中药化学成分分离方法

合集下载

中草药中各类化学成分提取分离方法

中草药中各类化学成分提取分离方法

中草药中各类化学成分提取分离方法中草药是传统中医药领域中常用的药材,它们通常含有多种化学成分,如生物碱、黄酮类、多糖类和挥发油等。

为了研究和利用这些化学成分,需要进行提取和分离。

下面介绍几种常用的中草药中化学成分提取分离的方法。

1.浸提法浸提法是最常用的中草药提取方法之一,它是将中草药与适量的溶剂(如醇、水)混合并浸泡,以使草药中的化学成分溶解到溶剂中。

浸提时间一般较长,可以通过改变温度、浸泡时间和溶剂种类等参数来调整提取效果。

2.液液分配法液液分配法是利用在两个不相容的溶剂中溶解度不同的原理进行分离的方法。

首先将中草药与溶剂混合,在振荡过程中,目标化合物会分配到两个不相容的溶剂相中,然后通过离心等方法将两个相分离,从而获得目标化合物。

3.蒸馏法蒸馏法是一种分离挥发性化合物的方法。

在蒸馏过程中,通过加热使中草药中的挥发性化合物转化成蒸馏气体,随后通过冷凝器将气体转化回液体,最后将液体收集。

蒸馏法能够有效地分离挥发性化合物,并且不会破坏其化学结构。

4.萃取法萃取法利用不同溶剂对中草药中化学成分的选择性溶解性进行分离。

首先将中草药与适当的溶剂进行浸泡,然后通过过滤或离心等方法将溶液分离出来,最后通过浓缩溶剂获得目标化合物。

5.柱层析法柱层析法是一种利用吸附剂(如硅胶、活性炭等)对混合液中不同成分进行分离的方法。

将混合液加入柱层析管中,通过不同成分在吸附剂上的吸附力、解吸力和扩散速率等差异,使其逐渐分离。

层析柱中可以选择不同的溶剂体系、柱材和固相材料,以增强分离效果。

总之,中草药中各类化学成分的提取分离方法有浸提法、液液分配法、蒸馏法、萃取法和柱层析法等。

根据目标化合物的性质、草药的组成和需求,可选择合适的方法进行提取分离,从而为中药研究和开发提供有力支持。

中药化学成分提取分离方法

中药化学成分提取分离方法

28
红外光谱(IR) 红外光谱(IR)
分子中价键的伸缩及弯曲振动所引起的吸收而测 得的吸收图谱,称为红外光谱。 得的吸收图谱,称为红外光谱。
4000
3600
3000
1500
1000
625cm-1
特征频率区 特征官能团的鉴别
指纹区
29 化合物真伪的鉴别
羟基(酚羟基、醇羟基) 羟基(酚羟基、醇羟基) 3600~3200 cm-1 游离羟基 ~3600 cm-1 氢键缔合羟基 3400~3200 cm-1 羰基 1600~1800 cm-1 酮 ~1710 cm-1 酯1710~1735 cm-1 芳环 1600、1580、1500cm-1 、 、 有2~3个峰 个峰 双键 1620~1680 cm-1
第二章
中药化学成分提取分离方法
1
一、中药化学成分的提取
(一)溶剂提取法 依据:化学成分的溶解性(极性) 依据:化学成分的溶解性(极性) 关键: 关键:提取溶剂的选择 溶剂的选择原则:相似相溶的原则, 溶剂的选择原则:相似相溶的原则, 价廉、易得、无毒、安全等。 价廉、易得、无毒、安全等。 提取方法:浸渍法、渗漉法、煎煮法、 提取方法:浸渍法、渗漉法、煎煮法、 回流提取法、连续回流提取法。 回流提取法、连续回流提取法。
溶解性能同乙醇,但沸点低、易挥发, 丙酮 溶解性能同乙醇,但沸点低、易挥发, 不常于提取溶剂;对色素溶解性好, 不常于提取溶剂;对色素溶解性好, 常用于分离、精制。 常用于分离、精制。
6
亲脂性有机溶剂
对化合物溶解选择性较强 水溶性杂质少、 水溶性杂质少、易纯化 挥发性大、 挥发性大、易燃烧 有毒、价格昂贵, 有毒、价格昂贵, 对提取设备要求高 穿透力较弱, 穿透力较弱,提取时间长 作为提取溶剂不常用 。

中药化学第四章中药化学成分的分离技术

中药化学第四章中药化学成分的分离技术

K=CU/CL CU:上层浓度,CL:下层浓度。 若有两种成份时(A,B),则A,B各有其分
配系数KA,KB,则两者差别越大,分离效果越 好。
如,KA=10说明振摇一次平衡后,A则有90 %以上溶于上层溶液中。
而KB=0.l时,振摇一次平衡后,B则有90% 以上溶于下层中,过样A和B两成份就有较大程 度分离,连续分离萃取几次,就可能达到A,B 的全部分离。
仪器装置
该装置有3个部分组成。 输液部分。包括微型泵、移动相溶剂储槽和试样
液注射器。 萃取部分。由300~500根内径约2 mm、长度为
20~40 cm的萃取管连接而成。 收集检出部分。包括检出器及分步自动收集仪。
适用范围
目前DCCC法广泛用于皂苷、生物碱、酸性成分、蛋 白质、糖类等天然产物的分离和精制,特别是用于 皂苷类的分离,并取得良好效果。
三、铅盐沉淀法
原理 此法是利用中性醋酸铅和碱式醋酸铅在水和 稀醇溶液中能与许多天然药物化学成分生成 难溶性的铅盐或铅络合物沉淀的性质,使有 效成分和杂质分离。此法既可使杂质生成铅 盐沉淀除去,又可以使有效成分生成铅盐沉 淀。
铅盐沉淀法适用范围
中性醋酸盐(Pb(Ac)2)可用于沉淀天然药物成 分中的有机酸、蛋白质、氨基酸、黏液质、 鞣质、树脂、酸性皂苷、部分黄酮苷、蒽醌 苷、香豆素苷和某些色素等具有羧基、邻二 酚羟基的酸性或酚性物质。
氯仿:乙醚 由 某些苷类,如强心苷
乙酸乙酯
小 某些苷类,如黄酮苷
正丁醇
到 某些苷类,如皂苷,黄酮苷
丙酮、乙醇 大 极性很大的苷、糖类、氨基酸、某些生物
碱盐

蛋白质、黏液质、果胶、糖类、无机盐
(强亲水性)
二、适用范围
此法是早年研究天然药物有效成分的一种最重要的 方法,主要用于分离提纯含有极性不同的各种化 学成分的中药提取液。目前仍是最常用的方法,

中药化学成分的提取和分离方法研究

中药化学成分的提取和分离方法研究

中药化学成分的提取和分离方法研究中药是中国传统的珍贵瑰宝,其中蕴含着丰富的化学成分。

中药的药效往往来自于其丰富的化学成分,因此,提取和分离中药中的有效成分成为了中药学研究的重点。

在这篇文章中,我们将探讨中药化学成分的提取和分离方法研究,介绍当前常见的提取和分离方法,并探讨这些方法的优缺点以及应用范围。

一、中药化学成分的提取方法1. 水提法水提法是最常见的中药提取方法之一。

这种方法利用水溶性化合物在水中的溶解度来提取中药中的有效成分。

被提取的药材先用水浸泡,然后将水和浸泡药材一起加热,使水中的药效成分提取到水中。

水提法优点是提取过程简单、易于控制,同时溶解性好的成分可以得到很好的提取,缺点是对于含有脂溶性化合物的药材,提取效果不理想。

2. 乙醇提法乙醇提法是运用酒精的溶剂作用将中药中的有效成分提取出来的方法。

这种方法适用于多种药材中成分的提取,但对脂溶性成分的提取效果不佳。

此外,由于乙醇是一种有毒有害化合物,对于提取到的药效成分,需要进行后续的纯化处理。

3. 甲醇提法与乙醇提法类似,甲醇提法同样是利用甲醇溶解中药中的有效成分的提取方法。

与乙醇相比,甲醇的溶解能力更为强,但同样存在有毒有害性的问题。

二、中药化学成分的分离方法1. 溶剂萃取法溶剂萃取法是利用不同化合物在不同的溶剂中的溶解度不同,进行分离的一种方法。

常用的溶剂包括乙醇、丙酮、甲酸乙酯等,同时也可以使用超临界流体萃取法对药材进行萃取。

溶剂萃取法的优点是操作简单,适用于对大分子化合物的分离。

但离心过程可能会破坏药效成分的结构,因此需要注意离心速度和时间。

2. 薄层色谱法薄层色谱法是利用不同化合物在固定相和流动相之间的不同分配系数进行分离的一种方法。

这种方法常用的固定相是硅胶或纤维素等,而流动相则可以是醋酸乙酯、正己烷、乙酸甲酯等。

薄层色谱法的优点是对于化学成分不明确的药材同样有效,分辨效果好,同时操作简单,常用于中药提取和分离。

3. 高效液相色谱法高效液相色谱法是利用色谱柱固定相和溶液相之间的相互作用来进行分离的方法,可以对中药中的成分进行高效率、高分辨率的分离。

中药化学成分提取分离和鉴定的方法

中药化学成分提取分离和鉴定的方法

中药化学成分提取、分离和鉴定的方法一溶剂提取法:1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法;当溶剂加到中草药原料需适当粉碎中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出;中草药成分在溶剂中的溶解度直接与溶剂性质有关;溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同;有机化合物分子结构中亲水性基团多,其极性大而疏于油;有的亲水性基团少,其;极性小而疏于水;这种亲水性、亲脂性及其程度的大小,是和化合物的分子结构直接相关;一般来说,两种基本母核相同的成分,其分子中功能基的极性越大,或极性功能基数量越多,则整个分子的极性大,亲水性强,而亲脂性就越弱,其分子非极性部分越大,或碳键越长,则极性小,亲脂性强,而亲水性就越弱;各类溶剂的性质,同样也与其分子结构有关;例如甲醇、乙醇是亲水性比较强的溶剂,它们的分子比较小,有羟基存在,与水的结构很近似,所以能够和水任意混合;丁醇和戊醇分子中虽都有羟基,保持和水有相似处,但分子逐渐地加大,与水性质也就逐渐疏远;所以它们能彼此部分互溶,在它们互溶达到饱和状态之后,丁醇或戊醇都能与水分层;氯仿、苯和石油醚是烃类或氯烃衍生物,分子中没有氧,属于亲脂性强的溶剂;这样,我们就可以通过时中草药成分结构分析,去估计它们的此类性质和选用的溶剂;例如葡萄糖、蔗糖等分子比较小的多羟基化合物,具有强亲水性,极易溶于水,就是在亲水性比较强的乙醇中也难于溶解;淀粉虽然羟基数目多,但分子大大,所以难溶解于水;蛋白质和氨基酸都是酸碱两性化合物,有一定程度的极性,所以能溶于水,不溶于或难溶子有机溶剂;甙类都比其甙元的亲水性强,特别是皂甙由于它们的分子中往往结合有多数糖分子,羟基数目多,能表现出较强的亲水性,而皂甙元则属于亲脂性强的化合物;多数游离的生物碱是亲脂性化合物,与酸结合成盐后,能够离子化,加强了极性,就变为亲水的注质,这些生物碱可称为半极性化合物;所以,生物碱的盐类易溶于水,不溶或难溶于有机溶剂;而多数游离的生物碱不溶或难溶于水,易溶于亲脂性溶剂,一般以在氯仿中溶解度最大;鞣质是多羟基的化台物,为亲水性的物质;油脂、挥发油、蜡、脂溶性色素都是强亲脂性的成分;总的说来,只要中草药成分的亲水性和亲脂性与溶剂的此项性质相当,就会在其中有较大的溶解度,即所谓“相似相溶”的规律;这是选择适当溶剂自中草药中提取所需要成分的依据之一;2.溶剂的选择:运用溶剂提取法的关键,是选择适当的溶剂;溶剂选择适当,就可以比较顺利地将需要的成分提取出来;选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等;常见的提取溶剂可分为以下三类:1水:水是一种强的极性溶剂;中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、蛋白质、有机酸盐、生物碱盐及甙类等都能被水溶出;为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂;酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出;但用水提取易酶解甙类成分,且易霉坏变质;某些含果胶、粘液质类成分的中草药,其水提取液常常很难过滤;沸水提取时,中草药中的淀粉可被糊化,而增加过滤的困难;故含淀粉量多的中草药,不宜磨成细粉后加水煎煮;中药传统用的汤剂,多用中药饮片直火煎煮,加温可以增大中药成分的溶解度外,还可能有与其他成分产生“助溶”现象,增加了一些水中溶解度小的、亲脂性强的成分的溶解度;但多数亲脂性成分在沸水中的溶解度是不大的,既使有助溶现象存在,也不容易提取完全;如果应用大量水煎煮,就会增加蒸发浓缩时的困难,且会溶出大量杂质,给进一步分离提纯带来麻烦;中草药水提取液中含有皂甙及粘液质类成分,在减压浓缩时,还会产生大量泡沫,造成浓缩的困难;通常可在蒸馏器上装置一个汽一液分离防溅球加以克服,工业上则常用薄膜浓缩装置;2亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇酒精、甲醇木精、丙酮等,以乙醇最常用;乙醇的溶解性能比较好,对中草药细胞的穿透能力较强;亲水性的成分除蛋白质、粘液质、果胶、淀粉和部分多糖等外,大多能在乙醇中溶解;难溶于水的亲脂性成分,在乙醇中的溶解度也较大;还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取;用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少;乙醇为有机溶剂,虽易燃,但毒性小,价格便宜,来源方便,有一定设备即可回收反复使用,而且乙醇的提取液不易发霉变质;由于这些原因,用乙醇提取的方法是历来最常用的方法之一;甲醇的性质和乙醇相似,沸点较低64℃,但有毒性,使用时应注意;3亲脂性的有机溶剂:也就是一般所说的与水不能混溶的有机溶剂,如石油醚、苯、氯仿、乙醚、乙酸乙酯、二氯乙烷等;这些溶剂的选择性能强,不能或不容易提出亲水性杂质;但这类溶剂挥发性大,多易燃氯仿除外,一般有毒,价格较贵,设备要求较高,且它们透入植物组织的能力较弱,往往需要长时间反复提取才能提取完全;如果药材中含有较多的水分,用这类溶剂就很难浸出其有效成分,因此,大量提取中草药原料时,直接应用这类溶剂有一定的局限性;3.提取方法:用溶剂提取中草药成分,、常用浸渍法、渗漉法、煎煮法、回流提取法及连续回流提取法等;同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑;1浸渍法:浸渍法系将中草药粉末或碎块装人适当的容器中,加入适宜的溶剂如乙醇、稀醇或水,浸渍药材以溶出其中成分的方法;本法比较简单易行,但浸出率较差,且如用水为溶剂,其提取液易于发霉变质须注意加入适当的防腐剂;2渗漉法:渗漉法是将中草药粉末装在渗漉器中,不断添加新溶剂,使其渗透过药材,自上而下从渗漉器下部流出浸出液的一种浸出方法小当溶剂渗进药粉溶出成分比重加大而向下移动时,上层的溶液或稀浸液便置换其位置,造成良好的浓度差,使扩散能较好地进行,故浸出效果优于浸渍法;但应控制流速,在渗渡过程中随时自药面上补充新溶剂,使药材中有效成分充分浸出为止;或当渗滴液颜色极浅或渗涌液的体积相当于:原药材重的10倍时,便可认为基本上已提取完全;在大量生产中常将收集的稀渗淮液作为另一批新原料的溶剂之用;3煎煮法:煎煮法是我国最早使用的传统的浸出方法;所用容器一般为陶器、砂罐或铜制、搪瓷器皿,不宜用铁锅,以免药液变色;直火加热时最好时常搅拌,以免局部药材受热太高,容易焦糊;有蒸汽加热设备的药厂,多采用大反应锅、大铜锅、大木桶,或水泥砌的池子中通入蒸汽加热;还可将数个煎煮器通过管道互相连接,进行连续煎浸;4回流提取法:应用有机溶剂加热提取,需采用回流加热装置,以免溶剂挥发损失;小量操作时,可在圆底烧瓶上连接回流冷凝器;瓶内装药材约为容量的%~%,溶剂浸过药材表面约1~2cm;在水浴中加热回流,一般保持沸腾约:小时小放冷过滤,再在药渣中加溶剂,作第二、三次加热回流分别约半小时,或至基本提尽有效成分为止;此法提取效率较冷浸法高,大量生产中多采用连续提取法;5动连续提取法:应用挥发性有机溶剂提取中草药有效成分,不论小型实验或大型生产,均以连续提取法为好,而且需用溶剂量较少,提取成分也较完全;实验室常用脂肪提取器或称索氏提取器;连续提取法,一般需数小时才能提取完全;提取成分受热时间较长,遇热不稳定易变化的成分不宜采用此法;二水蒸气蒸馏法:;水蒸气蒸馏法,适用于能随水蒸气蒸馏而不被破坏的中草药成分的提取;此类成分的沸点多在100℃以上,与水不相混溶或仅微溶,且在约100℃时存一定的蒸气压;当与水在一起加热时,其蒸气压和水的蒸气压总和为一个大气压时,液体就开始沸腾,水蒸气将挥发性物质一并带出;例如中草药中的挥发油,某些小分子生物碱一麻黄碱、萧碱、槟榔碱,以及某些小分子的酚性物质;牡丹酚paeonol等,都可应用本法提取;有些挥发性成分在水中的溶解度稍大些,常将蒸馏液重新蒸馏,在最先蒸馏出的部分,分出挥发油层,或在蒸馏液水层经盐析法并用低沸点溶剂将成分提取出来;例如玫瑰油、原白头翁素protoanemonin等的制备多采用此法;三升华法:固体物质受热直接气化,遇冷后又凝固为固体化合物,称为升华;中草药中有一些成分具有升华的性质,故可利用升华法直接自中草药中提取出来;例如樟木中升华的樟脑camphor,在本草纲目中已有详细的记载,为世界上最早应用升华法制取药材有效成分的记述;茶叶中的咖啡碱在178℃以上就能升华而不被分解;游离羟基蒽醌类成分,一些香豆素类,有机酸类成分,有些也具有升华的性质;例如七叶内酯及苯甲酸等;升华法虽然简单易行,但中草药炭化后,往往产生挥发性的焦油状物,粘附在升华物上,不易精制除去,其次,升华不完全,产率低,有时还伴随有分解现象;分离和纯化:上述提取法所得到的中草药提取液或提取物仍然是混合物,需进一步除去杂质,分离并进行精制;具体的方法随各中草药的性质不同而异,以后将通过实例加以叙述,此处只作一般原则性的讨论;一溶剂分离法:一般是将上述总提取物,选用三、四种不同极性的溶剂,由低极性到高极性分步进行提取分离;水浸膏或乙醇浸膏常常为胶伏物,难以均匀分散在低极性溶剂中,故不能提取完全,可拌人适量惰性填充剂,如硅藻土或纤维粉等,然后低温或自然干燥,粉碎后,再以选用溶剂依次提取,使总提取物中各组成成分,依其在不同极性溶剂中溶解度的差异而得到分离;例如粉防己乙醇浸膏,碱化后可利用乙醚溶出脂溶性生物碱,再以冷苯处理溶出粉防己碱,与其结构类似的防己诺林碱比前者少一甲基而有一酚羟基,不溶于冷苯而得以分离;利用中草药化学成分,在不同极性溶剂中的溶解度进行分离纯化,是最常用的方法;广而言之,自中草药提取溶液中加入另一种溶剂,析出其中某种或某些成分,或析出其杂质,也是一种溶剂分离的方法;中草药的水提液中常含有树胶、粘液质、蛋白质、糊化淀粉等,可以加入一定量的乙醇,使这些不溶于乙醇的成分自溶液中沉淀析出,而达到与其它成分分离的目的;例如自中草药提取液中除去这些杂质,或自白及水提取液中获得白及胶,可采用加乙醇沉淀法;自新鲜括楼根汁中制取天花粉素,可滴人丙酮使分次沉淀析出;目前,提取多糖及多肽类化合物,多采用水溶解、浓缩、加乙醇或丙酮析出的办法;此外,也可利用其某些成分能在酸或碱中溶解,又在加碱或加酸变更溶液的pH后,成不溶物而析出以达到分离;例如内酯类化合物不溶于水,但遇碱开环生成羧酸盐溶于水,再加酸酸化,又重新形成内酯环从溶液中析出,从而与其它杂质分离;生物碱一般不溶于水,遇酸生成生物碱盐而溶于水,再加碱碱化,又重新生成游离生物碱;这些化合物可以利用与水不相混溶的有机溶剂进行萃取分离;一般中草药总提取物用酸水、碱水先后处理,可以分为三部分:溶于酸水的为碱性成分如生物碱,溶于碱水的为酸性成分如有机酸,酸、碱均不溶的为中性成分如甾醇;还可利用不同酸、碱度进一步分离,如酸性化台物可以分为强酸性、弱酸性和酷热酚性三种,它们分别溶于碳酸氢钠、碳酸钠和氢氧化钠,借此可进行分离;有些总生物碱,如长春花生物碱、石蒜生物碱,可利用不同rH值进行分离;但有些特殊情况,如酚性生物碱紫董定碱corydine在氢氧化钠溶液中仍能为乙醚抽出,蝙蝠葛碱dauricins在乙醚溶液中能为氢氧化钠溶液抽出,而溶于氯仿溶液中则不能被氢氧化钠溶液抽出;有些生物碱的盐类,如四氢掌叶防己碱盐酸盐在水溶液中仍能为氯仿抽出;这些性质均有助于各化合物的分离纯化;二两相溶剂萃取法:1.萃取法:两相溶剂提取又简称萃取法,是利用混合物中各成分在两种互不相溶的溶剂中分配系数的不同而达到分离的方法;萃取时如果各成分两相溶剂中分配系数相差越大,则分离效率越高、如果在水提取液中的有效成分是亲脂性的物质,一般多用亲脂性有机溶剂,如苯、氯仿或乙醚进行两相萃取,如果有效成分是偏于亲水性的物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性的溶剂,例如乙酸乙酯、丁醇等;还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性;提取黄酮类成分时,多用乙酸乙脂和水的两相萃取;提取亲水性强的皂甙则多选用正丁醇、异戊醇和水作两相萃取;不过,一般有机溶剂亲水性越大,与水作两相萃取的效果就越不好,因为能使较多的亲水性杂质伴随而出,对有效成分进一步精制影响很大;两相溶剂萃取在操作中还要注意以下几点:1先用小试管猛烈振摇约1分钟,观察萃取后二液层分层现象;如果容易产生乳化,大量提取时要避免猛烈振摇,可延长萃取时间;如碰到乳化现象,可将乳化层分出,再用新溶剂萃取;或将乳化层抽滤,或将乳化层稍稍加热;或较长时间放置并不时旋转,令其自然分层;乳化现象较严重时,可以采用二相溶剂逆流连续萃取装置;2 水提取液的浓度最好在比重1.1~1.2之间,过稀则溶剂用量太大,影响操作;3 溶剂与水溶液应保持一定量的比例,第一次提取时,溶剂要多一些,一般为水提取液的1/3,以后的用量可以少一些,一般1/4-1/6;4一般萃取3~4次即可;但亲水性较大的成分不易转入有机溶剂层时,须增加萃取次数,或改变萃取溶剂;萃取法所用设备,如为小量萃取,可在分液漏斗中进行;如系中量萃取,可在较大的适当的下口瓶中进行;在工业生产中大量萃取,多在密闭萃取罐内进行,用搅拌机搅拌一定时间,使二液充分混合,再放置令其分层;有时将两相溶液喷雾混含,以增大萃取接触,提高萃取效率,也可采用二相溶剂逆流连续萃取装置;2.逆流连续萃取法:是一种连续的两相溶剂萃取法;其装置可具有一根、数根或更多的萃取管;管内用小瓷圈或小的不锈钢丝圈填充,以增加两相溶剂萃取时的接触面;例如用氯仿从川楝树皮的水浸液中萃取川楝素;将氯仿盛于萃取管内,而比重小于氯仿的水提取浓缩液贮于高位容器内,开启活塞,则水浸液在高位压力下流入萃取管,遇瓷圈撞击而分散成细粒,使与氯仿接触面增大,萃取就比较完全;如果一种中草药的水浸液需要用比水轻的苯、乙酸乙酯等进行萃取,则需将水提浓缩液装在萃取管内,而苯、乙酸乙酯贮于高位容器内;萃取是否完全,可取样品用薄层层析、纸层析及显色反应或沉淀反应进行检查;3.逆流分配法CounterCurrentDistribution,CCD:逆流分配法又称逆流分溶法、逆流分布法或反流分布法;逆流分配法与两相溶剂逆流萃取法原理一致,但加样量一定,并不断在一定容量的两相溶剂中,经多次移位萃取分配而达到混合物的分离;本法所采用的逆流分布仪是由若干乃至数百只管子组成;若无此仪器,小量萃取时可用分液漏斗代替;预先选择对混合物分离效果较好,即分配系数差异大的两种不相混溶的溶剂;并参考分配层析的行为分析推断和选用溶剂系统,通过试验测知要经多少次的萃取移位而达到真正的分离;逆流分配法对于分离具有非常相似性质的混合物,往往可以取得良好的效果;但操作时间长,萃取管易因机械振荡而损坏,消耗溶剂亦多,应用上常受到一定限制;4.液滴逆流分配法:液滴逆流分配法又称液滴逆流层析法;为近年来在逆流分配法基础上改进的两相溶剂萃取法;;对溶剂系统的选择基本同逆流分配法,但要求能在短时间内分离成两相,并可生成有效的液滴;由于移动相形成液滴,在细的分配萃取管中与固定相有效地接触、摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,故其分离效果往往比逆流分配法好;且不会产生乳化现象,用氮气压驱动移动相,被分离物质不会因遇大气中氧气而氧化;本法必须选用能生成液滴的溶剂系统,且对高分子化合物的分离效果较差,处理样品量小1克以下,并要有一定设备;应用液滴逆流分配法曾有效地分离多种微量成分如柴胡皂甙原小檗碱型季铵碱等;液滴逆流分配法的装置,近年来虽不断在改进,但装置和操作较繁;目前,对适用于逆流分配法进行分离的成分,可采用两相溶剂逆流连续萃取装置或分配柱层析法进行;三沉淀法:是在中草药提取液中加入某些试剂使产生沉淀,去杂质的方法;1.铅盐沉淀法:铅盐沉淀法为分离某些中草药成分的经典方法之一;由于醋酸铅及碱式醋酸铅在水及醇溶液中,能与多种中草药成分生成难溶的铅盐或络盐沉淀,故可利用这种性质使有效成分与杂质分离;中性醋酸铅可与酸性物质或某些酚性物质结合成不溶性铅盐;因此,常用以沉淀有机酸、氨基酸、蛋白质、粘液质、鞣质、树脂、酸性皂甙、部分黄酮等;可与碱式醋酸铅产生不溶性铅盐或络合物的范围更广;通常将中草药的水或醇提取液先加入醋酸铅浓溶液,静置后滤出沉淀,并将沉淀洗液并入滤液,于滤液中加碱式醋酸铅饱和溶液至不发生沉淀为止,这样就可得到醋酸铅沉淀物、碱式醋酸铅沉淀物及母液三部分;然后将铅盐沉淀悬浮于新溶剂中,通以硫化氢气体,使分解并转为不溶性硫化铅而沉淀;含铅盐母液亦须先如法脱铅处理,再浓缩精制;硫化氢脱铅比较彻底,但溶液中可能存有多余的硫化氢,必须先通人空气或二氧化碳让气泡带出多余的硫化氢气体,以免在处理溶液时参与化学反应;新生态的硫化铅多为胶体沉淀,能吸咐药液中的有效成分,要注意用溶剂处理收回;脱铅方法,也可用硫酸、磷酸、硫酸钠、磷酸钠等除铅,但硫酸铅、磷酸铅在水中仍有一定的溶解度,除铅不彻底;用阳离子交换树脂脱铅快而彻底,但要注意药液中某些有效成分也可能被交换上去,同时脱铅树脂再生也较困难;还应注意脱铅后溶液酸度增加,有时需中和后再处理溶液,有时可用新制备的氢氧化铅、氢氧化铝、氢氧化铜或碳酸铅、明矾等代替醋酸铅、碱式醋酸铅;例如在黄芩水煎液中加入明矾溶液,黄芩甙就与铝盐络合生成难溶于水的络化物而与杂质分离,这种络化物经用水洗净就可直接供药用;2.试剂沉淀法:例如在生物碱盐的溶液中,加入某些生物碱沉淀试剂见生物碱性质下,则生物碱生成不溶性复盐而析出;水溶性生物碱难以用萃取法提取分出,常加入雷氏铵盐使生成生物碱雷氏盐沉淀析出;又如橙皮甙、芦丁、黄芩甙、甘草皂甙均易溶于碱性溶液,当加入酸后可使之沉淀析出;某些蛋白质溶液,可以变更溶液的pH值利用其在等电点时溶解度最小的性质而使之沉淀析出;此外,还可以用明胶、蛋白溶液沉淀鞣质;胆甾醇也常用以沉淀洋地黄皂甙等;可根据中草药有效成分和杂质的性质,适当选用;四盐析法:盐析法是在中草药的水提液中、加入无机盐至一定浓度,或达到饱和状态,可使某些成分在水中的溶解度降低沉淀析出,而与水溶性大的杂质分离;常用作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等;例如三七的水提取液中加硫酸镁至饱和状态,三七皂甙乙即可沉淀析出,自黄藤中提取掌叶防己碱,自三颗针中提取小檗碱在生产上都是用氯化钠或硫酸按盐析制备;有些成分如原白头翁素、麻黄碱、苦参碱等水溶性较大,在提取时,亦往往先在水提取液中加入一定量的食盐,再用有机溶剂萃取;五透析法:透析法是利用小分子物质在溶液中可通过半透膜,而大分子物质不能通过半透膜的性质,达到分离的方法;例如分离和纯化皂甙、蛋白质、多肽、多糖等物质时,可用透析法以除去无机盐、单糖、双糖等杂质;反之也可将大分子的杂质留在半透膜内,而将小分子的物质通过半透膜进入膜外溶液中,而加以分离精制:透析是否成功与透析膜的规格关系极大;透析膜的膜孔有大有小,要根据欲分离成分的具体情况而选择;透析膜有动物性膜、火棉胶膜、羊皮纸膜硫酸纸膜、蛋白质胶膜、玻璃纸膜等;油常多用市售的玻璃纸或动物性半透膜扎成袋状,外面用尼龙网袋加以保护,小心加入欲透析的样品溶液,悬挂在清水容器中;经常更换清水使透析膜内外溶液的浓度差加大,必要时适当加热,并加以搅拌,以利透析速度加快;为了加快透析速度,还可应用电透析法,即在半在半透膜旁边纯溶剂两端放置二个电极,接通电路,则透析膜中的带有正电荷的成分如无机阳离子、生物碱等向阴极移动,而带负电共荷的成分如无机阴离子、有机酸等则向阳极移动,中性化合物及高分子化合物则留在透析膜中;透析是否完全,须取透析膜内溶液进行定性反应检查;一般透析膜可以自制:动物半透膜如猪、牛的膀胱膜、用水洗净,再以乙醚脱脂,,即可供用;羊皮纸膜可将滤纸浸入50%的硫酸15~60分钟,取出铺在板上,以水冲洗制得;其膜孔大小与硫酸浓度、浸泡时间以及用水冲洗速度有关;火棉胶膜系将火棉胶溶于乙醚及无水乙醇,涂在板上,干后放置水中即可供用,其膜孔大小与溶剂种类、溶剂挥发速度有关,溶剂中加入适量水可使膜孔增大,加入少量醋酸可使膜孔缩小;蛋白质胶明胶膜可用20%明胶涂于细布上,阴干后放水中,再加甲醛使膜凝固,冲洗干净即可供用;近来商品有透析膜管成品出售,国外习称“ViskingDialysisTubing”,有各种大小厚度规格,可供不同大小分子量的多糖、多肽透析时选用;六结晶、重结晶和分步结晶法:鉴定中草药化学成分,研究其化学结构,必须首先将中草药成分制备成单体纯品;在常温下,物质本身性质是液体的化台物,可分别用分馏法或层析法进行分离精制;一般他说,中草药化学成分在常温下多半是固体的物质,都具有结晶他的通性,可以根据溶解度的不同用结晶法来达到分离精制的目的;研究中草药化学成分时,一旦获得结晶,就能有效地进一步精制成为单体纯品;纯化台物的结晶有一定的熔点和结晶学的特征,有利于鉴定;如果鉴定的物质不是单体纯品,不但不能得出正确的结论,还会造成工作上的浪费;因此,求得结晶并制备成单体纯品,就成为鉴定中草药成分、研究其分子结构重要的一步;1.杂质的除去:中草药经过提取分离所得到的成分,大多仍然含有杂质,或者是混合成分;有时即使有少量或微量杂质存在,也能阻碍或延缓结晶的形成;所以在制备结晶时,必须注意杂质的干扰,应力求尽可能除去;有时可选用溶剂溶出杂质,或只溶出所需要的成分;有时可用少量活性炭等进行脱色处理,以除去有色杂质;有时可通过氧化铝,硅胶或硅藻土短柱处理后,再进行制备结晶;但应用吸附剂除去杂质时,要注意所需要的成分也可能被吸附而损失;此外,层析法更是分离制备单体纯品所常用的有效方法;如果一再处理仍未能使近于纯品的成分结晶化,则可先制备其晶态的衍生物,再回收原物,可望得到结晶;例如游离生物。

中药提取方法大全

中药提取方法大全

中药提取方法大全中药提取是指将中药材中的活性成分通过一定的物理或化学方法提取出来,达到纯化、浓缩、分离等目的。

下面将介绍几种常见的中药提取方法。

1.水提法:将中药材浸泡在水中,加热并保持温度一段时间,使中药材中的成分溶解在水中,再进行过滤、浓缩等步骤。

这种方法适用于水溶性较好的中药材。

2.醇提法:将中药材浸泡在醇类溶剂(如酒精、乙醇等)中,经过冷浸、加热浸泡等步骤,使中药材中的成分溶解在醇类溶剂中,再进行浓缩、分离等步骤。

这种方法适用于油溶性较好的中药材。

3.气相色谱法:将中药材经过研磨、提取等步骤,得到提取物后,通过气相色谱仪分析分离其中的成分。

这种方法可以用来鉴定和定量中药中的化学成分。

4.超临界流体提取法:利用超临界流体(如二氧化碳)在高压和高温条件下具有溶解性、扩散性和流动性的特点,使中药材中的活性成分溶解在超临界流体中,通过减压扩散、冷却凝固等步骤,得到中药提取物。

这种方法具有提取效果好、操作简单、溶剂回收利用等优点。

5.微波辅助提取法:将中药材放置在微波辐射场中,利用微波的热量和非热效应,破坏中药材细胞结构,促进活性成分的溶解和转移,从而实现中药的提取。

这种方法具有快速、高效、环保等优点。

6.二次代谢产物提取法:利用微生物发酵技术,使微生物在合适条件下通过代谢产生中药材中的活性成分,然后通过分离、提取等步骤得到。

这种方法适用于部分中药材中一些活性成分含量较低的情况。

以上是几种常见的中药提取方法,不同方法适用于不同中药材的提取,选择适当的方法可以提高提取效果和产品质量。

在实际应用中,还需要考虑成本、操作难易度等因素,选择最适合的提取方法。

中药 分离

中药 分离

中药分离
中药分离是指将中药中的有效成分从其他杂质中分离出来的过程。

中药往往是由多种不同化学成分组成的复杂混合物,因此需要对中药进行分离和提纯,以获取其有效成分并进一步研究和应用。

中药分离的方法主要包括以下几种:
1. 溶剂提取:将中药研磨成粉末后,用适当的溶剂进行提取,使其中的有效成分溶解于溶剂中,再通过蒸发溶剂或其他方法得到提取物。

2. 凝胶层析:将中药提取物制备成试样后,在凝胶层析柱中进行层析分离。

通过控制流动相和色谱柱填料的亲合性,使各种成分在柱中按照不同的速度分离出来。

3. 高效液相色谱(HPLC):采用高效液相色谱技术对中药进行分离。

通过调节流动相的组成和性质,使中药中的各个成分在色谱柱中按照不同的速度分离出来。

4. 薄层色谱:将中药提取物在薄层色谱板上进行分离,通过不同成分在薄层板上的迁移距离的差异,进行分离和鉴定。

5. 萃取:采用不同的萃取方法,如超声波萃取、微波萃取等,从中药中提取并分离出目标成分。

以上是常见的中药分离方法,具体的分离方法选择会根据中药
的性质、成分和研究目的来确定。

中药分离的目的是更好地了解中药的成分和功效,并为药物研发和药物质量控制提供依据。

中药化学成分提取分离和鉴定方法

中药化学成分提取分离和鉴定方法

中药化学成分提取分离和鉴定方法中药化学成分的提取、分离和鉴定是中药研究的重要环节,也是中药科学的核心内容之一、在中药研究中,通过提取分离和鉴定化学成分,可以探寻中药的药理作用、药效物质基础,以及优化中药制剂的配方和给药途径等。

下面介绍一些常用的中药化学成分提取、分离和鉴定方法。

提取方法:1.水提取法:将中药材样品浸泡在适量的水中,通过温度、时间等因素促进药物成分的溶解,然后蒸馏或浓缩得到提取物。

2.醇提取法:将中药材样品浸泡在适量的醇溶剂(如乙醇、甲醇等)中,利用醇的溶解性,提取药物成分。

3.超临界流体提取法:在高压、高温下将超临界流体(如二氧化碳)与中药材接触,强化了药物成分的溶剂力。

4.萃取法:使用有机溶剂与中药材进行萃取,如乙醚、丙酮等。

分离方法:1.薄层色谱法:将提取物吸附于薄层色谱板上,然后通过溶剂的上升作用,利用不同成分在色谱板上的迁移性差异,实现成分的分离。

2.柱层析法:将提取物通过柱层析填料(如硅胶、分子筛等)进行分离,根据成分在填料上的迁移速度差异,实现成分的分离。

3.高效液相色谱法:利用液相色谱仪分离和检测样品中的化合物,根据成分在固定相和流动相之间的相互作用不同来实现成分的分离。

4.气相色谱法:通过将样品挥发成气体,利用气相色谱仪对气体中的化合物进行分析和检测。

鉴定方法:1.紫外-可见光谱法:利用中药成分对紫外-可见光的吸收作用,通过测量药物溶液对特定波长光线的吸收强度,推断其中的成分。

2.红外光谱法:通过测量中药样品对红外光的吸收和透射来分析和鉴定中药成分。

3.质谱法:通过分析和测量中药样品中的质子或离子分子的质量-荷电比(m/z)比值,推断其中的成分。

4.核磁共振谱法:通过测量中药样品中核磁共振现象的有关参数(如化学位移、耦合常数等),来分析和鉴定中药成分。

综上所述,中药化学成分提取、分离和鉴定方法博大精深,研究人员可以选择合适的方法进行实验,并结合多种方法对中药样品进行综合分析,以揭示中药的化学成分和药理活性物质基础。

中药化学提取

中药化学提取

中药化学提取
中药化学提取是指通过物理或化学方法,将中药中的有效成分从植物组织中分离出来的过程。

中药化学提取的目的是深入研究中药的化学成分,提高药物的纯度、活性和稳定性,以便更好地发挥药物的药理作用。

中药化学提取的常用方法包括:
1. 水煎法:将中药材浸泡在水中加热煎煮,水溶性成分在高温下溶解并提取出来。

2. 醇提法:使用有机溶剂如乙醇、甲醇、丙酮等将中药材浸泡或加热,溶剂可溶解出中药的脂溶性成分。

3. 超声波提取法:利用超声波的机械作用和热效应,使中药材中的有效成分快速释放和迁移至溶剂中。

4. 萃取法:使用有机溶剂如乙醚、丙酮、苯等和水混合溶剂,通过萃取操作将药物成分从中药中分离出来。

5. 气相色谱法(GC):利用气相色谱的分离和定性分析能力,将中药中的挥发性成分分离、鉴定和测定。

6. 液相色谱法(HPLC):利用液相色谱分离、鉴定和测定中
药中的化学成分和有机物质。

通过中药化学提取,可以获得中药的化学成分,为进一步研究和应用中药提供基础。

中药化学提取也有助于优化中药的制备工艺,提高药物的质量和疗效。

中药化学成分的分离方法

中药化学成分的分离方法

中药化学成分的分离方法
一种常见的方法呢就是溶剂提取法分离。

就像是从一堆宝贝里挑东西,不同的化学成分在不同的溶剂里溶解性不一样呢。

比如说有些成分在乙醇里溶解得好,有些在水里溶解得好。

咱们就可以利用这个特性,把中药里的成分先提取到不同的溶剂里,这样就初步把它们分开啦。

就像把不同性格的小伙伴分到不同的小组一样有趣呢。

还有吸附色谱法哦。

想象一下,有个超级有吸附能力的小助手,这个小助手就是吸附剂啦。

当含有化学成分的溶液流过这个吸附剂的时候,不同的化学成分就会因为和吸附剂的亲和力不一样,有的紧紧抱住吸附剂,有的就比较容易被冲走。

这样一来,就可以把化学成分分开啦。

这就好比一群小动物过独木桥,有的小动物特别胆小,紧紧抓住桥边,有的就很勇敢,一下子就跑过去了。

离子交换色谱法也很厉害呢。

如果中药里的化学成分有离子的话,这个方法就大显身手啦。

离子交换树脂就像一个很有原则的管理员,它只允许特定的离子和它交换位置。

不同的离子和树脂的亲和力不同,这样就可以把带有不同离子的化学成分分开啦。

就像是按照不同的规则把小朋友们分到不同的游戏区一样。

凝胶色谱法也不能少呀。

这个就像是走迷宫一样。

凝胶就像迷宫的墙壁,化学成分按照分子大小的顺序在这个迷宫里穿梭。

小分子的化学成分就像灵活的小老鼠,可以钻进很多小缝隙,走得比较慢;大分子的化学成分就像大笨熊,只能走比较宽敞的路,走得就快一些。

这样就根据分子大小把化学成分分开啦。

中药化学成分分离方法

中药化学成分分离方法

中药化学成分分离方法中药化学成分的分离方法是指将中药材中的复杂化学成分进行分离、提纯以及鉴定的方法。

由于中药材中含有众多化学成分,而且其中的活性成分往往只占极小比例,因此必须采用适合的分离方法才能获得纯度较高的目标化合物和准确的成分信息。

下面将介绍几种常用的中药化学成分分离方法。

1.化学结构相似性分离法:中药中常含有一类或几类化学结构相似的化合物,这些化合物在物理性质和化学性质上通常有较大差异。

因此,可以利用这些差异性将化合物分离开来。

例如,可利用该方法从中药中分离出不同极性的成分,如苦参中的苦参素、黄酮类和甾醇类。

2.薄层色谱法:薄层色谱法以硅胶、纸或薄浆液为固相载体,采用不同极性的溶剂体系进行分离。

它具有简单、快速、经济和操作方便等优点。

该方法常用于中药中化学成分的初步筛选和指纹图谱的建立。

3.液相色谱法:液相色谱法包括凝胶过滤色谱、凝胶渗透色谱、离子交换色谱、反相液相色谱等。

它们可以根据不同成分的极性、大小、电荷等差异进行选择性分离。

4.气相色谱法:气相色谱法将样品挥发成气体,然后通过色谱柱进行分离。

它适用于具有较低沸点的揮发性成分的分离,如芳香族化合物等。

5.联合技术分离法:联合技术是指在一个实验过程中同时利用两种或两种以上的色谱技术进行分离。

例如,气相色谱-质谱联用技术(GC-MS)能够将气相色谱的分离能力与质谱的鉴定能力相结合,从而获得化合物的分离和鉴定信息。

6.现代色谱技术:现代色谱技术包括超高效液相色谱(UPLC)、超临界流体色谱(SFC)等,它们具有分离效率高、分析速度快和样品用量少等优点,适用于中药中复杂成分的分离和鉴定。

综上所述,中药化学成分的分离方法有多种选择,具体选择合适的方法需要根据中药成分的特性、样品的性质以及研究目的来确定,这样才能获得准确、可靠的分析结果。

中草药中各类化学成分提取分离方法

中草药中各类化学成分提取分离方法

联用技术是提高中草药化学成分提取分离效率的重要手段。例如,色谱
与质谱联用可以提供更准确的定性和定量信息,提高复杂样品的分析速
度和分离效果。
中草药中化学成分提取分离方法挑战与对策
样品复杂性
仪器限制
标准化和规范化
中草药化学成分具有极高的复杂性, 给提取和分离带来很大困难。为解决 这一问题,研究者们正在研究更有效 的预处理技术,如同时蒸馏萃取、超 临界流体萃取等,以简化样品,提高 分离效率。

黄酮类成分通常具有芳香性,分 子结构中包含多个羟基和羰基, 因此具有较好的溶解性和稳定性

黄酮类成分提取方法
溶剂提取法
超声波辅助提取法
利用不同溶剂对黄酮类成分的溶解度不同 ,选择适当的溶剂进行提取。常用的溶剂 包括甲醇、乙醇、丙酮等。
利用超声波的振动和热效应,加速溶剂与 植物组织之间的传质过程,提高黄酮类成 分的提取效率。
感谢您的观看
THANKS
02
研究方法包括文献综述和归纳整 理,对中草药中各类化学成分的 提取和分离方法进行分类和总结 。
02
中草药中生物碱类成分 提取分离方法
生物碱类成分概述
生物碱是一类天然含氮的有机 化合物,广泛分布于中草药中 ,具有多样的药理活性。
生物碱的种类繁多,根据其结 构特点可分为吡咯烷类、吡啶 类、喹啉类等。
溶剂提取法
利用多糖在不同溶剂中的溶解度差异,选择 合适的溶剂进行提取,常用溶剂包括水、甲 醇、乙醇等。
热水提取法
将中草药粉碎后,加入热水浸泡一定时间,过滤后 得到多糖溶液,再经过浓缩、干燥得到多糖。
离子交换树脂法
利用离子交换树脂的吸附作用,将中草药中 的多糖吸附在树脂上,再通过洗脱、纯化、 干燥得到多糖。

第三章 中药化学成分的提取、分离方法

第三章 中药化学成分的提取、分离方法

效成分的一种方法。根据浸渍时的温度,浸渍法可以被分为冷浸和温浸两种。 • 适用范围:一般以水、醇或稀醇为溶剂时采用此法。 • 注意事项: ① 药材提取前应预先粉碎,药材粉碎度应合适;
② 溶剂应以浸过药面为宜;
③ 浸泡过程中应经常搅拌;
29

优点:操作简便、低温、有利于酶解作用等而适宜于挥发性成分、 热不稳定性成分、含淀粉或树胶多的成分的提取。
根据物质在两相溶剂中的分配比不同进行分离 根据物质溶解度差别进行分离 根据物质的吸附性差别进行分离 根据物质分子大小差异进行分离
35
三、中药化学成分的分离方法
一)根据物质在两相溶剂中的分配比不同进行分离 两相溶剂萃取法
• 原理:利用混合物中各组分在两相溶剂中的分配系数不同而进行分离的分法。 • 适用范围:在两相溶剂中分配系数不同的混合物中各组分的分离。 • 操作过程:一般是将浓缩后的总提取物,选用二、三种不同极性的溶剂,由低至高
17
二、中药化学成分的提取方法
1.升华法:
• 原理:利用某些药材中的有效成分具有升华性的特点而进行的升华提取法。
• 适用范围:具有升华性质,而且化学结构遇热稳定、不易被破坏的化合物。 该方法具有特异性高,所得化学成分较纯的优点。但一般植物中可升华的 成分很少,例如:樟木中的樟脑,茶叶中的咖啡碱(因)及存在于植物中的 苯甲酸等成分的提取均可采用此法,操作时采用减压下加热升华则可避免 不足,该法很少用于大规模制备。
6
一、天然产物化学成分的预实验
2、各类成分的检测: 2.1 检查生物碱类


碘化汞钾试剂→ 白色或浅黄色沉淀
碘化铋钾试剂→ 桔红色沉淀

硅钨酸试剂 → 淡黄色或灰白色沉淀
生物碱的鉴别试剂

中药化学成分提取分离和鉴定的方法

中药化学成分提取分离和鉴定的方法

中药化学成分提取分离和鉴定的方法一、提取方法中药的有效成分一般分布在天然产物中,通过提取可以将其集中起来,常用的提取方法有:1.水浸提取:将中药粉末与适量的水混合,使用热水或冷水浸泡一定时间后,过滤、浓缩,得到中药水提取液。

2.醇提取:将中药粉末与乙醇或其他有机溶剂混合,浸泡一段时间,过滤、浓缩,得到中药醇提取液。

3.超声波提取:通过超声波的机械作用,使溶剂渗入叶片和组织细胞中,加速物质的扩散和溶解,提高提取效率。

二、分离方法提取液中含有多种成分,需要进行分离,常用的分离方法有:1.疏水色谱法:利用不同成分在非极性固定相上的亲疏水性差异进行分离,如硅胶柱色谱、C18柱色谱等。

2.离子交换色谱法:利用各种带电的成分与离子交换树脂之间的相互作用进行分离,如阴离子交换色谱、阳离子交换色谱等。

3.层析法:利用固定相的颗粒特性进行分离,如薄层色谱、高效液相色谱等。

三、鉴定方法分离后的化合物需要进行鉴定,常用的鉴定方法有:1.紫外-可见吸收光谱:通过测量物质在紫外或可见光区域的吸收特性,判断物质的化学结构和含量。

2.红外光谱:利用物质对红外辐射的吸收和散射特性,推断化学结构。

3.质谱:通过分子的分解产物质谱图,确定分子的相对分子量、结构和化学式。

4.核磁共振波谱:通过核磁共振信号的强度、位置和形状,测定化合物的结构和相对分子量。

综上所述,中药化学成分的提取、分离和鉴定方法涵盖了水浸提取、醇提取、超声波提取、疏水色谱、离子交换色谱、层析法、紫外-可见吸收光谱、红外光谱、质谱和核磁共振波谱等一系列实验技术。

这些方法的选用需要根据具体的中药材和目标成分的特点来决定,以获得准确、可靠的结果。

同时,为了提高方法的效率和可重复性,对仪器设备和实验条件的选择与控制也是非常重要的。

中药化学成分的分离方法

中药化学成分的分离方法

影响液滴逆流分配的主要因素有:①被分离成分在两相溶剂间的分配系数要大;②形成大小合适的移动相液滴,这与两相间的界面张力、密度差、输液管口径和萃取管材料等有关,可以采用数根萃取管预试液滴的形成情况而确定;③液滴间的间隔,与泵的送液速度有关,送液速度过快,液滴间几无间隔变成线流通过固定相,通常也可经过小样探索而定。
可用作超临界流体的物质很多,如二氧化碳、一氧化氮、甲烷、乙烷、六氟化硫、氨等。目前使用最为广泛的是二氧化碳,其临界温度(31.3℃)低,可在常温下操作,并对大部分物质呈化学惰性。这样,使中药中的化学成分能在低温条件下安全地被萃取出来,有效地防止了“热敏性”或化学不稳定性成分的氧化和逸散,使萃取物保持中药的全部成分。
1.超临界流体的特性与种类
超临界流体是指物质在高于其临界温度(TC)和临界压力(PC)时所形成的单一相态。处于超临界状态的物质既不是液体,也不是气体,理化性质介于液体和气体之间,其特性表现为:①超临界流体的密度比气体大,而与液体密度相近,因此分子间距离缩短,分子间相互作用大大增强,溶解作用近似于液体;②粘度低于液体而与气体的粘度相近,扩散系数却比液体大10~100倍,有利于成分的扩散溶解;③超临界流体的密度、粘度和扩散系数等,都与温度、压力和流体组成有关。
中药化学成分经提取浓缩后,得到的仍是含有多种成分的混合物,需选用适当的方法将其中所含各种成分逐一分开,并把所得单体加以精制纯化,这一过程称为分离。
一、两相溶剂萃取法
两相溶剂萃取法简称萃取法,是利用混合物中各成分在两种不相混溶的溶剂中分配系数的不同达到分离的方法。分配系数是指在一定温度时,一种物质溶解在相互接触但不混溶的两相溶剂中,溶解平衡后,两溶剂中溶质浓度的比值。此比值在一定的温度及压力下为一常数,可以用下式表示:

中草药中各类化学成分提取分离方法

中草药中各类化学成分提取分离方法
间分离过程称为柱色谱。 柱色谱分:常压柱色谱、加压柱色谱 载体(支持剂):硅胶、硅藻土及纤
维素等 按洗脱次序分:正相色谱、反相色谱
中草药中各类化学成分提取分离方法
33/69
正相色谱:
固定相:水、缓冲溶液
流动相:氯仿、乙酸乙酯、丁醇等弱极 性有机溶剂
洗脱次序:极性小化合物先出柱,极 性 大后出柱。
应用:适合用于水溶性或极性较大化合 物,如生物碱、苷、糖类、有机酸等。
亲水性强,则极性强;极性强,则亲水 性并不一定强。
OH
OH
HO
O
OH
HO
O
OH
A OH OH O
B
OH OH O
亲水性A>B
极性 B>A
中草药中各类化学成分提取分离方法
46/69
吸附柱色谱用于物质分离:
1.选取极性小溶剂装柱和溶解样品或 用极性稍大溶剂溶解样品后,以少 许吸附剂拌匀挥干,上柱。
冷提法提出杂质少且对热不稳定成份较 适宜,提取效率低;而热提法效率高, 但对热不稳定成份不宜,尤其不适于挥 发性成份和淀粉、粘液质多药材提取。
中草药中各类化学成分提取分离方法
17/69
亲水性有机溶剂-也就是普通所说 与水能混溶有机溶剂,如乙醇、甲 醇、丙酮等,其中以乙醇最为惯用。 含有经济、安全、无毒;对细胞穿 透能力强;大多数天然成份都可溶 解等优点,常称为万能溶剂。
13/69
2.渗漉法:是将药材装入渗漉筒中, 先用水或醇浸渍数小时,然后从渗 漉筒下口使提取液流出,上口不停 地加入新溶剂,此方法因为药材与 溶剂之间能够一直保持较大浓度差, 所以提取效率较高。该法一样适合 用于挥发性及受热易破坏分解成份 提取。不过有溶剂花费量较大缺点。

中药化学成分的分离方法

中药化学成分的分离方法

中药化学成分的分离方法中药化学成分的分离是中药现代化研究的重要内容,其目的是通过分离提纯,确定中药中的主要活性成分,便于进一步的药理活性研究和药物开发。

中药化学成分的分离方法涉及多个领域的知识,如化学、生物学、分析方法学等。

本文将介绍几种常见的中药化学成分的分离方法。

1.薄层色谱(TLC)薄层色谱是一种简单、快速、经济的分离方法,广泛应用于中药成分的分离鉴定。

其原理是将待分离的混合物通过毛细管或吸附在薄层上,通过固定相与移动相的相互作用,使各组分在薄层上展开,进而实现分离。

薄层色谱可以通过对比色、紫外可见光谱或化学显色等方式进行定性和定量分析。

2.离子交换层析离子交换层析是利用固定在固相上的离子交换剂与离子交换液相之间的相互作用进行分离。

它可以根据离子交换剂的性质选择相应的液相,达到对离子化合物的提纯和分离的目的。

离子交换层析可以根据样品的离子性质和pH值的调节来实现对目标成分的富集和分离。

3.气相色谱(GC)气相色谱是一种常用的分离方法,适用于易挥发的有机物的分离与鉴定。

它基于样品分子在固定相和气相之间的分配行为,通过变化温度或增加载气(或称为惰性气体)的流速,实现对样品中挥发性成分的分离。

GC 可以结合质谱(MS)等技术进一步确定目标化合物的结构。

4.高效液相色谱(HPLC)高效液相色谱是一种强制流动相分离分析技术,适用于中药化学成分的分离和分析。

它基于样品分子在固定相和液相之间的分配行为,通过变化流动相的性质(如极性、pH值等)和流速,实现对样品中成分的分离和定量。

HPLC可以结合不同类型的检测器,如紫外可见光谱检测器、荧光检测器、电化学检测器等,对目标化合物进行定性和定量分析。

5.超高效液相色谱(UHPLC)超高效液相色谱是近年来发展起来的分离技术,具有高分离效率、高灵敏度和高分辨率的特点。

与传统的HPLC相比,UHPLC采用了更小的颗粒直径固定相和更高的流速,实现对复杂混合物的快速分离。

中药化学成分提取分离与鉴定方法.

中药化学成分提取分离与鉴定方法.
(2)提取温度:煮沸1小时左右,2-3次 (3)优点:操作简单,提取效率高 (4)提取时应避免使用铁器
4、回流提取法
(1)适用范围:有效成分对热稳定,易溶于 低沸点有机溶剂的天然药材
(2)优点:提取效率高 (3)缺点:溶剂消耗量大,对热不稳定的药
材不适用
5、连续回流提取法
(1)用少量溶剂进行连续循环回流提取,充 分将有效成分浸出;
二、水蒸气蒸馏法
(1)基本原理:水和与水互不相溶的液体成 分共存时,其总的蒸气压升高,但沸点降 低(低于水的沸点),使有效成分在较低 的温度下随水蒸气蒸馏出来;
(2)适用范围:具有挥发性,沸点高能随水 蒸气馏出而不被破坏,不溶或难溶于水, 与水不发生化学反应的天然药物化学成分。 如挥发油、麻黄碱、丹皮酚等。
2、渗漉法(动态浸提方法)
(1)适用范围:遇热不稳定的成分或含大量 多糖类药材的提取
(2)提取温度:常温 (3)提取时间:较长 (4)优点:保持较好的浓度差,提取效率高 (5)缺点:操作不方便,提取溶剂用量大,
时间长。 (6)连续渗漉装置
3、煎煮法
(1)适用范围:有效成分能溶于水且不易被 水、热破坏的天然药材,不宜用于含挥发 性成分、遇热不稳定及含多糖类的药材
2、基本原理(渗透扩散原理)
粉碎后的药材,加入适宜的溶剂 → 溶 剂渗透、进入药材,溶解可溶性成分 → 药 材细胞内外,可溶性成分形成浓度差,产 生渗透压 → 扩散 → 再不断地渗透、扩散 → 最终达到动态平衡
3、影响因素
影响提取效率的因素:
(1)溶剂的选择:相似相溶的原理,根据溶剂
的极性,被提取成分及共存的其他成分的性质来 决定,同时兼顾考虑溶剂是否使用安全、易得、 价廉、浓缩方便等问题;

中药材的化学成分提取

中药材的化学成分提取

中药材的化学成分提取
中药材的化学成分提取是指从中药材中提取出具有药理活性的化学成分。

常见的提取方法包括以下几种:
1. 浸提法:将中药材浸泡在合适的溶剂中,使溶剂中的化学成分溶解出来,然后通过过滤、蒸发等步骤得到提取物。

2. 粉碎法:将中药材研磨成细粉,使其表面积增大,有利于溶剂中化学成分的提取。

3. 超声波提取法:利用超声波的机械作用和热效应,促进药材中化学成分的溶解和迁移,提高提取效率。

4. 热水提取法:将中药材用热水浸泡或煮沸,使其温度升高,有利于水溶性化学成分的溶解和提取。

5. 蒸馏提取法:利用蒸馏原理,通过加热和冷却,将挥发性化学成分从中药材中分离出来。

6. 有机溶剂提取法:使用有机溶剂(如醇、醚、醚酮等)与中药材进行溶剂抽提,提取出相应的有机溶剂可溶性化学成分。

以上提取方法可以单独使用或者结合使用,根据中药材的化学成分特性和所需提取物的特点选择合适的方法。

提取后的化学成分可以进一步进行分离、纯化和结构鉴定等分析研究。

中药化学成分分离方法

中药化学成分分离方法

中药化学成分分离方法
直接提取法是最简单的一种分离方法。

其原理是将中药材粉碎后直接
用溶剂浸泡,使药物的有效成分溶解到溶剂中。

常用的溶剂包括水、乙醇、醚等。

直接提取法操作简单,适用于药材中水溶性成分的分离。

溶剂萃取法是常用的分离方法之一、其原理是将药材粉碎后与一种或
多种溶剂反复浸泡,使有效成分逐步溶解到溶剂中。

一般按照极性不同进
行连续萃取,从而将不同极性成分分离出来。

溶剂萃取法适用于分析药材
中的非极性成分。

色谱法是一种高效、准确的分离方法。

其中,薄层色谱法(TLC)和
高效液相色谱法(HPLC)是最常用的两种方法。

薄层色谱法是将以硅胶为
主要固体载体的色谱材料涂铝箔或玻璃片上,然后将样品施于上面,通过
溶液移动将样品中的有效成分分离出来。

高效液相色谱法则是将药物样品
通过高压泵送进入柱子内,通过固定相将样品中的不同成分分离出来。


谱法分离效果好,可同时分离出多种成分,并且可以定量分析。

免疫分析法是一种通过免疫反应实现分离的方法。

免疫分析法的基本
原理是将中药中的有效成分和抗原结合,通过检测抗原-抗体结合程度来
测定样品中药物成分的含量。

免疫分析法具有高灵敏度、特异性强的特点,但是需要特定的试剂和设备,操作相对复杂。

综上所述,中药化学成分的分离方法多样,根据需要可以选择合适的
方法进行分离和测试。

直接提取法和溶剂萃取法操作简单,适用于水溶性
和非极性成分的分离;色谱法分离效果好,适用于多种成分的分离和定量
分析;免疫分析法灵敏度高,适用于特定成分的分离和含量测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 铅盐沉淀法既可用来除去杂质,也可 用来沉淀有效成分。
脱铅方法
• 1.通入硫化氢气体法 • 2.硫酸盐或磷酸盐 • 3.阳离子交换树脂法
3.超临界流体萃取法的应用
• 超临界流体萃取法始于20世纪50年代,到 70年代末,该法广泛应用于烟草和食品工业, 80年代以来,超临界流体萃取技术在医药、 化工、食品及环保等领域取得了迅速发展, 特别是在中药有效成分提取分离方面日益受 到重视。目前主要用于萜类、挥发油、生物 碱、黄酮、苯丙素、皂苷和芳香有机酸等成 分的提取分离。在青蒿素浸膏、蛇床子浸膏、 胡椒精油、肉豆蔻精油等的制备分离方面已 达到产业化规模。
• 可用作超临界流体的物质很多,如二氧化 碳、一氧化氮、甲烷、乙烷、六氟化硫、氨 等。目前使用最为广泛的是二氧化碳,其临 界温度(31.3℃)低,可在常温下操作,并对 大部分物质呈化学惰性。这样,使中药中的 化学成分能在低温条件下安全地被萃取出来, 有效地防止了“热敏性”或化学不稳定性成 分的氧化和逸散,使萃取物保持中药的全部 成分。
三、沉淀法
• 沉淀法是在中药提取液中加入某些 试剂,与其中一些成分生成沉淀,或加 入某些试剂后可降低一些成分在溶液中 的溶解度而自溶液中析出的一种方法
• 如果所需要分离获得的成分生成沉 淀,则沉淀反应必须是可逆的;如果是 不需要的成分,则将生成的沉淀除去, 可以是不可逆的沉淀反应。
• (一)乙醇沉淀法

K-分配系数

CH-物质在上层溶剂中的浓度
• •
K = CH CL
CL-物质在下层溶剂中的浓度
• 混合物中各成分在两相溶剂中,分配系数相差越大,分离效果
越好。
• (一)简单萃取法
• 是分离物质最简单最基础的手段,常用 于初步分离。
• (二)逆流连续萃取法
• 是一种两相溶剂逆行的连续萃取方法。 其装置如图2-5
• 液滴逆流分配法的分离效果往往比逆流分溶法 好,且不会产生乳化现象。移动相用氮气驱动, 被分离物质不会因遇空气中氧而氧化。应用该法 曾满意地分离纯化多种成分,如皂苷、生物碱、 蛋白质、多肽、氨基酸及糖类等。
二、超临界流体萃取法
• 超临界流体萃取法(Supercritical Fluid Extraction, SFE)是以超临界流 体(简称SF)代替常规有机溶剂进行提 取、分离的一种新型方法。
2.基本原理
• 超临界流体萃取的原理主要是根据超 临界流体对物质有很强的溶解能力,且 改变温度或压力即可改变流体的密度、 粘度和扩散系数,流体对物质的溶解特 性也随之改变,因此,可将不同性质的 成分分段萃取或分步析出,达到萃取分 离的目的。
• 实际应用中,一般采用程序升压法 分步萃取不同极性的成分。超临界流体 萃取成分之后,可利用减压法,使流体 膨胀,密度降低,变为气体,与成分成 为两相而分离。所以此法的优点是萃取 物无残留有机溶剂,分离后的气体可循 环使用,而且避免了溶剂对环境的污染。 工艺流程简图见图2-8。
第三节 中药化学成分的分离方 法
• 中药化学成分经提取浓缩后,得到 的仍是含有多种成分的混合物,需选用 适当的方法将其中所含各种成分逐一分 开,并把所得单体加以精制纯化,这一 过程称为分离。
一、两相溶剂萃取法
• 两相溶剂萃取法简称萃取法,是利用混合物中各成分在两种不 相混溶的溶剂中分配系数的不同达到分离的方法。分配系数是 指在一定温度时,一种物质溶解在相互接触但不混溶的两相溶 剂中,溶解平衡后,两溶剂中溶质浓度的比值。此比值在一定 的温度及压力下为一常数,可以用下式表示:
• 这是在逆流分溶法基础上改进发展 起来的一种高分离效能的两相溶剂萃取 法。利用混合物中各成分在两液相间分 配系数的差别,由流动相形成液滴,通 过作为固定相的液体柱而达到分离纯化 的目的。其装置示意图见2-7
• 影响液滴逆流分配的主要因素有:①被分离 成分在两相溶剂间的分配系数要大;②形成大小 合适的移动相液滴,这与两相间的界面张力、密 度差、输液管口径和萃取管材料等有关,可以采 用数根萃取管预试液滴的形成情况而确定;③液 滴间的间隔,与泵的送液速度有关,送液速度过 快,液滴间几无间隔变成线流通过固定相,通常 也可经过小样探索而定。
1.超临界流体的特性与种类
• 超临界流体是指物质在高于其临界温度(TC)和临 界压力(PC)时所形成的单一相态。处于超临界状态 的物质既不是液体,也不是气体,理化性质介于液体 和气体之间,其特性表现为:①超临界流体的密度比 气体大,而与液体密度相近,因此分子间距离缩短, 分子间相互作用大大增强,溶解作用近似于液体;② 粘度低于液体而与气体的粘度相近,扩散系数却比液 体大10~100倍,有利于成分的扩散溶解;③超临界 流体的密度、粘度和扩散系数等,都与温度、压力和 流体组成有关。
行数十次以上的分离方法。如图2-6所示

逆流分溶法因操作条件温和、试样
易回收,故特别适合于中等极性、不稳
定、性质相似成分的分离。另外,溶质
浓度越低,分离效果越好。但试样极性
过大或过小,或分配系数受浓度或温度
影响过大时,则不易采用此法分离。易
于乳化的萃取溶剂系统也不易采et Counter Current Chromatography,DCCC)
• 此法是在浓缩后的水提取液中,加入一定量 的乙醇,使某些难溶于乙醇的成分从溶液中 沉淀析出的方法
• (二)酸碱沉淀法
• 本法是利用某些成分在酸(或碱)中溶解, 而在碱(或酸)中沉淀的性质达到分离的方 法。
• (三)铅盐沉淀法
• 是利用中性醋酸铅或碱式醋酸铅在水 或稀醇溶液中能与许多物质生成难溶性 的铅盐或铅络合物沉淀,而使各成分得 以分离的方法。
(三)逆流分溶法(Counter Current Distribution,CCD)

对性质相似的异构体或同系物,因在两
相溶剂系统中的分配系数接近,用一般的萃
取及转移操作常须进行几十次乃至几百次,
简单的分次萃取已不能满足需要,用逆流分
溶法可得到理想的分离效果。

逆流分溶法又称逆流分配法、逆流分布
法或反流分布法。是一种将液-液萃取反复进
相关文档
最新文档