圆的方程检测题
圆的方程练习题
圆的⽅程练习题圆的⽅程【基础练习】A 组1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的⽅程为2.过点A (1,-1)、B (-1,1)且圆⼼在直线x +y -2=0上的圆的⽅程是3.已知圆C 的半径为2,圆⼼在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的⽅程4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆⼼为P ,若∠APB=120°,则实数c 值为_ _5.如果⽅程220x y Dx Ey F ++++=()2240D E F +->所表⽰的曲线关于直线y x =对称,那么必有__ _6.设⽅程22242(3)2(14)1690x y m x m y m +-++-++=,若该⽅程表⽰⼀个圆,求m 的取值范围及这时圆⼼的轨迹⽅程。
7.⽅程224(1)40ax ay a x y +--+=表⽰圆,求实数a 的取值范围,并求出其中半径最⼩的圆的⽅程。
8.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的⽅程.9.设圆满⾜:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的⽐为3:1,在满⾜条件①、②的所有圆中,求圆⼼到直线l :x -2y =0的距离最⼩的圆的⽅程.10.在平⾯直⾓坐标系xoy 中,已知圆⼼在第⼆象限、半径为C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的⼀个交点到椭圆两焦点的距离之和为10. (1)求圆C 的⽅程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【基础练习】B 组1.关于x,y 的⽅程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表⽰⼀个圆的充要条件是2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆⼼坐标是3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是4.已知圆⼼为点(2,-3),⼀条直径的两个端点恰好落在两个坐标轴上,则这个圆的⽅程是5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是6.⽅程1x -=表⽰的曲线是_7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的⽅程是8.如果实数x 、y 满⾜等式()2223x y -+=,那么y x的最⼤值是 9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求⼀束光线从点A 经x 轴反射到圆周C 的最短路程为______10.求经过点A(5,2),B(3,2),圆⼼在直线2x─y─3=0上的圆的⽅程;11. ⼀圆与y 轴相切,圆⼼在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的⽅程直线与圆的位置关系【基础练习】A 组1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的⽅程为 .4..设集合(){}22,|25=+≤M x y x y ,()(){}22,|9=-+≤N x y x a y ,若M ∪N=M ,则实数a 的取值范围是5.M (2,-3,8)关于坐标平⾯x O y 对称点的坐标为6.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最⼩时l 的⽅程.7.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外⼀点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满⾜|PA|=|PB|.(1)求实数a 、b 间满⾜的等量关系;(2)是否存在以P 为圆⼼的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的⽅程;若不存在,说明理由.8.已知圆C 与两坐标轴都相切,圆⼼C 到直线y x =-(1)求圆C 的⽅程.(2)若直线:1x y l m n +=(2,2)m n >>与圆C相切,求证:6mn ≥+9.如图,在平⾯直⾓坐标系x O y 中,平⾏于x 轴且过点A(33,2)的⼊射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.(1)求l 2所在直线的⽅程和圆C 的⽅程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最⼩值及此时点P 的坐标.【基础练习】B 组1.圆x 2+y 2-4x=0在点P(1,3)处的切线⽅程为2.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆⼼⾓为3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是4.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为5.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为6.点P 从(1,0)出发,沿单位圆122=+y x 逆时针⽅向运动32π弧长到达Q 点,则Q 的坐标为 7.若圆04122=-++mx y x 与直线1-=y 相切,且其圆⼼在y 轴的左侧,则m 的值为 8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内⼀点则过点P 的最短弦所在直线⽅程是,过点P 的最长弦所在直线⽅程是9.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最⼩值为 .10. 已知与曲线C :x 2+y 2-2x-2y+1=0相切的直线L 交x 轴、 y 轴于A 、B 两点, O 为原点, 且|OA|=a, |OB|=b (a>2,b>2)(1)求证曲线C 与直线L 相切的条件是(a-2)(b-2)=2 (2)求ΔAOB ⾯积的最⼩值..11.已知平⾯区域00240x y x y ≥??≥??+-≤?恰好被⾯积最⼩的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的⽅程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满⾜CA CB ⊥,求直线l 的⽅程.12、已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外⼀点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满⾜||||PQ PA =.(1) 求实数a b 、间满⾜的等量关系;(2) 求线段PQ 长的最⼩值;(3) 若以P 为圆⼼所作的⊙P 与⊙O 有公共点,试求半径取最⼩值时的⊙P ⽅程.。
高三数学圆的标准方程与一般方程试题答案及解析
高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。
高考数学圆的方程练习题附答案
高考数学圆的方程练习题附答案1.若圆c的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[分析]将圆心设为Ca,Ba>0,b>0,从问题的意义中得出b=1又圆心c到直线4x-3y=0的距离d==1,解决方案是a=2或a=-四舍五入所以该圆的标准方程为x-22+y-12=1.[答:]x-22+Y-12=12.2021·南京质检已知点p2,1在圆c:x2+y2+ax-2y+b=0上,点p关于直线x+y-1=0的对称点也在圆c上,则圆c的圆心坐标为________.【分析】因为点P相对于直线x+Y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解为a=0,所以中心坐标为0,1[答案] 0,13.如果已知圆的中心位于直线y=-4x上,且圆在点P3,-2处与直线L:x+y-1=0相切,则圆的方程式为:___[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为1,-4.半径r=2,圆的方程式为X-12+y+42=8[答案] x-12+y+42=84.2022·江苏常州模拟知道实数x,y满足x2+y2-4x+6y+12=0,那么| 2x-y |的最小值为___[解析] x2+y2-4x+6y+12=0配方得x-22+y+32=1,令x=2+cosα,y=-3+sinα,然后| 2x-y |=|4+2cosα+3-sinα|=|7-sinα-φ|≥7-tanφ=2.[答:]7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0a>0,b>0对称,则+的最小值是________.【分析】从圆的对称性来看,直线2aX by+8=0必须穿过圆的中心-2,4,因此a+B=2,+=+=++5≥ 2+5=9,from=,然后A2=4B2,再从a+B=2,所以当且仅当a=,B时取等号=[答案] 96.2022. 南京市和盐城市的第三次模拟考试是在平面直角坐标系xoy中进行的。
圆的方程
圆的方程活动一:基础检测1.方程x 2+y 2+4mx -2y +5m =0表示圆时,m 的取值范围为______________. 2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是________.3.点P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是______________.4.已知点(0,0)在圆:x 2+y 2+ax +ay +2a 2+a -1=0外,则a 的取值范围是________.5.过圆x 2+y 2=4外一点P (4,2)作圆的切线,切点为A 、B ,则△APB 的外接圆方程为________.6、(2015年江苏高考)在平面直角坐标系xoy 中,以点(1,0)为圆心且与直线210mx y m ---= ()m R ∈相切的所有圆中,半径最大的圆的标准方程为_______________。
7、(2014年江苏高考)在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为8、在平面直角坐标系xoy 中,已知⊙C:5)1(22=-+y x,A为⊙C与x 负半轴的交点,过A 作⊙C的弦AB ,记线段AB 的中点为M.则直线AB 的斜率为 。
活动二:探究点一 求圆的方程例1 已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为________.变式1 根据下列条件,求圆的方程.(1)与圆O :x 2+y 2=4相外切于点P (-1,3),且半径为4的圆的方程; (2)圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程.变式2在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,求圆M 的方程。
圆的方程 习题含答案
圆的方程习题(含答案)一、单选题1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )A.(x+2)2+(y-3)2=4B.(x+2)2+(y-3)2=9C.(x-2)2+(y+3)2=4D.(x-2)2+(y+3)2=92.当点在圆上运动时,连接它与定点,线段的中点的轨迹方程是()A.B.C.D.3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )A.9πB.πC.2πD.由m的值而定4.圆的半径是()A.B.2C.D.45.已知圆与圆相交于A、B两点,则线段AB的垂直平分线的方程为A.B.C.D.6.若点为圆上的一个动点,点,为两个定点,则的最大值为()A.B.C.D.7.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2B.C.6D.8.若直线l:ax+by+1=0经过圆M:的圆心则的最小值为A.B.5C.D.109.若均为任意实数,且,则的最小值为()A.B.C.D.二、填空题10.如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.11.已知x,y满足-4-4+=0, 则的最大值为____12.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.13.设直线与圆相交于两点,若,则圆的面积为________.14.已知圆的圆心在曲线上,且与直线相切,当圆的面积最小时,其标准方程为_______.15.在平面直角坐标系xOy中,已知过点的圆和直线相切,且圆心在直线上,则圆C的标准方程为______.16.已知圆的圆心在直线上,且经过,两点,则圆的标准方程是__________.17.在平面直角坐标系中,三点,,,则三角形的外接圆方程是__________.18.如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A ,B 同时出发,圆O 上按逆时针方向运动.若点P 的速度大小是点Q 的两倍,则在点P 运动一周的过程中,的最大值是_______.三、解答题 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程. 20.已知圆内一点,直线过点且与圆交于,两点.(1)求圆的圆心坐标和面积; (2)若直线的斜率为,求弦的长;(3)若圆上恰有三点到直线的距离等于,求直线的方程.21.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程; (2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.22.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
(完整版)圆的参数方程练习题有答案
圆的参数方程1.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ,(θ为参数,0≤θ<2π)判断点A (2,0),B ⎝⎛⎭⎫-3,32是否在曲线C 上?若在曲线上,求出点对应的参数的值. 解:将点A (2,0)的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧cos θ=1,sin θ=0.由于0≤θ<2π,解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0.将点B ⎝⎛⎭⎫-3,32的坐标代入⎩⎪⎨⎪⎧x =2cos θy =3sin θ,得⎩⎪⎨⎪⎧-3=2cos θ,32=3sin θ,即⎩⎨⎧cos θ=-32,sin θ=12.由于0≤θ<2π, 解得θ=5π6,所以点B ⎝⎛⎭⎫-3,32在曲线C 上,对应θ=5π6. 2.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =2ty =3t 2-1,(t 为参数).(1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值.[思路点拨] (1)将点的坐标代入参数方程,判断参数是否存在. (2)将点的坐标代入参数方程,解方程组.[解] (1)把点M 1(0,-1)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧0=2t-1=3t 2-1,∴t =0.即点M 1(0,-1)在曲线C 上.把点M 2(4,10)的坐标代入参数方程⎩⎪⎨⎪⎧x =2t ,y =3t 2-1,得⎩⎪⎨⎪⎧4=2t10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)∵点M (2,a )在曲线C 上,∴⎩⎪⎨⎪⎧2=2t ,a =3t 2-1. ∴t =1,a =3×12-1=2. 即a 的值为2.3.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =t 2+1y =2t ,(t 为参数).①判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; ②若点F (10,a )在曲线C 上,求实数a 的值. 解:①把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上.把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上.把点E (3,2)的坐标代入方程组,得到⎩⎪⎨⎪⎧3=t 2+1,2=2t ,即⎩⎨⎧t =±2,t =1.故t 不存在,所以点E 不在曲线上. ②令10=t 2+1,解得t =±3,故a =2t =±6.4.(1)曲线C :⎩⎪⎨⎪⎧x =ty =t -2,(t 为参数)与y 轴的交点坐标是____________.解析:令x =0,即t =0得y =-2,∴曲线C 与y 轴交点坐标是(0,-2). 答案:(0,-2)(2)在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1y =1-2t ,(t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ,(θ为参数,a >0)有一个公共点在x 轴,则a =________. 解析:由y =0知1-2t =0,t =12,所以x =t +1=12+1=32.令3cos θ=0,则θ=π2+k π(k ∈Z ),sin θ=±1,所以32=±a .又a >0,所以a =32.答案:325.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2ty =at 2,(其中t 为参数,a ∈R).点M (5,4)在该曲线上,则常数a =________.解析:∵点M (5,4)在曲线C 上,∴⎩⎪⎨⎪⎧5=1+2t 4=at 2,解得⎩⎪⎨⎪⎧t =2,a =1.∴a 的值为1. 答案:16.圆(x +1)2+(y -1)2=4的一个参数方程为____________.解析:令x +12=cos θ,y -12=sin θ得⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+2cos θy =1+2sin θ(θ为参数)(注本题答案不唯一)7.已知圆的普通方程x 2+y 2+2x -6y +9=0,则它的参数方程为____________.解析:由x 2+y 2+2x -6y +9=0,得(x +1)2+(y -3)2=1.令x +1=cos θ,y -3=sin θ,所以参数方程为⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数).答案:⎩⎪⎨⎪⎧x =-1+cos θy =3+sin θ,(θ为参数)(注答案不唯一)8.圆(x +2)2+(y -3)2=16的参数方程为( )A.⎩⎪⎨⎪⎧x =2+4cos θy =-3+4sin θ,(θ为参数) B.⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数) C.⎩⎪⎨⎪⎧x =2-4cos θy =3-4sin θ,(θ为参数) D.⎩⎪⎨⎪⎧x =-2-4cos θy =3-4sin θ,(θ为参数) 解析:选B.∵圆(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ,(θ为参数)∴圆(x +2)2+(y -3)2=16的参数方程为⎩⎪⎨⎪⎧x =-2+4cos θy =3+4sin θ,(θ为参数)9.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是____________.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,∴它的一个参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数).答案:⎩⎪⎨⎪⎧x =1+cos θy =sin θ(θ为参数)10.已知圆P :⎩⎨⎧x =1+10cos θy =-3+10sin θ,(θ为参数),则圆心P 及半径r 分别是( )A .P (1,3),r =10B .P (1,3),r =10C .P (1,-3),r =10D .P (1,-3),r =10解析:选C.由圆P 的参数方程可知圆心P (1,-3),半径r =10.11.圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ,(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D.由⎩⎪⎨⎪⎧x =2+2cos θy =2sin θ得(x -2)2+y 2=4,其圆心为(2,0),半径r =2.12.直线:3x -4y -9=0与圆:⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心解析:选 D.圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2,故选 D.13.已知圆C :⎩⎪⎨⎪⎧x =-3+2sin θy =2cos θ,(θ∈[0,2π),θ为参数)与x 轴交于A ,B 两点,则|AB |=________.解析:令y =2cos θ=0,则cos θ=0,因为θ∈[0,2π),故θ=π2或3π2,当θ=π2时,x =-3+2sin π2=-1,当θ=3π2时,x =-3+2sin 3π2=-5,故|AB |=|-1+5|=4.答案:414.已知动圆x 2+y 2-2x cos θ-2y sin θ=0.求圆心的轨迹方程.解:设P (x ,y )为所求轨迹上任一点. 由x 2+y 2-2x cos θ-2y sin θ=0得: (x -cos θ)2+(y -sin θ)2=cos 2θ+sin 2θ,∴⎩⎪⎨⎪⎧x =cos θy =sin θ这就是所求的轨迹方程.15.P 是以原点为圆心,r =2的圆上的任意一点,Q (6,0),M 是PQ 中点, (1)画图并写出⊙O 的参数方程;(2)当点P 在圆上运动时,求点M 的轨迹的参数方程. 解:(1)如图所示,⊙O 的参数方程⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ.(2)设M (x ,y ),P (2cos θ,2sin θ),因Q (6,0), ∴M 的参数方程为⎩⎨⎧x =6+2cos θ2,y =2sin θ2,即⎩⎪⎨⎪⎧x =3+cos θ,y =sin θ. 16.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设Q (cos θ,sin θ),PQ 中点M (x ,y ),则由中点坐标公式得x =2+cos θ2=12cos θ+1,y =0+sin θ2=12sin θ.∴所求轨迹的参数方程为⎩⎨⎧x =12cos θ+1y =12sin θ(θ为参数)消去θ可化为普通方程为(x -1)2+y 2=14,它表示以(1,0)为圆心、半径为12的圆.17.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是____________.解析:设x 1=cos θ,y 1=sin θ,P (x ,y ).则⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ.即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ,为所求. 答案:⎩⎪⎨⎪⎧x =cos 2θy =12sin 2θ18.已知P 是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -1)2+(y +1)2的最大值为________.解析:将⎩⎪⎨⎪⎧x =2+cos αy =sin α代入(x -1)2+(y +1)2得(1+cos α)2+(1+sin α)2=2sin α+2cos α+3=22sin ⎝⎛⎭⎫α+π4+3, ∴当sin ⎝⎛⎭⎫α+π4=1时有最大值为3+2 2. 答案:3+2219.已知点P (x ,y )在曲线C :⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数)上,则x -2y 的最大值为( )A .2B .-2C .1+ 5D .1- 5解析:选C.由题意,得⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ,所以x -2y =1+cos θ-2sin θ=1-(2sin θ-cos θ) =1-5⎝⎛⎭⎫25sin θ-15cos θ=1-5sin ()θ-φ⎝⎛⎭⎫其中tan φ=12, 所以x -2y 的最大值为1+ 5.20.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),求曲线C 上的点到直线l :x-y +1=0的距离的最大值.解:点C (1+cos θ,sin θ)到直线l 的距离 d =|1+cos θ-sin θ+1|12+12=|2+cos θ-sin θ|2=⎪⎪⎪⎪2+2cos ⎝⎛⎭⎫θ+π42≤2+22=2+1,即曲线C 上的点到直线l 的最大距离为2+1.21.(2016·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .[解] (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.22.若P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos αy =sin α,(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A.依题意P (2+cos α,sin α),∴(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)(其中cos φ=45,sin φ=35)∴当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z )时,有最大值为36.23.已知点P ⎝⎛⎭⎫12,32,Q 是圆⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数)上的动点,则|PQ |的最大值是________.解析:由题意,设点Q (cos θ,sin θ), 则|PQ |=⎝⎛⎭⎫cos θ-122+⎝⎛⎭⎫sin θ-322=2-3sin θ-cos θ =2-2sin ⎝⎛⎭⎫θ+π6 故|PQ |max =2+2=2. 答案:224.已知曲线方程⎩⎪⎨⎪⎧x =1+cos θy =sin θ,(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________.解析:设曲线上动点为P (x ,y ),定点为A ,则|P A |=(1+cos θ+1)2+(sin θ+2)2 =9+42sin ⎝⎛⎭⎫θ+π4, 故|P A |min =9-42=22-1. 答案:22-125.已知圆C ⎩⎪⎨⎪⎧x =cos θy =-1+sin θ,与直线x +y +a =0有公共点,求实数a 的取值范围.解:法一:∵⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ消去θ,得x 2+(y +1)2=1.∴圆C 的圆心为(0,-1),半径为1. ∴圆心到直线的距离d =|0-1+a |2≤1.解得1-2≤a ≤1+ 2.法二:将圆C 的方程代入直线方程, 得cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝⎛⎭⎫θ+π4. ∵-1≤sin ⎝⎛⎭⎫θ+π4≤1,∴1-2≤a ≤1+ 2.26.设P (x ,y )是圆x 2+y 2=2y 上的动点.①求2x +y 的取值范围;②若x +y +c ≥0恒成立,求实数c 的取值范围.解:圆的参数方程为⎩⎪⎨⎪⎧x =cos θy =1+sin θ,(θ为参数).①2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1(φ由tan φ=2确定),∴1-5≤2x +y ≤1+ 5.②若x +y +c ≥0恒成立,即c ≥-(cos θ+sin θ+1)对一切θ∈R 成立.且-(cos θ+sin θ+1)=-2sin ⎝⎛⎭⎫θ+π4-1的最大值是2-1,则当c ≥2-1时,x +y +c ≥0恒成立.27.已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. [解] (1)由ρ2-42ρcos ⎝⎛⎭⎫θ-π4+6=0, 得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0,∴圆的标准方程(x -2)2+(y -2)2=2,3分 令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos αy =2+2sin α,(α为参数)6分(2)由(1)知x +y =4+2(cos α+sin α) =4+2sin ⎝⎛⎭⎫α+π4,9分 又-1≤sin ⎝⎛⎭⎫α+π4≤1, 故x +y 的最大值为6,最小值为2.12分28.圆的直径AB 上有两点C ,D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.解:如图所示,以AB 所在直线为x 轴,线段AB 的中点为坐标原点建立平面直角坐标系.圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数).易知点C (-1,0),D (1,0).因为点P 在圆上,所以可设P (5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2+(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2θ.当cos θ=0时,|PC |+|PD |有最大值为226.29.(2014·高考课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.。
直线和圆的方程精选练习题
直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。
5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。
6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。
12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。
直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。
圆的标准方程练习题
圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。
在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。
本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。
练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。
解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。
代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。
2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。
解析:首先求得半径,半径的长度等于圆心到过点的距离。
利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。
然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。
练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。
将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。
因此,这个方程是圆的标准方程。
2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。
因此,这个方程不是圆的标准方程。
(完整版)圆的一般方程练习题
(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。
圆的一般方程----典型题(好)
1.2. 若直线3x+y+a=0过圆x^2+y^2+2X-4y=0的圆心,则a的值为什么?由圆的方程可知圆心的坐标(-1,2)把(-1,2)代入直线方程,得3x(-1)+2+a=0解得a=13. 若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是x2+y2-4x+2y+5k=0(x-2)2+(y+1)2=-5k+5方程x2+y2-4x+2y+5k=0表示圆-5k+5>0k<14. 当点P在x2+y2=1上变动时,它与定点Q(3,0)的联结线段PQ的中点的轨迹方程是?. 设M坐标为(x,y),则P点坐标为:X=2x-3,Y=2y 点P在圆X*X+Y*Y=1上,故有:(2x-3)^2+(2y)^2=1 即:(x-1.5)^2+(y)^2=0.25 以(1.5,0)为圆心,0.5为半径的圆5. 已知点A(1,2)在圆X^2+Y^2 +2X+3Y+m=0内,则m 的取值范围由公式:圆的一般方程x²+y²+D x+Ey+F=0 转化为圆的标准方程为:(x+D/2)².+(y+E/2)²=(D²+E²-4F)/4则,已知圆的标准方程为:(x+2/2)².+(y+3/2)²=(2²+3²-4m)/4整理得:(x+1)².+(y+3/2)²=(13-4m)/4点P(X,Y) 与圆 (x-a)^2+(y-b) ^2=r^2的位置关系:当(x-a)^2+(y-b) ^2<r^2时,则点P在圆内。
将A(1,2)代入上面的不等式::(1+1)².+(2+3/2)²<(13-4m)/4解的:m<-136. 由方程X2+Y2+X+(M-1)Y+1/2M2=0确定的圆中最大面积是?对x,y进行配方。
(x+1/2)2-[y+(m-1)/2)]2=-(m2-2m-2)/4-(m2-2m-2)/4=-(m-1)2/4+3/4当m=1时,圆取得最大半径根号3/2面积为3π/4先化成圆的标准方程,半径为√(-m的平方-2m+2)/2,半径的最大值为√3/2,最大面积是3/4π7. 若圆X^2+Y^2+DX+EY+F=0过点(0,0),(1-1),且圆心在直线X+Y-3=0上,求该圆的方程,并写出它的圆心坐标和半径。
圆的标准方程题
圆的标准方程题一、已知圆的标准方程为 (x - 2)2 + (y - 3)2 = 16,则该圆的圆心坐标为A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)(答案:C)二、圆的标准方程 (x + 1)2 + (y - 2)2 = 9 的半径是A. 1B. 2C. 3D. 9(答案:C)三、若圆的标准方程为 x2 + y2 + 4x - 6y - 12 = 0,将其化为标准形式后,圆心坐标为A. (-2, 3)B. (2, -3)C. (3, -2)D. (-3, 2)(答案:A)四、圆的标准方程 (x - a)2 + (y - b)2 = r2 中,若 a = 0, b = -1, r = 2,则圆的方程为A. x2 + (y + 1)2 = 2B. x2 + (y - 1)2 = 4C. x2 + (y + 1)2 = 4D. (x + 1)2 + y2 = 4(答案:C)五、已知圆的标准方程为 (x - 1)2 + (y + 2)2 = 5,则该圆与 x 轴的交点坐标为A. (1, 0) 和 (-1, 0)B. (2, 0) 和 (0, 0)C. (1, 2) 和 (1, -2)D. (-1, 2) 和 (-1, -2)(答案:A)六、圆的标准方程为 (x + 3)2 + (y - 4)2 = 25,则该圆与 y 轴的交点坐标为A. (0, 4) 和 (0, -4)B. (3, 0) 和 (-3, 0)C. (0, 9) 和 (0, -1)D. (-3, 4) 和 (3, 4)(答案:C)七、若圆的标准方程为 (x - h)2 + (y - k)2 = r2,且该圆经过点 (1, 1),(2, 2) 和 (3,3),则 r 的可能值为A. 1B. √2C. 2D. 3(答案:B,假设三点不共线且满足题意,则通过距离公式可求得半径为点与圆心之间的距离,这里简化为选项中的√2作为可能答案)八、已知圆的标准方程 (x - 2)2 + (y + 3)2 = 10,则圆心到直线 x - y + 1 = 0 的距离为A. √2B. 2√2C. 3√2D. 4√2(答案:C,利用点到直线距离公式求得)。
圆的标准方程-练习题
一、选择题1. 圆心是(4, -1),且过点(5.2)的圆的标准方程是( )Λ. α-4)2+(y+l)2=10 B. (A ^+4)2+(y-l)2=10 C. (χ-4)2+(y÷l)2=100D. (%-4)2÷ (y+1)2=√W2. 已知圆的方程是(χ-2)2+(y-3)2=4,则点P(3,2)满足() A.是圆心B.在圆上C.在圆内3. 圆(A -+1)2+(7-2)2=4的圆心坐标和半径分别为() Λ. (-1,2), 2B. (1, -2), 2C. (-1,2), 44. (2016 •锦州高一检测)若圆C 与圆(x+2)2÷(y-l)2= 1关于原点对称,则圆C 的方程是()Λ. α-2)2+(y+l)2=l B. (χ-2)2+(y-l)2=l C. U-l)2+(y+2)2=lD. (A ÷1)2÷(7+2)2=15. (2016 •全国卷II)圆√+∕-2χ-8y+13=0的圆心到直线ax+y-1 =0的距离为1,则日=()6. 若Pa 一1)为圆(χ-l)2+y=25的弦/矽的中点,则直线/矽的方程是(Λ )二、 填空题7. 以点(2, — 1)为圆心且与直线x+y=6相切的圆的方程是8. 圆心既在直线x —y=0上,又在直线x+y —4=0上,且经过原点的圆的方程是三、 解答题9. 圆过点 Atl 9 一2)、B(-l,4).求 (1) 周长最小的圆的方程;⑵圆心在直线2x —y —4 = 0上的圆的方程.10. 已知圆川的标准方程为(%-5)2+(y-6)2=a 2(a>0).Λ.B.C. √3D. 2 D.在圆外D. (h -2), 4A. X —y —3=0B ・ 2x+ y — 3 = 0C ・ x+ y — 1 =0D. 2%—y —5=0(1)若点M6.9)在圆上,求。
的值;(2)已知点A3,3)和点0(5.3),线段図(不含端点)与圆再有且只有一个公共点,求臼的取值范围.B级素养提升一、选择题1. (2016〜2017-宁波高一检测)点与圆√+∕=j的位置关系是Λ.在圆上 B.在圆内 C.在圆外 D.不能确定2.若点(2o, a-l)在圆√÷(y+l)2=5的内部,则&的取值范围是( )Λ. (一8, 1] B. (一1・1) C. (2.5) D・(1, +∞)3.若点P(l, 1)为圆α-3)2+72=9的弦的中点,则弦聽V所在直线方程为( )Λ. 2x+y—3=0 B・X—2y+l=0 C. x+2y—3=0 D・(IX—y—1=04.点"在圆(Λ--5)2+(7-3)2=9上,则点J/到直线3x+4y-2=0的最短距离为( )Λ. 9B・8 C・5 D・2二、填空题5.已知圆C经过力(5∙1). 0(1∙3)两点,圆心在才轴上,则C的方程为6.以玄线2x+y-4 = 0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为C级能力拔高1・如图,矩形力仇0的两条对角线相交于点M2,0), /矽边所在直线的方程为χ-3y-6=0, 边所在的直线上•求力〃边所在直线的方程・2.求圆心在直线4x+y=0上,且与直线才+y—l =0切于点Λ3, 一2)的圆的方程,并找出圆的圆心及半径.一、选择题1・圆z÷√-4x+6y= O的圆心坐标是( )Λ. (2.3) B. (-2,3) C. (一2, -3) D. (2, -3)2・(2016〜2017 •曲靖高一检测)方程√+∕÷2^r-Λy÷c= 0表示圆心为67(2,2),半径为2的圆,则血b、C 的值依次为( )Λ. —2,4.4 B. —2, —4,4 C. 2, —4,4 D. 2, —4, —43.(2016〜2017 •长沙高一检测)已知圆C过点J∕(l,l), A r(5,1),且圆心在直线y=x~2上,则圆C的方程为 ( )A・ X ÷y-6A r-2y÷6 = 0 B. x ÷y÷6%-2y÷6=0[C・ x'÷y ÷6x÷2y÷6=0 D・ A r÷y —2χ-6y÷6=04.设圆的方程是Y÷y2+2ax÷2y+(a-l)2=0,若O<X1,则原点与圆的位置关系是( )Λ.在圆上 B.在圆外 C.在圆内 D.不确定5・若圆√+∕-2χ-4y= 0的圆心到直线AT-y÷5= 0的距离为专,则日的值为( )1 3A. —2 或2B. §或O C・ 2 或0 D. —2 或06.圆Z÷∕-2y-l =O关于直线y=x对称的圆的方程是( )Λ. (X—1)^+y =2 B. (x+l)'+y i=2C. (A-I)2+y =4D. (^+l)2+y=4二、填空题7.圆心是(-3,4),经过点.f∕(5,l)的圆的一般方程为______________________ .8.设圆√+y-4,r+2y-ll= 0的圆心为儿点P在圆上,则刊的中点〃的轨迹方程是一三、解答题9.判断方程X + y -4^+ 2my+ 20/»-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点J(-l,0). g(3∙0)和C(0.1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax÷36y= 0的圆心位于第三象限,那么直线x+ay+b =0—定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2•在圆√+y2-2-γ-6y =0内,过点F(OJ)的最长弦和最短弦分别为和加,则四边形/处9的面只为( )Λ. 5√2 B. 10√5 C. 15√2D・20√23.若点(2o, a— 1)在圆x2÷y2—(Iy-5a'=0的内部,则日的取值范围是( )4 4 4 Q QΛ. ( — 8, -] B. (―-, ξ) C. (―[, +∞) D. (丁,+∞)4.若直线7:乩γ+by+l=O始终平分圆J/: z+y+4x÷2y÷l=0的周长,则(a-2)2+(Z,-2)2的最小值为)二、填空题5.已知圆C: √+∕+2,γ+ay-3 = 0U为实数)上任意一点关于直线/:χ-y+2=0的对称点都在圆C上,则。
2025高考数学一轮复习-圆的方程-专项训练【含解析】
课时过关检测(四十八)圆的方程【原卷版】1.圆心为(2,1)且和x轴相切的圆的方程是()A.(x-2)2+(y-1)2=1B.(x+2)2+(y+1)2=1C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=52.设a∈R,则“a>2”是“方程x2+y2+ax-2y+2=0的曲线是圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若x2+y2=8,则2x+y的最大值为()A.8B.4C.210D.54.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则t的取值范围是()A.(0,2]B.[1,2]C.[2,3]D.[1,3]5.点M为圆C:(x+2)2+(y+1)2=1上任意一点,直线(1+3λ)x+(1+2λ)y=2+5λ过定点P,则|MP|的最大值为()A.23B.13C.23+1D.13+16.(多选)已知圆x2+y2-4x-1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=438.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)12.写出一个关于直线x +y -1=0对称的圆的方程____________.13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.14.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.15.(多选)设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π16.已知曲线T :F (x ,y )=0,对坐标平面上任意一点P (x ,y ),定义F [P ]=F (x ,y ),若两点P ,Q 满足F [P ]·F [Q ]>0,称点P ,Q 在曲线T 同侧;F [P ]·F [Q ]<0,称点P ,Q 在曲线T 两侧.(1)直线过l 原点,线段AB 上所有点都在直线l 同侧,其中A (-1,1),B (2,3),求直线l 的斜率的取值范围;(2)已知曲线F (x ,y )=(3x +4y -5)4-x 2-y 2=0,O 为坐标原点,求点集S ={P |F [P ]·F [O ]>0}的面积.课时过关检测(四十八)圆的方程【解析版】1.圆心为(2,1)且和x 轴相切的圆的方程是()A .(x -2)2+(y -1)2=1B .(x +2)2+(y +1)2=1C .(x -2)2+(y -1)2=5D .(x +2)2+(y +1)2=5解析:A 圆心为(2,1)且和x 轴相切的圆,它的半径为1,故它的方程是(x -2)2+(y -1)2=1,故选A .2.设a ∈R ,则“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A方程x 2+y 2+ax -2y +2=0的曲线是圆,则有D 2+E 2-4F =a 2+4-8>0,解得a >2或a <-2,则“a >2”是“a >2或a <-2”的充分不必要条件,所以“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的充分不必要条件.故选A .3.若x 2+y 2=8,则2x +y 的最大值为()A .8B .4C .210D .5解析:C 设2x +y =t ,则y =t -2x ,当直线y =t -2x 与x 2+y 2=8相切时,t 取到最值,所以|t |5≤22,解得-210≤t ≤210,所以2x +y 的最大值为210,故选C .4.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是()A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:D圆C :(x -3)2+(y -1)2=1的圆心C (3,1),半径为1,因为圆心C 到O (0,0)的距离为2,所以圆C 上的点到O (0,0)的距离最大值为3,最小值为1,又因为∠APB =90°,则以AB 为直径的圆和圆C 有交点,可得|PO |=12|AB |=t ,所以有1≤t ≤3,故选D .5.点M 为圆C :(x +2)2+(y +1)2=1上任意一点,直线(1+3λ)x +(1+2λ)y =2+5λ过定点P ,则|MP |的最大值为()A .23B .13C .23+1D .13+1解析:D 整理直线方程得:(x +y -2)+(3x +2y -5)λ=0+y -2=0,x +2y -5=0得=1,=1,∴P (1,1),由圆的方程知圆心C (-2,-1),半径r =1,∴|MP |max =|CP |+r =(-2-1)2+(-1-1)2+1=13+1.故选D .6.(多选)已知圆x 2+y 2-4x -1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称解析:ABCx 2+y 2-4x -1=0⇒(x -2)2+y 2=5,所以圆心的坐标为(2,0),半径为5.A项,圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,所以本选项正确;B 项,圆是关于直径所在直线对称的轴对称图形,直线y =0过圆心,所以本选项正确;C 项,圆是关于直径所在直线对称的轴对称图形,直线x +3y -2=0过圆心,所以本选项正确;D 项,圆是关于直径所在直线对称的轴对称图形,直线x -y +2=0不过圆心,所以本选项不正确.故选A 、B 、C .7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=43解析:AB由题意知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心C (0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C的方程为x 2=43.8.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,则=0,+2D +F =0,+4D +2E +F =0,解得=-2,=-6,=0,所以圆的方程为x 2-2x +y 2-6y =0,即(x -1)2+(y -3)2=10,所以圆心坐标为(1,3).答案:(1,3)9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.解析:圆C 的标准方程为(x -2)2+(y -1)2=4,圆心C (2,1),半径r =2,圆心C 到直线3x +4y +5=0的距离d =|6+4+5|32+42=3,设P 到直线AB 的距离为h ,则S △ABP =12·|AB |·h=h ,∵d -r ≤h ≤d +r ,∴1≤h ≤5,∴S △ABP ∈[1,5],即△ABP 的面积的取值范围为[1,5].答案:[1,5]10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2).所以直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②=-3,=6=5,=-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)解析:D ∵A (-4,0),B (0,4),∴AB 的垂直平分线方程为x +y =0,又外心在欧拉线x-y +2=0+y =0,-y +2=0,解得三角形ABC 的外心为G (-1,1),又r =|GA |=(-1+4)2+(1-0)2=10,∴△ABC 外接圆的方程为(x +1)2+(y -1)2=10.设C (x ,y ),则三角形ABC 即x -43-y +43+2=0.整理得x -y -2=0.联x +1)2+(y -1)2=10,-y -2=0,=0,=-2=2,=0.∴顶点C 的坐标可以是(0,-2).故选D .12.写出一个关于直线x +y -1=0对称的圆的方程____________.解析:设圆心坐标为C (a ,b ),因为圆C 关于x +y -1=0对称,所以C (a ,b )在直线x +y -1=0上,则a +b -1=0,取a =1⇒b =0,设圆的半径为1,则圆的方程(x -1)2+y 2=1.答案:(x -1)2+y 2=1(答案不唯一)13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.解析:设M (x ,y ),由|MA |=2|MB |,得(x +2)2+y 2=2(x -2)2+y 2,整理得3x 2+3y 2-20x +12=0.以AB 为直径的圆的方程为x 2+y 2=4,x 2+3y 2-20x +12=0,2+y 2=4,解得|y |=85.即M 点的纵坐标的绝对值为85.此时△MAB 的面积为S =12×4×85=165.答案:3x 2+3y 2-20x +12=016514.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:圆C :x 2+(y -4)2=42,故圆心为C (0,4),半径为4.(1)当C ,M ,P 三点均不重合时,∠CMP =90°,所以点M 的轨迹是以线段PC 为直径的圆(除去点P ,C ),线段PC 中点为(1,3),12|PC |=12(2-0)2+(2-4)2=2,故M 的轨迹方程为(x -1)2+(y -3)2=2(x ≠2,且y ≠2或x ≠0,且y ≠4).当C ,M ,P 三点中有重合的情形时,易求得点M 的坐标为(2,2)或(0,4).综上可知,点M 的轨迹是一个圆,轨迹方程为(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3)为圆心,2为半径的圆.法一(几何法):由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON⊥PM.因为ON的斜率为3,所以直线l的斜率为-13,故直线l的方程为y=-13x+83,即x+3y-8=0.又易得|OM|=|OP|=22,点O到直线l的距离为812+32=4105,|PM|==4105,所以△POM的面积为12×4105×4105=165.法二(代数法):设M(x,y),由|OM|=|OP|=22得x2+y2=8,2+y2=8,①-1)2+(y-3)2=2,②①-②得直线l方程为x+3y-8=0,将x=8-3y代入①得5y2-24y+28=0,解得y1=145,y2=2.从而x1=-25,x2=2.所以M-25,|PM|==4105.又点O到l距离d=812+32=4105,所以△POM的面积S=12|PM|·d=12×4105×4105=165.15.(多选)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是()A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π解析:ABD圆心坐标为(k,k),在直线y=x上,A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0,∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0,∵Δ=16-8=8>0,有两不等实根,∴经过点(2,2)的圆C k有两个,C错误;由圆的半径为2,得圆的面积为4π,D正确.故选A、B、D.16.已知曲线T:F(x,y)=0,对坐标平面上任意一点P(x,y),定义F[P]=F(x,y),若两点P,Q满足F[P]·F[Q]>0,称点P,Q在曲线T同侧;F[P]·F[Q]<0,称点P,Q在曲线T 两侧.(1)直线过l原点,线段AB上所有点都在直线l同侧,其中A(-1,1),B(2,3),求直线l 的斜率的取值范围;(2)已知曲线F(x,y)=(3x+4y-5)4-x2-y2=0,O为坐标原点,求点集S={P|F[P]·F[O]>0}的面积.解:(1)由题意,显然直线l斜率存在,设方程为y=kx,则F(x,y)=kx-y=0,因为A(-1,1),B(2,3),线段AB上所有点都在直线l同侧,则F[A]·F[B]=(-k-1)(2k-3)>0,解得-1<k<3 2.(2)因为F[O]<0,所以F[P]=(3x+4y-5)·4-x2-y2<0,x+4y-5<0,2+y2<4,点集S为圆x2+y2=4在直线3x+4y-5=0下方内部,如图所示,设直线与圆的交点为A,B,则O到AB的距离为1,故∠AOB=2π3,因此,所求面积为S=12·4π3·22+12·32·22=8π3+3.。
2022-2023学年人教A版选择性必修第一册2.4.2圆的一般方程作业
课时跟踪检测(十七) 圆的一般方程1.以圆x 2+2x +y 2=0的圆心为圆心,半径为2的圆的方程为( ) A .(x +1)2+y 2=2 B .(x +1)2+y 2=4 C .(x -1)2+y 2=2D .(x -1)2+y 2=4解析:选B 圆x 2+2x +y 2=0的圆心坐标为(-1,0),所以所求圆的方程为(x +1)2+y 2=4.2.方程x 2+y 2+4x -2y +5m =0表示圆,则m 的取值范围是( ) A .(0,1) B .(1,+∞) C .(-∞,0)D .(-∞,1)解析:选D 由题意可得42+(-2)2-4×5m >0,即m <1.3.已知圆的方程是x 2+y 2-2x +6y +8=0,那么经过圆心的一条直线的方程是( ) A .2x -y +1=0 B .2x +y +1=0 C .2x -y -1=0D .2x +y -1=0解析:选B 把x 2+y 2-2x +6y +8=0配方得(x -1)2+(y +3)2=2,圆心为(1,-3),代入各选项,可知直线2x +y +1=0过圆心.4.圆x 2+y 2-2ax +6ay +8a 2=0(a <0)的周长等于( ) A .22πa B .-22πa C .2πa 2D .-2πa解析:选B 由已知得,圆的标准方程为(x -a )2+(y +3a )2=2a 2,因为a <0,所以半径r =-2a ,所以圆的周长为-22πa .5.当点P 在圆x 2+y 2=1上运动时,它与定点Q (3,0)连接的线段PQ 中点的轨迹方程是( )A .x 2+y 2+6x +5=0 B .x 2+y 2-6x +8=0 C .x 2+y 2-3x +2=0D .x 2+y 2+3x +2=0解析:选C 设PQ 中点坐标为(x ,y ),则P (2x -3,2y ),代入x 2+y 2=1,得4x 2+4y 2-12x +8=0,即x 2+y 2-3x +2=0.6.已知点E (1,0)在圆x 2+y 2-4x +2y +5k =0的外部,则k 的取值范围是________. 解析:方程表示圆的条件是(-4)2+22-4×5k >0,即k <1;点E 在圆的外部的条件为12+02-4×1+2×0+5k >0,解得k >35,所以k 的取值范围为⎝ ⎛⎭⎪⎫35,1.答案:⎝ ⎛⎭⎪⎫35,17.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆的面积最大时,圆心坐标为________.解析:∵r =12 k 2+4-4k 2=12 4-3k 2,∴当k =0时,r 最大,此时圆的面积最大,圆的方程可化为x 2+y 2+2y =0,即x 2+(y +1)2=1,圆心坐标为(0,-1).答案:(0,-1)8.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则圆心为________,半径为________.解析:由题意可得圆C 的圆心⎝ ⎛⎭⎪⎫-1,-a 2在直线x -y +2=0上,将⎝ ⎛⎭⎪⎫-1,-a 2代入直线方程得-1-⎝ ⎛⎭⎪⎫-a 2+2=0,解得a =-2. 故圆C 的方程为x 2+y 2+2x -2y -3=0,即(x+1)2+(y -1)2=5,因此圆心为(-1,1),半径为 5.答案:(-1,1)59.已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程. 解:以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎪⎨⎪⎧2+x 2=x 0,0+y 2=y 0.①∵|AD |=3,∴(x 0+2)2+y 20=9. ② 将①代入②,整理得(x +6)2+y 2=36. ∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).10.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.解: 圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2,因为圆心在直线x +y -1=0上,所以-D 2-E2-1=0,即D +E=-2.①又因为半径长r =D 2+E 2-122=2,所以D 2+E 2=20.②由①②可得⎩⎪⎨⎪⎧D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2.又因为圆心在第二象限,所以-D2<0,即D >0.则⎩⎪⎨⎪⎧D =2,E =-4.故圆的一般方程为x 2+y 2+2x -4y +3=0.1.[多选]关于方程x 2+y 2+2ax -2ay =0表示的圆,下列叙述中正确的是( ) A .圆心在直线y =-x 上 B .其圆心在x 轴上 C .过原点D .半径为2a解析:选AC 将圆的方程化为标准方程可知圆心为(-a ,a ),半径为2|a |,故A 、C 正确.2.若圆x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90°(其中C 为已知圆的圆心),则实数m 等于( )A .1B .-3C .0D .2解析:选B 设A (0,y 1),B (0,y 2),在圆方程中令x =0得y 2+2y +m =0,y 1,y 2即为该方程的两根,由根与系数的关系及判别式得⎩⎪⎨⎪⎧Δ=4-4m >0,y 1+y 2=-2,y 1·y 2=m ,又由∠ACB =90°,C (2,-1),知k AC ·k BC =-1, 即y 1+1-2·y 2+1-2=-1,即y 1y 2+(y 1+y 2)+1=-4,代入上面的结果得m -2+1=-4,所以m =-3,符合m <1的条件.3.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称图形,则a -b 的取值范围是________.解析:由题意知,直线y =2x +b 过圆心,而圆心坐标为(-1,2),代入直线方程,得b =4,圆的方程化为标准方程为(x +1)2+(y -2)2=5-a ,所以a <5,由此,得a -b <1.答案:(-∞,1)4.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.解:如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 当点P 在直线OM 上时,有x =-95,y =125或x =-215,y =285.因此所求轨迹为圆(x +3)2+(y -4)2=4,除去点⎝ ⎛⎭⎪⎫-95,125和点⎝ ⎛⎭⎪⎫-215,285.5.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1)求实数m 的取值范围; (2)求该圆的半径r 的取值范围; (3)求圆心C 的轨迹方程. 解:(1)要使方程表示圆,则4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0, 即4m 2+24m +36+4-32m 2+64m 4-64m 4-36>0, 整理得7m 2-6m -1<0, 解得-17<m <1.(2)r =124m +32+41-4m22-416m 4+9= -7m 2+6m +1=-7⎝ ⎛⎭⎪⎫m -372+167, 所以0<r ≤477,即该圆的半径r 的取值范围为⎝⎛⎦⎥⎤0,477.(3)设圆心坐标为(x ,y ),则⎩⎪⎨⎪⎧x =m +3,y =4m 2-1.消去m 可得(x -3)2=14(y +1).因为-17<m <1,所以207<x <4.故圆心C 的轨迹方程为(x -3)2=14(y +1)⎝ ⎛⎭⎪⎫207<x <4.6.已知圆C: x 2+y 2-4x -14y +45=0,及点Q (-2,3). (1)P (a ,a +1)在圆上,求线段PQ 的长及直线PQ 的斜率; (2)若M 为圆C 上的任一点,求|MQ |的最大值和最小值. 解:(1)∵点P (a ,a +1)在圆上, ∴a 2+(a +1)2-4a -14(a +1)+45=0, ∴a =4,P (4,5), ∴|PQ |=4+22+5-32=210,k PQ =3-5-2-4=13. (2)∵圆心C 的坐标为(2,7), ∴|QC |=2+22+7-32=42,圆的半径是22,点Q 在圆外, ∴|MQ |max =42+22=62, |MQ |min =42-22=2 2.。
高一数学圆的标准方程与一般方程试题答案及解析
高一数学圆的标准方程与一般方程试题答案及解析1.圆心为点,且经过原点的圆的方程为【答案】【解析】由于圆过原点,,所以圆的标准方程.【考点】圆的标准方程2.圆的圆心和半径分别()A.B.C.D.【答案】A【解析】将圆配方得:,故知圆心为(2,-1),半径为,所以选A【考点】圆的一般方程.3.圆的面积为;【答案】【解析】写成标准方程,所以,那么圆的面积公式等于.【考点】圆的标准方程与圆的一般方程4.圆的方程过点和原点,则圆的方程为;【答案】【解析】设圆的一般方程为,将三点代入得:,解得,所以圆的方程为.【考点】求圆的方程5.已知,则以线段为直径的圆的方程为;【答案】【解析】,,圆心为中点,圆心,所以圆的方程为.【考点】求圆的标准方程6.已知圆方程.(1)若圆与直线相交于M,N两点,且(为坐标原点)求的值;(2)在(1)的条件下,求以为直径的圆的方程.【答案】(1);(2).【解析】首先确定方程表示圆时应满足的条件;设,,利用韦达定理,建设立关于的方程,解方程可得的值.在(1)的条件下,以为直径的圆过原点,利用韦达定理求出的中点,从而也就易于求出半径,得到圆的方程.试题解析:解:(1)由得:2分于是由题意把代入得 3分, 4分∵得出: 5分∴∴ 8分(2)设圆心为.9分半径 12分圆的方程 13分【考点】1、圆的方程;2、直线与圆的位置关系;3、韦达定理的应用;4、向量垂直的条件.7.已知,则以为直径的圆的方程是( )A.B.C.D.【答案】A【解析】圆心为AB的中点,为。
直径为,半径为,所以所求的圆的方程是。
故选A。
【考点】圆的标准方程点评:要得到圆的标准方程,需求出圆的圆心和半径。
8.当为任意实数时,直线恒过定点,则以为圆心,半径为的圆是()A.B.C.D.【答案】C【解析】变形为,令得,定点,所以圆的方程为【考点】直线方程过定点及圆的方程点评:带参数的直线方程一定过定点,求定点时将含有参数的整理到一起,不带参数的整理到一起,化为的形式可求得定点9.求经过三点A,B(), C(0,6)的圆的方程,并指出这个圆的半径和圆心坐标.【答案】,圆心坐标是.【解析】解:设所求圆的方程为 2分点A,B(), C(0,6)的坐标满足上述方程,分别代入方程,可得 6分解得: 8分于是得所求圆的方程为: 10分圆的半径圆心坐标是. 12分【考点】圆的一般方程点评:此题考查了圆的一般方程,求圆方程的方法为待定系数法,此方法是先设出圆的一般方程,然后把已知的点代入到所设的方程中确定出圆方程中字母的值,从而确定出圆的方程10.已知圆过点 A(1, 1)和B (2, -2),且圆心在直线x - y +1=0上,求圆的方程____.【答案】【解析】根据圆的几何性质可知圆心是AB的垂直平分线与直线x-y+1=0的交点.因为AB的垂直平分线方程为,即.由得,所以圆心坐标为(-3,-2),半径为5,所以所求圆的方程为.11.若方程表示的曲线为圆,则的取值范围是()A..B..C.D.【答案】B【解析】解:因为表示圆,则说明,解得,选B12.( 本小题满分14)已知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程。
(完整版)圆的方程 习题(含答案)
一、单选题
1.以点P(2,-3)为圆心,并且与y轴相切的圆的方程是( )
A.(x+2)2+(y-3)2=4
B.(x+2)2+(y-3)2=9
C.(x-2)2+(y+3)2=4
D.(x-2)2+(y+3)2=9
2.当点 在圆 上运动时,连接它与定点 ,线段 的中点 的轨迹方程是( )
6.若点 为圆 上的一个动点,点 , 为两个定点,则 的最大值为( )
A. B. C. D.
7.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
8.若直线l:ax+by+1=0经过圆M: 的圆心则 的最小值为
A. B.5C. D.10
9.若 均为任意实数,且 ,则 的最小值为( )
21.已知点 在圆 上运动,且存在一定点 ,点 为线段 的中点.
(1)求点 的轨迹 的方程;
(2)过 且斜率为 的直线 与点 的轨迹 交于不同的两点 ,是否存在实数 使得 ,并说明理由.
22.已知圆经过 两点,并且圆心在直线 上。
(1)求圆的方程;
(2)求圆上的点到直线 的最小距离。
23.在平面直角坐标系 中,曲线 与坐标轴的交点都在圆 上.
A. B.
C. D.
3.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为( )
A.9πB.πC.2πD.由m的值而定
4.圆 的半径是( )
A. B.2C. D.4
5.已知圆 与圆 相交于A、B两点,则线段AB的垂直平分线的方程为
A. B. C. D.
A. B. C. D.
圆的方程测试题及答案.doc
圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7 B .-6<a <4 C.-7<a <3 D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .21± B .22± C .2221-或D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C ≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C ≠0,D 2+E 2-4AF ≥0 D.B=0且A=C ≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A ∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21.自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2+ y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x ①已知圆1O 的方程为(x-1)2+(y -1)2=1 ② ①②作差得x+2y -41=0, 即为所求直线l 的方程。
高中数学必修二同步练习题库:圆的方程(选择题:较易)
圆的方程(选择题:较易)1、若圆与轴相切于点,与轴的正半轴交于两点,且,则圆的标准方程是()A. B.C. D.2、方程表示一个圆,则的范围是()A. B.C. D.3、与圆同圆心,且过的圆的方程是()A. B.C. D.4、已知圆的圆心与点关于直线对称.直线与圆相交于两点,且,则圆的方程为A. B.C. D.5、在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限 B.第二、三象限C.第三、四象限 D.第一、四象限6、圆的圆心坐标和半径分别为()A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),47、以为圆心,且与两条直线与同时相切的圆的标准方程为()A. B.C. D.8、圆心为且过点的圆的方程是()A. B.C. D.9、点A(1,0)在圆上,则a的值为()A.1 B.-2 C.1或-2 D.2或-210、方程表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线对称D.关于直线对称11、已知点P(x,y)为圆C:x2+y2﹣6x+8=0上的一点,则x2+y2的最大值是()A.2 B.4 C.9 D.1612、圆心在轴上,半径为1,且过点(1,2)的圆的方程是()A. B.C. D.13、圆:与圆:的位置关系是( )A.相交 B.外切 C.内切 D.相离14、已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.15、圆的圆心坐标和半径分别是()A. B. C. D.16、由曲线围成的图形的面积为()A. B. C. D.17、点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=118、若直线过圆的圆心,则实数的值为()A. B. C. D.19、圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.20、圆的方程为,则其圆心坐标及半径分别为().A., B., C., D.,21、若圆与圆关于原点对称,则圆的方程为().A. B.C. D.22、圆的圆心坐标与半径是()A. B.C. D.23、已知A(-4,-5)、B(6,-1),则以线段AB为直径的圆的方程( )A.(x+1)2+(y-3)2=29 B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116 D.(x-1)2+(y+3)2=11624、若表示圆,则实数的取值范围是()A. B. C. D.25、对于,直线恒过定点,则以为圆心,2为半径的圆的方程是()A. B.C. D.26、已知圆:,圆与圆关于直线对称,则圆的方程为()A. B.C. D.27、已知圆的方程为,则圆的半径为()A.3 B.9 C. D.28、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.29、圆的圆心坐标与半径是()A. B.C. D.30、经过圆x2+y2+2y=0的圆心C,且与直线2x+3y-4=0平行的直线方程为()A.2x+3y+3=0 B.2x+3y-3=0 C.2x+3y+2=0 D.3x-2y-2=031、以点A为圆心,且与轴相切的圆的方程为()A. B.C. D.32、方程x2+y2+x+y-m=0表示一个圆,则m的取值范围是().A.m>- B.m<- C.m≤- D.m≥-33、在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为()A. B. C. D.34、圆的圆心坐标和半径分别为A.圆心 B.圆心C.圆心 D.圆心35、过点P(2 ,1)且被圆C:x 2+y2– 2x+4y =" 0" 截得弦长最长的直线l的方程是()A.3x – y– 5 = 0 B.3x +y– 7 = 0C.x –3y+5 = 0 D.x +3y– 5 = 036、过点、点且圆心在直线上的圆的方程是()A.B.C.D.37、圆关于直线对称的圆的方程为()A. B.C. D.38、已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B. C. D.39、若直线(,),经过圆的圆心,则的最小值是()A. B. C. D.40、抛物线与坐标轴的交点在同一个圆上,则交点确定的圆的方程为()A. B.C. D.41、圆与轴相切于,与轴正半轴交于两点,且,则圆的标准方程为()A.B.C.D.42、过,圆心在轴上的圆的方程为()A. B.C. D.43、方程x2+y2+4x-2y+5=0表示的曲线是()A.两直线 B.圆 C.一点 D.不表示任何曲线44、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有()A.D=E B.D=F C.F=E D.D=E=F45、圆x2+y2+4x-6y-3=0的圆心和半径分别为()A.(4,-6),r=16 B.(2,-3),r=4C.(-2,3),r=4 D.(2,-3),r=1646、若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是()A.R B.(-∞,1) C.(-∞,1] D.[1,+∞)47、已知圆的方程为,过点的该圆的所有弦中,最短的弦长为()A. B. C.2 D.448、若圆始终平分圆的周长,则满足的关系是()A. B.C. D.49、已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),此圆的标准方程为( ) A.(x-3)2+y2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=450、已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是( )A.-4<a<3 B.-5<a<4 C.-5<a<5 D.-6<a<451、圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A.(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10C.(x-4)2+(y+1)2=100D.(x-4)2+(y+1)2=52、点P(a,5)与圆x2+y2=24的位置关系是( )A.点在圆外 B.点在圆内 C.点在圆上 D.不确定53、圆和圆的公共弦长为()A. B.C. D.54、方程表示的曲线为()A.一条直线和一个圆 B.一条线段与半圆C.一条射线与一段劣弧 D.一条线段与一段劣弧55、已知直线是圆的对称轴,过点作圆的一条切线,切点为,则=()A.2 B.C.6 D.56、已知圆,圆,圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离57、设圆的方程是,若,则原点与圆的位置关系是()A.原点在圆上 B.原点在圆外C.原点在圆内 D.不确定58、已知圆,直线上至少存在一点,使得以点为圆心,半径为的圆与圆有公共点,则的最小值是()A. B.C. D.59、过两点的面积最小的圆的方程为()A.B.C.D.60、已知两圆的圆心距=" 3" ,两圆的半径分别为方程的两根,则两圆的位置关系是()A.相交 B.相离 C.相切 D.内含61、与圆及圆都外切的圆的圆心在()A.一个椭圆上 B.双曲线的一支上C.一条抛物线上 D.一个圆上62、圆与圆的位置关系是()A.相交 B.外切C.内切 D.相离63、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.64、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.65、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.66、以为圆心,4为半径的圆的方程为()A. B.C. D.67、两圆与的位置关系为()A.内切 B.外切C.相交 D.相离68、过点且圆心在直线上的圆的方程是()A.B.C.D.69、若圆与圆的公共弦的长为,则()A.2 B.1C. D.70、动点与定点的连线的斜率之积为,则点的轨迹方程是()A.B.C.D.参考答案1、C2、A3、B4、A5、A.6、B7、A8、D9、B10、D11、D12、A13、A14、C15、D16、B17、A18、A19、B20、D21、A22、D23、B24、B25、A26、B27、A28、B29、D30、A31、A32、A33、B34、B35、A36、C37、D38、C39、B40、D41、A42、D43、C44、A45、C46、B47、C48、C49、A50、A51、A52、A53、A54、D55、C56、C57、B58、A59、A60、D61、B62、D63、D64、D65、D66、C67、D68、C69、B70、C【解析】1、设中点为,则∴故选C.2、试题分析:由圆的一般式方程可知考点:圆的方程3、试题分析:把原圆的方程写成标准方程为,由于两圆共圆心,可设另一个圆方程为:,把代入所设方程,得:,所以所求的圆的方程为,化简为:,故选B.考点:1、圆的一般式方程;2、圆的标准方程的.4、试题分析:易知关于直线的对称点为,即,圆心到直线的距离为,所以,圆方程为.故选A.考点:圆的标准方程.5、试题分析:由题意得,点在以为圆心,为半径的圆上,如下图所示,故可知点在第一、二象限,故选A.考点:圆的标准方程.6、试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程7、试题分析:因为两条直线与的距离为,所以所求圆的半径为,所以圆心到直线的距离为即或,又因为圆心到直线的距离也为,所以,所以所求的标准方程为,故应选.考点:直线与圆的位置关系.8、试题分析:由圆的标准方程可知所求圆为考点:圆的方程9、试题分析:因为点在圆上,故解得.考点:圆的一般方程.10、试题分析:圆心,即圆心坐标满足方程,所以圆关于直线对称,考点:圆的性质11、试题分析:将圆C化为标准方程,找出圆心与半径,作出相应的图形,所求式子表示圆上点到原点距离的平方,根据图形得到当P与A重合时,离原点距离最大,求出所求式子的最大值即可.解:圆C化为标准方程为(x﹣3)2+y2=1,根据图形得到P与A(4,0)重合时,离原点距离最大,此时x2+y2=42=16.故选D考点:圆的一般方程.12、试题分析:设圆的标准方程为,由题可知,a=0,r=1,将(1,2)代入方程,可求得b=2,因此圆的标准方程为。
圆的方程 - 简单 - 习题
圆的方程一、选择题(共12小题;共60分)1. 圆心为且过原点的圆的方程是A. B.C. D.2. 设圆的方程是,若,则原点与圆的位置关系是A. 原点在圆上B. 原点在圆外C. 原点在圆内D. 不能确定3. 当为任意实数时,直线恒过定点,则以为圆心,半径为的圆的方程为A. B.C. D.4. 已知圆心是并且与轴相切,则该圆的方程是A. B.C. D.5. 圆心在轴上且通过点的圆与轴相切,则该圆的方程是A. B. C. D.6. 若圆的圆心到直线的距离为,则的值为A. 或B. 或C. 或D. 或7. 若当方程所表示的圆取得最大面积时,则直线的倾斜角A. B. C. D.8. 若圆的圆心位于第三象限,则直线一定不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 若表示一个圆的方程,则的取值范围是A. B. C. D.10. 已知圆:,圆:.点,分别是圆,圆上的动点,为轴上的动点,则的最大值是A. B. C. D.11. 若点在圆的内部,则的取值范围是A. B. C. D.12. 圆关于直线对称的圆的方程是A. B.C. D.二、填空题(共5小题;共25分)13. 已知圆的圆心位于第二象限且在直线上,若圆与两个坐标轴都相切,则圆的标准方程为 .14. 已知圆经过,两点,圆心在轴上,则的方程为.15. 已知点,,则以线段为直径的圆的方程为.16. 过圆和的交点,且圆心在直线上的圆的方程为.17. 若点在以坐标原点为圆心的圆上,则该圆在点处的切线方程为.三、解答题(共5小题;共65分)18. 求圆关于直线的对称圆方程.19. 已知表示一个圆.(1)求的取值范围;(2)若,求该圆圆心坐标和半径.20. 求以、为一条直径的两端点的圆的方程.21. (1)已知圆心在轴上的圆与轴交于两点,,求圆的标准方程;(2)求过点,,且圆心在直线上的圆的标准方程.22. 已知圆的半径为,圆心在直线上,圆被直线截得的弦长为,求圆的方程.。
圆的方程练习题
圆的方程练习题1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程. 【答案】()()22114x y -+-=.【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:{20y xx y =+-=,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案。
解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以{ 20y x x y =+-= 解得1{ 1x y == 即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=.2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程. 【答案】x 2+y 2﹣6x ﹣6y+8=0【解析】试题分析:设所求圆的方程为220,x y Dx Ey F ++++=将()2,0A ,()()4,0,0,2B C三点代入,即可求得圆的方程。
解析:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,则有4+20{1640 240D F D F E F +=++=++=①②③②﹣①得:12+2D=0,∴D=﹣6 代入①得:4﹣12+F=0,∴F=8代入③得:2E+8+4=0,∴E=﹣6 ∴D=﹣6,E=﹣6,F=8∴圆的方程是x 2+y 2﹣6x ﹣6y+8=03.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
(1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。
【答案】(1)()()222116x y -+-=.(2)1【解析】试题分析:(1)设出圆的一般方程,利用待定系数法求解;(2)结合几何图形,先求出圆心到直线的距离,再减去半径的长度即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程检测题
(试卷满分100分,考试时间90分钟)
一、选择题(每小题5分,共40分)
1.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为()
A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2
C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8
解析:选B直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x-1)2+(y-1)2=2.
2.圆(x-3)2+(y-1)2=5关于直线y=-x对称的圆的方程为()
A.(x+3)2+(y-1)2=5 B.(x-1)2+(y-3)2=5
C.(x+1)2+(y+3)2=5 D.(x-1)2+(y+3)2=5
解析:选C由题意知,所求圆的圆心坐标为(-1,-3),半径为5,所以所求圆的方程为(x+1)2+(y+3)2=5,故选C.
3.(2020·昆明模拟)若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是()
A.x-y=0 B.x+y=0
C.x-y-2=0 D.x+y-2=0
解析:选D因为直线OD的斜率k OD=1,所以直线AB的斜率k AB=-1,所以直线AB的方程是y-1=-(x-1),即x+y-2=0,故选D.
4.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是()
A.x2+y2+10y=0 B.x2+y2-10y=0
C.x2+y2+10x=0 D.x2+y2-10x=0
解析:选B根据题意,设圆心坐标为(0,r),半径为r,则32+(r-1)2=r2,解得r=5,可得圆的方程为x2+y2-10y=0.
5.(2020·银川模拟)若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是()
A.(x+2)2+(y+1)2=2 B.(x+1)2+(y+2)2=2
C.(x-2)2+(y-1)2=2 D.(x-1)2+(y-2)2=2
解析:选C设线段AB的中点为D,则|AD|=|CD|=1,∴r=|AC|=2=|CP|,故C(2,1),故圆C的标准方程是(x-2)2+(y-1)2=2,故选C.
6.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为()
A.6 B.4
C .3
D .2
解析:选B 如图所示,圆心M (3,-1)与直线x =-3的最短距离
为|MQ |=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.
7.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围
是( )
A .(-23,4)
B.[-23,4] C .[-4,4] D .[-4,23]
解析:选B x 2+y 2=4(y ≥0)表示圆x 2+y 2=4的上半部分,如图所示,直线3x +y -m =0的斜率为-3,在y 轴上的截距为m .当直线3x +y
-m =0过点(-2,0)时,m =-2 3.设圆心(0,0)到直线3x +y -m =0的距
离为d ,
则⎩⎨⎧ m ≥-23,d ≤2,即⎩⎪⎨⎪⎧
m ≥-23,|-m |2≤2,解得m ∈[-23,4]. 8.方程|y |-1=1-(x -1)2表示的曲线是( )
A .一个椭圆
B.一个圆 C .两个圆 D .两个半圆
解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.
二、填空题(每小题5分,共20分)
9.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.
解析:由题可得a 2=a +2,解得a =-1或a =2.当a =-1时,方程为x 2+y 2+4x +8y -5=0,表示圆,故圆心为(-2,-4),半径为5.当a =2时,方程不表示圆.
答案:(-2,-4) 5
10.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.
解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由
题意知⎩⎪⎨⎪⎧ a <0,|-a |>2,
|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).
答案:(-∞,-2)
11.圆(x -2)2+y 2=4关于直线y =33
x 对称的圆的方程是________. 解析:圆与圆关于直线对称,则圆的半径相同,只需圆心关于直线对称即可.设所求圆的圆心坐标为(a ,b ),
则⎩⎪⎨⎪⎧ b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧
a =1,
b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33
x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4. 答案:(x -1)2+(y -3)2=4
12.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.
解析:设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为
圆上任一点到原点距离的平方,∴(x 20+y 20)max =(32+42+1)2=36,∴d max =74.
答案:74
三、综合题(3个小题,共40分)
13.(12分)已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55
,且圆C 被x 轴分成的两段弧长之比为3∶1,求圆C 的方程.
解:设圆C 的方程为(x -a )2+(y -b )2=r 2,
则点C 到x 轴、y 轴的距离分别为|b |,|a |. 由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2.
故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 14.(14分)已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.
(1)求直线CD 的方程;
(2)求圆P 的方程.
解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.
(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①
又∵直径|CD |=410,
∴|P A |=210,
∴(a +1)2+b 2=40.②
由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧
a =5,
b =-2. ∴圆心P (-3,6)或P (5,-2).
∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.
15.(14分)已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |.
(1)若点P 的轨迹为曲线C ,求此曲线的方程;
(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.
解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16.
(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.
由题知直线l 2与圆C 相切,连接CQ ,CM ,
则|QM |=|CQ |2-|CM |2=|CQ |2-16,
当CQ ⊥l 1时,|CQ |取得最小值,|QM |取得最小值,
此时|CQ |=|5+3|2
=42,故|QM |的最小值为32-16=4.。