有限公司 广东广州 511442
摘 要: 在发电厂设备维护管理中,如何评价设备专责管理设备的好坏? 一直困扰着设备管理者。如实行奖罚制,看谁的设 备缺陷数量少,消缺率高,就对谁奖励,反之就惩罚; 又如对出现安全事故的设备专责进行重考核,等等这些都只是在结果上进行 管理,设备问题已经发生了,只能总结过往经验,对已经发生过的问题进行杜绝,没有形成有效的过程监管,对所有的设备进行系 统的、有阶段地进行监管,为设备专责提供一个行之有效的手段,提高设备的安全、经济、可靠性。
四、设备无故障周期管理的人工智能化 设备无故障周期管理的人工智能化能实现如下 9 个功能: ( 1) 每个专责的设备无故障周期定期进行自动评比,哪些 设备是能否进阶,不能进阶的原因及改进措施。 ( 2) 每个设备专责每天上班,系统会告知你今天要做哪些 设备维护工作。设 备 有 哪 些 缺 陷,如 何 处 理。 下 班 前,系 统 会 告知你有哪些记录你没有完成,下班后仍没有完成,会第一时 间通知相关的管理部门,只要没有完成,就每天重复提示,任可 相关的人员都 可 以 看,知 道 哪 个 专 责 的 每 的 工 作 任 务 完 成 情 况,公司配合相关的管理、考核制度。 ( 3) 每月设备定期维护工作提前突显出来,并发给设备专 责,需要的零件备提前准备,根据采购周期,专用备件提前 2-3 个月通知专责做物资计划购买,常用备件提前 1 个月通知专责 做物资计划购买。 ( 4) ABC 级检修、反措、技术监督等提前半年通知相关人 员准备,包括项目、物资、材料、人员的准备。 ( 5) 仓库的零备件所有的有定额标准,低于定额通知专责 做物资计划购买。 ( 6) 分析设备运行工况及时间,对维护提出建议,如滤芯是 应该清洗还是更换。 ( 7) 设备专责、专工定期的设备分析记录录入管理系,对于 长期运行的机组,出现临停时,系统提示本次临修项目。 ( 8) 每月生成固定格式的总结及下月的计划工作。 ( 9) 设备相关的记录有完善的管理要求,任一步没完成不 能进行下步工作,一环扣一环,如有缺陷单就必须有相应的工 作票,那么缺陷单才能消除,写了相关的记录,本项工作才算完 成。而录入的所及数据记录都集中管理,任何有权进入管理系 统的人共享。 五、设备无故障周期管理效果 ( 1) 设备无故障周期管理工作的指导思想是不断提高设备 的可高性和耐候性,确保设备及系统始终处于充足、精细的维 护管控中,在任意工况下不发生间断和意外。 ( 2) 设备无故障周期管理工作的最高境界是设备和系统通 过不断地改进和精细化管理,其各项效益曲线、能效持续提升, 设备的故障统计数量和维护量趋近零。 ( 3) 设备无故障周期管理工作的终极目标是,小修中修化, 中修大修化,大修 2 个大修化。即通过管理使小修的项目在中 修完成,中修的项目在大修内完成,大修的项目在第二个大修 完成,延长设备的的无故障周期。 六、结语 在总结分析无故障周期时发现很多无故障周期都是可以 延长的,在延期周期的过成中需要通过一系列的技术,经济、技 术措施。自 2014 年开始至现在逐步形成了设备无故障周期管 理模式,目前正在总结和完善设备无故障周期管理在分布式能 源站的应用。 参考文献: [1]陈娟.能源互联网背景下的区域分布式能源系统规划 研究[D].北京: 华北电力大学,2017. [2]何建华.分布式能源站的设备配置与技术分析[J]. 电 力与能源,2014,35( 01) : 59-62.
分布式能源【合集】
![分布式能源【合集】](https://img.taocdn.com/s3/m/02290c7ff524ccbff021840f.png)
1 分布式能源系统对中国天然气下游市场开拓的重要性 (1)2 分布式能源的政策法规关键问题研究 (10)3 分布式能源简介 (22)1分布式能源系统对中国天然气下游市场开拓的重要性1. 中国和世界天然气下游市场用户分布的分析比较天然气具有洁净、高效、储藏丰富、价格稳定等特点,目前全球天然气消费量已高达每年2.6万亿Nm3,占世界一次能源消费总量的24.3%。
因环境压力和石油资源限制等因素,预计几十年后天然气将超过石油在世界一次能源消费中占据第一位。
世界天然气消费的市场分布除了天然气工业部门的自我消费以外,天然气利用主要包括城市燃气、化工原料、采暖空调设备、燃气汽车、工业燃料、发电等多种用途。
2000年世界天然气的消费构成见表10:表1 2000年世界天然气消费构成世界天然气消费的地域分布大致是:欧洲、中亚、日本、韩国和北美,其中2000年美国天然气的消费构成见表20:表2 2000年美国天然气消费构成工业三大块,而美国主要是集中在民用、工业和化工原料三块,这主要是由于美国天然气利用已经比较成熟,发电以煤为主,天然气发电主要用来调峰,同时人们生活质量的提高和环境保护的需要,天然气日渐集中用于化工原料和工业燃料等较高层次的利用。
中国天然气下游市场现状2004年我国天然气产量保持稳定增长态势,全年产量(规模以上企业)达到341.28亿立方米,比上年增长4.6%,占我国终端能源消费结构约3%。
从消费地区结构来看,中国天然气消费主要以产地消费为主,主要集中在西南、东北、和西北地区,即四川省、黑龙江省、辽宁省和新疆,它们占全国消费量的80%以上。
随着我国对天然气开发和利用的重视,天然气作为清洁燃料用作城市燃气也在发展,目前许多大中城市都用上了管道天然气,但是总体份量不大。
表30给出了1996~2000年我国天然气的消费构成。
表3到900亿m3。
2020年,需求量将达到2000亿m3,届时天然气将占整个能源消费构成的12%左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学城能源站生产运行情况
大学城能源站值投产以来:。
----累计实现发电量18亿千瓦时,供应热水180万吨,低压蒸
汽近10万吉焦; ---- 强化安全生产,至 2012 年 7 月 31 日,累计实现安全生产 1020天; ----2010年,通过集团公司“三星级”企业审查,2011 年通 过集团公司“四星级”企业审查,2012年,力争达到集团公 司“五星级”企业标准。 ---- 强化科技创新及管理创新,取得独立自主的知识产权, 2011成功获得“高新科技企业”评定,并授予广东省管理创 新金奖企业,2011年被集团公司授予管理创新先进企业。
大学城能源站生产运行情况
2、锤炼检修队伍,提升维护水平
树立“以人为本、可控在控、本质安全”
的理念,以落实各级安全生产责任制、消 除管理中存在的各种不安全因素、提高设 备可靠性和效率为宗旨,不断总结经验, 大力提高队伍技能水平,以实践为指导, 磨练专业技能,按计划完成两套机组小修 ,消除各类缺陷共779余项,机组运行可 靠性、经济性得到了明显改善,锻造了一 支适应分布式能源特色的检修队伍,为以 后承担起同类型项目的检修任务打下了坚 实的基础。
具备“黑启动”功能,为电网提供保障
6、 根据广东电力负荷特点,突 出分布式能源站灵活、快捷、战 略优势,完成了500KW的“黑 启动设备”安装调试,项目成为 广州电网唯一的具备“黑启动” 功能的电源点,成为“亚运会, 大运会”的保安电源,彰显了项 目的社会效益,获得了政府高度 认可。同时也南方电网的相关规 定,正积极争取相关补贴政策。
广州大学城分布式能源站工作汇报
广州大学城华电新能源有限公司 二○一二年八月
目录
1、广州大学城华电新能源有限公司简介
2、大学城分布式能源站生产运行情况
3、大学城分布式能源站的主要设备
4、分布式能源站的优势
5、几点体会与建议
广州大学城能源站简介
安全 高效 节能 环保 Safety High Efficiency Energy-saving Environmental Protection
大学城能源站生产运行情况ቤተ መጻሕፍቲ ባይዱ
二、生产管理情况 1、挖掘运行潜力,健全管理制度 坚持生产管理的制度化、科学化理念,
组织编制相应的安全生产、文明生产 管理制度,以指标为纲,把创星检查、 整改制度化、常态化,加强对生产运 行、设备管理、技术指标的监督。以 一专多能为要求,培养全能值班员, 优化人员结构,提升岗位技能,在保 证机组安全稳定运行的前提下,不断 探索经济运行方式。2011年,机组平 均利用小时数4011小时,比广东地区 燃机3600平均利用小时高411小时。
大学城能源站将高品位的一次能源用于发电, 低品位的高温烟气用于二次发电和供热制冷,实 现了一次能源的梯级利用,系统的综合能源利用 效率达到78%。而且经余热利用后,余热锅炉排 烟温度由140℃降至90℃左右,对环境的影响降 至最低。
能源站基本情况
能源站生产工艺流程:
能源站燃烧天然气作为动力,驱动发电机发电,发电后的余
广州大学城
大学城能源站
大学城能源站能源供应示意图
广州大学城分布式能源系统由能源站、集中生活热水系统、区 域供冷系统组成,系统设计为向广州大学城(小谷围岛) 18平方公 里区域区域内的10所大学及其他用户约18万人提供全部生活热水、 空调冷冻水和部分电力。
大学城分布式能源站简介
大学城能源站建设两套燃气蒸汽联合循环机组。燃机选 型美国普惠公司FT8-3轻型航 改型燃机,配套建设2台66吨 余热锅炉,并配置两台抽凝 蒸汽机组,同时配套建设送 出线路工程工程造价7.2亿元, 单位造价4600元/千瓦。 大学城能源站投产以来,累计实 现发电量18亿万千瓦时、对大学 城10所高校供应热水180万吨、低 压蒸汽10万吉焦。并且 2010年被 授予“中国分布式能源十年标志 性项目”;2011年11月,被授予 广东省“高新技术企业”。
大学城能源站的优势
1、综合利用效益显著
能源站建设在大学城区域负荷中心,实现区域所需各 种能源的就地生产、就地供应,最大限度地减少了能 源输送损耗,加上能源的梯级综合利用,一次能源的 综合利用率得到大幅度提高。该项目符合我国关于优 化天然气使用结构,提高资源利用效率,促进天然气 市场健康有序发展的有关规定,具有较强的市场竞争 力。正常经营年份每年可向国家财税上缴约5000万 元,保障了大学城区域用户,特别是十几万师生的热 能需求,为大学城的正常、稳定运行提供了能源保障, 受到了大学城区域10所大学及各级政府的高度好评及 充分肯定,获得了良好的经济效益、社会效益和环保 效益。
主要设备
锅炉
与FT8-3双联燃气轮机匹
配的锅炉,为中国船舶重 工集团公司第七○三研究 所生产的Q495/479-66.8 (10)-3.82(0.6)/445 (170)型双压无补燃、 自支持式结构、正压运行、 自然循环余热锅炉,主要 用于从燃机排气中回收热 量,产生中、低压蒸汽发 电,同时余热锅炉还产生 低压蒸汽供给除氧器除氧。
项目运行情况
3、以创新为原动力,科技兴企 公司紧紧抓住创新这一主线,以
科学技术作为发展力,充分发挥 主观能动性,在原有资源的基础 上,通过资源的再配置再整合, 进行技术创新、生产创新、经营 创新,走出了一条技术进步与应 用革新的现代化企业发展道路。 公司于2011年荣获广东省高新技 术企业认证、广东省企业创新纪 录金奖。
主要设备
汽轮发电机组
能源站选用了两种型号汽轮机,均为武汉汽轮机厂生产。
第一种是C15-3.43/0.7型中温、中压、单缸抽汽凝汽式汽轮机(2号机),具有一级工业调 整抽汽,抽汽压力为0.7MPa,额定抽汽量为19T/h, 额定功率为15000Kw,可工作于纯冷 凝、抽汽两种工况,纯凝工况下最大功率17000 Kw。配套QF-18-2发电机。 第二种是N21-3.43/0.6型中温、中压、单缸、冲动、凝汽式双压、补汽式汽轮机(4号机), 额定补汽压力为0.6MPa,额定补汽量为10T/h, 额定功率为19750Kw,纯凝工况下功率为 18530 Kw,补汽量为20T/h时最大功率21000 Kw。配套QF-25-2发电机。
广州大学城分布式能源站是广州大学城的能源配套工程,规
划建设4×78MW燃气蒸汽联合循环机组,为大学城区域提供 能源配套;根据大学城建设情况,一期建设2×78MW燃气蒸 汽联合循环机组,为大学城一期10所大学近20万师生提供电 力、生活热水供应。
广州大学城一期工程于2006年正式核准,当时核准单位是隶 属于广州的国资企业—广州大学城能源公司,但由于该公司 缺乏能源建设经验,因此造成该工程一直未开工建设,直到 2007年年底华电集团介于该工程,并成立合资公司,正式拉 开项目建设的序幕。
主要设备
FT8燃气轮机为轻型燃机,每台 燃机由一台燃气发生器和一台 动力透平组成,燃机效率39 %,产生479℃的烟气进入余 热锅炉循环利用。特点如下: (1) 结构紧凑,质量轻 (2) 体积小,占地面积小 (3) 启停快(启动到并网约6分钟) (4) 安装周期短 (5) 效率高 (6) 污染排放低 (7) 耗水少
冷冻水
综合楼 服务楼
主 厂 房
大学城能源站生产运行情况
一、投产以来的安全生产及经营情况
能源站自投运以来,围绕着集团公司下达的
各年度经营目标,致力于打造全国分布式能 源典范,强化安全生产,优化生产指标,注 重经济效益,没有发生人身、设备、交通、 火灾及工程建设安全事故,没有发生企业经 营和领导人员违法和严重违纪案件,没有发 生对公司形象和稳定造成不利影响事件,妥 善处理信访投诉,实现生产、经济、政治、 形象四个安全目标。
2008年2月,中国华电集团新能源发展有限公司和广州大 学城能源发展有限公司共同出资(投资股比为55%:45%) 成立广州大学城华电新能源公司,负责能源站一期工程建 设,工程于2008年7月正式开工建设,2009年10月实现双 投,为大学城近20万师生提供充足、稳定、清洁、绿色的 能源供应
大学城能源站地理位置
2011年获得广东省企业创 新记录金奖
项目运行情况
4、丰富公司机能,完善基础设施 成立培训中心,可同时容纳学员80余人,培 训中心有大中小会议室5个,建有多媒体教室、 仿真机室。培训中心共有标准客房51间,可 同时提供80余人住宿;餐厅可同时容纳100 余人用餐;培训中心还设有棋牌室、台球、 乒乓球室,室内篮球场、网球场、羽毛球场, 室外足球场,影音阅览室,图书资料室等文 体活动设施 。
能源站能源综合利用效率高达 78%,实现了能源的梯级利用及高 效利用;同时由于强大的调峰功 能,成为广州电网唯一一家具备 “黑启动”的电源点,成为亚运 会、大运会的保安的电源。因此 受到各级政府和行业的高度关注 ,取得良好的社会效益 ,示范作 用昭显。
国家发改委连维良副主任、广州市万庆良书 记视察大学城能源站
大学城分布式能源站的主要设备
安全 高效 节能 环保 Safety High Efficiency Energy-saving Environmental Protection
主要设备
燃机
FT8-3 型燃气轮发电机组是美国普惠公司生产的航改型轻型
燃机,在国内运营的有6台套。由两台燃气轮机和一台发电 机组成,两台燃气轮机通过联轴器直接连接到一台双端驱动 的发电机上,额定出力60MW。
热制出蒸汽驱动汽轮发电机发电。主要生产工艺流程如下
变电站 电 能 蒸汽轮机发电机组
升压站 校区 商业区
0.6MPa(g)抽汽 余 热 锅 炉 低压蒸汽 冷 水 制 备 站
冷冻水
90℃热媒水 冷站凝结水 高温烟气 生活热水
发电机
燃 气 轮 机
热水制备站
天然气计量站 液化天 然气 (LNG) 溴化锂机组
大学城能源站生产运行情况