英文翻译及文献 电子电子 功率半导体
半导体微电子专业词汇中英文对照
半导体微电子专业词汇中英文对照Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Acoustic Surface Wave 声表面波Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区A/D conversion 模拟—数字转换Adhesives 粘接剂Admittance 导纳Aging 老化Airborne 空载Allowed band 允带allowance 容限,公差Alloy-junction device合金结器件Aluminum(Aluminum)铝Aluminum – oxide 铝氧化物Aluminum Nitride 氮化铝Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度A M light 振幅调制光,调幅光amplitude limiter 限幅器Amorphous 无定形的,非晶体的Amplifier 功放放大器Analogue(Analog) comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Antenna 天线Aperture 孔径Arsenide (As) 砷Array 阵列Atomic 原子的Atom Clock 原子钟Attenuation 衰减Audio 声频Auger 俄歇Automatic 自动的Automotive 汽车的Availability 实用性Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发Background carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ball bond 球形键合Band 能带Band gap 能带间隙Bandwidth 带宽Bar 巴条发光条Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base—width modulation基区宽度调制Batch 批次Battery 电池Beam 束光束电子束Bench 工作台Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bit 位比特Blocking band 阻带Body — centered 体心立方Body—centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Boron 硼Borosilicate glass 硼硅玻璃Bottom-up 由下而上的Boundary condition 边界条件Bound electron 束缚电子Bragg effect 布拉格效应Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊FBrillouin zone 布里渊区Buffer 缓冲器Built-in 内建的Build—in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn-in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区Bus 总线Calibration 校准,检定,定标、刻度,分度Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carbon dioxide (CO2) 二氧化碳Carrier 载流子、载波Carry bit 进位位Cascade 级联Case 管壳Cathode 阴极Cavity 腔体Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemical etching 化学腐蚀法Chemically—Polish 化学抛光Chemically—Mechanically Polish (CMP)化学机械抛光Chemical vapor deposition (cvd)化学汽相淀积Chip 芯片Chip yield 芯片成品率Circuit 电路Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clean 清洗Clock rate 时钟频率Clock generator 时钟发生器Clock flip—flop 时钟触发器Close—loop gain 闭环增益Coating 涂覆涂层Coefficient of thermal expansion 热膨胀系数Coherency 相干性Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common—gate/drain/source connection 共栅/漏/源连接Common—mode gain 共模增益Common-mode input 共模输入Common—mode rejection ratio (CMRR) 共模抑制比Communication 通信Compact 致密的Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal-Oxide-SemiconductorField-Effect-Transistor(CMOS)互补金属氧化物半导体场效应晶体管Computer-aided design (CAD)/test(CAT)/manufacture(CAM)计算机辅助设计/ 测试/制造Component 元件Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge)导带(底)Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 结构Conlomb 库仑Constants 物理常数Constant energy surface 等能面Constant-source diffusion恒定源扩散Contact 接触Continuous wave 连续波Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Controlled 受控的Converter 转换器Conveyer 传输器Cooling 冷却Copper interconnection system 铜互连系统Corrosion 腐蚀Coupling 耦合Covalent 共阶的Crossover 交叉Critical 临界的Cross—section 横断面Crucible坩埚Cryogenic cooling system 冷却系统Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Cubic crystal system 立方晶系Current density 电流密度Curvature 曲率Current drift/drive/sharing 电流漂移/驱动/共享Current Sense 电流取样Curve 曲线Custom integrated circuit 定制集成电路Cut off 截止Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J))Dangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Decade 十进制Decibel (dB)分贝Decode 解码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep energy level 深能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade)/Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOS Depletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Detector 探测器Developer 显影剂Diamond 金刚石Die 芯片(复数dice)Diode 二极管Dielectric Constant 介电常数Dielectric isolation 介质隔离Difference-mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dimension (1)尺寸(2)量钢(3)维,度Diode 二极管Dipole domain 偶极畴Dipole layer 偶极层Direct—coupling 直接耦合Direct—gap semiconductor 直接带隙半导体Direct transition 直接跃迁Directional antenna 定向天线Discharge 放电Discrete component 分立元件Disorder 无序的Display 显示器Dissipation 耗散Dissolution 溶解Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Dose 剂量Double—diffusive MOS(DMOS)双扩散MOS Drift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Dual—polarization 双偏振,双极化Duty cycle 工作周期Dual-in-line package (DIP) 双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗Early effect 厄利效应Early failure 早期失效Effect 效应Effective mass 有效质量Electric Erase Programmable Read Only Memory(E2PROM) 电可擦除只读存储器Electrode 电极Electromigration 电迁移Electron affinity 电子亲和势Electron-beam 电子束Electroluminescence 电致发光Electron gas 电子气Electron trapping center 电子俘获中心Electron Volt (eV) 电子伏Electro—optical 光电的Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Emitter 发射极Emitter—coupled logic 发射极耦合逻辑Emitter-coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量-动量(E—K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOSEnteric (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Epoxy 环氧的Equivalent circuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Equipment 设备Erasable Programmable ROM (EPROM)可搽取(编程)存储器Erbium laser 掺铒激光器Error function complement 余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Exponential 指数的Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体Fabry—Perot amplifier 法布里-珀罗放大器Face — centered 面心立方Fall time 下降时间Fan-in 扇入Fan—out 扇出Fast recovery 快恢复Fast surface states 快表面态Feedback 反馈Fermi level 费米能级Femi potential 费米势Fiber optic 光纤Field effect transistor 场效应晶体管Field oxide 场氧化层Figure of merit 品质因数Filter 滤波器Filled band 满带Film 薄膜Fine pitch 细节距Flash memory 闪存存储器Flat band 平带Flat pack 扁平封装Flatness 平整度Flexible 柔性的Flicker noise 闪烁(变)噪声Flip-chip 倒装芯片Flip— flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Focal plane 焦平面Forbidden band 禁带Formulation 列式,表达Forward bias 正向偏置Forward blocking /conducting 正向阻断/导通Free electron 自由电子Frequency deviation noise 频率漂移噪声Frequency response 频率响应Function 函数Gain 增益Gallium—Arsenide(GaAs) 砷化镓Gallium Nitride 氮化镓Gate 门、栅、控制极Gate oxide 栅氧化层Gate width 栅宽Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation-recombination 产生-复合Geometries 几何尺寸Germanium(Ge) 锗Gold 金Graded 缓变的Graded (gradual) channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Graphene 石墨烯Grating 光栅Green laser 绿光激光器Ground 接地Grown junction 生长结Guard ring 保护环Guide wave 导波波导Gunn — effect 狄氏效应Gyroscope 陀螺仪Hardened device 辐射加固器件Harmonics 谐波Heat diffusion 热扩散Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Hell — effect 霍尔效应Hertz 赫兹Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High—performance MOS(H—MOS)高性能MOS器件High power 大功率Hole 空穴Homojunction 同质结Horizontal epitaxial reactor 卧式外延反应器Hot carrier 热载流子Hybrid integration 混合集成Illumination (1)照明(2)照明学Image - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂志散射Inch 英寸Incremental resistance 电阻增量(微分电阻)In—contact mask 接触式掩模Index of refraction 折射率Indium 铟Indium tin oxide (ITO)铟锡氧化物Inductance 电感Induced channel 感应沟道Infrared 红外的Injection 注入Input power 输入功率Insertion loss 插入损耗Insulator 绝缘体Insulated Gate FET(IGFET) 绝缘栅FET Integrated injection logic 集成注入逻辑Integration 集成、积分Integrated Circuit 集成电路Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions 国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性Junction FET(JFET) 结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side—wall 结侧壁Laser 激光器Laser diode 激光二极管Latch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Lead 铅Leakage current (泄)漏电流Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED) 发光二极管Linearity 线性化Liquid 液体Lock in 锁定Longitudinal 纵向的Long life 长寿命Lumped model 集总模型Magnetic 磁的Majority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass — action law 质量守恒定律Master-slave D flip-flop 主从D 触发器Matching 匹配Material 材料Maxwell 麦克斯韦Mean free path 平均自由程Mean time before failure (MTBF)平均工作时间Mechanical 机械的Membrane (1)薄腊,膜片(2)隔膜Megeto — resistance 磁阻Mesa 台面MESFET-Metal Semiconductor 金属半导体FET Metalorganic Chemical Vapor Deposition MOCVD 金属氧化物化学汽相淀积Metallization 金属化Metal oxide semiconductor (MOS)金属氧化物半导体MeV 兆电子伏Microelectronic technique 微电子技术Microelectronics 微电子学Microelectromechanical System (MEMS)微电子机械系统Microwave 微波Millimeterwave 毫米波Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobility 迁移率Module 模块Modulate 调制Molecular crystal 分子晶体Monolithic IC 单片MOSFET 金属氧化物半导体场效应晶体管Mount 安装Multiplication 倍增Modulator 调制Multi—chip IC 多芯片ICMulti—chip module(MCM) 多芯片模块Multilayer 多层Multiplication coefficient 倍增因子Multiplexer 复用器Multiplier 倍增器Naked chip 未封装的芯片(裸片) Nanometer 纳米Nanotechnology 纳米技术Negative feedback 负反馈Negative resistance 负阻Negative—temperature-coefficient负温度系数Nesting 套刻Noise figure 噪声系数Nonequilibrium 非平衡Nonvolatile 非挥发(易失)性Normally off/on 常闭/开Nuclear 核Numerical analysis 数值分析Occupied band 满带Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon 光子Optical quenching 光猝灭Optical transition 光跃迁Optical—coupled isolator 光耦合隔离器Organic semiconductor 有机半导体Orientation 晶向、定向Oscillator 振荡器Outline 外形Out—of—contact mask 非接触式掩模Output characteristic 输出特性Output power 输出功率Output voltage swing 输出电压摆幅Overcompensation 过补偿Over-current protection 过流保护Over shoot 过冲Over—voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化Package 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Pass band 通带Passivation 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Pattern 图形Payload 有效载荷Peak-point voltage 峰点电压Peak voltage 峰值电压Permanent—storage circuit 永久存储电路Period 周期Permeable — base 可渗透基区Phase—lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photonic devices 光子器件Photolithographic process 光刻工艺Photoluminescence 光致发光Photo resist (光敏)抗腐蚀剂Photo mask 光掩模Piezoelectric effect 压电效应Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plane 平面的Plasma 等离子体Plate 板电路板P-N junction pn结Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor 聚合物半导体Poly—silicon 多晶硅Positive 正的Potential (电)势Potential barrier 势垒Potential well 势阱Power electronic devices电力电子器件Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Print-circuit board(PCB)印制电路板Probability 几率Probe 探针Procedure 工艺Process 工艺Projector 投影仪Propagation delay 传输延时Proton 质子Proximity effect 邻近效应Pseudopotential method 赝势法Pump 泵浦Punch through 穿通Pulse triggering/modulating 脉冲触发/调制Pulse Widen Modulator(PWM) 脉冲宽度调制Punchthrough 穿通Push—pull stage 推挽级Q Q值Quality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency 量子效应Quantum mechanics 量子力学Quasi – Fermi-level 准费米能级Quartz 石英Radar 雷达Radiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative — recombination 辐照复合Radio 无线电射电射频Radio-frequency RF 射频Raman 拉曼Random 随机Range 测距Radio 比率系数Ray 射线Reactive sputtering source 反应溅射源Real time 实时Receiver 接收机Recombination 复合Recovery diode 恢复二极管Record 记录Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Red light 红光Reference 基准点基准参考点Refractive index 折射率Register 寄存器Regulate 控制调整Relative 相对的Relaxation 驰豫Relaxation lifetime 驰豫时间Relay 中继Reliability 可靠性Remote 远程Repeatability 可重复性Reproduction 重复制造Residual current 剩余电流Resonance 谐振Resin 树脂Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器) Resolution 分辨率Response time 响应时间Return signal 回波信号Reverse 反向的Reverse bias 反向偏置Ribbon 光纤带Ridge waveguide 脊形波导Ring laser 环形激光器Rotary wave 旋转波Run 运行Sampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range 电流饱和区Scan 扫描Scaled down 按比例缩小Schematic layout 示意图,简图Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Screen 筛选Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor laser半导体激光器Semiconductor—controlled rectifier 半导体可控硅Sensitivity 灵敏度Sensor 传感器Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shield 屏蔽Shifter 移相器Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2)二氧化硅Silicon Nitride(Si3N4) 氮化硅Silicon On Insulator 绝缘体上硅Silver whiskers 银须Simple cubic 简立方Simulation 模拟Single crystal 单晶Sink 热沉Sinter 烧结Skin effect 趋肤效应Slot 槽隙Slow wave 慢波Smooth 光滑的Subthreshold 亚阈值的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Solution 溶液Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Space Craft 宇宙飞行器Spacing 间距Specific heat(PT) 比热Spectral 光谱Spectrum 光谱(复数)Speed-power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射Spot 斑点Spray 喷涂Spreading resistance 扩展电阻Sputter 溅射Square root 平方根Stability 稳定性Stacking fault 层错Standard 标准的Standing wave 驻波State-of-the-art 最新技术Static characteristic 静态特性Statistical analysis 统计分析Steady state 稳态Step motor 步进式电动机Stimulated emission 受激发射Stimulated recombination 受激复合Stopband 阻带Storage time 存储时间Stress 应力Stripline 带状线Subband 次能带Sublimation 升华Submillimeter 亚毫米波Substrate 衬底Substitutional 替位式的Superconductor 超导(电)体Superlattice 超晶格Supply 电源Surface mound表面安装Surge capacity 浪涌能力Switching time 开关时间Switch 开关Synchronizer 同步器,同步装置Synthetic-aperture 合成孔径System 系统Technical 技术的,工艺的Telecommunication 远距通信,电信Telescope 望远镜Terahertz 太赫兹Terminal 终端Template 模板Temperature 温度Tensor 张量Test 测试试验Thermal activation 热激发Thermal conductivity 热导率Thermal equilibrium 热平衡Thermal Oxidation 热氧化Thermal resistance 热阻Thermal sink 热沉Thermal velocity 热运动Thick— film technique 厚膜技术Thin- film hybrid IC 薄膜混合集成电路Thin-Film Transistor(TFT) 薄膜晶体Three dimension 三维Threshold 阈值Through Silicon Via 硅通孔Thyistor 晶闸管Time resolution 时间分辨率Tolerance 公差T/R module 发射/接收模块Transconductance 跨导Transfer characteristic 转移特性Transfer electron 转移电子Transfer function 传输函数Transient 瞬态的Transistor aging(stress) 晶体管老化Transit time 渡越时间Transition 跃迁Transition—metal silica 过度金属硅化物Transition probability 跃迁几率Transition region 过渡区Transmissivity 透射率Transmitter 发射机Transceiver 收发机Transport 输运Transverse 横向的Trap 陷阱Trapping 俘获Trapped charge 陷阱电荷Travelling wave 行波Trigger 触发Trim 调配调整Triple diffusion 三重扩散Tolerance 容差Tube 管子电子管Tuner 调节器Tunnel(ing) 隧道(穿)Tunnel current 隧道电流Turn - off time 关断时间Ultraviolet 紫外的Ultrabright 超亮的Ultrasonic 超声的Underfilling 下填充Undoped 无掺杂Unijunction 单结的Unipolar 单极的Unit cell 原(元)胞Unity— gain frequency 单位增益频率Unilateral-switch 单向开关Vacancy 空位Vacuum 真空Valence(value) band 价带Value band edge 价带顶Valence bond 价键Vapour phase 汽相Varactor 变容管Variable 可变的Vector 矢量Vertical 垂直的Vibration 振动Visible light 可见光Voltage 电压Volt 伏特Wafer 晶片Watt 瓦Wave guide 波导Wavelength 波长Wave-particle duality 波粒二相性Wear-out 烧毁Wetting 浸润Wideband 宽禁带Wire 引线Wire routing 布线Work function 功函数Worst-case device 最坏情况器件X-ray X射线Yield 成品率Zinc 锌。
功率半导体器件是什么
“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。
在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。
“power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。
由于行业的动态发展,“power”的翻译发生了变化。
从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。
它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。
因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。
与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。
实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。
此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。
20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。
功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。
半导体词汇(英汉对照)
半导体词汇(英汉对照)1. 半导体:semiconductor2. 晶体管:transistor3. 二极管:diode4. 集成电路:integrated circuit5. 电容:capacitor8. 金属氧化物场效应管:Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)9. 数字信号处理器:Digital Signal Processor (DSP)10. 有机发光二极管:Organic Light-Emitting Diode (OLED)11. 光纤放大器:Optical Fiber Amplifier (OFA)12. 直流-直流变换器:DC-DC Converter13. 脉冲编码调制:Pulse Code Modulation (PCM)14. 光耦合器:Optocoupler15. 调制解调器:Modem16. 电池管理系统:Battery Management System (BMS)17. 片上系统:System-on-a-Chip (SoC)18. 功率电子器件:Power Electronics Device20. 纳米技术:Nanotechnology21. 生物芯片:Biochip23. 激光器:Laser24. 双极型发射极晶体管:Bipolar Junction Transistor (BJT)28. 传感器:Sensor29. 能量收集器:Energy Harvester30. 固态驱动器:Solid State Drive (SSD)31. 磁性存储设备:Magnetic Storage Device32. 屏幕显示器:Display33. 快速门:Fast Gate35. 超高速芯片:Ultra-High-Speed Chip38. 量子计算机:Quantum Computer40. 机器人学:Robotics41. 表面声波器件:Surface Acoustic Wave (SAW) Device45. 长寿命电池:Long-Life Battery46. 红外光电探测器:Infrared Photodetector47. 树莓派:Raspberry Pi48. 可充电电池:Rechargeable Battery49. 无线充电器:Wireless Charger51. 控制电路:Control Circuit53. 逆变器:Inverter55. 拓扑优化器:Topology Optimizer57. 智能家居:Smart Home58. 传输线理论:Transmission Line Theory60. 片上调制器:On-Chip Modulator61. 内存芯片:Memory Chip63. 线性电源:Linear Power Supply64. 电机驱动器:Motor Driver66. 相变存储器:Phase-Change Memory (PCM)68. 氮化镓:Gallium Nitride (GaN)69. 自动驾驶:Autonomous Driving72. 机器学习:Machine Learning77. 差分信号:Differential Signal78. 相位锁定环:Phase Locked Loop (PLL)80. 峰值检测器:Peak Detector84. 相移器:Phase Shifter88. 滤波器:Filter91. 直流伏安表:Digital Multimeter (DMM)92. 频率计:Frequency Counter93. 降噪耳机:Noise-Canceling Headphones94. 耳返系统:In-Ear Monitoring (IEM) System95. 电学模型:Electrical Model97. 声音芯片:Audio Chip98. 跟踪器:Tracker。
半导体英文词汇
半导体英文词汇SemiconductorA semiconductor is a material that has electrical conductivity between that of a conductor and that of an insulator. This means that it can conduct some electricity under certain conditions, but not as much as a conductor. Semiconductors are essential components of electronic devices, such as diodes, transistors, and integrated circuits.半导体半导体是一种在导体和绝缘体之间具有电导性的材料。
这意味着在某些条件下它可以导电,但不像导体那样能够导电。
半导体是电子器件的基本组成部分,如二极管、晶体管和集成电路。
DiodeA diode is a semiconductor device that allows current to flow in only one direction. It has two terminals, an anode and a cathode. When a positive voltage is applied to the anode and a negative voltage to the cathode, the diode conducts electricity. However, if the polarity of theapplied voltage is reversed, the diode blocks the flow of current.二极管二极管是一种只允许电流在一个方向中流动的半导体器件。
电子产品常用英文词汇
电子产品常用英文词汇一、常见电子电气类英文单词1.功率power2.电压voltage3.电流current4.频率frequency5.效率efficiency6.波形waveform7.交流alternating-current8.直流direct-current9.适配器 adaptor10. 转换器 converter11. 逆变器 inverter12. 充电器 charger13. 控制器 controller14. 启动器 jump starter15. 器件device16. 元件component17. 电容器capacitor18. 电阻resistor19. 电感inductor20. 二极管diode21. 稳压二极管 zener22. 三极管audion23. 场效应管 MOSFEET(Metel-Oxide-Semiconductor Field Effect Transistor)24. 变压器 transformer25. 光藕 optical coupler26. 保险丝 fuse27. 半导体semiconductor28. 瓷片电容 ceramic capacitor29. 电解电容 electrolytic C30. 电感 inductance31. 电容 capacitance32. 电阻 resistance33. 感性的 inductive34. 容性的 capacitive35. 阻性的 resistive36. 阻抗impedance37. 纯正弦波 pure sine wave38. 修正正弦波 modified sine wave39. 方波 square wave40. 恒流源 constant current source41. 恒压源 constant voltage source42. 纹波电流 ripple current43. 涌入电流 inrush current44. 空载电流 no-load current45. 电网 power system46. 死区时间dead time47. 浮充电压 float charge voltage48. 正向电压forward voltage drop49. 续流二极管 freewheel diode50. 肖特基二极管 schottky51. 整流桥 bridge rectifier52. 超快速整流器 ultra fast rectifier53. 检测电阻 sense resistor54. 振荡电阻 timing resistor55. 散热片thermal slug/heat sink/ radiator56. 断路器breaker57. 过流保护器 circuit breaker58. 自由运行 free running59. 满负载 full load60. 过载 overload61. 轻载 light load62. 加载 upload63. 静态 static (state)64. 动态 dynamic (state)65. 稳态的 steady66. 静电 static electricity67. 电源调整率line regulation68. 负载调整率load regulation69. 满载效率 full load efficiency70. 最佳效率 optimum efficiency71. 输出效率 output efficiency72. 峰值效率 peak efficiency73. 标称效率 declared efficiency74. 视在功率 apparent power75. 有功功率 active power76. 无功功率 reactive power77. 功率因数 power-factor78. 耗散功率 power dissipation79. 空载损耗 no-load loss80. 关断状态 off state81. 电源工作电压 operating supply voltage82. 电压参考 voltage reference83. 参考值 reference value84. 反馈feedback85. 产品型号part number86. 掉电power down87. 上电power up88. 电源正常 power good89. 欠压锁定 under voltage lock out (UVLO)90. 上拉 pull up91. 下拉 pull down92. 上升沿 rising edge93. 下降沿 falling edge94. 上限 upper limit95. 下限 lower limit96. 极性 polarity97. 藕合 coupling98. 故障 malfunction99. 原理图 schematic diagram100. 封装footprint101. 设计流程 design cycle102. 设计余量 design margin二、常用电源类英文缩写SPS: switching power supplyPWM: pulse width modulationZCS: zero current switchingZVT: Zero Voltage TransitionPFC: Power Factor CorrectionRMS: Root mean square (均方根)THD: Total Harmonic Distortion (总谐波失真)OVP: Over Voltage ProtectionOCP: Over Current ProtectionOTP: Over Temperature ProtectionMCU: Micro Controller unitTVS: Transient voltage suppressorPCB: Printed circuit boardSMT: surface mounting technologyECR: Engineering Change RequestECN: Engineering Change noticeFMEA: Failure Mode Efficiency AnalysisIC: integrated circuitIE: Industrial EngineeringIT: information technologyAQL: Acceptable Quality LevelQA: Quality AssuranceQC: Qualty ControlIQC: Incoming Quality controlIPQC: In- process Quality control三、变压器类常用材料1. 磁芯:magnetic core2. 骨架:bobbin3. 导线:wire4. 绝缘胶带:insulation tape5. 挡带: margin tape6. 铜箔: copper foil7. 磁环: annular core8. 铁氟龙套管:teflon tube9. 绝缘套管:empire tuble10. 凡立水:varnish11. 气隙:gap12. 绕组:winding13. 初级绕组:primary coil14. 次级绕组:secondary coil15. 电感量: inductance16. 漏感: Leakage inductance17. 耐压:HI-POT18. 绝缘电阻: insulation resistance19. 匝数:turns四、工艺工程类常用英文词汇1. 技术规范:technical regulation2. 规范:specification3. 检修技术:service technic4. 焊接工艺:bonding technology5. 表面安装:surface mounting6. 元件面:component side7. 焊接面:solder side8. 元件孔:component hole9. 安装孔:mounting hole10. 工艺流程图:engineering flow sheet11. 故障指示:failure indication12. 锡焊: tin-lead bonding13. 装配:assembly14. 接插件:socket connector15. 连接器:connector16. 端子:terminal17. 端子壳:housing18. 插座:socket19. 插座盖:socket cover20. 点烟座:cigarette lighter socket21. 点烟头:cigar plug22. 接线座:wire holder23. 接线端子:wire connecting terminal24. 接线器:wire connector25. 线材规格:wire gauge26. 电烙铁: electric solding iron27. 烙铁头:solder horn28. 焊锡: soldering tin29. 焊盘: Pad30. 无铅: Lead Free31. 波峰焊:wave soldering32. 回流焊:reflow soldering33. 老化:burn-in/aging34. 极性: Polarity35. 正级:Positive pole36. 负极:negative pole37. 硬件:hardware38. 软件:software39. 通风孔:vent40. 支撑架/轴承:bearing41. 工艺:technics42. 夹具:fixture43. 冲压模具:die44. 注塑模具:injection mould45. 材料:material46. 扭矩:torque47. 应力:stress48. 强度:strength49. 机壳:enclosure50. 紧固件:fastener51. 螺栓:bolt52. 螺母:nut53. 螺丝:screw54. 垫片:washer55. 套筒扳手:socket key/ socket spanner56. 剪钳:wire cutter57. 剥线皮钳:wire stripper58. 裁线机:wire shear59. 防护罩:guard60. 环氧树脂:epoxy resin61. 玻璃纤维:glass fiber62. 光面:shiny side63. 粗糙面:matte side64. 处理面:treated side。
电子专业中英文词汇翻译
电子专业词汇的中英文对照电路的基本概念及定律电源source电压源voltage source电流源current source理想电压源ideal voltage source理想电流源ideal current source伏安特性volt-ampere characteristic 电动势electromotive force电压voltage电流current电位potential电位差potential difference欧姆Ohm伏特Volt安培Ampere瓦特Watt焦耳Joule电路circuit电路元件circuit element电阻resistance电阻器resistor电感inductance电感器inductor电容capacitance电容器capacitor电路模型circuit model参考方向reference direction参考电位reference potential欧姆定律Ohm’s law基尔霍夫定律Kirchhoff’s law基尔霍夫电压定律Kirchhoff’s voltage law(KVL)基尔霍夫电流定律Kirchhoff’s current law(KCL)结点node支路branch回路loop网孔mesh支路电流法branch current analysis网孔电流法mesh current analysis结点电位法node voltage analysis电源变换source transformations叠加原理superposition theorem网络network无源二端网络passive two-terminal network有源二端网络active two-terminal network戴维宁定理Thevenin’s theorem诺顿定理Norton’s theorem开路(断路)open circuit短路short circuit开路电压open-circuit voltage短路电流short-circuit current交流电路直流电路direct current circuit (dc)交流电路alternating current circuit (ac)正弦交流电路sinusoidal a-c circuit平均值average value有效值effective value均方根值root-mean-squire value (rms) 瞬时值instantaneous value电抗reactance感抗inductive reactance容抗capacitive reactance法拉Farad亨利Henry阻抗impedance复数阻抗complex impedance相位phase初相位initial phase相位差phase difference相位领先phase lead相位落后phase lag倒相,反相phase inversion频率frequency角频率angular frequency赫兹Hertz相量phasor相量图phasor diagram有功功率active power无功功率reactive power视在功率apparent power功率因数power factor功率因数补偿power-factor compensation串联谐振series resonance并联谐振parallel resonance谐振频率resonance frequency频率特性frequency characteristic幅频特性amplitude-frequency response characteristic相频特性phase-frequency response characteristic截止频率cutoff frequency品质因数quality factor 通频带pass-band带宽bandwidth (BW)滤波器filter一阶滤波器first-order filter二阶滤波器second-order filter低通滤波器low-pass filter高通滤波器high-pass filter带通滤波器band-pass filter带阻滤波器band-stop filter转移函数transfer function波特图Bode diagram傅立叶级数Fourier series三相电路三相电路three-phase circuit三相电源three-phase source对称三相电源symmetrical three-phase source对称三相负载symmetrical three-phase load相电压phase voltage相电流phase current线电压line voltage线电流line current三相三线制three-phase three-wire system三相四线制three-phase four-wire system三相功率three-phase power星形连接star connection(Y-connection) 三角形连接triangular connection(D- connection ,delta connection)中线neutral line电路的暂态过程分析暂态transient state稳态steady state暂态过程,暂态响应transient response 换路定理low of switch一阶电路first-order circuit三要素法three-factor method时间常数time constant积分电路integrating circuit微分电路differentiating circuit磁路与变压器磁场magnetic field磁通flux磁路magnetic circuit磁感应强度flux density磁通势magnetomotive force磁阻reluctance电动机直流电动机dc motor交流电动机ac motor异步电动机asynchronous motor同步电动机synchronous motor三相异步电动机three-phase asynchronous motor单相异步电动机single-phase asynchronous motor旋转磁场rotating magnetic field定子stator转子rotor转差率slip起动电流starting current起动转矩starting torque额定电压rated voltage 额定电流rated current额定功率rated power机械特性mechanical characteristic继电器-接触器控制按钮button熔断器fuse开关switch行程开关travel switch继电器relay接触器contactor常开(动合)触点normally open contact 常闭(动断)触点normally closed contact 时间继电器time relay热继电器thermal overload relay中间继电器intermediate relay可编程控制器(PLC)可编程控制器programmable logic controller语句表statement list梯形图ladder diagram半导体器件本征半导体intrinsic semiconductor掺杂半导体doped semiconductorP型半导体P-type semiconductorN型半导体N--type semiconductor自由电子free electron空穴hole载流子carriersPN结PN junction扩散diffusion漂移drift二极管diode硅二极管silicon diode锗二极管germanium diode阳极anode阴极cathode发光二极管light-emitting diode (LED) 光电二极管photodiode稳压二极管Zener diode晶体管(三极管)transistorPNP型晶体管PNP transistorNPN型晶体管NPN transistor发射极emitter集电极collector基极base电流放大系数current amplification coefficient场效应管field-effect transistor (FET) P沟道p-channelN沟道n-channel结型场效应管junction FET(JFET)金属氧化物半导体metal-oxide semiconductor (MOS)耗尽型MOS场效应管depletion mode MOSFET(D-MOSFET)增强型MOS场效应管enhancement mode MOSFET(E-MOSFET)源极source栅极grid漏极drain跨导transconductance夹断电压pinch-off voltage热敏电阻thermistor开路open短路shorted 基本放大器放大器amplifier正向偏置forward bias反向偏置backward bias静态工作点quiescent point (Q-point)等效电路equivalent circuit电压放大倍数voltage gain总的电压放大倍数overall voltage gain 饱和saturation截止cut-off放大区amplifier region饱和区saturation region截止区cut-off region失真distortion饱和失真saturation distortion截止失真cut-off distortion零点漂移zero drift正反馈positive feedback负反馈negative feedback串联负反馈series negative feedback并联负反馈parallel negative feedback 共射极放大器common-emitter amplifier 射极跟随器emitter-follower共源极放大器common-source amplifier 共漏极放大器common-drain amplifier 多级放大器multistage amplifier阻容耦合放大器resistance-capacitance coupled amplifier直接耦合放大器direct- coupled amplifier输入电阻input resistance输出电阻output resistance负载电阻load resistance动态电阻dynamic resistance负载电流load current旁路电容bypass capacitor耦合电容coupled capacitor直流通路direct current path交流通路alternating current path直流分量direct current component交流分量alternating current component 变阻器(电位器)rheostat电阻(器)resistor电阻(值)resistance电容(器)capacitor电容(量)capacitance电感(器,线圈)inductor电感(量),感应系数inductance正弦电压sinusoidal voltage集成运算放大器及应用差动放大器differential amplifier运算放大器operationalamplifier(op-amp)失调电压offset voltage失调电流offset current共模信号common-mode signal差模信号different-mode signal共模抑制比common-mode rejection ratio (CMRR)积分电路integrator(circuit)微分电路differentiator(circuit)有源滤波器active filter低通滤波器low-pass filter高通滤波器high-pass filter带通滤波器band-pass filter带阻滤波器band-stop filter 波特沃斯滤波器Butterworth filter切比雪夫滤波器Chebyshev filter贝塞尔滤波器Bessel filter截止频率cut-off frequency上限截止频率upper cut-off frequency下限截止频率lower cut-off frequency中心频率center frequency带宽Bandwidth开环增益open-loop gain闭环增益closed-loop gain共模增益common-mode gain输入阻抗input impedance电压跟随器voltage-follower电压源voltage source电流源current source单位增益带宽unity-gain bandwidth频率响应frequency response频响特性(曲线)response characteristic 波特图the Bode plot稳定性stability补偿compensation比较器comparator迟滞比较器hysteresis comparator阶跃输入电压step input voltage仪表放大器instrumentation amplifier隔离放大器isolation amplifier对数放大器log amplifier反对数放大器antilog amplifier反馈通道feedback path反向漏电流reverse leakage current相位phase相移phase shift锁相环phase-locked loop(PLL)锁相环相位监测器PLL phase detector 和频sum frequency差频difference frequency波形发生电路振荡器oscillatorRC振荡器RC oscillatorLC振荡器LC oscillator正弦波振荡器sinusoidal oscillator三角波发生器triangular wave generator 方波发生器square wave generator幅度magnitude电平level饱和输出电平(电压)saturated output level功率放大器功率放大器power amplifier交越失真cross-over distortion甲类功率放大器class A power amplifier 乙类推挽功率放大器class B push-pull power amplifierOTL功率放大器output transformerless power amplifierOCL功率放大器output capacitorless power amplifier直流稳压电源半波整流full-wave rectifier全波整流half-wave rectifier电感滤波器inductor filter电容滤波器capacitor filter串联型稳压电源series (voltage) regulator开关型稳压电源switching (voltage) regulator集成稳压器IC (voltage) regulator 晶闸管及可控整流电路晶闸管thyristor单结晶体管unijunction transistor(UJT)可控整流controlled rectifier可控硅silicon-controlled rectifier峰点peak point谷点valley point控制角controlling angle导通角turn-on angle门电路与逻辑代数二进制binary二进制数binary number十进制decimal十六进制hexadecimal二-十进制binary coded decimal (BCD)门电路gate三态门tri-state gate与门AND gate或门OR gate非门NOT gate与非门NAND gate或非门NOR gate异或门exclusive-OR gate反相器inverter布尔代数Boolean algebra真值表truth table卡诺图the Karnaugh map逻辑函数logic function逻辑表达式logic expression组合逻辑电路组合逻辑电路combination logic circuit 译码器decoder编码器coder比较器comparator半加器half-adder全加器full-adder七段显示器seven-segment display 时序逻辑电路时序逻辑电路sequential logic circuit R-S 触发器R-S flip-flopD触发器D flip-flopJ-K触发器J-K flip-flop主从型触发器master-slave flip-flop 置位set复位reset直接置位端direct-set terminal直接复位端direct-reset terminal寄存器register移位寄存器shift register双向移位寄存器bidirectional shift register计数器counter同步计数器synchronous counter异步计数器asynchronous counter 加法计数器adding counter减法计数器subtracting counter定时器timer清除(清0)clear载入load时钟脉冲clock pulse触发脉冲trigger pulse上升沿positive edge下降沿negative edge 时序图timing diagram波形图waveform脉冲波形的产生与整形单稳态触发器monostable flip-flop双稳态触发器bistable flip-flop无稳态振荡器astable oscillator晶体crystal555定时器555 timer模拟信号与数字信号的相互转换模拟信号analog signal数字信号digital signalAD转换器analog -digital converter (ADC) DA转换器digital-analog converter (DAC)半导体存储器只读存储器read-only memory(ROM)随机存取存储器random-access memory(RAM)可编程ROM programmable ROM (PROM)Linear Control System(线性系统), Single Input Single Output(单输入单输出), Laplace Transform(拉普拉斯变换), Differential Equations(微分方程), Transfer Functions(传递函数), Models of System(系统模型), Block Diagrams(方框图), Mason’s Gain Formula(梅森公式), First-order System(一阶系统), Second-order System(二阶系统), Higher-order System(高阶系统), Close-loop Control System(闭环控制系统), Stability(稳定性), Transient Response(瞬态响应), Routh-Hurwitz Stability Criterion(劳斯判据), Steady-state Accuracy(稳态精度), Root-locus(根轨迹), Root-locus Principles(根轨迹基本规则), Frequency Responses(频率响应), Bode Diagrams(波特图), Nyquist Criterion(奈氏判据), Relative Stability(相对稳定性).。
电子工程专业英语词汇(整理版)
电子工程专业英语词汇(整理版)本文档旨在提供电子工程专业所涵盖的一些常用英语词汇,帮助读者增强在该领域的英语沟通能力。
以下是一些相关词汇的介绍和解释:1. Circuit(电路)2. Semiconductor(半导体)A semiconductor is a material that has a conductivity between that of an insulator and a conductor. It can control the flow of electric current and is widely used in electronic devices, such as diodes and transistors.3. Microcontroller(微控制器)4. Signal(信号)A signal refers to any form of information that can be transmitted, such as sound, light, or electron flow. In electronic engineering, signals are often manipulated and processed to carry information or control electronic devices.5. Amplifier(放大器)6. Integrated Circuit(集成电路)7. Digital Signal Processing(数字信号处理)Digital signal processing (DSP) refers to the manipulation of digital signals using algorithms and techniques. It involves converting an analog signal into a digital form, processing it using digital systems, and then converting it back to an analog signal if needed.以上是一些电子工程专业常用的英语词汇,希望对读者有所帮助。
半导体、微电子专业英语单词(3)
半导体、微电子专业英语单词(3)半导体、微电子专业英语单词汇总CBGA Ceramic Ball Grid Array 陶瓷焊球阵列CCGA Ceramic Column Grid Array 陶瓷焊柱阵列CLCC Ceramic Leaded Chip Carrier 带引脚的陶瓷片式载体CML Current Mode Logic 电流开关逻辑CMOS Complementary Metal-Oxide-Semiconductor 互补金属氧化物半导体COB Chip on Board 板上芯片COC Chip on Chip 叠层芯片COG Chip on Glass 玻璃板上芯片CSP Chip Size Package 芯片尺寸封装CTE Coefficient of Thermal Expansion 热膨胀系数CVD Chemical Vapor Depositon 化学汽相淀积DCA Direct Chip Attach 芯片直接安装DFP Dual Flat Package 双侧引脚扁平封装DIP Double In-Line Package 双列直插式封装DMS Direct Metallization System 直接金属化系统DRAM Dynamic Random Access Memory 动态随机存取存贮器DSO Dual Small Outline 双侧引脚小外形封装DTCP Dual Tape Carrier Package 双载带封装3D Three-Dimensional 三维2D Two-Dimensional 二维EB Electron Beam 电子束ECL Emitter-Coupled Logic 射极耦合逻辑FC Flip Chip 倒装片法FCB Flip Chip Bonding 倒装焊FCOB Flip Chip on Board 板上倒装片FEM Finite Element Method 有限元法FP Flat Package 扁平封装FPBGA Fine Pitch Ball Grid Array 窄节距BGAFPD Fine Pitch Device 窄节距器件FPPQFP Fine Pitch Plastic QFP 窄节距塑料QFPGQFP Guard-Ring Quad Flat Package 带保护环的QFP HDI High Density Interconnect 高密度互连HDMI High Density Multilayer Interconnect 高密度多层互连HIC Hybird Integrated Circuit 混合集成电路HTCC High Temperature Co-Fired Ceramic 高温共烧陶瓷HTS High Temperature Storage 高温贮存IC Integrated Circuit 集成电路IGBT Insulated Gate Bipolar Transistor 绝缘栅双极晶体管ILB Inner-Lead Bond 内引脚焊接I/O Input/Output 输入/输出IVH Inner Via Hole 内部通孔JLCC J-Leaded Chip Carrier J形引脚片式载体KGD Known Good Die 优质芯片LCC Leadless Chip Carrier 无引脚片式载体LCCC Leadless Ceramic Chip Carrier 无引脚陶瓷片式载体LCCP Lead Chip Carrier Package 有引脚片式载体封装LCD Liquid Crystal Display 液晶显示器LCVD Laser Chemical Vapor Deposition 激光化学汽相淀积LDI Laser Direct Imaging 激光直接成像LGA Land Grid Array 焊区阵列LSI Large Scale Integrated Circuit 大规模集成电路LOC Lead Over Chip 芯片上引线健合LQFP Low Profile QFP 薄形QFPLTCC Low Temperature Co-Fired Ceramic 低温共烧陶瓷MBGA Metal BGA 金属基板BGAMCA Multiple Channel Access 多通道存取MCM Multichip Module 多芯片组件MCM-C MCM with Ceramic Substrate 陶瓷基板多芯片组件MCM-D MCM with Deposited Thin Film Inteconnect Substrate 淀积薄膜互连基板多芯片组件MCM-L MCM with Laminated Substrate 叠层基板多芯片组件MCP Multichip Package 多芯片封装MELF Metal Electrode Face Bonding 金属电极表面健合MEMS Microelectro Mechanical System 微电子机械系统MFP Mini Flat Package 微型扁平封装MLC Multi-Layer Ceramic Package 多层陶瓷封装MMIC Monolithic Microwave Integrated Circuit 微波单片集成电路MOSFET Metal-Oxide-Silicon Field-Effect Transistor 金属氧化物半导体场效应晶体管MPU Microprocessor Unit 微处理器MQUAD Metal Quad 金属四列引脚MSI Medium Scale Integration 中规模集成电路OLB Outer Lead Bonding 外引脚焊接PBGA Plastic BGA 塑封BGAPC Personal Computer 个人计算机PFP Plastic Flat Package 塑料扁平封装PGA Pin Grid Array 针栅阵列PI Polymide 聚酰亚胺PIH Plug-In Hole 通孔插装PTF Plastic Leaded Chip Carrier 塑料有引脚片式载体PTF Polymer Thick Film 聚合物厚膜PWB Printed Wiring Board 印刷电路板PQFP Plastic QFP 塑料QFPQFJ Quad Flat J-leaded Package 四边J形引脚扁平封装QFP Quad Flat Package 四边引脚扁平封装QIP Quad In-Line Package 四列直插式封装RAM Random Access Memory 随机存取存贮器SBB Stud-Bump Bonding 钉头凸点焊接SBC Solder-Ball Connection 焊球连接SCIM Single Chip Integrated Module 单芯片集成模块SCM Single Chip Module 单芯片组件SLIM Single Level Integrated Module 单级集成模块SDIP Shrinkage Dual Inline Package 窄节距双列直插式封装SEM Sweep Electron Microscope 电子扫描显微镜SIP Single In-Line Package 单列直插式封装SIP System In a Package 系统级封装SMC Surface Mount Component 表面安装元件SMD Surface Mount Device 表面安装器件SMP Surface Mount Package 表面安装封装SMT Surface Mount Technology 表面安装技术SOC System On Chip 系统级芯片SOIC Small Outline Integrated Circuit 小外形封装集成电路SOJ Small Outline J-Lead Package 小外形J形引脚封装SOP Small Outline Package 小外形封装SOP System On a Package 系统级封装SOT Small Outline Transistor 小外形晶体管SSI Small Scale Integration 小规模集成电路SSIP Small Outline Single-Line Plug Package 小外形单列直插式封装SSOP Shrink Small Outline Package 窄节距小外形封装SPLCC Shrinkage Plasitc Leadless Chip Carrier 窄节距塑料无引脚片式载体STRAM Selftimed Random Access Memory 自定时随机存取存贮器SVP Surface Vertical Package 立式表面安装型封装TAB Tape Automated Bonding 载带自动焊TBGA Tape BGA 载带BGATCM Thermal Conduction Module 热导组件TCP Tape Carrier Package 带式载体封装THT Through-Hole Technology 通孔安装技术TO Transistor Outline 晶体管外壳TPQFP Thin Plastic QFP 薄形塑料QFPTQFP Tape QFP 载带QFPTSOP Thin SOP 薄形SOPTTL Transistor-Transistor Logic 晶体管-晶体管逻辑UBM Metalization Under Bump 凸点下金属化UFPD Ultra Small Pitch Device 超窄节距器件USOP Ultra SOP 超小SOPUSONF Ultra Small Outline Package Non Fin 无散热片的超小外形封装UV Ultraviolet 紫外光VHSIC Very High Speed Integrated Circuit 超高速集成电路VLSI Very Large Scale Integrated Circuit 超大规模集成电路WB Wire Bonding 引线健合WLP Wafer Level Package 圆片级封装WSI Wafer Scale Integration 圆片级规模集成【半导体、微电子专业英语单词汇总】。
半导体行业的英单词和术语
半导体行业的英单词和术语1. Semiconductor(半导体):指一种导电性能介于导体和绝缘体之间的材料,广泛应用于电子器件中。
3. Integrated Circuit(集成电路):简称IC,将大量的微小电子元件(如晶体管、电阻、电容等)集成在一块半导体芯片上。
4. Transistor(晶体管):一种半导体器件,具有放大信号和开关功能,是现代电子设备的基础组件。
5. Diode(二极管):一种具有单向导通特性的半导体器件,常用于整流、稳压等电路。
6. MOSFET(金属氧化物半导体场效应晶体管):一种常见的晶体管类型,广泛应用于放大器和开关电路。
7. CMOS(互补金属氧化物半导体):一种集成电路技术,采用NMOS和PMOS晶体管组合,具有低功耗、高集成度等优点。
8. Wafer(晶圆):指经过切割、抛光等工艺处理的半导体材料,用于制造集成电路。
9. Photolithography(光刻):在半导体制造过程中,利用光刻技术将电路图案转移到晶圆上的过程。
10. Etching(刻蚀):在半导体制造过程中,通过化学反应或物理方法去除晶圆表面不需要的材料。
11.掺杂(Doping):在半导体材料中引入其他元素,以改变其导电性能。
12. Chip(芯片):指经过封装的集成电路,是电子设备的核心组成部分。
13. PCB(印刷电路板):一种用于支撑和连接电子元件的板材,上面布满了导电线路。
14. Moore's Law(摩尔定律):指集成电路上可容纳的晶体管数量大约每两年翻一番,预测了半导体行业的发展趋势。
15. EDA(电子设计自动化):指利用计算机软件辅助设计电子系统,包括电路设计、仿真、验证等环节。
16. Foundry(代工厂):专门为其他公司生产半导体芯片的企业。
17. Semiconductor Equipment Manufacturer(半导体设备制造商):为半导体行业提供生产设备的公司。
功率半导体器件
功率半导体器件“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。
在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。
“power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。
由于行业的动态发展,“power”的翻译发生了变化。
从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。
它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。
因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。
与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。
实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。
此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。
20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。
功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。
光电子单词表 中英对照
1. semiconductor: 半导体,常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
2. light-emitting diode (LED): 发光二极管3. laser diode (LD): 半导体激光器4. photodiode: 光电二极管5. electrons: 电子6. holes: 空穴7. energy gap: 能隙8. photon: 光子9. insulator: 绝缘体10. transistor: 晶体管11. solar cell: 太阳能电池12. quantum dot: 量子点13. doping: 掺杂。
14. Pauli exclusion principle: 泡利不相容原理。
15. Fermi level: 费米能级16. valence band: 价带17. conduction band: 导带18. optical fiber: 光纤19. energy level: 能级。
20. electron–hole pair: 电子-空穴对。
21. impurity: 杂质。
22. dopant: 掺杂剂。
23. intrinsic (pure) semiconductor: 纯半导体。
24. p-type semiconductor: P 型半导体25. n-type semiconductor: N 型半导体。
26. p–n junction: PN 结27. space charge region(depletion layer): 空间电荷区(耗尽层)。
28. forward-bias voltage: 正向偏置电压29. ground state: 基态30. upper level: 上能级31. lower level: 下能级33. electromagnetic radiation:电磁辐射。
semiconductors翻译
semiconductors翻译基本解释●semiconductors:半导体●/ˌsem.i.kənˈdʌk.tərz/●n. 半导体变化形式●n. 复数形式:semiconductors具体用法●n.:o半导体o同义词:silicon devices, electronic components, microchips, transistors, integrated circuitso反义词:insulators, conductors, metals, non-conductors, dielectricso例句:●Semiconductors are essential components in modernelectronic devices, enabling the functionality of smartphones,computers, and many other gadgets. 半导体是现代电子设备中必不可少的组件,使智能手机、计算机和许多其他设备能够正常工作。
●The global semiconductor industry is a key driver oftechnological innovation and economic growth, with companies investing billions in research and development. 全球半导体行业是技术创新和经济增长的关键推动力,各公司在研发上投入了数十亿美元。
●Advances in semiconductor technology have led to thedevelopment of faster and more efficient electronic devices, transforming the way we live and work. 半导体技术的进步导致了更快、更高效的电子设备的发展,改变了我们的生活和工作方式。
半导体专业术语英语..
半导体专业术语英语半导体是当今最重要的技术领域之一。
随着半导体技术的不断发展,半导体专业术语英语越来越重要。
在本文中,我们将介绍一些常见的半导体专业术语英语,帮助读者更好地理解和掌握半导体技术。
基本概念1.Semiconductor:半导体2.Doping:掺杂3.Carrier:载流子4.Hole:空穴5.Electron:电子6.Bandgap:能隙7.Mobility:迁移率8.Resistivity:电阻率9.Conductivity:电导率10.PN Junction:PN结11.Schottky Junction:肖特基结半导体晶体结构1.Crystal:晶体ttice:晶格3.Unit Cell:单元胞4.Wafer:晶片5.Silicon Wafer:硅晶片6.Epitaxy:外延7.Deposition:沉积8.Etch:蚀刻9.Annealing:退火典型器件1.Transistor:晶体管2.Diode:二极管3.Capacitor:电容器4.Resistor:电阻器5.Inductor:电感器6.MOSFET:MOS场效应晶体管7.BJT:双极性晶体管8.LED:发光二极管9.IGBT:绝缘栅双极晶体管10.SCR:可控硅制程工艺1.Lithography:光刻2.Ion Implantation:离子注入3.Chemical Vapor Deposition (CVD):化学气相沉积4.Physical Vapor Deposition (PVD):物理气相沉积5.Wet Etch:湿法蚀刻6.Dry Etch:干法蚀刻7.Annealing:退火8.Configurations:构型9.Metrology:计量学10.Yield:良率11.Process Integration:制程集成半导体技术对现代社会的影响越来越大,而英语是半导体专业中的重要工具之一。
学习和掌握半导体专业术语英语,有助于提高在半导体行业的各种交流和合作能力。
semiconductors 翻译
semiconductors 翻译基本解释●semiconductors:半导体●/ˌsem.i.kənˈdʌk.tər/●n. 一种材料,其导电性介于导体和绝缘体之间变化形式●n. 复数形式:semiconductors具体用法●名词:o意思: 一种材料,其导电性介于导体和绝缘体之间o同义词: silicon, germanium, semiconductor material, chip, wafer o反义词: insulator, nonconductor, dielectric, isolator, nonconductor o例句:●Semiconductors are essential components in modernelectronic devices, enabling the functionality of computersand smartphones. (半导体是现代电子设备中的关键组件,使计算机和智能手机的功能得以实现。
)●The global demand for semiconductors has surged due to theincreasing reliance on technology in everyday life. (由于日常生活中对技术的依赖增加,全球对半导体的需求激增。
)●Researchers are constantly exploring new materials toimprove the efficiency of semiconductors. (研究人员不断探索新材料以提高半导体的效率。
)●The semiconductor industry is a major driver of economicgrowth in many countries. (半导体行业是许多国家经济增长的主要推动力。
)●Advances in semiconductor technology have led to smallerand more powerful electronic devices. (半导体技术的进步导致了更小更强大的电子设备。
53半导体外文翻译外文文献英文文献
附录附录A:外文资料翻译—原文部分SemiconductorA semiconductor is a solid material that has electrical conductivity between those of a conductor and an insulator; it can vary over that wide range either permanently or dynamically.[1]Semiconductors are important in electronic technology. Semiconductor devices, electronic components made of semiconductor materials, are essential in modern consumer electronics, including computers, mobile phones, and digital audio players. Silicon is used to create most semiconductors commercially, but dozens of other materials are used.Bragg reflection in a diffuse latticeA second way starts with free electrons waves. When fading in an electrostatic potential due to the cores, due to Bragg reflection some waves are reflected and cannot penetrate the bulk, that is a band gap opens. In this description it is not clear, while the number of electrons fills up exactly all states below the gap.Energy level splitting due to spin state Pauli exclusionA third description starts with two atoms. The split states form a covalent bond where two electrons with spin up and spin down are mostly in between the two atoms. Adding more atoms now is supposed not to lead to splitting, but to more bonds. This is the way silicon is typically drawn. The band gap is now formed by lifting one electron from the lower electron level into the upper level. This level is known to be anti-bonding, but bulk silicon has not been seen to lose atoms as easy as electrons are wandering through it. Also this model is most unsuitable to explain how in graded hetero-junction the band gap can vary smoothly.Energy bands and electrical conductionLike in other solids, the electrons in semiconductors can have energies only within certain bands (ie. ranges of levels of energy) between the energy of the ground state, corresponding to electrons tightly bound to the atomic nuclei of the material, and the free electron energy, which is the energy required for an electron to escape entirely from the material. The energy bands each correspond to a large number of discrete quantum states of the electrons, and most of the states with low energy (closer to the nucleus) are full, up to a particular band called the valence band. Semiconductors and insulators are distinguished from metals because the valence band in the semiconductor materials is very nearly full under usual operating conditions, thus causing more electrons to be available in the conduction band.The ease with which electrons in a semiconductor can be excited from the valence band to the conduction band depends on the band gap between the bands, and it is the size of this energybandgap that serves as an arbitrary dividing line (roughly 4 eV) between semiconductors and insulators.In the picture of covalent bonds, an electron moves by hopping to a neighboring bond. Because of the Pauli exclusion principle it has to be lifted into the higher anti-bonding state of that bond. In the picture of delocalized states, for example in one dimension that is in a wire, for every energy there is a state with electrons flowing in one direction and one state for the electrons flowing in the other. For a net current to flow some more states for one direction than for the other direction have to be occupied and for this energy is needed. For a metal this can be a very small energy in the semiconductor the next higher states lie above the band gap. Often this is stated as: full bands do not contribute to the electrical conductivity. However, as the temperature of a semiconductor rises above absolute zero, there is more energy in the semiconductor to spend on lattice vibration and — more importantly for us — on lifting some electrons into an energy states of the conduction band, which is the band immediately above the valence band. The current-carrying electrons in the conduction band are known as "free electrons", although they are often simply called "electrons" if context allows this usage to be clear.Electrons excited to the conduction band also leave behind electron holes, or unoccupied states in the valence band. Both the conduction band electrons and the valence band holes contribute to electrical conductivity. The holes themselves don't actually move, but a neighboring electron can move to fill the hole, leaving a hole at the place it has just come from, and in this way the holes appear to move, and the holes behave as if they were actual positively charged particles.One covalent bond between neighboring atoms in the solid is ten times stronger than the binding of the single electron to the atom, so freeing the electron does not imply destruction of the crystal structure.Holes: electron absence as a charge carrierThe notion of holes, which was introduced for semiconductors, can also be applied to metals, where the Fermi level lies within the conduction band. With most metals the Hall effect reveals electrons to be the charge carriers, but some metals have a mostly filled conduction band, and the Hall effect reveals positive charge carriers, which are not the ion-cores, but holes. Contrast this to some conductors like solutions of salts, or plasma. In the case of a metal, only a small amount of energy is needed for the electrons to find other unoccupied states to move into, and hence for current to flow. Sometimes even in this case it may be said that a hole was left behind, to explain why the electron does not fall back to lower energies: It cannot find a hole. In the end in both materials electron-phonon scattering and defects are the dominant causes for resistance.Fermi-Dirac distribution. States with energy εbelow the Fermi energy, here μ, have higher probability n to be occupied, and those above are less likely to be occupied. Smearing of the distribution increases with temperature.The energy distribution of the electrons determines which of the states are filled and which are empty. This distribution is described by Fermi-Dirac statistics. The distribution is characterized bythe temperature of the electrons, and the Fermi energy or Fermi level. Under absolute zero conditions the Fermi energy can be thought of as the energy up to which available electron states are occupied. At higher temperatures, the Fermi energy is the energy at which the probability of a state being occupied has fallen to 0.5.The dependence of the electron energy distribution on temperature also explains why the conductivity of a semiconductor has a strong temperature dependency, as a semiconductor operating at lower temperatures will have fewer available free electrons and holes able to do the work.Energy–momentum dispersionIn the preceding description an important fact is ignored for the sake of simplicity: the dispersion of the energy. The reason that the energies of the states are broadened into a band is that the energy depends on the value of the wave vector, or k-vector, of the electron. The k-vector, in quantum mechanics, is the representation of the momentum of a particle.The dispersion relationship determines the effective mass, m* , of electrons or holes in the semiconductor, according to the formula:The effective mass is important as it affects many of the electrical properties of the semiconductor, such as the electron or hole mobility, which in turn influences the diffusivity of the charge carriers and the electrical conductivity of the semiconductor.Typically the effective mass of electrons and holes are different. This affects the relative performance of p-channel and n-channel IGFETs, for example (Muller & Kamins 1986:427).The top of the valence band and the bottom of the conduction band might not occur at that same value of k. Materials with this situation, such as silicon and germanium, are known as indirect bandgap materials. Materials in which the band extrema are aligned in k, for example gallium arsenide, are called direct bandgap semiconductors. Direct gap semiconductors are particularly important in optoelectronics because they are much more efficient as light emitters than indirect gap materials.Carrier generation and recombinationWhen ionizing radiation strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as electron–hole pair generation.Electron-hole pairs are constantly generated from thermal energy as well, in the absence of any external energy source.Electron-hole pairs are also apt to recombine. Conservation of energy demands that these recombination events, in which an electron loses an amount of energy larger than the band gap, beaccompanied by the emission of thermal energy (in the form of phonons) or radiation (in the form of photons).In some states, the generation and recombination of electron–hole pairs are in equipoise. The number of electron-hole pairs in the steady state at a given temperature is determined by quantum statistical mechanics. The precise quantum mechanical mechanisms of generation and recombination are governed by conservation of energy and conservation of momentum.As the probability that electrons and holes meet together is proportional to the product of their amounts, the product is in steady state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbour regions containing more of them to meet together) or externally driven pair generation. The product is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately 1×exp(−E G / kT), where k is Boltzmann's constant, T is absolute temperature and E G is band gap.The probability of meeting is increased by carrier traps – impurities or dislocations which can trap an electron or hole and hold it until a pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady state.DopingThe property of semiconductors that makes them most useful for constructing electronic devices is that their conductivity may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are often referred to as extrinsic.DopantsThe materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors. A donor atom that activates (that is, becomes incorporated into the crystal lattice) donates weakly-bound valence electrons to the material, creating excess negative charge carriers. These weakly-bound electrons can move about in the crystal lattice relatively freely and can facilitate conduction in the presence of an electric field. (The donor atoms introduce some states under, but very close to the conduction band edge. Electrons at these states can be easily excited to conduction band, becoming free electrons, at room temperature.) Conversely, an activated acceptor produces a hole. Semiconductors doped with donor impurities are called n-type, while those doped with acceptor impurities are known as p-type. The n and p type designations indicate which charge carrier acts as the material's majority carrier. The opposite carrier is called the minority carrier, which exists due to thermal excitation at a much lower concentration compared to the majority carrier.For example, the pure semiconductor silicon has four valence electrons. In silicon, the most common dopants are IUPAC group 13 (commonly known as group III) and group 15 (commonly known as group V) elements. Group 13 elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. Group 15 elements have five valence electrons, which allows them to act as a donor. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in ann-type material.Carrier concentrationThe concentration of dopant introduced to an intrinsic semiconductor determines its concentration and indirectly affects many of its electrical properties. The most important factor that doping directly affects is the material's carrier concentration. In an intrinsic semiconductor under thermal equilibrium, the concentration of electrons and holes is equivalent. That is,n = p = n iIf we have a non-intrinsic semiconductor in thermal equilibrium the relation becomes:n0 * p0 = (n i)2Where n is the concentration of conducting electrons, p is the electron hole concentration, and n i is the material's intrinsic carrier concentration. Intrinsic carrier concentration varies between materials and is dependent on temperature. Silicon's n i, for example, is roughly 1.6×1010 cm-3 at 300 kelvin (room temperature).In general, an increase in doping concentration affords an increase in conductivity due to the higher concentration of carriers available for conduction. Degenerately (very highly) doped semiconductors have conductivity levels comparable to metals and are often used in modern integrated circuits as a replacement for metal. Often superscript plus and minus symbols are used to denote relative doping concentration in semiconductors. For example, n+ denotes an n-type semiconductor with a high, often degenerate, doping concentration. Similarly, p−would indicate a very lightly doped p-type material. It is useful to note that even degenerate levels of doping imply low concentrations of impurities with respect to the base semiconductor. In crystalline intrinsic silicon, there are approximately 5×1022 atoms/cm³. Doping concentration for silicon semiconductors may range anywhere from 1013 cm-3 to 1018 cm-3. Doping concentration above about 1018 cm-3 is considered degenerate at room temperature. Degenerately doped silicon contains a proportion of impurity to silicon in the order of parts per thousand. This proportion may be reduced to parts per billion in very lightly doped silicon. Typical concentration values fall somewhere in this range and are tailored to produce the desired properties in the device that the semiconductor is intended for.Effect on band structureDoping a semiconductor crystal introduces allowed energy states within the band gap but very close to the energy band that corresponds with the dopant type. In other words, donor impurities create states near the conduction band while acceptors create states near the valence band. The gap between these energy states and the nearest energy band is usually referred to as dopant-sitebonding energy or E B and is relatively small. For example, the E B for boron in silicon bulk is0.045 eV, compared with silicon's band gap of about 1.12 eV. Because E B is so small, it takes little energy to ionize the dopant atoms and create free carriers in the conduction or valence bands. Usually the thermal energy available at room temperature is sufficient to ionize most of the dopant.Dopants also have the important effect of shifting the material's Fermi level towards the energy band that corresponds with the dopant with the greatest concentration. Since the Fermi level must remain constant in a system in thermodynamic equilibrium, stacking layers of materials with different properties leads to many useful electrical properties. For example, the p-n junction's properties are due to the energy band bending that happens as a result of lining up the Fermi levels in contacting regions of p-type and n-type material.This effect is shown in a band diagram. The band diagram typically indicates the variation in the valence band and conduction band edges versus some spatial dimension, often denoted x. The Fermi energy is also usually indicated in the diagram. Sometimes the intrinsic Fermi energy, E i, which is the Fermi level in the absence of doping, is shown. These diagrams are useful in explaining the operation of many kinds of semiconductor devices.Preparation of semiconductor materialsSemiconductors with predictable, reliable electronic properties are necessary for mass production. The level of chemical purity needed is extremely high because the presence of impurities even in very small proportions can have large effects on the properties of the material. A high degree of crystalline perfection is also required, since faults in crystal structure (such as dislocations, twins, and stacking faults) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between four and twelve inches (300 mm) in diameter which are grown as cylinders and sliced into wafers.Because of the required level of chemical purity and the perfection of the crystal structure which are needed to make semiconductor devices, special methods have been developed to produce the initial semiconductor material. A technique for achieving high purity includes growing the crystal using the Czochralski process. An additional step that can be used to further increase purity is known as zone refining. In zone refining, part of a solid crystal is melted. The impurities tend to concentrate in the melted region, while the desired material recrystalizes leaving the solid material more pure and with fewer crystalline faults.In manufacturing semiconductor devices involving heterojunctions between different semiconductor materials, the lattice constant, which is the length of the repeating element of the crystal structure, is important for determining the compatibility of materials.附录B:外文资料翻译—译文部分半导体半导体是一种导电性能介于导体与绝缘体之间的固体材料。
英文文献 科技类 原文及翻译 (电子 电气 自动化 通信…) 8
Switching Power Supply目录1 Switching Power Supply (1)Linear versus Switching Power Supplies (1)Basic Converters (2)1.2.1Forward-Mode Converter Fundamentals (2)1.2.3 Flyback or Boost-mode Converter Fundamentals (4)1.3 Topologies (5)1 开关电源 (7)1.1 线性电源和开关电源之比拟 (7)根本转换器 (8)1.2.1 前向模式转换器根底 (8)12.2 增压模式转换器根底 (8)1.3 拓扑结构 (9)2 Operational Amplifiers (10)2 放大器 (14)1 Switching Power SupplyEvery new electronic product , except those that battery powered, requires converting off-line 115V ac or 230V ac power to some dc voltage for powering the electronics. Efficient conversion of electrical power is becoming a primary concern to companies and to society as a whole.Switching power supplies offer not only higher efficiencies but also offer greater flexibility to the designer. Recent advances in semiconductor, magnetic and passive technologies make the switching power supply an ever more popular choice in the power conversion arena today.1.1 Linear versus Switching Power SuppliesHistorically, the linear regulator was the primary method of creating a regulated output voltage. It operates by reducing a higher input voltage down to the lower output voltage by linearly controlling the conductivity of a series pass power device in response to changes in its load. This results in a large voltage being placed across the pass unit with the load current flowing through it.This headroom loss ()V I⨯ causes the linear regulator to only be 30 todrop load50 percent efficient. That means that for each watt delivered to the load , at least a watt has to be dissipated in heat. The cost of the heatsink actually makes the linear regulator uneconomical above 10watts for small applications. Below that point, however, they are cost effective in step-down applications.The switching regulator operates the power devices in the full-on and cutoff states. This then results in either large currents being passed through the power devices with a low“on〞voltage or no current flowing with high voltage across the device. This results in a much lower power being dissipated within the supply.The average switching power-supply exhibits efficiencies of between 70 to 90 percent, regardless of the input voltage.Higher levers of integration have driven the cost of switching power supplies downward which makes in an attractive choice for output powers greater than 10 watts or where multiple outputs are desired.1.2 Basic ConvertersForward-Mode Converter FundamentalsThe most elementary forward-mode converter is the Buck or Step-down Converter which can be seen in Figure 3.1.Its operation can be seen as having two distinct time periods which occur when the series power switch is on and off. When the power switch is on ,the inputvoltage is connected to the input of the inductor .The output of switch of inductor is the output voltage, and the rectifier is back-biased. During this period, since there is a constant voltage source connected across the inductor, the inductor current begins to linearly ramp upward which is described by:()()in out on L on V V t i L -⨯=During the “on 〞 period , energy is being stored within the core material of the inductor in the form of flux. There is sufficient energy stored to carry the requirements of the load during the next off period.The next period is the “off 〞 period of the power switch .When the power switch turns off, the input voltage of the inductor flies below ground and is clamped at one diode drop below ground by the catch diode. Current now begins to flow through the catch diode thus maintaining the load current loop. This remove the stored energy from the inductor, The inductor. The inductor current during this time is:()()out D offL off V V t i L -⨯=This period ends when the power switch is once again turned on.Regulation is accomplished by varying the on-to-off duty cycle of the power switch. The relationship which approximately describes its operation is:out in V V ≈∂⨯Where ∂ is the duty cycle (()/on on off t t t ∂=+).The buck converter is capable of kilowatts of output power, but suffers from one serious shortcoming which would occur if the power switch were to fail short-circuited, the input power source is connected directly to the load circuitry with usually produces catastrophic results. To avoid this situation, a crowbar is placed across the output. A crowbar is a latching SCR which is fired when the output is sensed as entering an overvoltage condition. The buckconverter should only be used for board-level regulation.Flyback or Boost-mode Converter FundamentalsThe most elementary flyback-mode converter is the boost or Step-up Converter. Its schematic can be seen in Figure3.2.Its operation can also be broken into two distinct periods where the power switch is on or off. When power switch turns on, the input voltage source is placed directly across the inductor. This causes the current to begin linearly ramping upwards from zero and is described by:()in on L on V t i L ⨯=Once again, energy is being stored during each cycle times the frequency of operation must b higher than the power demands of the load or,20.5sto pkop out P L I f P =⨯⨯>The power switch then turns off and the inductor voltage flies back abovethe input voltage and is clamped and is clamed by the rectifier at the output voltage .The current then begins to linearly ramp downward until the until the energy within the core is completely depleted. Its waveform which is shown in Figure 3.3 is determined by:()()out in offL off V V t i L -⨯=The boost converter should also be only used for board-level regulation.1.3 TopologiesA topology is the arrangement of the power devices and their magnetic elements. Each topology has its own merits within certain applications. Some of the factors which determine the suitability of a particular topology to a certain application are:1) Is the topology electrically isolated from the input to the output or not.2) How much of the input voltage is placed across the inductor or transformer.3) What is the peakcurrent flowing through the power semiconductors.4) Are multiple outputs required.5) How much voltage appears across the power semiconductors.The first choice that faces the designer is whether to have input to output transformer isolation. Non-isolated switching power supplies are typically used for board-level regulation where a dielectric barrier is provided elsewhere within the system. Non-isolated topologies should also be used where the possibility of a failure does not connect the input power source to the fragile load circuitry. Transformer isolation should be used in all other situations. Associated with that is the need for multiple output voltages. Transformers provide an easy method for adding additional output voltage to the switching power supply. The companies building their own power systems are leaning toward transformer isolation in as many power supplies as possible since it prevents a domino effect during failure conditions.1 开关电源除了那些用电池做电源的电子产品外,每个新型电子产品都需要将115V或者230V 的交流电源转换为直流电源,为电路供电。
电子技术名词中英文对照
电子技术名词中英文对照本征半导体:intrinsic semiconductor掺杂半导体:doped semiconductorP型半导体:P-type semiconductorN型半导体:N-type semiconductor自由电子:free electron空穴:hole载流子:carriersPN结:PN junction扩散:diffusion漂移:drift二极管:diode硅二极管:silicon diode锗二极管:germanium diode阳极:anode阴极:cathode发光二极管:light-emitting diode (LED)光电二极管:photodiode稳压二极管:Zener diode晶体管(三极管):transistorPNP型晶体管:PNP transistorNPN型晶体管:NPN transistor发射极:emitter集电极:collector基极:base电流放大系数:current amplification coefficient场效应管:field-effect transistor (FET)P沟道:p-channelN沟道:n-channel结型场效应管:junction FET(JFET)金属氧化物半导体:metal-oxide semiconductor (MOS)耗尽型MOS场效应管:depletion mode MOSFET(D-MOSFET)增强型MOS场效应管:enhancement mode MOSFET(E-MOSFET)源极:source栅极:grid漏极:drain跨导:transconductance夹断电压:pinch-off voltage热敏电阻:thermistor开路:open短路:shorted。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
New Generation of High– Power Semiconductor ClosingSwitches for PulsedPower ApplicationsI.IntroductionSolidstate semiconductor switches are veryinviting touse atpulsed powersystems because these switches have high reliability, longlif etime, low costs duringusing, and environmentalsafetyduetomercury and lead are absent. Semiconductorswitches areable to wor kin any position,so, it is possibleto design systems as forstationary laboratory using, and for mobileusing.Therefore theseswitc hes are frequentlyregarded asreplacement ofgas-discharged evices–ignitrons,thyratrons,sparkgapsand vacuum switches thatgenerally use now inhigh-powerelectrophysical systems including powerlasers.Traditional thyristors(SCR) aresemiconductor switches mostly usingfor pulsedevices.SCR hassmall value of forward vol tage drop at switch-on state,ithashighoverloadcapacity for curr ent, and atlastithas relatively low costvalue duetothe simplebipolartechnology. Disadvantage of SCR is observedat switc hingof currentpulseswithveryhighpeak value and short du ration. Reasonof thisdisadvantageissufficiently slowprocess ofswitch-on stateexpansion from triggering electrode to external border of p-n junction after triggeringpulse applying. This SCR feature is defined SCR usinginto millisecond rangeof current switching. Improvement of SCR pulsecharacteristics can bereachedby usingof the distributed gatedesign. Thisis allowed to decrease thetime of total switch-on and greatlyimprove SCRswitching capacity. Thus, ABB companyis expanded the semiconductor switch using up to microsecond rangeby design ofspecial pulseasymmetric thyristors(ASCR ). Thes e d evi ces have distr ibuti ng gate stru ctur e like a GTO. T his th yrist or des ign an d force d tri ggeri ng m ode ar e obta ine d the hig h s witchin g capaci ty o f th yris tor (p I =150kA, p T =50μs, di/dt = 18kA/μs, singl e pul se). However , in this de sig n ga te s tructure is c over ed l arge a ctive area of thyristor (more than 50%) th at de cre ase the effi cien cy of S i using and in crease cos t of de vice.Si-thyri stors a nd IG BT have dem onstrated hi gh s witchi ng charac terist ics at repetit iv e mode. Howe ver, su ch devic es do not int end f or s wit chi ng of hi gh pulse cu rr ents (tens of kiloampere s and more) bec ause of well-kno wn phy sical lim it s a re e xi st ed s uch a s lo w d opi ng of emi tter s, shor t li fetime o f mi norit y c arrier s, s mall si zes of chips et c.O ur i nvestigati on ha ve obtai ne d th at swi tches ba sed on re ve rse – switc hed din isto rs are more p ers pe ctive soli d-sta te s wi tches to switch sup er high p owers a t micro sec ond and s ubm illis eco nd rang es . R ev er se – sw itched dinis tors (RSD) i s two-electr ode analogue o f reverse con duct ing thyr is tor with mo nolit hica l in te grate d free wheeli ng d iod e i n S i. Thi s di ode is con nect ed in parallel and in t he ba ck dire cti on t o th e thyr is to r part of RS D. Trig ger ing of R SD is prov id ed by sho rt puls e of t rig ger curre nt a t b rief app ly ing of r ev ersal volt age t o RSD. Des ign of RSD is made thus that triggerin g current pas ses throug h dio de ar eas o f RSD qu asiaxially and unif ormly along the Si s tructu re area . Thi s curr ent p rod uc es the onc oming inje ction of char ge ca rri ers f rom both e mitter juncti ons to base r egion s and in itia tes the regenera tive pro ce ss of switch-on for R SD thyris tor areas . Suc h met hod of t rig geri ng f or this spe cial des ign of Si plate is p rovided tot al and uni form sw itching of RSD along all activ e a rea in th e ve ry sho rt time lik e as diod e s witch-o n. Th e fre ewh eeling di ode i ntegr ate d int o th e RSD st ructure could be used asdamping diodeat fault mode inthe discharge circuit. This fault modesuch as breakdownof cable linescan leadto oscillatingcurrent thr ough switch..Ithas been experimentallyobtainedin thatsemiconductor switches based onRSD can work successfully in thepulsed power systemstodrive flashlamps pumpinghigh-powerneodymiumlasers. It was shown in that RSD-switches based onRSD wafer diameter of 63mm (switch typeKRD-25-100) and RSD-switches based on RSDwafer diameter of 76mm(switch type KRD-25-180) can switch the current pulses with submillisecond duration and peakvalue of 120kA and180 kArespectively.Three switches(switch type KRD – 25-180)connected in parallel weresuccessfully tested underthe following mode:V= 25kV, operating current Ip=470 kA, and transoperating voltageoferred charge Q= 145 Coulombs.During2000 –2001,the capacitor bank for neodymium laser of facility LUCH wasbuiltat RFNC-VNIIEF. This bank including18 switchestypeKRD-25-100 operatessuccessfully during 5 years without any failures of switches.This reportis submitted resultsofdevelopment ofnew generation of solid state switches havinglow losses ofpower andhigh-curr entswitchingcapacity.II.Developmentof RSD’s next generationThetechnologyof fabrication of new RSD structure hasbee ndeveloped to increase theswitchingcapacity. This new structure isSPT (Soft Punch Through)-structure-with “soft” closingofspace-chargeregion into buffer n'-layer.Decreasingof n-base thickness andalsoimproving ofRSD switch-on uniformity by goodspreading of charge carrierson then'-layer atvoltage inversion are provided decreasing of allcomponents of lossesenergysuch as losses attriggering, losses attransient proce ss of switch-on,andlosses at state-on. Our preliminary estimation was shown that such structure mustprovide the increasingof operating peak currentthroughRSD approximately in 1.5times.Investigations were carriedout forRSD withblocking voltage of2.4 kV andSi waferdiameters of 63,76,and 100 mm by specialtest station.The main goal of these investigations is definition ofm aximum permissible levelof peak current passing through single RSD with given area.CurrentpassingthroughRSD and voltage drop onRSD structure during current passing are measured attesting.In Fig.1 waveforms ofpeakcurrents and voltage dropsis shownforRSD with size of76 mmandblockingvoltage of 2.4kV.Fig.1.Waveformsof pulsecurrent (a)and voltagedrop(b)forRSD with wafer size of76 mm and blocking voltage of 2.4 kV Inaccording withstudyprogram current wasslowly incre aseduntilmaximum permissiblelevel Ipm. When thislevel wasr eached the sharpriseof voltage and than the samesharp decay of voltage forcurve U(t) wasobserved.Reasonofvoltage rise isstrong decreasingof carrier mobility at high temperature,andreasonof voltage decay is quick modulation ofchannel conductivityby thermal generated plasmathatis appeared in accordance with sharp exponentialdependence for own concentrationof initialsilicon into base areasof RSD at temperature of400–0600C.Tests were shown that this sharprise ofvoltage at maximum per missible current does not lead toimmediate faultof RSD. RSD keeps itsblockingcharacteristic. However,afterpassingofI we can observe theappearance of erosionfro such currentpmmcathodefor aluminum metallization of RSDcontacts,andthisfact is evidence of borderline state ofdevice. ThesubsequentincreI) leads to fusing of Si structure. Therefoasing ofcurrent(more thanpmre, levelIpm is the reference position todefinethe value ofoperation peakcurrent for RSD-switch under long andrepeated many timesoperating mode.I must beless thWe have determinedthat operating peak currentpwI.This ratiowas confirmed by calculationsand ran 80%from levelpmImode(severalthousands ofshots). esults of testsunderpwDataof test results for new generation ofRSD withthe v arious diameterofSi wafer areshown inTable 1.In thisTable for comparing results of the same tests for the first generationof RSD with size of 63and76 mm are shown.III.Switches based on RSD ofnew generationNew reverse –switched dinistors is manufacturedintwo vari ants.RSD of thefirstvariant is in the low-pro housing. The second variant is RSDfabricatedwithouthousing and with additional protection of periphery area from external action.Dinistors placedintohousing can be used for work under as mono - pulse modeand repeated-pulse mode. If repeated-pulsed mode usingthe forced cooling of semiconductor devices and using of heatsinks to both side of pellet must be made. Dinistors without housingconnects inseries,and such assemblycould be placedinto a singlec ompacthousing. However, suchassembly can work under mono-pulse mode only.Operatingvoltageforswitch typically exceedsblocking vU≤2400V), thusswitch isincluded several oltage of singleRSD(BORSDsconnected in series. Fig.2. Reverse –switched dinistors for peak current from 200 kA to500 kA and blocking voltage of 2400 V, enca psullatedin hermeticmetal–ceramic housing and withouthousing(RSD sizesof64, 76, and 100mm).Number of RSDs included in assembly depends onoperatingvoltage of switch. Therefore, technical problemof switch developmentis mainly optimization of design for assemblyof several dinistors connected in series. A lotof special investigationshavecarried out such as choice of optimum materialsto providebest contacts between RSDs,calculation of dynamicforcesto clamp assembly, etc.Theseinvestigations are providedsmall andstabletransitionelectrical and thermal resistances between RSDsthat guarantees long and reliableperformance ofswitch. Especialcomputertechn ique hasdeveloped to selectRSDsfor connection in series. At this RSD selection value of leakage currentand stabilityof blockingvolt-amps diagram aremeasuredespecially. This selection technique is allowed excludethevoltagedividersusing forequalization of static voltage for eachRSD atassembly. Thus,after such selection switch design can simplify, sizes of switchareincreasedappr oximatelyin1.5 times, andcost of switch is increased too.This solid stateswitch has operating voltage of up to 25kVdc, op eratingpeak current of up to 300kA at current pulsedurati on of up to 500μs. RFNC-VNIIEF plans touse such switch atcapac itorbank of laser facility“Iskra-6”.This switch is included 15 RSDs w ithsize of 76 mm and blocking voltage of 2.4kV connected in se ries and encapsullated into dielectric housing. Very high levelofswitchedpower densityper volume unit hasreached by thisswitch design. This value is of 2.5 6cm, and this value is exce10W/3eded in the several times the same switches based on pulse thyristors.Triggering of allRSDs in switch isprovided by the single trigger generator whichconnectedto switch in parallel. Triggering current passes si multaneously through all RSDs connected in series.Suchtriggeringtyp eis allowed toincrease efficiency and reliability of triggeringcircuitfor this switch, and thisisonemore advantage of RSD –switch comparedtoswitch based on thyristors.For new generation of RSD trigger current has peak value between 1-1.5 kA at pulse durationbetween 1.5– 2 μs. Thesevalues are less in 2-3 timescompared to values of trigger currentfor RSDof the first generation.IV. ConclusionNextgenerationof reverse-switched dinistors and RSD–switcheshas been developed Tests of these switches areshown that all– time high level ofswitchedpower density per volumeunithasreached.The switches are able toworkunder asmono-pulseand pulse-repeatedmodes andsuitable for many applicationsofpulsedpower.应用于脉冲电源设备的新一代高功率半导体关闭开关1 导言固态半导体开关普遍使用在脉冲功率系统,因为这些开关具有可靠性高,寿命长,使用成本低,并且由于汞和铅的量少能够保证环境的安全。