2018绵阳二诊理科数学试题及答案
2018年四川省绵阳市游仙区中考数学二诊试卷带答案解析(解析版)

2018年四川省绵阳市游仙区中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.B.C.2D.2.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志3.(3分)我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10﹣3毫米的颗粒物,用科学记数法表示数2.5×10﹣3,它应该等于()A.0.25 B.0.025 C.0.0025 D.0.000254.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°5.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣26.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为多少?()A.18米B.13米C.12米D.5米7.(3分)如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?()A.B.C.D.8.(3分)如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(﹣4,m),B(﹣1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+7 C.y=(x+3)2﹣5 D.y=(x+3)2+4 9.(3分)2018(第七届)绵阳之春国际车展将于2018年4月18日﹣22日在绵阳国际会展中心盛大举行.某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖.已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()A.B.C.D.10.(3分)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为多少?(参考数据:≈1.414,≈1.732,≈2.236)()A.320cm B.395.24 cm C.431.76 cm D.480 cm11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?()A.1 B.C.2 D.12.(3分)关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,那么k的取值范围是()A.﹣1<k<0 B.k<0 C.k>3或k<0 D.k>﹣1二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:x3﹣9x=.14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=度.15.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为只,树为棵.16.(3分)如图,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O的弦AB与小半圆O1交于E、F,AB=6cm,EF=2cm,且AB∥CD.则阴影部分的面积为cm2(结果保留准确数)17.(3分)请看如图左边杨辉三角(1),并观察右边等式(2):写出(x+)200的展开式中含x196项的系数是.18.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G,如果正方形ABCD的边长为1,则△CHG的周长为三.解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001﹣(﹣3)×tan30°(2)先化简,再求值:(﹣a2+b2),其中a=3﹣2,b=3﹣3 20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.(11分)如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2.将矩形ABCD绕点O顺时针旋转60°,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,连接DN.(1)求反比例函数的解析式;(2)求△AMN的面积;22.(11分)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ23.(11分)绵阳某工厂从美国进口A、B两种产品销售,已知每台A种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B种产品的进价上涨500元,进口相同数量的B种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元.(1)中美贸易大战开始之后,每台B种产品的进价为多少?(2)中美贸易大战开始之后,如果A种产品的进价和售价不变,每台B种产品在进价的基础上提高40%作为售价.公司筹集到不多于35万元且不少于33万元的资金用于进口A、B两种产品共150台,请你设计一种进货方案使销售后的总利润最大.24.(12分)如图,二次函数y=x2﹣2mx+8m的图象与x轴交于A、B两点(点A 在点B的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点.(1)求这条抛物线的解析式;(2)求点E的坐标;(3)过抛物线上一点P(点P不与B、C重合)作PQ⊥x轴于点Q,是否存在这样的点P使△PBQ和△BOC相似?如果存在,求出点P的坐标;如果不存在,说明理由.25.(14分)在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF 交对角线BD于点G(如图2),求线段MG的长.2018年四川省绵阳市游仙区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.B.C.2D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2的绝对值是:2﹣.故选:C.2.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.3.(3分)我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10﹣3毫米的颗粒物,用科学记数法表示数2.5×10﹣3,它应该等于()A.0.25 B.0.025 C.0.0025 D.0.00025【分析】把2.5的小数点向左移动3个位,即可得到.【解答】解:2.5×10﹣3=0.0025.故选:C.4.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【分析】求出∠ACO的度数,根据三角形的外角性质得到∠AOB=∠A+∠ACO,代入即可.【解答】解:∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.故选:C.5.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣2【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,当c<0时,得ac<bc,错误;B、由a>b,得﹣2a<﹣2b,错误;C、由a>b,得﹣a<﹣b,错误;D、由a>b,得a﹣2>b﹣2,正确;故选:D.6.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为多少?()A.18米B.13米C.12米D.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE 的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan45°=18×1=18米,∴CD=CE﹣DE=18米﹣5米=13米;故选:B.7.(3分)如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?()A.B.C.D.【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求得.【解答】解:∵⊙O的直径为1m,则半径是:m,∴S=π×()2=,⊙O连接BC、AO,根据题意知BC⊥AO,AO=BO=,在Rt△ABO中,AB=,即扇形的对应半径R=,弧长l=,设圆锥底面圆半径为r,则有2πr=,解得:r=(m).故选:A.8.(3分)如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(﹣4,m),B(﹣1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+7 C.y=(x+3)2﹣5 D.y=(x+3)2+4【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B于点C,则C(﹣1,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x+3)2+1的图象过点A(﹣4,m),B(﹣1,n),∴m=(﹣4+3)2+1=1,n=(﹣1+3)2+1=3,∴A(﹣4,1),B(﹣1,3),过A作AC∥x轴,交B′B于点C,则C(﹣1,1),∴BC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x+3)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x+3)2+4.故选:D.9.(3分)2018(第七届)绵阳之春国际车展将于2018年4月18日﹣22日在绵阳国际会展中心盛大举行.某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖.已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()A.B.C.D.【分析】设闯过第二关的概率为x,依据0.8x=0.5,可得x=;设闯过第三关的概率为y,依据连续闯过三关的概率为0.3,即可得到连续闯过两关的参与者获得终极大奖的概率.【解答】解:设闯过第二关的概率为x,则0.8x=0.5,∴x=,设闯过第三关的概率为y,∵连续闯过三关的概率为0.3,∴0.8××y=0.3,解得y=,即连续闯过两关的参与者获得终极大奖的概率为,故选:D.10.(3分)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为多少?(参考数据:≈1.414,≈1.732,≈2.236)()A.320cm B.395.24 cm C.431.76 cm D.480 cm【分析】由主视图知道,高是20cm,两顶点之间的最大距离为60cm,应利用正六边形的性质求得底面对边之间的距离,然后所有棱长相加即可.【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=60÷2=30(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=15(cm),所以AD=2AB=30(cm),胶带的长至少=30×6+20×6≈431.76(cm).故选:C.11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?()A.1 B.C.2 D.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.【解答】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD 相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为﹣1;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为﹣1.故选:D.12.(3分)关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,那么k的取值范围是()A.﹣1<k<0 B.k<0 C.k>3或k<0 D.k>﹣1【分析】把一元二次方程解的问题转化为抛物线与x轴的交点问题,则利用题意得抛物线y=x2+2kx+3k与x轴的两个交点到在(﹣1,0)和(3,0)之间,利用二次函数图象得到x=﹣1时,y>0和当x=3时,y>0;接着由3k<0确定抛物线与x轴有2个交点,然后解关于k的不等式组确定k的范围.【解答】解:∵关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,∴抛物线y=x2+2kx+3k与x轴的两个交点到在(﹣1,0)和(3,0)之间,∴3k<0,解得k<0,∵x=﹣1时,y>0,∴1﹣2k+3k>0,解得k>﹣1;当x=3时,y>0,∴9+6k+3k>0,解得k>﹣1,∴k的范围为﹣1<k<0.故选:A.二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:x3﹣9x=x(x+3)(x﹣3).【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=145度.【分析】根据平行线的性质求得∠AFC=∠A=60°,再根据三角形的外角的性质求得∠E=35°,再根据三角形的中位线定理的位置关系得到GH∥EF,从而求解.【解答】解:∵AB∥CD,∠A=60°,∴∠AFC=∠A=60°.又∠C=25°,∴∠E=35°,∵G、H分别为CF、CE的中点,∴GH∥EF,∴∠1+∠E=180°,∴∠1=145°.15.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为20只,树为5棵.【分析】通过理解题意,可知本题存在两个等量关系,即3×树的棵树+5=鸦的只数,5×(树的棵树﹣1)=鸦的只数,根据这两个等量关系可列出方程组.【解答】解:可设鸦有x只,树y棵.则,解得.答:鸦有20只,树有5棵.16.(3分)如图,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O的弦AB与小半圆O1交于E、F,AB=6cm,EF=2cm,且AB∥CD.则阴影部分的面积为4πcm2(结果保留准确数)【分析】将两个圆变为同心圆.做OM⊥AB于M,连接OB、OF,构造直角三角形,利用所构造的两个三角形有公共边OM,可找到两个半圆的半径平方差与已知条件之间的关系:OB2﹣OF2=OM2+32﹣(OM2+12〕=8,阴影部分的面积是两个半圆的面积差.代入数据求解即可.【解答】解:如图将两个圆变为同心圆.作OM⊥AB于M,连接OB、OF,则MF=EF=1,BM=AB=3,S阴影=πOB2﹣πOF2,=π(OB2﹣OF2),=π[OM2+32﹣(OM2+12)],=4π(cm2),故答案为:4π.17.(3分)请看如图左边杨辉三角(1),并观察右边等式(2):写出(x+)200的展开式中含x196项的系数是19900.【分析】首先确定x196是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(x+)200展开式中含x196项的系数,由(x+)200=x200+200•x199•()+•x198•()2…可知,展开式中第三项为19900•x198•()2=19900x196,∴(x+)200展开式中含x196项的系数是19900,故答案为:19900.18.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G,如果正方形ABCD的边长为1,则△CHG的周长为2【分析】连接AH、AG,作AM⊥HG于M.判定△AHD≌△AHM,可得DH=HM,AD=AM,即可得出AM=AB,AG=AG,再判定Rt△AGM≌Rt△AGB,即可得到GM=GB,进而得到△CHG的周长.【解答】解:如图,连接AH、AG,作AM⊥HG于M.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH∥AB,∴∠DHA=∠HAB=∠AHM,∵AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM,∵AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,∴△GCH的周长=CH+HM+MG+CG=CH+DH+CG+GB=2BC=2×1=2,故答案为:2.三.解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001﹣(﹣3)×tan30°(2)先化简,再求值:(﹣a2+b2),其中a=3﹣2,b=3﹣3【分析】(1)先计算负整数指数幂、零指数幂、化简二次根式、代入三角函数值,再计算乘法,最后计算加减可得;(2)先将括号内多项式因式分解,再利用乘法分配律展开,最后计算加减可得,继而将a、b的值代入计算可得.【解答】解:(1)原式=9+1﹣1﹣(2﹣3)×=9﹣2+3=10;(2)原式=﹣×[﹣(a+b)(a﹣b)]=﹣+a+b=a+b,当a=3﹣2,b=3﹣3时,原式=3﹣2+3﹣3=.20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.21.(11分)如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2.将矩形ABCD绕点O顺时针旋转60°,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,连接DN.(1)求反比例函数的解析式;(2)求△AMN的面积;【分析】(1)根据反比例函数系数k的几何意义来求k的值.(2)利用分割法求得△AMN的面积即可.【解答】解:(1)由题意可得:OB=OE=2,∠DOG=60°∴∠ACD=90°﹣60°=30°.在Rt△EOM中,EM===2=OE•EM=×2×2=2∴S△EOM∴反比例函数解析式为:y=;(2)如图,连接DN,AN.在Rt△BOC中,∠BOC=60°∴BC=OB=×2=6∴EF=OG=6∴S=AE﹣AG=6×2=12矩形AGFE在y=中,当x=6时,y=∴NG=∴FN=FG﹣NG=2﹣=由(1)可知:EM=2,∴MF=EF﹣EM=6﹣2=4=MF•FN=××4=∴S△MFNS△ONG=OG•NG=×6×=2=S矩形AGFE﹣S△AEM﹣S△MFN﹣S△ONG=12﹣2﹣﹣2=.∴S△AMN22.(11分)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【分析】(1)利用全等三角形的性质得AD=BO=AB=1,再由切线长定理得到DP=DA=1,连接OP,则可证明四边形AOPD为菱形得到DQ∥AB,然后证明四边形ABQD为平行四边形,从而得到BQ=AD=1;(2)先证明△BFO∽△ABD,利用相似比得到BF=,在利用切线长定理得到DA=DP,QB=QP,作QK⊥AD于K,如图,则QK=AB=2,利用勾股定理得到(AD ﹣BQ)2+22=(DA+BQ)2,则BQ=,从而得到BQ=BF.【解答】(1)∵△ABD≌△BFO,∴AD=BO=AB=1,∵射线AM、DQ为半圆O的切线,∴DP=DA=1,连接OP,∵OA=AD=DP=OP,∴四边形AOPD为菱形,∴DQ∥AB,∵射线AM、BN为半圆O的切线,∴DA⊥AB,QB⊥AB,∴DA∥BQ,∴四边形ABQD为平行四边形,∴BQ=AD=1;(2)证明:∵BF⊥AB,OE⊥BD,∴∠BFO=∠ABD,∴△BFO∽△ABD,∴=,∴BF=,∵AD、DQ、QB为切线,∴DA=DP,QB=QP,作QK⊥AD于K,如图,则QK=AB=2,在Rt△QDK中,∵DK2+KQ2=DQ2,∴(AD﹣BQ)2+22=(DA+BQ)2,∴BQ=,∴BQ=BF,即BQ=FQ.23.(11分)绵阳某工厂从美国进口A、B两种产品销售,已知每台A种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B种产品的进价上涨500元,进口相同数量的B种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元.(1)中美贸易大战开始之后,每台B种产品的进价为多少?(2)中美贸易大战开始之后,如果A种产品的进价和售价不变,每台B种产品在进价的基础上提高40%作为售价.公司筹集到不多于35万元且不少于33万元的资金用于进口A、B两种产品共150台,请你设计一种进货方案使销售后的总利润最大.【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以列出相应的不等式和一次函数,从而可以解答本题.【解答】解:(1)设中美贸易大战开始之后,每台B种产品的进价为x元,,解得,x=2000,经检验,x=2000是原分式方程的解,答:中美贸易大战开始之后,每台B种产品的进价为2000元;(2)设购进A种产品m台,销售后总利润为w元,330000≤3000+2000(150﹣m)≤350000,解得,30≤m≤50,w=(4800﹣3000)m+2000×40%(150﹣m)=1000m+120000,∴当m=50时,w取得最大值,此时w=170000,150﹣m=100,答:购进A种产品50台,B种产品100台,销售后的总利润最大.24.(12分)如图,二次函数y=x2﹣2mx+8m的图象与x轴交于A、B两点(点A 在点B的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点.(1)求这条抛物线的解析式;(2)求点E的坐标;(3)过抛物线上一点P(点P不与B、C重合)作PQ⊥x轴于点Q,是否存在这样的点P使△PBQ和△BOC相似?如果存在,求出点P的坐标;如果不存在,说明理由.【分析】(1)把已知点的坐标代入抛物线解析式,可得到关于m的方程,则可求得m的值,可求得抛物线解析式;(2)由抛物线解析式可先求得A、B、C的坐标,过E作EG⊥x轴于点G,作EF ⊥y轴于点F,则可求得AG和OE,设EG=a,则可表示出CF,在Rt△AGE和Rt △CEF中,可分别表示出AE和CE,由AE=CE,则可求得a的值,则可求得E点坐标;(3)设出P点坐标,则可表示出PQ和BQ的长,利用相似三角形对应边成比例可得到关于P点坐标的方程,则可求得P点坐标.【解答】解:(1)把(m,9m)代入解析式,得m2﹣2m2+8m=9m,解得m=﹣1或m=0(舍去),∴抛物线解析式为y=x2+2x﹣8;(2)由(1)可得y=x2+2x﹣8,当y=0时,可求得x=﹣4或x=2,∵点A在点B的左边,∴OA=4,OB=2,∴AB=OA+OB=2+4=6,当x=0时,y=﹣8,∴OC=8,过点E作EG⊥x轴于点G,EF⊥y轴于点F,连接CE、AE,如图1,则AG=AB=3,OG=EF=OA﹣AG=4﹣3=1,设OF=GE=a,则CF=OC﹣OF=8﹣a,在Rt△AGE中,AE2=AG2+GE2=9+a2,在Rt△CEF中,CE2=EF2+CF2=1+(8﹣a)2,∵AE=CE,∴9+a2=1+(8﹣a)2,解得a=,∴E(﹣1,﹣);(3)设P点坐标为(t,t2+2t﹣8),则PQ=|t2+2t﹣8|,BQ=|a﹣2|,∵∠BOC=∠PQB=90°,∴当△PBQ和△BOC相似时,有△PBQ∽△CBO和△PBQ∽△BCO两种情况,①当△PBQ∽△CBO时,则=,即=,解得a=0(舍去)或a=2(舍去)或a=﹣8,∴P(﹣8,40);②当△PBQ∽△BCO时,则=,即=,解得a=2(舍去)或a=﹣或a=﹣,∴P点坐标为(﹣,﹣)或(﹣,);综上可知存在满足条件的点P,其坐标为(﹣8,40)或(﹣,﹣)或(﹣,).25.(14分)在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF 交对角线BD于点G(如图2),求线段MG的长.【分析】(1)如图1中,作EH⊥MN于H.首先证明MH=HN,在Rt△EMH中,根据cos30°==,即可解决问题;(2)如图1中,作NK⊥AD于K.只要求出NK、DM即可解决问题;(3)连接MC交BD于点J,可得∠NMC=90°,进而可得△MJG∽△NMC;可得=,解可得PG的长;【解答】解:(1)如图1中,作EH⊥MN于H.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=30°∴∠AEB=60°,∵EB=ED,∴∠EBD=∠EDB,∵∠AEB=∠EBD+∠EDB,∴∠EDB=∠EBD=30°,∵MN∥BD,∴∠ENM=∠EBD,∠EMN=∠EDB=30°,∴∠ENM=∠EMN,∴EN=EM,∵EH⊥MN,∴NH=MH,在Rt△EMH中,cos30°==,∴2MH=EM,∴MN=EM.(2)如图1中,作NK⊥AD于K.由(1)可知:BC=AD=6,AB=CD=2,AE=2,BE=DE=4,∵MN=EM,∴EM=x,∴DM=4﹣x,在Rt△MNK中,NK=MN=x,∴y=MD•NK=﹣x2+x.(3)解:连接MC交BD于点J(如图2).∵点M是线段ED中点,∴EM=MD=2,MN=2.∵DC=AB=AE•tan60°=2,∴MC==4.∴cos∠DMC==.∴∠DMC=60°.∴∠NMC=180°﹣∠EMN﹣∠DMC=90°.∵MN∥BD,∴∠MJD=∠NMC=90°.∴MJ=MD=1.NC==2∵∠MGJ=90°﹣∠FMC,∠MCF=90°﹣∠FMC,∴∠MGJ=∠MCF.∵∠MJG=∠NMC=90°,∴△MJG∽△NMC,∴=,∴PG=×2=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2021年1月15日四川省高2018级2021届绵阳二诊理科数学试题及参考答案附答题卡

绵阳市高中2018级第二次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.1—5 DADCB 6—10 CCCAB 11—12 DA二、填空题:本大题共4小题,每小题5分,共20分.13.-i 14.0.8 15.3 16.②④三、解答题:本大题共6小题,共70分.17.解:(1)证明:∵211(2)n n n n a a a a ++=+,∴2211112(2)()0n n n n n n n n a a a a a a a a ++++−−=−+=.又数列{a n }各项均为正数,∴10n n a a ++>,∴120n n a a +−=,即12n na a +=. …………………………………………………4分 数列{a n }是首项a 1=1,公比为2的等比数列.∴数列{a n }的通项公式为12n n a −=. …………………………………………6分(2)∵1(1)1221112n nn n a q S q −−===−−−, ∴S 2n =22n -1, ………………………………………………………………… 8分 ∵S 2n >1609n a , ∴29(21)802n n −>⨯,即(921)(29)0n n ⨯+−>,∴290n −>,又*n N ∈ ,∴正整数n 的最小值为4. …………………………………………………12分18.解:(1)由题意得,1=(23456)45x ⨯++++=,1=(35 6.5810.5) 6.65y ⨯++++=,……………………2分1()()18n i i i xx y y =−−=∑,21()10n i i x x =−=∑,……………………………………4分1.8b =, 6.6 1.840.6a y bx =−=−⨯=−, ………………………………………5分∴y 关于x 的线性回归方程 1.8.6ˆ0yx =−. ……………………………………6分(2)由(1)所得回归方程计算2月至7月份预测生产量依次为3,4.8,6.6,8.4,10.2,12.可得,其中“甲级月”有3个,“乙级月”有3个.……………………… 9分 记6个月中随机抽取2个月均为“乙级月”为事件A ,∴P(A )=232631155C C ==.…………………………………………………………12分 19.解:(1)在△APC 中, 30PAC ∠=,AC =,由余弦定理得CP 2=AP 2+AC 2-2AP ×AC ×cos ∠PAC ,即CP 2=AP 2+3-AP ×cos30°, ……………………………………………2分 又AP +CP =2,联立解得AP =1,CP =1. ………………………………………………………4分 ∴∠APC =120°. ……………………………………………………………………6分 (2)∵∠APC =120°,∴∠APB =60°.∵cos B =∴sin B = ……………………………………………………………………8分 在△APB 中,由正弦定理sin sin AB AP APB B=∠,∴AB = …………………………………………………………………………10分 在△APB 中,由余弦定理2222cos AB AP PB AP PB APB =+−⋅⋅∠,得7=1+PB 2-2PBcos60°,即PB 2-PB -6=0,解得BP =3.∴△APB的面积为11sin 1322AP BP APB ⨯⨯∠=⨯⨯=12分 20.解:(1)由21()()2g x f x mx =+=(22)4ln m x x +−,x >0, 得4(22)4(1)2()(22)=2m x m x g x m x x x+−+−'=+−=⋅. ……………………………2分 ①当1≤m −时,(1)2()20=≤m x g x x+−'⨯, 此时g (x )在(0),+∞上单调递减, g (x )在(0),+∞上不可能有两个零点,故1≤m −不合题意. ……………………4分②当m>-1时,f(x)在区间2(0)1,m+上单调递减,在区间2()1,+m∞+上单调递增.……………………………5分要使得函数g(x)在(0),+∞上有两个零点,则22()44ln011gm m=−<++,解得2e1em−−<<.综上,实数m的范围是2e1em−−<<.………………………………………6分(2)4(2)(2)()(22)mx xf x m mxx x−−'=+−−=−,x>0.①当0<m<1时,函数f(x)在2(2),m上单调递增,在(0,2),2(),+m∞上单调递减,当44xm>+时,函数f(x)在2(),+m∞上单调递减.∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0,在x>0恒成立不成立,即0<m<1不合题意.……………………8分②当m≥1时,函数f(x)在2(2),m上单调递增,函数f(x)在2(0),m,(2),+∞上单调递减,当442xm>+>时,f(x)在(2),+∞上单调递减,∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0在x>0恒成立不成立,即m≥1不合题意.………………………………………………………………10分③当m≤0时,函数f(x)在(0,2)上单调递减,在(2),+∞上单调递增,∴要使得f(x)≥0的充要条件是f(2)≥0,解得m≥2ln2-2,∴2ln2-2≤m≤0.综上所述,实数m的范围是[2ln2-2,0].……………………………………12分21.解:(1)由题意得425)25(21p p x A +=+=,25||p DF −=.……………………2分 由抛物线的定义可知2||p x AF A +=, 则由AF DF =,解得2=p .∴抛物线C 的方程为x y 42=.…………………………………………………5分(2)设直线l 1的方程为m kx y +=, 则5(55)(5)(0)2k m G k m E P m ++,,,,,. ∴以DG 为直径的圆E :2225(5)(5)()24k m k m x y ++−+−=, 即22(5)(5)0x y k m y −+−+=. …………………………………………………7分联立24y x y kx m ⎧=⎨=+⎩,,消去y 整理得0)42(222=+−+m x km x k . ……………8分 ∵l 1与曲线C 相切,∴04)42(222=−−=∆m k km ,化简得1=km . …………………………………………………………………9分 设直线l 2与的方程为y tx m =+,H (x 1,y 1),Q(x 2,y 2).联立22(5)(5)0y tx m x y k m y =+⎧⎨−+−+=⎩,,消去y ,整理得22(1)(510)2550t x tm kt x km ++−−+−=, ∴12222015521km x x t t ⋅=−=++. …………………………………………………11分∵1PH =,2PQ =, ∴22122(1)(1)20120PH PQ t x x t t ⋅=+⋅=+⋅=+, 即|PH |•|PQ |为定值20.……………………………………………………………12分22.解:(1)∵曲线C 1的直角坐标方程为(x -2)2+y 2=6,∴曲线C 1的极坐标方程为24cos 20ρρθ−−=. …………………………………4分 将曲线C 2的参数方程消参得x 2-y 2=4(x ≥2),∴曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥. ……………………………5分(2)曲线C 1的极坐标方程为24cos 20-ρρθ−=,将直线l :()22=ππθαα−<<,ρ∈R 代入上式,得24cos 20ρα−−=,∴124cos ρρα+=,1220ρρ=−<. ………………………………………………7分设1OA ρ=,2OB ρ=.∴12||||AB ρρ=−=∵曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥,设点()C ρα,,∴||OC =∵||||AB OC =, ……………………………………………………………………9分 ∴24cos 28cos250αα+−=, 解得1cos22α=. ∵22ππα−<<, ∴66或-ππαα==. …………………………………………………………………10分23.解:(1)当x ≥3时,f (x )=x -3+x -2=2x -5.由f (x )<3,得x <4,综合得3≤x <4.当2<x <3时,f (x )=3- x +x -2=1.由f (x )<3,得1<3恒成立,综合得2<x <3.当x ≤2时,f (x )=3- x +2-x =5-2x .由f (x )<3,得x >1,综合得1<x ≤2.综上,不等式f (x )<3的解集为(1,4). ……………………………………………5分 (2)证明:∵()32(3)(2)1f x x x x x −+−−−−==≥,(当且仅当2≤x ≤3时,取“=”)∴函数f (x )的最小值为1,即m =1.∴ab +bc +ac =abc .∴ab +bc +ac =()ab bc ac a b c abc ++⨯++)(c b a cb a ++⋅++=()111 3()()()b ac b c a a b b c a c=++++++ ≥3+2+2+2=9.(当且仅当a =b =c 时取“=”)∴9ab bc ca ++≥. ………………………………………………………………10分。
2018年四川省绵阳市安州区中考数学二诊试卷及答案(解析版)

2018年四川省绵阳市安州区中考数学二诊试卷一、选择题:(每题3分,共36分)1.(3分)计算(﹣)﹣1的结果是()A.﹣ B.C.2 D.﹣22.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨3.(3分)对于一组统计数据3,3,6,5,3.下列说法错误的是()A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是64.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m45.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣26.(3分)下列四个命题中,①若a>b,则>;②垂直于弦的直径平分弦;③平行四边形的对角线互相平分;④反比例函数y=,当k<0时,y随x的增大而增大.其正确命题的个数是()A.1 B.2 C.3 D.47.(3分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB 的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm211.(3分)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为100米.若设河的宽度为x,则下列各关系式正确的是()A.=1 B.=C.=D.=12.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题:(每空3分,共18分)13.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店的销售额平均每月的增长率是.14.(3分)不等式组的解集是.15.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是.16.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若OB=6cm,则B点运动的轨迹长度是cm.17.(3分)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD=.18.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为.三、解答题:(19题每小题16分、20题10分、21题10分、25题14分,其余各题均12分,共计86分)19.(16分)(1)计算:4sin45°+|﹣2|﹣+()0.(2)先化简,再求值:(1﹣)÷().其中a=+220.(10分)某中学艺术节期间,学校向学生征集书画作品,学校从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)请你将条形统计图补充完整,并估计全校共征集多少件作品?(2)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A (﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(12分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?23.(12分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE 交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.2018年四川省绵阳市安州区中考数学二诊试卷参考答案与试题解析一、选择题:(每题3分,共36分)1.(3分)计算(﹣)﹣1的结果是()A.﹣ B.C.2 D.﹣2【分析】根据负整数指数幂的运算法则计算.【解答】解:原式=﹣=﹣2.故选D.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.3.(3分)对于一组统计数据3,3,6,5,3.下列说法错误的是()A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是6【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,利用平均数和方差的定义可分别求出.【解答】解:A、这组数据中3都出现了3次,出现的次数最多,所以这组数据的众数为3,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(3﹣4)2+(3﹣4)2+(6﹣4)2+(5﹣4)2+(3﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到小的顺序排列,第3个数是3,故中位数为3,故此选项错误;故选:D.4.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选:B.5.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选:D.6.(3分)下列四个命题中,①若a>b,则>;②垂直于弦的直径平分弦;③平行四边形的对角线互相平分;④反比例函数y=,当k<0时,y随x的增大而增大.其正确命题的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的性质、垂径定理、平行四边形的性质、反比例函数的性质进行判断即可.【解答】解:①若a>b,则>;不正确;②垂直于弦的直径平分弦;正确;③平行四边形的对角线互相平分;正确;④反比例函数y=,当k<0时,在每个象限中,y随x的增大而增大;不正确.其中正确命题的个数为2个.故选:B.7.(3分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB 的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC【分析】根据线段中点的定义可得BE=CE,平行四边形的对边相等可得AB=DC,然后利用“角边角”证明△BFE和△CDE全等,根据全等三角形对应边相等可得BF=CD,DE=EF.【解答】解:∵E是BC边的中点,∴BE=CE,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠EBF,在△BFE和△CDE中,,∴BF=CD,DE=EF.∵BE=EF无法证明,∴DE=BE结论不成立.故选:C.8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选:A.9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F ,则∠F 的度数为( )A .92°B .108°C .112°D .124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE 的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°, ∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C .10.(3分)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选:B .11.(3分)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A ,又在河的另一岸边取两点B 、C ,测得∠α=30°,∠β=45°,量得BC 长为100米.若设河的宽度为x ,则下列各关系式正确的是( )A .=1B .=C .=D .=【分析】直接利用已知得出AD=CD ,再利用tan30°=,进而得出答案.【解答】解:过点A 作AD ⊥BC 于点D ,∵∠β=45°,∴AD=CD=x ,则tan30°==. 故选:D .12.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;过点E作EF⊥AC于点F,∵E是抛物线的顶点,∴AE=EC,E(4,﹣3),∴AF=3,EF=6,∴AE==3,AC=2AF=6,∴AC≠AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.故选:B.二、填空题:(每空3分,共18分)13.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店的销售额平均每月的增长率是50%.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故答案是:50%.14.(3分)不等式组的解集是1<x≤2.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,解不等式①,得x>1,解不等式②,得x≤2,所以不等式组的解集为:1<x≤2.15.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是x<﹣2或0<x<1.【分析】根据图象可以知道一次函数y1=k1x+b和反比例函数y2=(k1∙k2≠0)的图象的交点的横坐标,若y1>y2,则根据图象可以确定x的取值范围.【解答】解:如图,依题意得一次函数y1=k1x+b和反比例函数y2=(k1∙k2≠0)的图象的交点的横坐标分别为x=﹣2或x=1,若y1>y2,则y1的图象在y2的上面,x的取值范围是x<﹣2或0<x<1.故答案为x<﹣2或0<x<116.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若OB=6cm,则B点运动的轨迹长度是πcm.【分析】利用弧长公式计算即可.【解答】解:由题意B点运动的轨迹是,的弧长==,故答案为.17.(3分)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD=4.【分析】只要证明AD=BC,在Rt△BCD中求出BC即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,∵BD是直径,∴∠BAD=90°,∠ABD=60°,∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,∴==,∴=,∴AD=CB,∵∠BCD=90°,∴BC=CD•tan60°=•=4,∴AD=BC=4.故答案为4.18.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为2.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2,故答案为:2.三、解答题:(19题每小题16分、20题10分、21题10分、25题14分,其余各题均12分,共计86分)19.(16分)(1)计算:4sin45°+|﹣2|﹣+()0.(2)先化简,再求值:(1﹣)÷().其中a=+2【分析】(1)先代入三角函数值、计算绝对值、化简二次根式、计算零指数幂,再依次计算乘法、加减运算可得.(2)先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:(1)原式=4×+2﹣2+1=2+2﹣2+1=3;(2)原式=÷=•=,当a=+2时,原式==1+.20.(10分)某中学艺术节期间,学校向学生征集书画作品,学校从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)请你将条形统计图补充完整,并估计全校共征集多少件作品?(2)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件),继而可补全条形统计图,再用4个班的平均数量乘以班级总数可得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解;(1)∵本次调查的总数量为6÷=24(件),∴C班级的数量为24﹣(4+6+4)=10(件),补全图形如下:估计全校共征集作品约24÷4×30=180(件);(2)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为=.21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A (﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)将A(﹣3,m+8)代入反比例函数y=,求出m,求出点A的坐标,根据反比例函数图象上得的坐标特征求出反比例函数的解析式,利用待定系数法求出一次函数解析式;(2)求出AB与x轴相交于点C的坐标,根据三角形的面积公式计算即可.【解答】解:(1)将A(﹣3,m+8)代入反比例函数y=,得,=m+8,解得m=﹣6,m+8=﹣6+8=2,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,解得,n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,,则一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0,解得x=﹣2,∴点C的坐标为(﹣2,0),即OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1=4.22.(12分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.23.(12分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE 交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得==,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB 中,可得2k2+4k2=5,求出k即可解决问题.【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)连接BD.∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=9,∴k=,∴AD=.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S=AD•DC=AC•DQ,△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN ≌△BEF,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△BEF中∴△PQN≌△BEF(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。
18届绵阳二诊理数答案

∵ ∠ AQO= ∠ BQO , ∴ k QA + k QB =0 ,即
y1 y2 0, x1 xQ x2 xQ
………………………………… 10 分
将 y 1 = k ( x 1 - 2) , y 2 = k ( x 2 - 2) 代入整理得: 2 x 1 x 2 - ( x Q +2)( x 1 + x 2 )+ x Q =0 , 即
为学溪教育
寒假班火热招生中,来电咨询:18215571552(罗)
书上有路勤为径 有径都在为学溪
可得 sin B =2cos B , sin C =3cos C ,
…………………………………………… 7 分
结合 sin 2 B +cos 2 B =1 , sin 2 C +cos 2 C =1 , 可得 sin B =
4 ②当 n 为奇数时,原式变为 k (n ) 2 , n 4 4 x 2 ( x 2)( x 2) 令函数 f ( x )= ( x ) 2 , x >0 ,则 f ( x) , x x2 x2
当 x ∈ (0 , 2) 时, f ( x ) 0 ,当 x ∈ (2 , + ∞ ) 时, f ( x ) 0 , 即 f ( x ) 在 (0 , 2) 上单调递增,在 (2 , + ∞ ) 上单调递减, 由 f (1)= - 7< f (3)= ∴ k>
n(n 1) , 2
……………………………… 6 分
于是 ( - 1) n kb n <2 S n + n +4 等价于 ( - 1) n kn < n 2 +2 n +4 , 即ຫໍສະໝຸດ 价于 ( - 1) n k n
四川省绵阳市涪城区2018届九年级下学期学情调查(二诊)数学试题(解析版)

四川省绵阳市涪城区中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.4的算术平方根是()A.16B.±2C.2D.2.某物体的主视图如图所示,则该物体可能为()A.B.C.D.3.在过去的2017年,绵阳南郊机场的年旅客吞吐量达到了330万人次,再次达到新高,用科学记数法表示应是()A.3.3×107B.33×105C.3.3×106D.0.33×1074.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)5.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d6.已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5B.10C.36D.727.关于x的方程x2+kx﹣2=0的一个根是﹣2,则方程的另一个根是()A.﹣1B.1C.2D.﹣28.如图,AB是⊙O的一条弦,直径CD⊥AB于点E,若AB=24,CD=26,则DE的长度是()A.5B.6C.7D.89.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A.750B.375C.375D.75010.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④11.如图,在平行四边形ABCD中,BC=4,现将平行四边形ABCD绕点A旋转到平行四边形AEFG 的位置,其中点B,C,D分别落在点E,F,G处,且点B,E,D,F在同一直线上,如果点E 恰好是对角线BD的中点,那么AB的长度是()A.4B.3C.2D.12.如果,一圆桌周围有20个箱子,依顺时针方向编号1~20,小明从1号箱子沿着圆桌依顺时针方向前进,每经过一个箱子就丢入一颗球,所有小球共有红、黄、绿3种颜色,1号箱子红色,2号箱子黄色,3号箱子绿色,4号红色,5号黄色,6号绿色……,颜色依次循环,当他围绕圆桌刚好丢完2018圈时,则第10号箱子有()个黄球.A.671B.672C.673D.674二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x2﹣9x+18=.14.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.16.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为.17.如图,在菱形ABCD中,已知∠ABC=60°,AB=6,E为AD中点,BE与AC交于点O,F为EC上点,且OF∥BC,连接BF,BF与AC交于点M,则OM的长度是.18.如图,AB为⊙P直径,点O是⊙P上一点,以O为圆心,OA为半径的⊙O与AB交于点C,与OB交于点D,连接OC,AD,若OA=5,△OAC的面积为12,则△ACD的面积是.三、解答题(本大题共7小题,共计86分)19.(16分)(1)计算:﹣2﹣1﹣(﹣π)0﹣4sin45°(2)先化简,再求值:(﹣1)÷,其中x=320.(11分)共享单车近日成为市民新宠,越来越多的居民选择共享单车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民每周使用共享单车时间的情况,随机抽取了该小区部分使用共享单车的居民进行调查(问卷调查表如图所示),并用调查结果绘制了图①、图②两幅每周使用共享单车时间的人数统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该小区共有1200名居民,请你估计该小区使用共享单车的时间在“A”选项的有多少人?21.(11分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个长方体形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若要求改包装盒的高是20cm(以图中所示位置为参照),则x的值应是多少?(2)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?22.(11分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的解析式;(2)点C是坐标平面内一点,且BC∥x轴,当∠BAC=90°时,求点C坐标.23.(11分)如图,AB是⊙O直径,点C是⊙O上一点,D为的中点,AD与BC交于点M.(1)证明:△ACD∽△CMD;(2)若AC=3,tan∠CBD=,求△BCD的面积.24.(12分)已知抛物线y=x2﹣ax与x轴交于O,A两点,点B(﹣1,3)在抛物线上,点C(0,m)(m>3),延长BC与抛物线交于点E,过E作ED⊥x轴于点D,线段CD与抛物线交于点F,连接AB.(1)求抛物线解析式;(2)若四边形ABCD的面积为25,请求出点C坐标;(3)当m为何值时,四边形ABCF是平行四边形.25.(14分)如图,在平面直角坐标系xOy中,A(﹣8,0),B(﹣5,4),BC∥x轴,且与y轴交于点C,点D与点A关于y轴对称,连接CD.(1)若令∠CDA=α,证明:∠BAD=2α;(2)如图1,点M为线段BC上动点(不与端点重合),N为射线CD上点,且∠AMN=∠ABC,若令BM=m,请求出点N坐标(用含m的代数式表示);(3)如图2,点E在线段AB上,其横坐标为﹣6,作EF∥x轴,且与CD交于点F,在EF延长线上有动点P,射线FD上有点Q,且∠APQ=∠ABC,若=t,求的值(用含t的代数式表示).2018年四川省绵阳市涪城区中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆柱的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主视图,难度不大.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:330万用科学记数法表示应是3.3×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.【分析】根据不等式的性质进行判断.【解答】解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.【点评】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.【分析】设正多边形的中心角的度数是x,根据弧长公式即可求得x的值,然后利用360度除以x即可得到.【解答】解:设正多边形的中心角的度数是x,根据题意得:=π,解得:x=10.则n==36.故选:C.【点评】本题考查了正多边形的计算以及扇形的弧长公式,正确求得中心角的度数是关键.7.【分析】方程的另一个根为a,根据根与系数的关系得出﹣2a=﹣2,求出即可.【解答】解:设方程的另一个根为a,∵关于x的方程x2+kx﹣2=0的一个根是﹣2,∴﹣2a=﹣2,解得:a=1,故选:B.【点评】本题考查了一元二次方程的解和根与系数的关系,能熟记根与系数的关系内容是解此题的关键.8.【分析】连接OA,根据垂径定理求出AE,根据勾股定理得出方程,求出方程的解即可.【解答】解:设DE为x,连接OA,∵CD是⊙O的直径,弦AB⊥CD于点E,AB=24,∴∠AEO=90°,AE=EB=12,由勾股定理得:OA2=AE2+OE2,132=122+(13﹣x)2,解得:x=8,则DE的长度是8,故选:D.【点评】本题考查了垂径定理和勾股定理的应用,能求出AE=EB是解此题的关键,注意:垂直于弦的直径平分弦.9.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.10.【分析】根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y 随x的增大而增大即可判断④.【解答】解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选:C.【点评】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.11.【分析】如图,利用平行四边形的性质得AD=BC=4,AD∥BC,则∠2=∠3,再利用旋转的性质得∠1=∠2,AB=AE,接着证明∠AEB=∠DAB得到DB=DA=4,然后证明△BAE∽△BDA,最后利用相似比计算AB的长.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD=BC=4,AD∥BC∴∠2=∠3,∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,点B,E,D,F在同一直线上,∴∠1=∠2,AB=AE,∴∠1=∠3,∠4=∠AEB,而∠AEB=∠3+∠DAE,∴∠AEB=∠DAB=∠4,∴DB=DA=4,而点E为BD的中点,∴BE=2,∵∠1=∠3,∠4为公共角,∴△BAE∽△BDA,∴AB:BD=BE:BA,即AB:4=2:AB,∴AB=2.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质和相似三角形的判定与性质.12.【分析】根据第10号箱子得球的颜色可得出,其颜色按“红、绿、黄”三个一循环进行循环,结合2018=3×672+2可得出:当他围绕圆桌刚好丢完2018圈时,则第10号箱子有673个红球、673个绿球、672个黄球,此题得解.【解答】解:第1圈第10号箱子丢进的为红球,第2圈第10号箱子丢进的为绿球,第3圈第10号箱子丢进的为黄球,第4圈第10号箱子丢进的为红球,…,即第10号箱子得球颜色分别为:红、绿、黄、红、绿、黄、红、…,∵2018=3×672+2,∴2018个球中有673个红球、673个绿球、672个黄球.故选:B.【点评】本题考查了规律型中图形的变化类,根据箱子里面得球颜色的变化找出变化规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣3)(x﹣6),故答案为:(x﹣3)(x﹣6)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.14.【分析】首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故答案为:36°.【点评】此题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.15.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可得.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3,),∴OC=3,AC=,∵OB=6,∴BC=OC=3,则tan∠ABC==,由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴==,设O′D=x,BD=3x,由O′D2+BD2=O′B2可得(x)2+(3x)2=62,解得:x=或x=﹣(舍),则BD=3x=,O′D=x=,∴OD=OB+BD=6+=,∴点O'的坐标为(,),故答案为:(,).【点评】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理、解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.17.【分析】先证明△ABC是等边三角形,得AC=BC=6,证明△AOE∽△COB,则=,得OC=4,再证明△OFC∽△AEC,则,得OF=2,由平行线分线段成比例线段定理可得结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=AD=6,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=BC=6,∵E是AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴=,∴AO=2,OC=4,∵OF∥BC,BC∥AD,∴OF∥AE,∴△OFC∽△AEC,∴,∴,OF=2,∵OF∥BC,∴,∴,∵OM +MC =4, ∴OM =1. 故答案为:1.【点评】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等边三角形的判定等知识,依次得AO 、OC 、OM 、MC 的关系是解题的关键.18.【分析】先过点C 作CE ⊥OA ,CF ⊥OD ,可知四边形CEOF 是矩形,然后根据△OAC 的面积求出CE 的长度,进而求出三角形OCD 与三角形OAD 的面积,最后根据割补求出△ACD 的面积. 【解答】解:过点C 作CE ⊥OA 于点E ,CF ⊥OD 于点F . ∵AB 为⊙P 直径, ∴∠AOB =90°, ∴四边形CEOF 是矩形, ∴∠OEC =90°,CF =OE ,∵OA =OC =OD =5,△OAC 的面积为12∴,即,∴,在Rt △OCE 中,=,∴∴,,∴S △ACD =S △OAC +S △OCD ﹣S △OAD =,故答案为3.【点评】本题考查了圆与正方形的相关知识,正确运用勾股定理和割补三角形面积是解题的关键.三、解答题(本大题共7小题,共计86分)19.【分析】(1)先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再依次计算乘法、加减运算即可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算即可得.【解答】解:(1)原式=3﹣﹣1﹣4×=3﹣﹣1﹣2=﹣;(2)原式=•==.【点评】本题考查了实数的混合运算与分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.20.【分析】(1)根据选C的有50人,占50%,从而可以求得本次本次接受问卷调查的人数以及在扇形统计图中“D”选项所占的百分比;(2)根据条形统计图中选B的人数和(1)求得的调查的总人数可以求得扇形统计图中,“B”选项所对应扇形圆心角的度数;(3)根据题意可以求得选A的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得该小区使用共享单车的时间在“A”选项的有多少人.【解答】解:(1)由题意可得,本次接受问卷调查的有:50÷50%=100(人),在扇形统计图中“D”选项所占的百分比为:×100%=10%,故答案为:100,10%;(2)由题意可得,扇形统计图中,“B”选项所对应扇形圆心角为:360°×=72°,故答案为:72;(3)选A的有:100﹣20﹣50﹣10=20,补全的条形统计图如右图所示;(4)由题意可得,该小区使用共享单车的时间在“A”选项的有:1200×=240(人),即该小区使用共享单车的时间在“A”选项的有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【分析】(1)由AE=FB=x知EF=60﹣2x,据此得包装盒的高为×(60﹣2x)=(30﹣x),根据题意列出方程,解之可得;(2)由AE=x知包装盒的宽为x,从而得出包装盒的侧面积S=x•(30﹣x)•4=﹣8(x ﹣15)2+1800,根据二次函数的性质求解可得.【解答】解:(1)设AE=FB=x(cm),则EF=60﹣2x,∴包装盒的高为×(60﹣2x)=(30﹣x),由题意得(30﹣x)=20,解得:x=30﹣10;(2)∵AE=x,∴包装盒的宽为x,则包装盒的侧面积S=x•(30﹣x)•4=﹣8x2+240x=﹣8(x﹣15)2+1800,∴当x=15时,S取得最大值.【点评】本题主要考查二次函数的应用,解题的关键是根据等腰直角三角形的性质得出包装盒的高、宽,并列出侧面积的函数解析式.22.【分析】(1)根据点A、B都在反比例函数的图象上,先计算k,再计算m,然后用待定系数法求出一次函数的解析式;(2)过点A作AD⊥BC,垂足为D,根据线段AD、BD的长,得到特殊的直角三角形:△ABD 和△ADC,从而得到点C的坐标.【解答】解:(1)因为点A、B都在反比例函数的图象上,所以k=1×3=3,所以反比例函数的解析式为:y1=,当x=﹣3时,m=﹣1,所以点B(﹣3,﹣1)由于点A、B都在一次函数y2=ax+b的图象上,所以,解得所以一次函数的解析式为:y2=x+2(2)如图所示:作∠BAC=90°,过点A作AD⊥BC,垂足为D,∵点A(1,3),点B(﹣3,﹣1),所以点D(1,﹣1)∴AD=3﹣(﹣1)=4,BD=1﹣(﹣3)=4∵AD⊥BC,∴∠BAD=45°,又∵∠BAC=90°,∴∠DAC=∠C=45°,∴AD=CD=4设点C(m,﹣1),∴m=1+CD=5.所以点C(5,﹣1)答:点C的坐标为(5,﹣1)【点评】本题考查了待定系数法确定反比例函数、一次函数解析式及等腰直角三角形的性质和判定.解决本题的关键是作AD⊥BC,构造了等腰直角三角形.23.【分析】(1)想办法证明∠DCM=∠CAD即可解决问题;(2)连接OD交BC于H.设CD=BD=a.利用相似三角形的性质求出a即可解决问题;【解答】(1)证明:∵D为的中点,∴=,∴∠DCB=∠CAD,∵∠CDM=∠ADC,∴△ACD∽△CMD.(2)解:连接OD交BC于H.设CD=BD=a.∵AB是直径,∴∠ACB=∠ADB=90°,∵=,∴∠CBD=∠DAB,OD⊥BC,∴tan∠CBD=tan∠DAB==,∴AD=2a,∵△ACD∽△CMD,∴===,∵AC=3,∴CM =,DM =a ,AM =a ,在Rt △ACM 中,AM ===a ,∴a =,∴AD =2,BD =CD =,在Rt △ADB 中,AB ==5,∴OD =,∵OD ⊥BC ,∴CH =HB ,∵OA =OB ,∴OH =AC =,∴DH =1,在Rt △ACB 中,BC ==4,∴S △BCD =•BC •DH =×4×1=2.【点评】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、勾股定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考压轴题.24.【分析】(1)把B 点坐标代入y =x 2﹣ax 中求出a 的值即可得到抛物线解析式;(2)作BH ⊥x 轴于H ,如图,先解方程得到x 2﹣2x =0得A (2,0),利用待定系数法表示出直线BC 的解析式为y =(m ﹣3)x +m ,则解方程x 2﹣2x =(m ﹣3)x +m 得E (m ,m 2﹣2m ),根据三角形面积公式,利用S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH 列方程得到(m +3)•1+•m •m ﹣•3•3=25,然后解方程求出m 即可得到C 点坐标;(3)易得直线CD 的解析式为y =﹣x +m ,直线AB 的解析式为y =﹣x +2,根据平行四边形的判定方法当BC ∥AF 时,四边形ABCF 为平行四边形,则可设直线AF 的解析式为y =(m ﹣3)x +n ,把A (2,0)代入得2m ﹣6+n =0得到直线AF 的解析式为y =(m ﹣3)x +6﹣2m ,再解方程组得F (3,m ﹣3),然后把F (3,m ﹣3)代入y =x 2﹣2x 得关于m 的方程,最后解关于m 的方程即可【解答】解:(1)把B (﹣1,3)代入y =x 2﹣ax 得1+a =3,解得a =2,∴抛物线解析式为y =x 2﹣2x ;(2)作BH ⊥x 轴于H ,如图,当y =0时,x 2﹣2x =0,解得x 1=0,x 2=2,则A (2,0),设直线BC 的解析式为y =kx +m ,把B (﹣1,3)代入得﹣k +m =3,解得k =m ﹣3,∴直线BC 的解析式为y =(m ﹣3)x +m ,解方程x 2﹣2x =(m ﹣3)x +m ,整理得x 2﹣(m ﹣1)x ﹣m =0,解得x 1=﹣1,x 2=m ,∴E (m ,m 2﹣2m ),∴D (m ,0),∵S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH ,∴(m +3)•1+•m •m ﹣•3•3=25,整理得m 2+m ﹣56=0,解得m 1=7,m 2=﹣8(舍去),∴C 点坐标为(0,7);(3)易得直线CD 的解析式为y =﹣x +m ,直线AB 的解析式为y =﹣x +2,∴AB ∥CD ,当BC ∥AF 时,四边形ABCF 为平行四边形,而直线BC 的解析式为y =(m ﹣3)x +m ,∴直线AF 的解析式可设为y =(m ﹣3)x +n ,把A (2,0)代入得2m ﹣6+n =0,解得n =6﹣2m ,∴直线AF 的解析式为y =(m ﹣3)x +6﹣2m解方程组得,则F (3,m ﹣3),把F (3,m ﹣3)代入y =x 2﹣2x 得m ﹣3=9﹣6,解得m =6,∴当m 为6时,四边形ABCF 是平行四边形.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的判定;会利用待定系数法求二次函数解析式和一次函数解析式,理解两直线平行的问题;理解坐标与图形性质.25.【分析】(1)如图1中,连接AC.只要证明AB=BC即可解决问题;(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.想办法证明△NCH∽△ACB,可得=,即=,推出CN=m即可解决问题;(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.由△APQ∽△CHP,可得=,想办法求出CH:PH的值即可解决问题;【解答】解:(1)如图1中,连接AC.∵A(﹣8,0),B(﹣5,4),BC∥x轴,∴AB==5,BC=5,∴AB=BC=5,∴∠BAC=∠BCA,∵BC∥AD,∴∠BCA=∠CAD,∴∠BAC=∠CAB,∵A、D关于y轴对称,∴CA=CD,∴∠CAD=∠CDA=α,∴∠BAD=2α.(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.∵∠BAC=∠BCA=∠CAD=∠CDA=α,∴∠ABC=∠ACD,∵∠AMN=∠ABC,∴∠AMG=∠NCG,∵∠AGM=∠NGC,∴△AGM∽△NGC,∴=,∴=,∵∠MGC=∠AGN,∴△MGC∽△AGN,∴∠ANG=∠MCG=α,∴∠MAN=∠ANM=α,∴AM=MN,∵∠HMA=∠HMN+∠AMN=∠BAM+∠ABM,∴∠HMN=∠BAM,∵AB=BC=MH,∴△BAM≌△HMN,∴∠H=∠ABM,∵∠ACB=∠NCH,∴△NCH∽△ACB,∴=,∴=,∴CN=m,∴N(m,4﹣m).(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.同法可证:∠PAQ =∠PCH ,∵AC ∥PH ,∴∠ACH =∠CHP ,∵∠ACD =∠APQ ,∴∠APQ =∠CHP ,∴△APQ ∽△CHP ,∴=,易知E (﹣6,),F (,),J (﹣,),∴FJ =,EF =,∵=t ,∴PF =, ∵PH ∥CJ ,∴FH :FC =PF :FJ =:=13:8t ,∴FH :CH =13:(13+8t )∵CJ =CF ,∴∠CJF =CFJ =∠HPF =∠PFH ,∴HP =HF ,∴PH :CH =13:(1+8t ),∴PA :PQ =CH :PH =(13+8t ):13.【点评】本题考查相似三角形综合题、平行线的性质、等腰三角形的判定和性质、相似三角形的判定和性质、轴对称图形的性质等知识,解题的关键是学会添加常用辅助线构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
【全国区级联考】四川省绵阳市游仙区2018届九年级下学期二诊数学试题(解析版)

2015级初中毕业生学业水平检测试题卷数学一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 的绝对值是()A. B. C. D.【答案】C【解析】分析:先判断的正负性,然后根据绝对值的意义化简即可.详解:∵,∴ .故选C.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.2. 下列图形中,是轴对称图形,不是中心对称图形的是()【答案】B【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A.既是轴对称图形,又是中心对称图形,故不符合题意;B.是轴对称图形,不是中心对称图形,故符合题意;C.既是轴对称图形,又是中心对称图形,故不符合题意;D.不是轴对称图形,是中心对称图形,故不符合题意;故选B.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形。
一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.3. 我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10-3毫米的颗粒物,用科学记数法表示数2.5×10-3,它应该等于()A. 0.25B. 0.025C. 0.0025D. 0.00025【答案】C【解析】分析:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n 是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:2.5×10-3= 0.0025.故选C.点睛:本题考查了负整数指数科学记数法,解题的关键是根据负整数指数科学记数法的定义确定出a和n 的值.4. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A. 75︒B. 105︒C. 95︒D. 120︒【答案】B【解析】分析:先根据∠ACB=∠BCD-∠ACD求出∠ACB的度数,再根据外角的性质求∠AOB得度数即可. 详解:∵∠ACD=45º, ∠BCD=90º,∴∠ACB=90º-45º=45º,∴∠AOB=∠ACB+∠B=45º+60º=105º.故选B.点睛:本题考查了角的和差,三角形外角的性质,熟练掌握三角形的外角等于和它不相邻的两个内角的和是解答本题的关键.5. 下列不等式变形正确的是()A. 由,得B. 由,得-2a>-2bC. 由a>b,得-a>-bD. 由a>b,得a-2>b-2【答案】D【解析】分析:本题考查了不等式的性质,根据不等式的性质逐项分析即可详解:A. ∵当c=0时,=0 ,故不正确;B. ∵,∴-2a<-2b,故不正确;C. ∵a>b,∴-a<-b,故不正确;D. ∵a>b,∴a-2>b-2,故正确;故选D.点睛:本题考查了不等式的基本性质,①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6. 某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如右图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1∶2.4,那么大树CD的高度约为多少?()A. 18米B. 13米C. 12米D. 5米【答案】B【解析】分析:作BF⊥AE于F,在Rt△ABF中,运用勾股定理,根据各边的数量关系求得AF的长度,就可得到AE的长度;详解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF.∵斜面AB的坡度i=1:2.4,∴AF=2.4BF.设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米.在Rt△ACE中,CE=A E·tan45°=18×1=18米,∴CD=CE-DE=18米-5米=13米.点睛:本题主要考查了解直角三角形的应用,关键是构造出直角三角形,运用勾股定理和锐角三角函数来解决问题;7. 如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?()A. B. C. D.【答案】A【解析】分析:设圆锥的底面圆半径为r.先根据锐角三角函数求出扇形ABC的半径,再根据扇形的弧长等于圆锥的底面周长列方程求出r.详解:过圆心O作OD⊥AB于点D,连接AO,如图.设圆锥的底面圆半径为r.∵∠BAC=90°,∴∠DAO=45°.∴AD=AO•cos45°=.∴扇形ABC的半径为AB=2AD=.∵2πr=,∴r=,故答案为:.点睛:此题考查了圆锥的计算的知识,应用的知识点为:圆锥的弧长等于底面周长;难点是得到扇形的半径.8. 如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A. B. C. D.【答案】D【解析】分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-4)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),∴AC=-1-(-4)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACD A′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+4.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.9. 2018(第七届)绵阳之春国际车展将于2018年4月18日-22日在绵阳国际会展中心盛大举行。
四川省绵阳市涪城区2018届九年级下学期学情调查(二诊)数学试题含答案

2018年四川省绵阳市涪城区中考数学二诊试卷一、选择题(本大题共12小题,每小题3分,共36分)1.4的算术平方根是()A.16B.±2C.2D.2.某物体的主视图如图所示,则该物体可能为()A.B.C.D.3.在过去的2017年,绵阳南郊机场的年旅客吞吐量达到了330万人次,再次达到新高,用科学记数法表示应是()A.3.3×107B.33×105C.3.3×106D.0.33×1074.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)5.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d6.已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5B.10C.36D.727.关于x的方程x2+kx﹣2=0的一个根是﹣2,则方程的另一个根是()A.﹣1B.1C.2D.﹣28.如图,AB是⊙O的一条弦,直径CD⊥AB于点E,若AB=24,CD=26,则DE的长度是()A.5B.6C.7D.89.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为()米.A.750B.375C.375D.75010.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④11.如图,在平行四边形ABCD中,BC=4,现将平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,其中点B,C,D分别落在点E,F,G处,且点B,E,D,F在同一直线上,如果点E恰好是对角线BD的中点,那么AB的长度是()A.4B.3C.2D.12.如果,一圆桌周围有20个箱子,依顺时针方向编号1~20,小明从1号箱子沿着圆桌依顺时针方向前进,每经过一个箱子就丢入一颗球,所有小球共有红、黄、绿3种颜色,1号箱子红色,2号箱子黄色,3号箱子绿色,4号红色,5号黄色,6号绿色……,颜色依次循环,当他围绕圆桌刚好丢完2018圈时,则第10号箱子有()个黄球.A.671B.672C.673D.674二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x2﹣9x+18=.14.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.16.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为.17.如图,在菱形ABCD中,已知∠ABC=60°,AB=6,E为AD中点,BE与AC交于点O,F为EC上点,且OF∥BC,连接BF,BF与AC交于点M,则OM的长度是.18.如图,AB为⊙P直径,点O是⊙P上一点,以O为圆心,OA为半径的⊙O与AB交于点C,与OB交于点D,连接OC,AD,若OA=5,△OAC的面积为12,则△ACD的面积是.三、解答题(本大题共7小题,共计86分)19.(16分)(1)计算:﹣2﹣1﹣(﹣π)0﹣4sin45°(2)先化简,再求值:(﹣1)÷,其中x=320.(11分)共享单车近日成为市民新宠,越来越多的居民选择共享单车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民每周使用共享单车时间的情况,随机抽取了该小区部分使用共享单车的居民进行调查(问卷调查表如图所示),并用调查结果绘制了图①、图②两幅每周使用共享单车时间的人数统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该小区共有1200名居民,请你估计该小区使用共享单车的时间在“A”选项的有多少人?21.(11分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个长方体形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若要求改包装盒的高是20cm(以图中所示位置为参照),则x的值应是多少?(2)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?22.(11分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的解析式;(2)点C是坐标平面内一点,且BC∥x轴,当∠BAC=90°时,求点C坐标.23.(11分)如图,AB是⊙O直径,点C是⊙O上一点,D为的中点,AD与BC交于点M.(1)证明:△ACD∽△CMD;(2)若AC=3,tan∠CBD=,求△BCD的面积.24.(12分)已知抛物线y=x2﹣ax与x轴交于O,A两点,点B(﹣1,3)在抛物线上,点C(0,m)(m >3),延长BC与抛物线交于点E,过E作ED⊥x轴于点D,线段CD与抛物线交于点F,连接AB.(1)求抛物线解析式;(2)若四边形ABCD的面积为25,请求出点C坐标;(3)当m为何值时,四边形ABCF是平行四边形.25.(14分)如图,在平面直角坐标系xOy中,A(﹣8,0),B(﹣5,4),BC∥x轴,且与y轴交于点C,点D与点A关于y轴对称,连接CD.(1)若令∠CDA=α,证明:∠BAD=2α;(2)如图1,点M为线段BC上动点(不与端点重合),N为射线CD上点,且∠AMN=∠ABC,若令BM=m,请求出点N坐标(用含m的代数式表示);(3)如图2,点E在线段AB上,其横坐标为﹣6,作EF∥x轴,且与CD交于点F,在EF延长线上有动点P,射线FD上有点Q,且∠APQ=∠ABC,若=t,求的值(用含t的代数式表示).参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.C.2.A.3.C.4.B.5.A.6.C.7.B.8.D.9.A.10.C.11.C.12.B.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣3)(x﹣6),故答案为:(x﹣3)(x﹣6)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.14.【分析】首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故答案为:36°.【点评】此题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.15.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan ∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可得.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3,),∴OC=3,AC=,∵OB=6,∴BC=OC=3,则tan∠ABC==,由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴==,设O′D=x,BD=3x,由O′D2+BD2=O′B2可得(x)2+(3x)2=62,解得:x=或x=﹣(舍),则BD=3x=,O′D=x=,∴OD=OB+BD=6+=,∴点O'的坐标为(,),故答案为:(,).【点评】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理、解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.17.【分析】先证明△ABC是等边三角形,得AC=BC=6,证明△AOE∽△COB,则=,得OC=4,再证明△OFC∽△AEC,则,得OF=2,由平行线分线段成比例线段定理可得结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=AD=6,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=BC=6,∵E是AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴=,∴AO=2,OC=4,∵OF∥BC,BC∥AD,∴OF∥AE,∴△OFC∽△AEC,∴,∴,OF=2,∵OF∥BC,∴,∴,∵OM+MC=4,∴OM=1.故答案为:1.【点评】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等边三角形的判定等知识,依次得AO 、OC 、OM 、MC 的关系是解题的关键.18.【分析】先过点C 作CE ⊥OA ,CF ⊥OD ,可知四边形CEOF 是矩形,然后根据△OAC 的面积求出CE 的长度,进而求出三角形OCD 与三角形OAD 的面积,最后根据割补求出△ACD 的面积.【解答】解:过点C 作CE ⊥OA 于点E ,CF ⊥OD 于点F .∵AB 为⊙P 直径,∴∠AOB =90°,∴四边形CEOF 是矩形,∴∠OEC =90°,CF =OE ,∵OA =OC =OD =5,△OAC 的面积为12∴,即, ∴,在Rt △OCE 中,=, ∴∴,,∴S △ACD =S △OAC +S △OCD ﹣S △OAD =,故答案为3.【点评】本题考查了圆与正方形的相关知识,正确运用勾股定理和割补三角形面积是解题的关键.三、解答题(本大题共7小题,共计86分)19.【分析】(1)先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再依次计算乘法、加减运算即可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算即可得.【解答】解:(1)原式=3﹣﹣1﹣4×=3﹣﹣1﹣2=﹣;(2)原式=•==.【点评】本题考查了实数的混合运算与分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.20.【分析】(1)根据选C的有50人,占50%,从而可以求得本次本次接受问卷调查的人数以及在扇形统计图中“D”选项所占的百分比;(2)根据条形统计图中选B的人数和(1)求得的调查的总人数可以求得扇形统计图中,“B”选项所对应扇形圆心角的度数;(3)根据题意可以求得选A的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得该小区使用共享单车的时间在“A”选项的有多少人.【解答】解:(1)由题意可得,本次接受问卷调查的有:50÷50%=100(人),在扇形统计图中“D”选项所占的百分比为:×100%=10%,故答案为:100,10%;(2)由题意可得,扇形统计图中,“B”选项所对应扇形圆心角为:360°×=72°,故答案为:72;(3)选A的有:100﹣20﹣50﹣10=20,补全的条形统计图如右图所示;(4)由题意可得,该小区使用共享单车的时间在“A”选项的有:1200×=240(人),即该小区使用共享单车的时间在“A”选项的有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【分析】(1)由AE=FB=x知EF=60﹣2x,据此得包装盒的高为×(60﹣2x)=(30﹣x),根据题意列出方程,解之可得;(2)由AE=x知包装盒的宽为x,从而得出包装盒的侧面积S=x•(30﹣x)•4=﹣8(x﹣15)2+1800,根据二次函数的性质求解可得.【解答】解:(1)设AE=FB=x(cm),则EF=60﹣2x,∴包装盒的高为×(60﹣2x)=(30﹣x),由题意得(30﹣x)=20,解得:x=30﹣10;(2)∵AE=x,∴包装盒的宽为x,则包装盒的侧面积S=x•(30﹣x)•4=﹣8x2+240x=﹣8(x﹣15)2+1800,∴当x=15时,S取得最大值.【点评】本题主要考查二次函数的应用,解题的关键是根据等腰直角三角形的性质得出包装盒的高、宽,并列出侧面积的函数解析式.22.【分析】(1)根据点A、B都在反比例函数的图象上,先计算k,再计算m,然后用待定系数法求出一次函数的解析式;(2)过点A作AD⊥BC,垂足为D,根据线段AD、BD的长,得到特殊的直角三角形:△ABD和△ADC,从而得到点C的坐标.【解答】解:(1)因为点A、B都在反比例函数的图象上,所以k=1×3=3,所以反比例函数的解析式为:y1=,当x=﹣3时,m=﹣1,所以点B(﹣3,﹣1)由于点A、B都在一次函数y2=ax+b的图象上,所以,解得所以一次函数的解析式为:y2=x+2(2)如图所示:作∠BAC=90°,过点A作AD⊥BC,垂足为D,∵点A(1,3),点B(﹣3,﹣1),所以点D(1,﹣1)∴AD=3﹣(﹣1)=4,BD=1﹣(﹣3)=4∵AD⊥BC,∴∠BAD=45°,又∵∠BAC=90°,∴∠DAC=∠C=45°,∴AD=CD=4设点C(m,﹣1),∴m=1+CD=5.所以点C(5,﹣1)答:点C的坐标为(5,﹣1)【点评】本题考查了待定系数法确定反比例函数、一次函数解析式及等腰直角三角形的性质和判定.解决本题的关键是作AD⊥BC,构造了等腰直角三角形.23.【分析】(1)想办法证明∠DCM=∠CAD即可解决问题;(2)连接OD交BC于H.设CD=BD=a.利用相似三角形的性质求出a即可解决问题;【解答】(1)证明:∵D为的中点,∴=,∴∠DCB=∠CAD,∵∠CDM=∠ADC,∴△ACD∽△CMD.(2)解:连接OD交BC于H.设CD=BD=a.∵AB是直径,∴∠ACB=∠ADB=90°,∵=,∴∠CBD=∠DAB,OD⊥BC,∴tan∠CBD=tan∠DAB==,∴AD=2a,∵△ACD∽△CMD,∴===,∵AC=3,∴CM=,DM=a,AM=a,在Rt△ACM中,AM===a,∴a=,∴AD=2,BD=CD=,在Rt△ADB中,AB==5,∴OD=,∵OD⊥BC,∴CH=HB,∵OA=OB,∴OH=AC=,∴DH=1,在Rt△ACB中,BC==4,∴S △BCD =•BC •DH =×4×1=2.【点评】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、勾股定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考压轴题.24.【分析】(1)把B 点坐标代入y =x 2﹣ax 中求出a 的值即可得到抛物线解析式;(2)作BH ⊥x 轴于H ,如图,先解方程得到x 2﹣2x =0得A (2,0),利用待定系数法表示出直线BC 的解析式为y =(m ﹣3)x +m ,则解方程x 2﹣2x =(m ﹣3)x +m 得E (m ,m 2﹣2m ),根据三角形面积公式,利用S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH 列方程得到(m +3)•1+•m •m ﹣•3•3=25,然后解方程求出m 即可得到C 点坐标;(3)易得直线CD 的解析式为y =﹣x +m ,直线AB 的解析式为y =﹣x +2,根据平行四边形的判定方法当BC ∥AF 时,四边形ABCF 为平行四边形,则可设直线AF 的解析式为y =(m ﹣3)x +n ,把A (2,0)代入得2m ﹣6+n =0得到直线AF 的解析式为y =(m ﹣3)x +6﹣2m ,再解方程组得F (3,m ﹣3),然后把F (3,m ﹣3)代入y =x 2﹣2x 得关于m 的方程,最后解关于m 的方程即可【解答】解:(1)把B (﹣1,3)代入y =x 2﹣ax 得1+a =3,解得a =2,∴抛物线解析式为y =x 2﹣2x ;(2)作BH ⊥x 轴于H ,如图,当y =0时,x 2﹣2x =0,解得x 1=0,x 2=2,则A (2,0),设直线BC 的解析式为y =kx +m ,把B (﹣1,3)代入得﹣k +m =3,解得k =m ﹣3,∴直线BC 的解析式为y =(m ﹣3)x +m ,解方程x 2﹣2x =(m ﹣3)x +m ,整理得x 2﹣(m ﹣1)x ﹣m =0,解得x 1=﹣1,x 2=m ,∴E (m ,m 2﹣2m ),∴D (m ,0),∵S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH ,∴(m +3)•1+•m •m ﹣•3•3=25,整理得m 2+m ﹣56=0,解得m 1=7,m 2=﹣8(舍去),∴C 点坐标为(0,7);(3)易得直线CD的解析式为y=﹣x+m,直线AB的解析式为y=﹣x+2,∴AB∥CD,当BC∥AF时,四边形ABCF为平行四边形,而直线BC的解析式为y=(m﹣3)x+m,∴直线AF的解析式可设为y=(m﹣3)x+n,把A(2,0)代入得2m﹣6+n=0,解得n=6﹣2m,∴直线AF的解析式为y=(m﹣3)x+6﹣2m解方程组得,则F(3,m﹣3),把F(3,m﹣3)代入y=x2﹣2x得m﹣3=9﹣6,解得m=6,∴当m为6时,四边形ABCF是平行四边形.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的判定;会利用待定系数法求二次函数解析式和一次函数解析式,理解两直线平行的问题;理解坐标与图形性质.25.【分析】(1)如图1中,连接AC.只要证明AB=BC即可解决问题;(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.想办法证明△NCH ∽△ACB,可得=,即=,推出CN=m即可解决问题;(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.由△APQ∽△CHP,可得=,想办法求出CH:PH的值即可解决问题;【解答】解:(1)如图1中,连接AC.∵A(﹣8,0),B(﹣5,4),BC∥x轴,∴AB==5,BC=5,∴AB=BC=5,∴∠BAC=∠BCA,∵BC∥AD,∴∠BCA=∠CAD,∴∠BAC=∠CAB,∵A、D关于y轴对称,∴CA=CD,∴∠CAD=∠CDA=α,∴∠BAD=2α.(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.∵∠BAC=∠BCA=∠CAD=∠CDA=α,∴∠ABC=∠ACD,∵∠AMN=∠ABC,∴∠AMG=∠NCG,∵∠AGM=∠NGC,∴△AGM∽△NGC,∴=,∴=,∵∠MGC=∠AGN,∴△MGC∽△AGN,∴∠ANG=∠MCG=α,∴∠MAN=∠ANM=α,∴AM=MN,∵∠HMA=∠HMN+∠AMN=∠BAM+∠ABM,∴∠HMN=∠BAM,∵AB=BC=MH,∴△BAM≌△HMN,∴∠H=∠ABM,∵∠ACB=∠NCH,∴△NCH∽△ACB,∴=,∴=,∴CN=m,∴N(m,4﹣m).(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.同法可证:∠PAQ=∠PCH,∵AC∥PH,∴∠ACH=∠CHP,∵∠ACD=∠APQ,∴∠APQ=∠CHP,∴△APQ∽△CHP,∴=,易知E(﹣6,),F(,),J(﹣,),∴FJ=,EF=,∵=t,∴PF=,∵PH∥CJ,∴FH:FC=PF:FJ=:=13:8t,∴FH:CH=13:(13+8t)∵CJ=CF,∴∠CJF=CFJ=∠HPF=∠PFH,∴HP=HF,∴PH:CH=13:(1+8t),∴PA:PQ=CH:PH=(13+8t):13.。
4252--四川省绵阳市盐亭县2018年中考数学二诊试卷(解析版)

四川省绵阳市盐亭县2018年中考数学二诊试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)若0.0002017用科学记数法表示为2.017×10n,则n的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002017=2.017×10﹣4,则n=﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)若a>b,则下列式子正确的是()A.a﹣6>b﹣2 B.a< b C.4+3a>4+3b D.﹣2a>﹣2b【分析】根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立即可.【解答】解:A、若a>b⇒a﹣6>b﹣6或者a﹣2>b﹣2,故A选项错误;B、若a>b⇒a>b,故B选项错误;C、若a>b⇒3a>3b⇒4+3a>4+3b,故C选项正确;D、若a>b⇒﹣2a<﹣2b,故D选项错误.故选:C.【点评】此题考查了不等式的性质,掌握不等式的性质是本题的关键,①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.3.(3分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.【分析】解答此题首先要明确主视图是从物体正面看到的图形,然后根据几何体的主视图,判断出这个几何体可以是哪个图形即可.【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,∴这个几何体可以是.故选:A.【点评】此题主要考查了三视图的概念,要熟练掌握,解答此题的关键是要明确:主视图是从物体正面看到的图形.4.(3分)下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.5.(3分)函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠3【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】根据矩形的判定以及圆周角定理、不等式的性质和二次根式的性质分别判断得出即可.【解答】解:①若a>b,则c﹣a<c﹣b;原命题与逆命题都是真命题;②若a>0,则=a;逆命题:若=a,则a>0,是假命题,故此选项错误;③对角线互相平分且相等的四边形是矩形;原命题是假命题,故此选项错误;④如果两条弧相等,那么它们所对的圆心角相等,逆命题:相等的圆心角所对的弧相等,是假命题,故此选项错误,故原命题与逆命题均为真命题的个数是1个.故选:D.【点评】此题主要考查了矩形、圆周角定理、二次根式、不等式的性质,熟练掌握相关性质是解题关键.7.(3分)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF 的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.8.(3分)用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的底面周长是( )A .2π cmB .3π cmC .4π cmD .5π cm【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式计算即可.【解答】解:这个纸帽的底面周长==4π(cm ).故选:C .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.(3分)如图,A 、B 是双曲线y=(k >0)上的点,A 、B 两点的横坐标分别是a 、3a ,线段AB 的延长线交x 轴于点C ,若S △AOC =3.则k 的值为( )A .2B .1.5C .4D .6【分析】分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,由于反比例函数的图象在第一象限,所以k >0,由点A 是反比例函数图象上的点可知,S △AOD =S △AOF =|k |,再由A 、B 两点的横坐标分别是a 、3a 可知AD=3BE ,故点B 是AC 的三等分点,故DE=2a ,CE=a ,所以S △AOC =S 梯形ACOF ﹣S △AOF =3,故可得出k 的值.【解答】解:如图,分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =|k |,∵A 、B 两点的横坐标分别是a 、3a ,∴AD=3BE ,∴点B 是AC 的三等分点,∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE +CE +AF )×OF ﹣|k |=×5a ×﹣|k |=3,解得k=1.5.故选:B .【点评】本题考查反比例函数系数k 的几何意义,解题时注意:过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.10.(3分)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A .B .C .D .【分析】延长A′B′交BC 于点E ,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.【解答】解:∵在正方形ABCD中,AC=3∴BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选:B.【点评】本题考查了位似变换和坐标与图形的变化的知识,解题的关键是根据已知条件求得两个正方形的边长.11.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a <0,则可对②进行判断;利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线的对称性得到可对③进行判断;利用x=﹣1时,y<0可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,且两交点为抛物线上的对称点.熟练掌握二次函数图象与系数的关系.12.(3分)如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A.B.C.D.【分析】△CMN的面积=CP×MN,通过题干已知条件,用x分别表示出CP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2.【解答】解:(1)当0<x≤1时,如图1,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,∴MN=x,∴y=CP×MN=(0<x≤1),∵﹣<0,∴函数图象开口向下;(2)当1<x<2,如图2,同理证得,△CDB∽△CNM,,即,∴MN=2﹣x,∴y=CP×MN=(2﹣x)×(2﹣x)=,∵>0,∴函数图象开口向上;综上,答案A的图象大致符合;故选:A.【点评】本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)若a﹣b=2,3a+2b=3,则3a(a﹣b)+2b(a﹣b)=6.【分析】此题可先提取公因式(a﹣b),然后把a﹣b=2,3a+2b=3代入整式即可得出答案.【解答】解:∵a﹣b=2,3a+2b=3,∴3a(a﹣b)+2b(a﹣b)=(a﹣b)(3a+2b)=2×3=6.【点评】本题考查提公因式法分解因式和整体思想的运用,是基础题.14.(3分)不等式组的解集是﹣3<x≤1.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(3分)如图,在等腰Rt△ABC中,∠A=90°,AC=6,D是AC上一点,过D作DE⊥BC于点E,若,则CE的长为.【分析】根据等腰直角三角形的性质得到AB=AC=6,∠C=∠B=45°,根据三角函数的定义得到AD=,求得CD=,解直角三角形得到结论.【解答】解:在等腰Rt△ABC中,∠A=90°,AC=6,∴AB=AC=6,∠C=∠B=45°,∵,∴AD=,∴CD=,∵DE⊥BC,∴CE=CD=,故答案为:.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质.16.(3分)如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为1或.【分析】分两种情形:①当G在AD边上时,②当G′在CD上时分别求解即可;【解答】解:①当G在AD边上时,∵AE=BG,AB=AB,∠BAG=∠ABE=90°,∴△ABG≌△BAE,∴AG=BE,∵AG∥BE,∴==1.②当G′在CD上时,易证△ABE≌△BCG′,∴∠BAE=∠CBG′,∵∠CBG′+∠ABF′=90°,∴∠BAE+∠ABF′=90°,∴∠AF′B=90°,∴BG′⊥AE,∵AB=8.BE=6,∴AE=BG′==10,∵•AB•BE=•AE•BF′,∴BF′=,F′G′=10﹣=,∴==故答案为1或.【点评】本题考查相似三角形的判定和性质、全等三角形的判定和性质、正方形的性质、勾股定理平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.17.(3分)一个口袋中装有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸出两个球,则摸出两个小球标号的和等于5的概率是.【分析】根据题意列出相应的表格,得出所有等可能的情况数,找出之和为5的情况数,即可求出所求的概率.【解答】解:列表得:12341﹣﹣﹣(2,1)(3,1)(4,1)2(1,2)﹣﹣﹣(3,2)(4,2)3(1,3)(2,3)﹣﹣﹣(4,3)4(1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况有12种,其中摸出两个小球标号的和等于5的有4种结果,∴摸出两个小球标号的和等于5的=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(3分)如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则tanA=.【分析】如图,作辅助线;首先证明△BOM∽△OAN,得到=,设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=,即可解决问题.【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.三、解答题:本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:﹣2cos30°+()﹣2﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x是方程x2=2x的根.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的解得到x的值,代入计算即可求出值.【解答】解:(1)原式=3﹣2×+4﹣+1=+5;(2)原式=•=﹣(x+2)(x﹣1),由x是方程x2=2x的根,得到x=0或x=2(不符合题意,舍去),则当x=0时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(11分)某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:818590939598100跳绳数/个人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是95个,中位数是95个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【解答】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8人,跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,故统计表为:跳绳数/个818590939598100人数12581185直方图为:(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级不能得满分的有720×=54人.【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.21.(11分)如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD 最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).【点评】本题主要考查一次函数与反比例函数的交点问题及依据轴对称性质求最短路线问题,待定系数法求一次函数、反比例函数的解析式是解题关键.22.(11分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.23.(11分)如图,在△ABC中,∠ABC=90°,D是边AC上一点,连接BD,使∠A=2∠1,点E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求AB的长.【分析】(1)由OD=OB得∠1=∠ODB,则根据三角形外角性质得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,则可根据切线的判定定理得到AC是⊙O的切线;(2)由∠A=60°得到∠C=30°,∠DOC=60°,根据含30度的直角三角形三边的关系得CD=2OD=4,在Rt△ABC中,根据AB=BC•tan30°计算即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴OC=2OD=4,BC=OB+OC=6在Rt△ABC中,AB=BC•tan30°=2.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了扇形面积的计算.24.(12分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;,BP=x(0≤x≤2),求y与x之间的函数关(3)在平移变换过程中,设y=S△OPB系式,并求出y的最大值.【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP 的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2.【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM 是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△PAC =S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC =S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。
四川省绵阳市2018届高三第二次诊断性考试试题 数学文 扫描版含答案

四川省绵阳市2018届高三第二次诊断性考试试题数学文扫描版含答案选择题:本大题共12小题,每小题5分,共60分。
答案为DDCACCCBBABD。
二、填空题:本大题共4小题,每小题5分,共20分。
13.95,14.106.5,15.4.三、解答题:本大题共6小题,共70分。
16.4317.解:Ⅰ)已知tanA=11,tanB=tanC=23,∴tanB=2tanA,tanC=3tanA。
在△ABC中,tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC),化简后得tan2A=1,即tanA=-1,或tanA=1.若tanA=-1,可得tanB=-2,则A,B均为钝角,不合题意。
故tanA=1,得A=π/4.Ⅱ)由tanA=1,得tanB=2,tanC=3,即sinB=2cosB,sinC=3cosC。
结合sin2B+cos2B=1,sin2C+cos2C=1,可得sinB=2/5,sinC=3/10,(负值已舍)。
在△ABC中,由XXX=sinA,得b=a/5×2=2a/5.于是S△ABC=1/2absinC=1/2×5a×3a/10=3a2/4.18.解:Ⅰ)根据题意得:a=40,b=15,c=20,d=25。
K=(100×(40×25-15×20)2)/(60×40×55×45)≈8.249>7.879。
在犯错误的概率不超过0.005的前提下可以认为网购与年龄有关。
Ⅱ)根据题意,抽取的6人中,年轻人有4人,分别记为A1,A2,A3,A4,中老年人2人,分别记为B1,B2.则从这6人中任意选取3人的可能有(A1,A2,A3),(A1,A2,A4),(A1,A2,B1),(A1,A2,B2),(A1,A3,A4),(A2,A3,A4),(A1,B1,B2),(A2,B1,B2),(A3,B1,B2),共9种情况。
四川省绵阳市 中考数学二诊试卷(Word版 含解析) (3)

四川省绵阳市中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×1063.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y24.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多455.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤38.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.16.关于x的方程的解是正数.则a的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是人,m=;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.参考答案一、选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1【分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.解:原式=1﹣3=﹣2.故选:C.2.太阳半径约696000000米,其中数据696000000科学记数法表示为()A.0.696×109B.6.96×109C.6.96×108D.696×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于696000000有9位,所以可以确定n=9﹣1=8.解:696000000=6.96×108.故选:C.3.下列计算正确的是()A.2x+3y=5xy B.x10÷x5=x5C.(xy2)3=xy6D.(x﹣y)2=x2+y2【分析】直接利用同类项定义,同底数幂的除法,积的乘方运算法则以及完全平方公式分别分析得出答案.解:A、2x与3y不是同类项,不能合并,故此选项错误;B、x10÷x5=x5,故此选项正确;C、(xy2)3=x3y6,故此选项错误;D、(x﹣y)2=x2﹣2xy+y2,故此选项错误;故选:B.4.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.5.如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.6.随着全球能源危机的逐渐加重,太阳能发电行业发展迅速.全球太阳能光伏应用市场持续稳步增长,2019年全球装机总量约600GW,预计到2021年全球装机总量达到864GW.设全球新增装机量的年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%【分析】根据增长后的装机总量=增长前的装机总量×(1+增长率)列出方程并解答.解:根据题意,得600(1+x)2=864.解得x1=0.2=20%,x2=﹣2.2(舍去),故选:A.7.不等式组的解集是x>4,那么m的取值范围是()A.m=3B.m≥3C.m<3D.m≤3【分析】不等式组中两不等式整理后,根据已知解集确定出m的范围即可.解:不等式组整理得:,∵不等式组的解集为x>4,∴m+1≤4,解得:m≤3.故选:D.8.在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,则∠CBD的度数为()A.12°B.13°C.14°D.15°【分析】可过C作CE⊥AD于E,过D作DE⊥BC于F,依据题意可得∠FCD=∠ECD,由角平分线到角两边的距离相等可得DF=DE,进而的△CED≌△CFD,由对应边又可得Rt △CDF≌Rt△BDF,进而可得出结论.解:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.∵∠CAD=30°,∴∠ACE=60°,且CE=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠FCD=90°﹣∠ACD=15°,∠ECD=∠ACD﹣∠ACE=15°,在△CED和△CFD中,,∴△CED≌△CFD(AAS),∴CF=CE=AC=BC,∴CF=BF.∴BD=CD,∴∠DCB=∠CBD=15°,故选:D.9.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14,现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A.B.C.D.【分析】画树状图,共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,再由概率公式求解即可.解:画树状图如图:共有20个等可能的结果,恰好使该图形为“和谐图形”的结果有4个,∴恰好使该图形为“和谐图形”的概率为=,故选:B.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作CD⊥AB,垂足为D,点E为BC的中点,AE与CD交于点F,若DF的长为,则AE的长为()A.B.C.D.【分析】连接DE,首先推知ED为△ABC的中位线,然后由中位线的性质得到△DEF∽△CAF,从而求得CD的长度;继而推知AC=BC=4;最后由勾股定理求得AE的长度.解:连接DE,如图所示:在Rt△ABC中,∠ACB=90°,AC=BC,∵CD⊥AB,∴AD=BD,即点D为AB的中点.∵E为BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,∴△DEF∽△CAF,∴==,∴DF=CD=,∴CD=.∴AB=2.∵AC=BC,∴AC2+BC2=2AC2=AB2=8.∴AC=BC=2.∴CE=1.在直角△ACE中,由勾股定理知:AE===.故选:C.11.如图,抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,则抛物线y=cx2+bx+a的图象大致为()A.B.C.D.【分析】根据题意得到a﹣b+c=0,a>0,b<0,c=﹣1,即可得到抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,经过点(﹣1,0),据此即可判断.解:∵抛物线y=ax2+bx+c经过(﹣1,0)和(0,﹣1)两点,∴开口向上,对称轴在y轴的右侧,∴a﹣b+c=0,a>0,b<0,c=﹣1,∴抛物线y=cx2+bx+a的开口向下,对称轴直线x=﹣<0,交y轴正半轴,当x=﹣1时,y=c﹣b+a=0,∴抛物线y=cx2+bx+a经过点(﹣1,0),故选:B.12.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B′,C′上.在点M从点A运动到点B 的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为()cm.A.﹣B.C.D.【分析】探究点E的运动轨迹,寻找特殊位置解决问题即可.解:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM=MB′,∴∠2=∠3,∴MB′=NB′,∵NB′===(cm),∴BM=NB′=(cm).如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,∴DE=4﹣=(cm),如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=(﹣)(cm).故选:A.二、填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.把多项式mx2﹣4mxy+4my2分解因式的结果是m(x﹣2y)2.【分析】直接提取公因式m,再利用完全平方公式分解因式即可.解:原式=m(x2﹣4xy+4y2)=m(x﹣2y)2.故答案为:m(x﹣2y)2.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是﹣5.【分析】根据二次函数的平移得出平移后的表达式,再将点(﹣2,5)代入,得到4a﹣2b=3,最后将8a﹣4b﹣11变形求值即可.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.15.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.16.关于x的方程的解是正数.则a的取值范围是a<﹣2且a≠﹣6.【分析】将a看成一个常数,然后按照分式方程的解法求出x即可求出a的范围.解:3x+a=x﹣2∴x=把x=代入x﹣2≠0,∴a≠﹣6∵x>0,∴>0,∴a<﹣2∴a<﹣2且a≠﹣6故答案为:a<﹣2且a≠﹣617.如图,在Rt△ABC中,∠ACB=90°,AC=BC=5,点E、F分别在CA,CB上,且CE=CF=1,点M、N分别为AF、BE的中点,则MN的长为2.【分析】取AB的中点D,连接MD、ND,如图,先判断DM为△ABF的中位线,DN为△ABE 的中位线得到DM=BF=2,DM∥BF,DN=AE=2,再证明AE⊥BF,则DM⊥DN,然后根据△DMN为等腰直角三角形确定MN的长.解:取AB的中点D,连接MD、ND,如图,AE=BF=5﹣1=4,∵点M、N分别为AF、BE的中点,∴DM为△ABF的中位线,DN为△ABE的中位线,∴DM=BF=2,DM∥BF,DN=AE=2,DN∥AE,∵AE⊥BF,∴DM⊥DN,∴△DMN为等腰直角三角形,∴MN=DM=2.故答案为2.18.如图,在矩形ABCD中,AB=1,BC=2,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交CD于E,将△PEC沿PE翻折到平面内,使点C恰好落在AD边上的点F,则BP长为或1.【分析】作PH⊥AD于H,如图,设BP=x,则CP=2﹣x,利用等角的余角相等得到∠1=∠3,则根据相似三角形的判定得到Rt△ABP∽Rt△PCE,利用相似比、折叠的性质得表示相应的线段,然后证明Rt△PHF∽Rt△FDE,利用相似比得到FD,在Rt△DFE中,根据勾股定理即可求解.解:作PH⊥AD于H,如图,设BP=x,则CP=2﹣x.∵PE⊥PA,∴∠2+∠3=90°,∵∠1+∠2=90°,∴∠1=∠3,∴Rt△ABP∽Rt△PCE,∴.即.∴CE=x(2﹣x).∵△PEC沿PE翻折到△PEF位置,使点F落到AD上,∴EF=CE=x(2﹣x),PF=PC=2﹣x,∠PGE=∠C=90°,∴DE=DC﹣CE=1﹣x(2﹣x).∴∠5+∠6=90°.∵∠4+∠6=90°,∴∠5=∠4.∴Rt△PHF∽Rt△FDE,∴,即.∴FD=x,在Rt△DFE中,∵DE2+DF2=FE2,∴[1﹣x(2﹣x)]2+x2=[x(2﹣x)]2,解得x1=,x2=1,∴BP的长为或1.解法二:过点A作AM⊥BF于M.∵△PEF由△PEC翻折得到,∴△PEF≌△PEC,∴PF=PC,∠FPE=∠EPC,又∵∠BPA+∠EPC=90°,∠APM+∠EPF=90°,∴∠APB=∠APM,又∵∠B=∠AMP=90°,AP=AP,∴△ABP≌△AMP(AAS),∴AB=AM=1,BP=PM,令BP=x,则PC=PF=2﹣x,BP=PM=x,∴MF=2﹣x﹣x=2﹣2x,∵AD∥BC,∴∠APB=∠PAD,又∵∠APB=∠APF,∴△APF为等腰三角形,∴AF=PF=2﹣x,在△AMF中,AF2=AM2+MF2,∴(2﹣x)2=12+(2﹣2x)2,∴x=1或.故答案为:或1.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:2﹣1+|﹣3|+2sin45°﹣(﹣2)2021×()2021.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【分析】(1)根据负整数指数幂、绝对值的性质、特殊角的三角函数值、积的乘方法则计算;(2)根据分式的混合运算法则把原式化简,整体代入即可.解:(1)原式=+3﹣+2×﹣(﹣2×)2021=+3﹣++1=;(2)原式=[+]•=(+)•=•=,∵a2+2a﹣15=0,∴a2+2a=15,∴原式=.20.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?【分析】(1)设第一次练习成绩为x分,第二次练习成绩为y分,根据“小明同学的两次练习成绩之和为260分,综合成绩为132分”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设小张同学第二次练习成绩为m分,根据他的综合成绩不低于135分,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设第一次练习成绩为x分,第二次练习成绩为y分,依题意,得:,解得:.答:第一次练习成绩为120分,第二次练习成绩为140分.(2)设小张同学第二次练习成绩为m分,依题意,得:120×40%+60%m≥135,解得:m≥145.答:小张同学第二次练习成绩至少要得145分.21.某市有A,B,C,D,E五个景区很受游客喜爱.对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了两幅不完整的统计图.(1)该小区居民在这次随机调查中被调查的人数是200人,m=35;(2)补全条形统图,若该小区有居民1500人,试估计去C景区旅游的居民约有多少人?(3)甲、乙两人暑假打算游玩,甲从B,C两个景点中任意选择一个游玩,乙从B,C,E三个景点中任意选择一个游玩,用列表法或树状图法求甲、乙恰好游玩同一景点的概率.【分析】(1)用去D景区旅游的人数除以它所占的百分比得到调查的总人数,然后用去到B景区旅游的居民数除以总人数可得到m的值;(2)先计算出去到C景区旅游的居民数,则可补全条形统计图;然后用去C景区旅游的居民数的百分比乘以1500即可;(3)画树状图展示所有6种等可能的结果,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.解:(1)该小区居民在这次随机调查中被调查到的人数为20÷10%=200(人);m%=×100%=35%,即m=35;故答案为200;35;(2)去C景区旅游的居民人数为200﹣20﹣70﹣20﹣50=40(人),补全统计图如下:1500×=300(人),所以估计去C景区旅游的居民约有300人;(3)画树状图为:共有6种等可能的结果,其中甲、乙恰好游玩同一景点的结果数为2,所以甲、乙恰好游玩同一景点的概率==.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.【分析】(1)想办法证明∠B+∠BAE=90°即可解决问题.(2)①连接OA,想办法证明OA⊥AG即可解决问题.②过点C作CH⊥AG于H.设CG=x,GH=y.利用相似三角形的性质构建方程组解决问题即可.【解答】证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.24.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你直接写出AE与DF的关系.(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,AC,当△ACE为等腰三角形时,求CE:CD的值.(3)如图3,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD=2,求线段CP的最小值.【分析】(1)根据正方形的性质得出AD=DC,∠ADE=∠DCF=90°,求出DE=CF,根据SAS推出△ADE≌△DCF,根据全等三角形的性质得出AE=DF,∠DAE=∠FDC即可;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE =a即可;②当AE=AC时,设正方形ABCD的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质∠ADC=90°,根据等腰三角形的性质得出DE=CD=a即可;(3)由于点P在运动中保持∠APD=90°,所以点P的路径以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.解:(1)AE=DF,AE⊥DF;理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD=2:1或:1.理由:有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=a,则CE:CD=a:a=:1;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE=a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2:1;综上所述,CE:CD=:1或2:1;故答案为::1或2:1;(3)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD中点为圆心,AD的一半为半径的弧DG,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC===,∴CP=QC﹣QP=﹣1.25.如图1,已知抛物线y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C.(1)写出A、B、C三点的坐标.(2)若点P为△OBC内一点,求OP+BP+CP的最小值.(3)如图2,点Q为对称轴左侧抛物线上一动点,点D(4,0),直线DQ分别与y轴、直线AC交于E、F两点,当△CEF为等腰三角形时,请直接写出CE的长.【分析】(1)令y=0,可求出点A,点B的坐标,令x=0,可得出点C的坐标;(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',当O,P,P',C′四点共线,OP+BP+CP的值最小,再在直角三角形中,求出此时的最小值;(3)需要分类讨论,当CE=CF,CE=EF,CF=EF时,分别求解.解:(1)∵y=﹣(x+3)(x﹣4)与x轴交于A、B两点,与y轴交于点C,∴A(﹣3,0),B(4,0),C(0,4).(2)将△BPC绕点B顺时针旋转60°得到△BP'C',连接PP',CC',∴BP=BP',BC=BC,∠PBP'=60°,∠CBC′=60°,PC=P'C′,∴△BPP'和△BCC′为等边三角形,∴BC′=BC,PP′=BP,当O,P,P',C′四点共线,OP+BP+CP的值最小,∴tan∠OBC===,∴∠OBC=30°,∴BC=2OC=8,∴BC′=BC=8,∵∠OBC′=∠OBC+∠CBC′=30°+60°=90°,∴OC′==,∴OP+BP+CP=OP+PP'+C'P'=OC′=4.(3)需要分类讨论:①如图,当CE=CF,且点F在点C左侧时,过点F作FG⊥CE于点G,则△CFG∽△CAO,∵OA=3,OC=4,∴AC=5,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=m,OE=4﹣5m,∵△FGE∽△DOE,∴,∴,∴m=,∴CE=5m=;当点F在点C右侧时,如图所示,过点F作FG⊥y轴于点G,则△FCG∽△ACO,∴FG:GC:FC=OA:OC:AC=3:4:5,设FG=3m,则CG=4m,FC=5m,∴CE=FC=5m,∴GE=9m,OE=5m﹣4,∵△FGE∽△DOE,∴,∴,解得m=,∴CE=5m=16;②如图,当CE=EF时,过点A作AG∥EF交y轴于点G,由EF=CE,可得,AG=CG,设OG=m,则AG=CG=4﹣m,∵OA2+OG2=AG2,∴32+m2=(4﹣m)2,解得,m=.由A(﹣3,0)和G(0,),可得直线AG的解析式为:y=x+,设直线DF为:y=x+b,将D(4,0)代入得:b=﹣,∴E(0,﹣),∴CE=4+=.③如图,当CF=EF时,过点C作CG∥DE交x轴于点G,则∠GCO=∠ACO,∴OG=OA=3,∴G(3,0),由G(3,0),C(0,4)可得直线CG的解析式为:y=﹣x+4,设直线DE为:y=﹣x+n,将D(4,0)代入得:n=,∴E(0,),∴CE=﹣4=.故CE的长为:或或或16.。
推荐-四川省绵阳市2018年二次诊断数学试题(理科) 精品

绝密 ★ 启用前 【考试时间:2018年1月10日下午3:00~5:00】绵阳市高中2018级第二次诊断性考试数 学 (理工类)本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷(非选择题) 组成,共4页;答题卷共4页.满分100分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共48分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.3.参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概率:k n k kn n P P C k P --⋅⋅=)1()(; 正棱锥、圆锥的侧面积公式cl S 21=锥侧 其中c 表示底面周长,l 表示斜高或母线长;球的体积公式 334R V π=球 其中R 表示球的半径.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的, 把它选出来填涂在答题卡上.1.不等式02|1|>+-x x 的解集是 A .{x ︱x >-2} B .{x ︱x <-2} C .{x ︱-2<x <1或x >1} D .{x ︱x <-2或x >1}2.若a >b >0,则下列不等式中总成立的是A .a b b a 11+>+B .11++>a b a bC .b b a a 11+>+D .bab a b a >++22 3.下列极限中,其值等于2的是A .4326lim 32+++∞→n n nB .4326lim 22+++∞→n n nC .)11174(lim 31+-++-→x x x x D .nn n n n n n C C C C 2421lim 210++++++++∞→4.设不重合两条直线l 1:ax +by +c =0与直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 A .1个 B .2个 C .3个 D .0个6.已知数列{a n }的通项公式是1+=bn ana n ,其中a 、b 均为正常数,那么a n 与1+n a 的大小关系是A .1+<n n a aB . 1+>n n a aC .1+=n n a aD .与a 、b 的取值有关7.设)3,6(ππθ∈且17θ 的终边与θ 的终边相同,则tan θ =A .2-1B .2C .2+1D .1 8.方程 x (x 2 + y 2-3) = 0与x 2 + (x 2 + y 2-3)2 = 0所表示的曲线是A .都表示一条直线和一个圆B .都表示两个点C .前者是两个点,后者是一条直线和一个圆D .前者是一条直线和一个圆,后者是两个点 9.设α、β是某一锐角三角形的两个内角,则必有A .sin α<cos β且sin β<cos αB .sin α<cos β且sin β>cos αC .sin α>cos β且sin β>cos αD .sin α>cos β且sin β<cos α10.函数y =x +cos x 的大致图象是D .11.由方程 1||||=+y y x x 确定的函数y =f (x )在(-∞,+∞)上是A .奇函数B .偶函数C .增函数D .减函数12.已知a ,b ,c ∈R ,若1>⋅a c a b ,且2-≥+aca b ,则下列结论成立的是A .a ,b ,c 同号B .b ,c 同号,a 与它们异号C .b ,c 同号,a 不能确定D .a ,b ,c 的符号都不能确定第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知目标函数S = 2x + y ,则函数S 在条件⎪⎩⎪⎨⎧≤+-≤>0122,1,0y x y x 下的最大值为 .14.已知51cos sin =+αα,那么角α是第 象限的角.15.设a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a =4,b =5,35=S ,则c = . 16.已知命题:“若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m ,n ∈N +),则mn ma nb a n m -⋅-⋅=+”.现已知数列{b n }(b n >0,n ∈N +)为等比数列,且b m =a ,b n =b (m ≠n ,m ,n ∈N +),若类比上述结论,则可得到b m +n = .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分) 已知数列{a n }的各项均为正数,且前n 项和S n 满足1(1)(2)6n n n S a a =++.若a 2、a 4、a 9 成等比数列,求数列{a n }的通项公式.18.(本题满分12分) 已知A 是圆x 2 + y 2 = 4上任一点,AB 垂直于x 轴,交x 轴于点B .以A 为圆心、AB 为半径作圆交已知圆于C 、D ,连结CD 交AB 于点P ,求点P 的轨迹方程.19.(本题满分12分) 设平面内的向量)7,1(=, )1,5(=, )1,2(=,点P 是直线OM 上的一个动点,求当⋅取最小值时,的坐标及∠APB 的余弦值.20.(本题满分12分) 某地计划从今年起填湖围造一部分生产和生活用地.若填湖费、购置排水设备费等所需经费与当年所填湖造地面积x (亩)的平方成正比,其比例系数为a .设每亩水面的年平均经济收益为b 元,填湖造地后的每亩土地的年平均收益为c 元(其中a ,b ,c 均为常数).(Ⅰ) 若按计划填湖造地,且使得今年的收益不小于支出,试求所填面积x 的最大值.(Ⅱ) 如果填湖造地面积按每年1%的速度减少,为保证水面的畜洪能力和环保要求,填湖造地的总面积永远不能超过现有水面面积的25%,求今年填湖造地的面积最多只能占现有水面的百分之几.21.(本题满分12分) 证明:ααααααααsin 21)cos (sin cos 2cos sin 3cos 3sin =-++--.22.(本题满分14分) 试利用“对数函数y = log a x 在(0,+∞)上的单调性质:0<x 1<x 2 ⇔ log a x 1<log a x 2 (a >1);0<x 1<x 2 ⇔ log a x 1>log a x 2 (0<a <1)” 解决下列问题:已知二次函数f (x )的图象开口向下,且对任意实数x 有f (2-x )=f (2+x ), 解关于x 的不等式:)10)](812([log )]45([log 222<<++-<++a a x x f a ax x f a a 其中.绵阳市高2018级第二次诊断性考试 数学(理)参考解答及评分标准一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.CABC BADD CBDA二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.2 14.二或四 15.61或2116. m n m n n m abb -+=三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解 ∵ 对任意n ∈N *,有 1(1)(2)6n n n S a a =++, (1)∴ 当n =1时,有 11111(1)(2)6S a a a ==++, 解得 a 1 = 1 或a 1 = 2. ……………… 3分当n ≥2时,有 1111(1)(2)6n n n S a a ---=++. (2)于是,由 (1)-(2) 整理可得 (a n + a n -1)(a n -a n -1-3)=0.因为{a n }的各项均为正数,所以 a n -a n -1 = 3. …………… 8分 当a 1 = 1时,a n =1+3(n -1)=3n -2,此时a 42=a 2a 9成立.当a 1 = 2时,a n =2+3(n -1)=3n -1,此时a 42=a 2a 9不成立,故a 1=2舍去.所以a n =3n -2. ……………… 12分18.解 设点A 的坐标为A (2cos α,2sin α), 则以A 为圆心、AB 为半径的圆的方程为(x -2cos α)2 + (y -2sin α)2 = 4sin 2α. ……… 4分联立已知圆x 2 + y 2 = 4的方程,相减, 可得公共弦CD 的方程为x cos α + y sin α = 1+ cos 2α. (1) ……… 8分 而AB 的方程是 x = 2cos α. (2)所以满足(1)、(2)的点P 的坐标为(2cos α,sin α),消去α,即得点P 的轨迹方程为x 2 + 4y 2 = 4. ……………… 12分说明: 设A (m ,n )亦可类似地解决. 19.解 设),(y x OP =. ∵ 点P 在直线OM 上,∴ 与OM 共线,而)1,2(=,∴ x -2y =0即x =2y ,有),2(y y =. ……………… 4分∵ )7,21(y y --=-=,)1,25(y y --=-=, ∴ )1)(7()25)(21(y y y y --+--=⋅= 5y 2-20y +12 = 5(y -2)2-8. ……………… 8分从而,当且仅当y =2,x =4时,PB PA ⋅取得最小值-8,此时)2,4(=,)5,3(-=,)1,1(-=.于是34||=,2||=,8)1(51)3(-=-⨯+⨯-=⋅PB PA , ∴ 171742348||||cos -=⋅-=⋅=∠PB PA APB .…………… 12分 20.解填湖面积 填湖及排水设备费 水面经济收益 填湖造地后收益x (亩) ax 2 (元) bx cx(Ⅰ) 收益不小于支出的条件可以表示为 cx ≥ ax 2 + bx , 所以 ax 2 + (b -c )x ≤0, x [ax -(c -b )]≤0.当 c -b ≤0,即 0≤≤-x abc 时,此时不能填湖造地;……… 3分 当 c -b >0,即 a b c x -≤≤0 时,此时所填面积的最大值为abc -亩.…………… 6分(Ⅱ) 设该地现有水面m 亩,今年填湖造地x 亩, 则 m x x x x 25.0%)11(%)11(%)11(32≤+-+-+-+ ,不等式左边是无穷等比数列(首项为x ,公比q =0.99)的和,故有499.01m x ≤-, 即 m mx %25.0400=≤.因此今年填湖造地面积最多只能占现有水面的0.25%.…………… 12分21. 证明:∵ 分子=(sin2αcos α+cos2αsin α)-(cos2αcos α-sin2αsin α)-sin α+cos α= (2sin αcos 2α-sin α)+cos2αsin α-(cos2αcos α-cos α)+sin2αsin α = sin α(2cos 2α-1)+sin αcos2α+2sin 2αcos α+sin2αsin α = 2sin αcos2α+2sin2αsin α =2sin α(sin2α+cos2α), …………… 9分分母=2sin αcos α+2cos 2α-1= (sin2α+cos2α). …………… 11分∴ 左边=2sin α=右边,故等式成立. …………… 12分22.解 由题意知,二次函数f (x )的对称轴为直线x =2,…… 2分 故f (x )在x ∈(-∞,2]上单调递增,在[2,+∞)上单调递减.∵ 22222)2(45a a ax a ax x ≥++=++,a a x a x x ≥+-=++-22)41(2812, 且 0<a <1,∴ 2l o g )45(l o g 222=≤++a a ax x a a ,1log )812(log 2=≤++-a a x x a a, ∴ )812(l o g )45(l o g 222a x x a ax x aa ++-<++, …………… 6分 于是,得 a x x a ax x ++->++81245222,即08145)1(22<++-+-a a x a x . …………… 10分∵ )8145(4)1(22++--+=∆a a a=031)61(6212622>+-=+-a a a , ……………12分∴ 原不等式的解集为}10,2121|{<<∆++<<∆-+a a x a x . …………… 14分。