第五章 平面连杆机构及其设计10

合集下载

第5章 平面连杆机构的运动分析

第5章 平面连杆机构的运动分析

( xBi x A ) 2 ( y Bi y A ) 2 ( xB1 x A ) 2 ( y B1 y A ) 2 ( xCi xD ) 2 ( yCi y D ) 2 ( xC1 xD ) 2 ( yC1 y D ) 2 i 2,3
(a12 cos12 b12 sin 12 x A cos12 y A sin 12 x A ) x B1 (b12 cos12 a12 sin 12 x A sin 12 y A cos12 y A ) y B1 1 2 2 a12 x A b12 y A (a12 b12 ) 2 (a13 cos13 b13 sin 13 x A cos13 y A sin 13 x A ) x B1 (b13 cos13 a13 sin 13 x A sin 13 y A cos13 y A ) y B1 1 2 2 a13 x A b13 y A (a13 b13 ) 2
cos 1i D1i sin 1i 0
xBi xB1 y D y 1i B1 Bi 1 1
xCi xC1 y D y 1i C1 Ci 1 1
Qi Pi Bi
Q1
i P1
B1
1
Ci
C1
A
D
铰链四杆机构实现连杆的三个精确位置P1Q1,,
P2Q2,P3Q3 的设计图解方法
实现三个位置
机构不能可靠到位
曲柄摇杆机构
机构不能顺序到位
5.6.2 平面连杆机构运动设计的位移矩阵法
1.刚体运动位移矩阵 刚体运动→矢量运动

机械原理课件第5章 连杆机构设计

机械原理课件第5章 连杆机构设计

第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。

如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。

一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。

曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。

4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。

挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。

2)多杆机构设计复杂,效率低。

3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。

多杆机构大都是四杆机构组合或扩展的结果。

本章介绍四杆机构的分析和设计。

六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。

连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。

1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。

实现转动和摆动的转换。

雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。

第五章机构的组成及平面连杆机构

第五章机构的组成及平面连杆机构

2
1
4
3
5
E
F
未去掉虚约束时
2 1
3
E 5
F 4
F3n2pLpH34260 ?
附加的构件5和其两端的转动副E、F提供的自由度
F3122 1 即引入了一个约束,但这个约束对机构的运动不起实际 约束作用,为虚约束。去掉虚约束后
F3n2pLpH33241
⑶ 联接构件与被联接构件上联接点的轨迹重合
B2
E
C
第五章 机构的组成及平面连杆
机构
平面机构运动简图 自由度 铰链四杆机构的基本形式 平面连杆机构曲面存在的条件 急回特性 死点 平面连杆机构的设计 三心定理及应用 平面机构的组成原理及结构分析
组成机构的所有构件都在一个或几个相 互平行平面中运动的机构称平面机构,否 则称空间机构。工程中常见的机构一般都 是平面机构。
31
2
4
1 2
3
1
2 3
两个转动副
4
两个转动副
两个转动副
平面机构自由度计算(4)
构件2、3、4在铰链 C处构成复合铰链, 组成两个同轴回转副 而不是一个回转副, 所以,总的回转副数 是PL=7,而不是PL=6,
F 35 27 0 1
(2) 局部自由度
定义:
不影响整个机构运动的局部独立运动。 对整个机构其他构件运动无关的自由度。
D4 E
B3
1
2
5 F
6
7 G
8 K 9
A C
H
I
局部自由度
D4 E
B3
1
2
5 F
6
7 G
A C
H
I
复合铰链

第5章知识资料平面连杆机构(OK)(3)

第5章知识资料平面连杆机构(OK)(3)
4 . 掌握设计平面四杆机构的一些基本方法。
二、基本概念和基础知识
1. 平面连杆机构的型式 2. 平面连杆机构的基本性质 3. 平面连杆机构设计的的基本问题
平面四杆机构的型式
基本型式
曲柄摇杆机构 双曲柄机构
演动副的四杆机构
曲柄滑块机构 曲柄导杆机构 曲柄摇块机构 移动导杆机构
两个推论
前提:满足杆长条件
① 若连架杆为lmin,则机构存在一个曲柄; ② 若机架为lmin ,则机构存在两个曲柄。
判断由不同杆作机架时四杆机构的类型
a、b、c、d
Y
ad bc
N 双摇杆机构
以最短杆的相邻杆为机架 以与最短杆相对的杆为机架
以最短杆为机架
曲柄摇杆机构 双摇杆机构 双曲柄机构
极位夹角与摆角
极位夹角—— 当从动摇杆处于 左、右两极限位置时,主动曲 柄两位置所夹的锐角θ
摇杆的摆角—— 从动摇杆 两极限位置间的夹角ψ
急回特性与行程速比系数
急回特性——
当曲柄等速转动时,摇杆 往复摆动的平均速度不同的运 动特性。
行程速比系数——表示急 回运动的相对程度
K
180 o 180 o
压力角与传动角
的夹角 45 。( 0.0025m/mm) l
试求曲柄和连杆的长度lAB、lBC。

(1)计算极位夹角
K
1.25
180 180
(2)作图,并计算lAB、lBC
lAB 15 l 0.0375 m
lBC 43.5 l 0.10875 m
20o
3. 如图所示曲柄摇杆机构,已知

(1)、(2)、(4) 解如图所示。
(3)因为:
最短杆+最长杆 =AB+AD=20+70 =90

平面连杆机构及其设计

平面连杆机构及其设计
二、连杆机构的特点
优点: ①连杆机构为低副机构,运动副为面接触,压强小,承载能力 大,耐冲击; ② 运动副元素的几何形状多为平面或圆柱面,便于加工制造; ③在原动件运动规律不变情况下,通过改变各构件的相对长度 可以使从动件得到不同的运动规律; ④可以连杆曲线可以满足不同运动轨迹的设计要求。 缺点: ①由于运动积累误差较大,因而影响传动精度; ②由于惯性力不好平衡而不适于高速传动; ③设计方法比较复杂。
——逆平行(反平行)四边形机构(两相对杆长相等但不平行的双曲柄机构)
3. 双摇杆机构 (Double-Rocker Mechanism)
——两个连架杆都是摇杆的铰链四杆机构
C
2
B
3
1
A
4
D
特例:等腰梯形机构— —两摇杆长度相等的双 摇杆机构
汽车前轮 转向机构
功能: 往复摆动
往复摆动
应用实例:
飞 机 起 落 架 机 构
——两个连架杆都是曲柄的铰链四杆机构
B
1
A
C
特例:若机构中相对两杆平行且相等,
则成为平面四边形机构。
2
3
4
D
平行四边 形机构特 性:
▲两曲柄 同速同向 转动
▲连杆作 平动
功能: 连续转动
连续转动
应用实例:
惯性筛机构
机车车轮联动机构
应用实例 播种机料斗机构
升降机构
升降车
台灯伸展机构
应用实例
车门开闭机构
§3-2 平面四杆机构的类型和应用
➢四杆机构各部分的名称:
构件
转动副
机架
连架杆
连杆
周转副 摆转副
曲柄
摇杆
整周 回转

《平面连杆机构设计》课件

《平面连杆机构设计》课件
定义:平面连杆机构是由一系列刚性杆件通过转动副或移 动副相互连接,并按照预定的顺序或模式进行运动传递的 机构。
在此添加您的文本16字
特点
在此添加您的文本16字
结构简单,易于设计和制造。
在此添加您的文本16字
具有较大的传递力矩的能力。
在此添加您的文本16字
运动形式和运动轨迹相对固定,易于实现精确控制。
平面连杆机构的运动分析
运动分析的基本概念
平面连杆机构定义
平面连杆机构是由若干个刚性构件通 过低副(铰链或滑块)连接而成的机 构,构件之间的相对运动都在同一平 面或相互平行平面内。
运动分析目的
通过分析平面连杆机构的运动特性, 确定各构件之间的相对位置、相对速 度和相对加速度,为机构设计、优化 和性能评估提供依据。
在此添加您的文本16字
适用于多种类型的运动转换和传递,如转动、摆动、移动 等。
平面连杆机构的应用
农业机械
如收割机、拖拉机等,利用平面连杆机构实 现谷物、饲料的收割和运输。
轻工机械
如包装机、印刷机等,利用平面连杆机构实 现纸张、塑料薄膜等的传送和加工。
矿山机械
如挖掘机、装载机等,利用平面连杆机构实 现土石的挖掘、装载和运输。
发展趋势:随着科技的进步和应用需求 的多样化,平面连杆机构的设计和制造 技术也在不断发展和创新。
数字化设计和仿真技术的运用,提高了 设计效率和准确性。
PART 02
平面连杆机构的基本类型
曲柄摇杆机构
曲柄摇杆机构是一种常见的平面 连杆机构,由曲柄、摇杆和连杆
组成。
曲柄作为主动件,匀速转动,带 动连杆摆动,摇杆作为从动件,
运动分析的实例
四杆机构
以曲柄摇杆机构为例,通过解析 法分析曲柄的转速、摇杆的摆角 以及各构件之间的相对速度和加

平面连杆机构综合的解析法

平面连杆机构综合的解析法

1 0 1 0 1 0.5 0 0 1
(取a0x,a0y为0,0)
A2=d112d132+d212d232+(1-d112)a0x-d212a0y =1×1+0×(-0.5)+0+0 =1 B2=d122d132+d222d232+(1-d222)a0y-d122a0x=0×1+(1×(-0.5)=-0.5 C2=d132a0x+d232a0y-(d1322+d2322)/2=1×0-0.5×0-(12+0.52)/2=1.25/2
2 2 3 0.086 2.182 2 2 2 2 3 0.86 2.06 2 2
2 2 C3=d133a0x+d233a0y-(d1332+d2332)/2 (3 0.086 ) / 2 4.5
第五章
平面连杆机构综合的解析法
可得方程组:
a1x A2 a1 y B2 C2 a1x A3 a1 y B3 C3
在这个方程组里面,可以用a1(a1x,a1y)来表示a2(a2x,a2y),a3
代回到定长方程中,消去a2,a3。
在定长方程中,还有a0和a1,共4个未知数,但只有两个方程。 如何解? 选定定铰点坐标a0(a0x,a0y),解出a1(a1x,a1y),所以 方程有无数组解。
第五章
平面连杆机构综合的解析法
第五章
平面连杆机构综合的解析法
(1)有曲柄准则 曲柄存在准则:最短杆与最长杆之和≤其余两 杆长度之和; 在此条件下,取最短杆或与最短杆相邻接的构 件作机架,必有曲柄。 (2)运动连续性准则 (3)运动的顺序准则
平面机构运动综合中,应符合 规定的运动顺序要求。

平面连杆机构及其分析与设计PPT教案

平面连杆机构及其分析与设计PPT教案

a+d≤b+c
(4-1)
|d-a|≥|b-c|
(4-2)
(1) 若d≥a,则可得 a+b≤c+d (若b>c)
a+c≤b+d (若c>b)
从而可得
a≤b
a≤c
a≤d
第22页/共116页
(2) 若d≤a 则可得
dd
a b
b a
c c
d c a b
(b c) (c b)
dd
a b
d c
第31页/共116页
二、传力特性 1. 压力角和传动角
压力角—作用在 从动件上的力的方向与 着力点速度方向所夹锐 角。
传动角 —压力角的 余角。
B A
F
C
F
F
D
有效分力 FFcos Fsin 径向压力 F Fsin=Fcos 角越大, F越大, F越小,对机构的传动越有利。 连杆机构中,常用传动角的大小及变化情况来衡量机构 传力性能的优劣。
● 实现运动形式的转换和运动性质的变换 ● 实现运动规律的变换和运动函数的再现 ● 实现轨迹运动 ● 导引刚体按一定的位置和姿态运动
第39页/共116页
(一) 实现多种运动形式的转换和运动性质的变换 1. 转动→转动 输入转动与输出转动运动参数相同
火车车轮联动机构 平行四边形机构
Parallel-crank mechanism
平面连杆机构的类型
整转副——能作360˚相对回转的运动副; 摆转副——只能作有限角度摆动的运动副。
曲柄摇杆机构
• 低副运动可逆性
双摇杆机构
第14页/共116页
双曲柄机构
(2)选不同的构件为机架

机械原理+阶段练习二及答案(5-6)

机械原理+阶段练习二及答案(5-6)

华东理工大学网络教育学院机械原理课程阶段练习二(第5-6章)第五章平面连杆机构及其设计一:选择题1、铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和( A )其他两杆长度之和。

A <=;B >=;C > 。

2、当行程速度变化系数k B时,机构就具有急回特性。

A <1;B >1;C =1。

3、当四杆机构处于死点位置时,机构的压力角( B ).A.为0o;B.为90o;C.与构件尺寸有关.4、对于双摇杆机构,最短构件与最长构件长度之和( A )大于其余两构件长度之和.A.一定;B.不一定;C.一定不.5、若将一曲柄摇杆机构转化为双曲柄机构,可将( B ).A.原机构曲柄为机构;B.原机构连杆为机架;C.原机构摇杆为机架.6、曲柄摇杆机构处于死点位置时( B )等于零度.A.压力角;B.传动角;C.极位角.7、偏置曲柄滑动机构中,从动件滑动的行程速度变化系数K( A )1.A.大于;B.小于;C.等于.8、曲柄为原动件的曲柄摇杆机构, 若知摇杆的行程速比系数K=1.5,那么极位角等于( C ).A.18;B.-18;C.36;D.72.9、曲柄滑块机构的死点只能发生在( B ).A.曲柄主动时;B.滑块主动时;C.连杆与曲柄共线时.10、当曲柄为主动件时,曲柄摇杆机构的最小传动角 min总是出现在( C ).A.连杆与曲柄成一条直线;B.连杆与机架成一条直线时;C.曲柄与机架成一条直线.11、四杆机构的急回特性是针对主动件作( A )而言的.A.等速运动;B.等速移动;C.与构件尺寸有关.12、平面连杆机构的行程速比系数K值的可能取值范围是( C ).A 0≤ K≤1B 0≤ K≤2C 1≤ K≤3D 1≤ K≤213、摆动导杆机构,当导杆处于极限位置时,导杆( A )与曲柄垂直.A.一定;B.不一定;C.一定不.14、曲柄为原动件的偏置曲柄滑动机构,当滑块上的传动角最小时,则( B ).A.曲柄与导路平行;B.曲柄与导路垂直;C.曲柄与连杆共线;D.曲柄与连杆垂直.15、在曲柄摇杆机构中,若增大曲柄长度,则摇杆摆角将( A )A.加大;B.减小;C.不变;D.加大或不变.16、铰链四杆机构有曲柄存在的必要条件是( A )A.最短杆与最长杆长度之和小于或等于其他两杆长度之和B.最短杆与最长杆长度之和大于其他两杆长度之和C.以最短杆为机架或以最短杆相邻的杆为机架二:填空题1、平面四杆机构有无急回特性取决于极位夹角θ的大小.2、曲柄滑快机构,当以滑块为原动件时,可能出现死点。

第五讲 平面连杆机构及其设计讲义2011

第五讲   平面连杆机构及其设计讲义2011

第五讲 平面连杆机构及其设计连杆机构的传动特点:1.因为其运动副一般为低副,为面接触,故相同载荷下,两元素压强小,故可承受较大载荷;低副元素便于润滑,不易磨损;低副元素几何形状简单,便于制造。

2.当原动件以同样的运动规律运动时,若改变各构件的相对长度,可使从动件得到不同的运动规律。

3.利用连杆曲线满足不同的规矩要求。

4.增力、扩大行程、实现远距离的传动(主要指多杆机构)。

缺点:1.较长的运动链,使各构件的尺寸误差和运动副中的间隙产生较大的积累误差,同时机械效率也降低。

2.会产生系统惯性力,一般的平衡方法难以消除,会增加机构动载荷,不适于高速传动。

平面四杆机构的类型和应用一、平面四杆机构的基本型式1.曲柄摇杆机构2.双曲柄机构 3.双摇杆机构二、平面四杆机构的演化型式1.改变构件的形状和运动尺寸曲柄摇杆机构 -----曲柄滑块机构 2.改变运动副的尺寸偏心轮机构可认为是将曲柄滑块机构中的转动副的半径扩大,使之超过曲柄的长度演化而成的。

3.选用不同的构件为机架(a ) 曲柄滑块机构 (b )AB<BC 为转动导杆机构(AB>BC 为摆动导杆机构) (c )曲柄摇块机构(d )直动滑杆机构(定块机构)平面四杆机构的基本知识一、平面四杆机构有曲柄的条件1.铰链四杆机构中曲柄存在的条件 (1)存在周转副的条件是:①其余两杆长度之和最长杆长度最短杆长度≤+,此条件称为杆长条件。

②组成该周转副的两杆中必有一杆为最短杆。

(意即:连架杆和机架中必有一杆是最短杆) 2满足杆长条件下,不同构件为机架时形成不同的机构①以最短构件的相邻两构件中任一构件为机架时,则最短杆为曲柄,而与机架相连的另一构件为摇杆,即该机构为曲柄摇杆机构。

②以最短构件为机架,则其相邻两构件为曲柄,即该机构为双曲柄机构。

③以最短构件的对边为机架,则无曲柄存在,即该机构为双摇杆机构。

3.不满足杆长条件的机构为双摇杆机构。

注:1)曲柄滑块机构有曲柄的条件:a + e ≤ b2)导杆机构:a < b 时,转动导杆机构; a > b 时,摆动导杆机构。

平面连杆机构的设计

平面连杆机构的设计

若∠B2C2D>90°, 则 γ2=180°-∠B2C2D
(8-7b)
γmin=[∠B1C1D, 180°-∠B2C2D]min
C2γ2 bγ1 c C1
B2 A a
D
B1 d
49
4.机构的死点位置 F γ=0
F γ= 0
(1)定义 摇杆为主动件, 且连杆与曲柄两次共线时, 有: γ=0 此时机构不能运动. 称此位置为: “死点”
急回特性:在曲柄等速回转的情况下,从动件往 复运动速度并不相等,这种现象称为机构的急回 特性。
42
K V2 C1C2 t2 t1 180 V1 C1C2 t1 t2 180
K为行程速比系数
说明:1)只要 θ ≠ 0 , 就有 K>1,存在急回运动。K
的取值范围:1≤K≤3. 2)且θ越大,K值越大,急回性质越明显。
A
天平
AB = CD BC = AD
BB
B B
C C
作者:潘存云教授
A
D
作者:潘存云教授
D C
耕地
作者:潘存云教授
料斗
12
返回13
注:平行四边形机构在共线位置出 现运动不确定。采用两组机构错开排列。
B’
F’
C’
A’
E’
D’
G’
火车轮
A
E
D
G
B
F
C
反平行四边形机构 --车门开闭机构
双曲柄机构中两相对杆的长度分 别相等,但不平行。
b≤(d – a)+ c → a+b ≤ c + d
c≤(d –a)+ b → a+ c ≤ b + d

平面连杆机构

平面连杆机构

正平行四边形机构
反平行四边形机构
特点:二曲柄等速
应用1 应用2
特点:二曲柄转向相反 车门开闭机构
无锡商院机电系 2010年5月
机械基础
3、双摇杆机构
第五章 平面连杆机构
铸造用大型造型 机的翻箱机构
无锡商院机电系 2010年5月
机械基础
第五章 平面连杆机构
三、铰链四杆机构基本类型的判别
1、曲柄存在的条件
3
t1
t1
1 1
180 1
3
t2
t2
2 1
180 - 1
K
180 180
180 K1
K1
无锡商院机电系 2010年5月
机械基础
分析:
第五章 平面连杆机构
观察
K=
180º+θ 180º-θ
?θ=0º,k=?,表示?
k=1,无急回特性
?θ≠0º,k=?,表示?
K>1,有急回特性
?θ↗,k如何变化,表示?
e e
B
a
b C
A
a) a b
B a A
b
C
b) a b+e
B
a A
b C
a B
b
c) a b-e
A
无锡商院机电系 2010年5月
C
? d)
机械基础
第五章 平面连杆机构
四、铰链四杆机构的演化
1、曲柄滑块机构 C
3C D
2
B 1
A
4
铰链四杆机构
3 变3构件形状
D
B2
r
1
A 4
曲线导轨曲柄滑块机构
90
180

第章平面连杆机构及其设计

第章平面连杆机构及其设计

第章平面连杆机构及其设计1. 介绍平面连杆机构是机械运动学中一类常见的重要机构,由连杆(也称杆件)组成,分为接触连杆机构和非接触连杆机构两类。

平面连杆机构能够将旋转运动转化为直线运动,或将直线运动转化为旋转运动,并广泛应用于各种机械装置中。

2. 平面连杆机构的分类平面连杆机构一般分为以下几类:2.1 四杆机构四杆机构是由四根杆件组成的平面连杆机构,其中两根杆件为引导杆,在机构运动过程中仅仅进行直线运动,另外两根杆件则为连杆,在机构运动过程中发生旋转和直线运动。

2.2 三杆机构三杆机构又称三杆架,是由三根杆件组成的平面连杆机构,其中两根杆件为引导杆,在机构运动过程中仅仅进行直线运动,另外一根杆件则为连杆,在机构运动过程中发生旋转和直线运动。

2.3 双曲杆机构双曲杆机构是由两个连杆组成的平面连杆机构,其中两个连杆的运动轨迹呈现为双曲线形状,能够实现近似于直线的直线运动。

2.4 齿条机构齿条机构是由齿轮和齿条组成的平面连杆机构,齿轮进行旋转运动,齿条进行直线运动,能够实现运动传递和位置定位。

3. 平面连杆机构的设计设计平面连杆机构时需要考虑以下几方面:3.1 运动要求平面连杆机构的设计需要优先考虑机构所要完成的工作,确定所需运动方式、速度、角度等指标,为机构的设计提供技术参考和方向。

3.2 相关构件尺寸在完成运动要求的基础上,需考虑各组件之间的相互匹配,包括连杆长度、引导杆长度、连杆夹角、引导杆倾斜角等。

3.3 材质选取平面连杆机构在耐用性、强度、重量、成本等方面也需要考虑,选用合适的材质,满足机构设计要求。

3.4 连接方式选择平面连杆机构的连接方式通常为销轴连接和螺栓连接,选择合适的连接方式也是机构设计的关键。

4.平面连杆机构是机械装置中常见的一种机构结构,应用广泛,设计时需考虑机构所要完成的工作、构件尺寸、材质选取和连接方式选择等方面,结合实际情况进行设计,才能满足机构的运动要求和性能要求。

机械基础-平面连杆机构

机械基础-平面连杆机构

化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② 连架杆与机架中必有一杆为最短杆。
最短杆为连架杆或机架时。
第五章 平面连杆机构及其设计
37
取不同构件为机架时的铰链四杆机构型式
AD为机架
BC为机架
A、B整转副 D、C为摆转副
曲柄摇杆机构 曲柄摇杆机构 为双曲柄机构 为双摇杆机构
第五章 平面连杆机构及其设计
23
2.转动副向移动副的演化

曲柄摇杆机构 曲柄曲线滑块机构 偏置曲柄滑块机构 对心曲柄滑块机构

第五章 平面连杆机构及其设计
e=0
24
3.含有一个移动副的四杆机构的演化
系不因其中哪个构件作为参考坐标而变化。
构件1相对构件2的运动与构件2相对构件1的 运动相同。
第五章 平面连杆机构及其设计
20
高副没有运动的可逆性 构件1相对构件2的运动轨迹为摆线 构件2相对构件1的运动轨迹为渐开线
结论—— 高副不具有相对运动可逆性
第五章 平面连杆机构及其设计
21
(二)四杆机构的演化与变异
第五章 平面连杆机构及其设计
第一节 平面连杆机构的特点与基本型式 第二节 平面连杆机构的基本性质 第三节 平面连杆机构的设计
《机械原理》
第一节 平面连杆机构的特点与基本型式
一、平面连杆机构的特点 二、平面连杆机构的基本型式 三、四杆机构的演化与变异 四、平面连杆机构的应用
第五章 平面连杆机构及其设计
位移量s=Lsinφ,与
曲柄转角φ成正弦函 数关系
第五章 平面连杆机构及其设计
18
正切机构
一个连架杆作往复摆动,另一个连架杆作 往复移动、且位移是摆角的正切函数。
构件3的位移
S=atanφ。
第五章 平面连杆机构及其设计
19
三、四杆机构的演化与变异
(一)低副相对运动的可逆性 低副所连接的两个构件之间的相对运动关
6
双曲柄机构
两个连架杆均为曲柄的连杆机构
B
C
A
D
两个连架杆平行且相等, 机架与连杆平行并 相等,称为平行四边形机构。
第五章 平面连杆机构及其设计
7
双摇杆机构
两个连架杆均为摇杆的连杆机构
第五章 平面连杆机构及其设计
8
(二)含有一个移动副的四杆机构
曲柄滑块机构 转动导杆机构 摆动导杆机构 曲柄摇块机构 移动导杆机构
4
第五章 平面连杆机构及其设计
28
转动副的销钉扩大实例
连杆
转动副的结构变异
摇杆
第五章 平面连杆机构及其设计
29
移动副的扩大与变异 剪床
第五章 平面连杆机构及其设计
30
6.构件形状变异
杆块变异
曲柄摇块机构
摆动导杆机构
第五章 平面连杆机构及其设计
31
7.构件尺寸的变异
机架AB尺寸增大到某一范围,转动导杆机构 演化为摆动导杆机构。
第五章 平面连杆机构及其设计
12
曲柄摇块机构
一连架杆为曲柄,另一连架杆为块状,且只能 作定轴往复摆动。
第五章 平面连杆机构及其设计
13
移动导杆机构
导杆在固定滑块中做往复直线移动,曲柄 做往复摆动
第五章 个移动副的四杆机构
双滑块机构 双转块机构 正弦机构 正切机构
2
一、平面连杆机构的特点
结构简单、易于制造、成本低廉 承载能力大 可实现多样化的运动规律 可实现远距离的运动和动力的传递 能实现特殊的运动轨迹
第五章 平面连杆机构及其设计
3
二、平面连杆机构的基本型式
(一)全转动副的四杆机构(铰链四杆机构) (二)含有一个移动副的四杆机构 (三)含有两个移动副的四杆机构
第五章 平面连杆机构及其设计
9
曲柄滑块机构
一连架杆为曲柄,另一连架杆为相对机架作 往复移动的滑块
第五章 平面连杆机构及其设计
10
转动导杆机构
定义:一连架杆为曲柄,而另一连架杆也作 整周转动且与块状连杆组成移动副
第五章 平面连杆机构及其设计
11
摆动导杆机构
一连架杆为曲柄,另一连架杆作定轴往复摆 动且与块状连杆组成移动副。
第五章 平面连杆机构及其设计
36
一、曲柄存在条件
B1C1D B2C2 D
a +d b +c
b (d -a) +c c (d -a) +b
曲柄存在条件
a + b d + c a + c d + b a + d b + c
a b a c a d
① 最短杆与最长杆长度之和小于或等于其余两杆长度之和;(杆长条件)
第五章 平面连杆机构及其设计
4
(一)全转动副的四杆机构(铰链四杆机构)
曲柄摇杆机构 双曲柄机构 双摇杆机构
第五章 平面连杆机构及其设计
5
曲柄摇杆机构
曲柄——连架杆中能作整周转动的构件 摇杆——连架杆中只能作往复摆动的构件 曲柄摇杆机构——两个连架杆中一为曲柄,一
为摇杆连杆的机构
第五章 平面连杆机构及其设计
第五章 平面连杆机构及其设计
32
四、平面连杆机构的应用
应用一 应用二
第五章 平面连杆机构及其设计
33
牛头刨床
小型牛头刨床
第五章 平面连杆机构及其设计
摆 动 式 油 泵
手 摇 唧 筒
第五章 平面连杆机构及其设计
自动卸料汽车
插齿 机床 让刀 机构
第二节 平面连杆机构的基本性质
一、曲柄存在条件 二、急回特性 三、机构压力角与传动角 四、机构的死点位置
第五章 平面连杆机构及其设计
15
双滑块机构
两个连架杆作成块状,且相对十字形机架作相 对移动
第五章 平面连杆机构及其设计
16
双转块机构
两块状连架杆均作定轴转动,连杆为十字形 构件
第五章 平面连杆机构及其设计
17
正弦机构
一个连架杆作定轴转动,另一个连架杆作往复 移动,且位移是曲柄转角的正弦函数。
A、B为整转副
曲柄滑块机构 转动导杆机构 曲柄摇块机构 移动导杆机构
第五章 平面连杆机构及其设计
25
4.含有两个移动副的四杆机构的演化
双滑块机构
正弦机构
双转块机构
第五章 平面连杆机构及其设计
26
5.运动副的形状变异
转动副的销钉扩大
曲柄滑块机构
偏心盘机构
第五章 平面连杆机构及其设计
27
B
A1
2
3 C
1. 全转动副的铰链四杆机构演化 2.全转动副机构向含有移动副机构的演化 3.含有一个移动副的四杆机构的演化 4.含有两个移动副的四杆机构的演化 5.运动副的形状变异 6.构件形状变异 7.构件尺寸的变异
第五章 平面连杆机构及其设计
22
1.铰链四杆机构的演化
曲柄摇杆机构ABCD中,A、B为整转副,D、C为摆转副
相关文档
最新文档