中考数学总复习第三单元函数及其图像 训练一次函数的图像与性质练习
(完整版)一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数y kx(k 0) 一定经过点,经过(1,), 一次函数y kx b(k 0)经过(0,)点,(,0)点.2.直线y 2x 6与x轴的交点坐标是 ,与y轴的交点坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数y mx (4m 4)的图象过原点,则m的值为.4.如果函数y x b的图象经过点P(0,1),则它经过x轴上的点的坐标为 .5. 一次函数y x 3的图象经过点(, 5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2) y随x的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x与y=2x+6的图象的位置关系是 .8.若直线y=2x+6与直线y=mx+5平行,则m=.9.在同一坐标系内函数y=ax+b与y=3x+2平行,则a, b的取值范围是.10.将直线y= — 2x向上平移3个单位得到的直线解析式是 ,将直线y= — 2x向下移3个单得到的直线解析式是 .将直线y= - 2x+3向下移2个单得到的直线解析式是.11.直线y kx b经过一、二、三象限,则k 0, b 0,经过二、三、四象限,则有k 0, b 0,经过一、二、四象限,则有k 0, b 0.12. 一次函数y (k 2)x 4 k的图象经过一、三、四象限,则k的取值范围是.13.如果直线y 3x b与y轴交点的纵坐标为 2 ,那么这条直线一定不经过第象限.14.已知点A(-4, a),B(-2,b) 都在一次函数y=-x+k(k为常数)的图像上,则a与b的大小 2关系是a—b(填" <““=”或“ >")15. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0 时,y=; 当x=p寸,y=0.(2)k=, b=.(3)当x=5 时,y=;当y=30 时,x=.二、选择题1.已知函数y (m 3)x 2,要使函数值y随自变量x的增大而减小,则m的取值范围是2 .已知直线y kx b ,经过点A(x i, y 1)和点B(x 2, y 2),若k 0,且x 1 X 2,则y 1与y 2的大5.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过()两个一次函数y ax b 与y 2 bx a ,它们在同一直角坐标系中的图象可能是三、解答题1,已知一次函数 y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点;(2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.2 . 设一次函数y kx b(k 0),当x 2时,y 3,当x 1时,y 4。
2024年中考数学专题复习:一次函数的图像与性质-试卷
2024年中考数学专题复习:一次函数的图像与性质一、选择题(本大题共10道小题)1. (2023•沈阳)一次函数y =-3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2. (2023八上·太原期中)课堂上,同学们研究正比例函数y=-x 的图象时,得到如下四个结论,其中错误的是( )A.当x=0时,y=0,所以函数y=-x 的图象经过原点B.点P(t,-t)一定在函数y=-x 的图象上C.当x>0时,y<0,当x<0时,y>0,所以函数y=-x 的图象经过二、四象限D.将函数的图象向左平移2个单位,即可得到函数y=-x+2的图象3. (2023·太原模拟)已知y 是x 的正比例函数,当x =3时,y =-6,则y 与x 的函数关系式为( )A.y =2xB.y =-2xC.y =12 xD.y =-12x 4. (2023•柳州)若一次函数y =kx+b 的图象如图所示,则下列说法正确的是( )A.k >0B.b =2C.y 随x 的增大而增大D.x =3时,y =0 5. (2023·贵州毕节·二模)已知正比例函数y=kx(k ≠0)的图象过点(2,3),把正比例函数y=kx(k ≠0)的图象平移,使它过点(1,-1),则平移后的函数图象大致是( )A. B. C.D. 6. (2023秋•会宁县)已知关于x 的一次函数y =(k 2+1)x-2图象经过点A(3,m)、B(-1,n),则m,n 的大小关系为( )A.m ≥nB.m >nC.m ≤nD.m <n7. (2023·随州模拟)如图,在平面直角坐标系中,动点A,B 分别在x 轴上和函数y =x 的图象上,AB =4,CB ⊥AB,BC =2,则OC 的最大值为( )A.222B.224C.2 5D.2528. (2023·鄂州中考)数形结合是解决数学问题常用的思想方法.如图,直线y =2x -1与直线y =kx +b(k ≠0)相交于点P(2,3).根据图象可知,关于x 的不等式2x -1>kx +b 的解集是( )A.x <2B.x <3C.x >2D.x >39. (2023•贵阳)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y =k n x+b n (n =1,2,3,4,5,6,7),其中k 1=k 2,b 3=b 4=b 5,则他探究这7条直线的交点个数最多是( )A.17个B.18个C.19个D.21个10. (2023·湖南永州·中考真题)已知点P(x 0,y 0)和直线y=kx+b,求点P 到直线y=kx+b 的距离d 可用公式0021kx y b d k -+=+计算.根据以上材料解决下面问题:如图,⊙C 的圆心C 的坐标为(1,1),半径为1,直线l 的表达式为y=-2x+6,P 是直线l 上的动点,Q 是⊙C 上的动点,则PQ 的最小值是( )A.355B.3515-C.6515-D.2二、填空题(本大题共8道小题)11. (2023•毕节市)将直线y =-3x 向下平移2个单位长度,平移后直线的解析式为 .12. (2023·四川成都市)在正比例函数y=kx 中,y 的值随着x 值的增大而增大,则点P(3,k)在第_____象限.13. (2023·贵州黔西·二模)如图,平面直角坐标系中,经过点B(-4,0)的直线y =kx+b 与直线y =mx+2相交于点3(,1)2A --,则关于x 的方程mx+2=kx+b 的解为________.14. (2023秋•宁化县)若函数y =4x ﹣1与y =﹣x+a 的图象交于x 轴上一点,则a 的值为( )A.4B.﹣4C.D.±415. (2023黔西南州)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P,点P 到x 轴的距离是2,则这个正比例函数的解析式是 .16. (2023·湖南湘西·中考真题)在平面直角坐标系中,O 为原点,点A(6,0),点B 在y 轴的正半轴上,∠ABO=30o .矩形CODE 的顶点D,E,C 分别在OA,AB,OB 上,OD=2.将矩形CODE 沿x 轴向右平移,当矩形CODE 与△ABO 重叠部分的面积为63时,则矩形CODE 向右平移的距离为___________.17. (2023•毕节市)如图,在平面直角坐标系中,点N 1(1,1)在直线l:y =x 上,过点N 1作N 1M 1⊥l,交x 轴于点M 1;过点M 1作M 1N 2⊥x 轴,交直线于N 2;过点N 2作N 2M 2⊥l,交x 轴于点M 2;过点M 2作M 2N 3⊥x 轴,交直线l 于点N 3;…,按此作法进行下去,则点M 2023的坐标为 .18. (2023•泰安)如图,点B 1在直线l:y =21x 上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n+1∁n 的边长为 (结果用含正整数n 的代数式表示).三、解答题(本大题共6道小题)19. (2023秋•安徽月考)已知经过点A(4,-1)的直线y =kx+b 与直线y =-x 相交于点B(2,a),求两直线与x 轴所围成的三角形的面积.20. (2023春•西丰县)如图,一次函数y=kx+b的图象经过A(2,4),B(﹣2,﹣2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.21. (2023秋•兰州)如图,直线l1:y=-x+4分别与x轴,y轴交于点D,点A,直线l2:y x+1与x轴交于点C,两直线l1,l2相交于点B,连AC.(1)求点B的坐标和直线AC的解析式;(2)求△ABC的面积.22. (2023•滨州)如图,在平面直角坐标系中,直线y x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23. (2023·河北中考真题)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l ,如图.而某同学为观察k,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式; (2)请在图上画出..直线l '(不要求列表计算),并求直线l '被直线l 和y 轴所截线段的长; (3)设直线y=a 与直线l ,l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.24. (2023•黑龙江)如图,矩形ABOC 在平面直角坐标系中,点A 在第二象限内,点C 在y 轴正半轴上,OA 2-9x+20=0的两个根.解答下列问题:(1)求点A 的坐标;(2)若直线MN 分别与x 轴,AB,AO,y 轴交于点D,M,F,N,E,S △AMN =2,tan ∠AMN =1,求直线MN 的解析式;(3)在(2)的条件下,点P 在第二象限内,使以E,F,P,Q 为顶点的四边形是正方形?若存在;若不存在,请说明理由.。
浙江省中考数学第三单元函数及其图象课时训练10一次函数的图象与性质练习(新版)浙教版
课时训练(十) 一次函数的图象与性质|夯实基础|1.[2018·娄底] 将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A.y=2x-4B.y=2x+4C 22D2. y=x+.y=x-2[2017·呼和浩特]若一次函数y=kx+b 知足0,且y随x的增大而减小,则此函数的图象不经过().kb>A.第一象限B.第二象限C.第三象限D.第四象限3.[2017·苏州]若点A(m,n)在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A.b>2B.b>-2C.b<2D.b<-24.[2017·陕西]如图K10-1,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,若直线l2与x轴的交点为A(-2,0),则k的取值范围为()图K10-1A22B20.-<k<.-<k<C.0<k<4D.0<k<25.[2017·天津]若正比率函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值能够是(写出一个即可).6.[2017·成都]如图K10-2,正比率函数y1=k1x和一次函数y2=k2x+b的图象订交于点A(2,1),当x<2时,y1y2.(填“>”或“<”)1图K10-27.如图K10-3,在平面直角坐标系中,已知点A(2,3),点B(-2,1),在x轴上存在点P到A,B两点的距离之和最小,则点P的坐标是.图K10-38.如图K10-4,一次函数y=-x+m的图象与y轴交于点B,与正比率函数y=x的图象交于点P(2,n).求m和n的值;求△POB的面积.图K10-429.[2017·杭州]在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).当-2<x≤3时,求y的取值范围;已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.10.[2018·淮安]如图K10-5,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴订交于点B,与正比率函数y=3x的图象订交于点C,点C的横坐标为1.求k,b的值;(2)若点D在y轴负半轴上,且知足S=S,求点D的坐标.△COD△BOC3图K10-511.[2018·重庆A卷]如图K10-6,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,获得点C.过点C且与直线y=2x平行的直线交y轴于点D.求直线CD的分析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的地点结束,求直线CD在平移过程中与x轴交点横坐标的取值范围.图K10-64|拓展提高|12.已知一次函数y=kx+b,当3≤x≤4时,3≤y≤6,则的值是.13.如图K107,点A的坐标为(4,0),直线y=x+n与坐标轴交于点,,连接,若∠90°,则n的值--BC AC ACB=为.图K10-714.已知点(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.P比如:求点P(-2,1)到直线y=x+1的距离.解:由于直线y=x+1可变形为x-y+1=0,此中k=1,b=1,所以点P(-2,1)到直线y=x+1的距离为d====.依据以上资料,解答以下问题:求点P(1,1)到直线y=3x-2的距离,并说明点P与直线的地点关系;求点Q(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线之间的距离.5精选文档6参照答案1.A2A[分析]由y 随x的增大而减小可知0,由0得0,所以图象经过第二、三、四象限..k<kb>b<3D[分析]∵点(,)在一次函数3的图象上,则3,3,所以-b>2,故2.Amn y=x+b n=m+b-b=m-n b<-.4.D [分析]将A(-2,0)代入l2:y=kx+b(k≠0),可得 b=2k,即l2:y=kx+2k(k≠0),已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M,解方程组得由x>0,y>0得0<k<2.应选D.5.-1(答案不独一,只要小于0即可) [分析]依据正比率函数图象的性质,若函数图象经过第二、四象限,则k<0,所以k的值能够是随意负数.6[分析]联合图象及点A 的横坐标为2,可适当2时,12.<x<y<y.7.(-1,0)8.解:(1)∵点P(2,n)在函数y=x的图象上,n=×2=3.把P(2,3)的坐标代入y=-x+m,得3=-2+m,m=5.由(1)知一次函数为y=-x+5,令x=0,得y=5,∴点B的坐标为(0,5),S△POB=×5×2=5.9.解:(1)由题意易知y=kx+2,7∵图象过点(1,0),∴0=k+2,解得k=-2,∴y=-2x+2.当x=-2时,y=6.当x=3时,y=-4.∵一次函数图象为直线,k=-2<0,函数值y随x的增大而减小,-4≤y<6.依据题意知解得∴点P的坐标为(2,-2).10.解:(1)由点C在y=3x的图象上得点C的坐标为(1,3),由点A,C在y=kx+b的图象上得解得由题图可求得S△BOC=×3×4=6,所以S△COD=S△BOC=2,即S△COD=×1×OD=2.所以OD=4,由于点D在y轴负半轴上,8所以点D的坐标为(0,-4).11.解:(1)在y=-x+3中,当x=5时,y=-2,故A(5,-2).∵把点A向左平移2个单位,再向上平移4个单位,获得点C, C(3,2).∵直线CD与直线y=2x平行,∴令直线CD的分析式为y=2x+b,则2×3+b=2,解得b=-4.∴直线CD的分析式为y=2x-4.(2)易知点B(0,3).在y=2x-4中,令y=0,得2x-4=0,解得x=2.∵过点B且平行于直线CD的分析式为y=2x+3,∴令y=2x+3中的y=0,得2x+3=0,解得x=-.∴直线在平移过程中与x 轴交点横坐标的取值范围是-≤≤2CD x.12.-2或-513.-14.解:(1)∵d==0,∴点P(1,1)在直线y=3x-2上.∵直线y=2x-1可变形为2x-y-1=0,此中k=2,b=-1,∴点Q(2,-1)到直线y=2x-1的距离为9d=== =.∵直线y=-x+1与y=-x+3平行,∴任取直线y=-x+1上的一点到直线y=-x+3的距离即为两直线之间的距离,∴取直线y=-x+1上的一点M(0,1),点M到直线y=-x+3的距离d=== =,即两直线之间的距离为.10。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
中考数学复习之一次函数的图像与性质,考点过关与基础练习题
14. 一次函数的图像与性质➢ 知识过关一次函数的概念:形如)0(为常数,b k b kx y ≠+=的函数,叫做一次函数. 一次函数的图像 k >0 k <0y 随着x 增大而增大 y 随x 的增大而减小(1)设出一次函数解析式的一般形式;(2)设x 、y 的对应值代入解析式,得到含有待定系数的_______;(3)求待定系数的值;(4)将所有待定系数的值代入所设的函数解析式中.➢ 考点分类考点1 正比例函数、一次函数的概念例1已知函数y =(m ﹣10)x +1﹣2m .(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.例2 一次函数的图像及性质例2(1)已知正比例函数x m y )1(+=,y 随x 的增大而减小,则m 的取值范围是( )A. m<-1B.m>-1C.1-≥mD.1-≤m(2) 关于直线l :)0(≠+=k k kx y ,下列说法不正确的是( )A. 点(0,b)在 l 上,B. l 经过定点(-1,0)C. 当k >0时,y 随x 的增大而增大D. l 经过第一、二、三象限考点3 一函数的交点问题例3 如图,一次函数y =−12x +4的图象与x 轴、y 轴分别交于点A ,B .将△AOB 沿直线CD 对折,点A 恰好与点B 重合,直线CD 与x 轴交于点C ,与AB 交于点D .(1)求点C 的坐标;(2)求四边形BOCD 的面积.➢ 真题演练1.直线y 1=mx +n 2+1和y 2=﹣mx ﹣n 的图象可能是( )A .B .C .D .2.根据图象,可得关于x 的不等式kx >﹣x +3的解集是( )A .x <2B .x >2C .x <1D .x >13.如图,一次函数y =x +4的图象与x 轴,y 轴分别交于点A ,B ,点C (﹣2,0)是x 轴上一点,点E ,F 分别为直线y =x +4和y 轴上的两个动点,当△CEF 周长最小时,点E ,F 的坐标分别为( )A .E (−52,32),F (0,2)B .E (﹣2,2),F (0,2)C .E (−52,32),F (0,23) D .E (﹣2,2),F (0,23)4.在同一平面直角坐标系中,直线y =﹣x +4与y =2x +m 相交于点P (3,n ),则关于x ,y的方程组{x +y −4=0,2x −y +m =0的解为( ) A .{x =−1,y =5 B .{x =3,y =1 C .{x =1,y =3 D .{x =9,y =−55.如图,在平面直角坐标系中,直线l 1:y =x +4与直线l 2:y =mx +n 交于点A (﹣1,b ),则关于x ,y 的方程组{x −y +4=0mx −y +n =0的解为( )A .{x =3y =1B .{x =−1y =3C .{x =3y =−1D .{x =−1y =−36.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .7.如图,一次函数y =kx +b 与正比例函数y =2x 的图象交于点A ,且与x 轴交于点B ,则一次函数y =2x 与y =kx +b 的图象交点坐标为 .8.如图,一次函数y =x +2的图象与x 轴、y 轴分别交于A 、B 两点,以OB 为边在y 轴的左侧作等边△OBC ,将△OBC 沿x 轴向右平移,使点C 的对应点C ′恰好落在直线AB 上,则点C ′的坐标为 .9.如图,直线AB 的表达式为y =−34x +6,交x 轴,y 轴分别与B ,A 两点,点D 坐标为(﹣4,0),点C 在线段AB 上,CD 交y 轴于点E .(1)求点A ,B 的坐标;(2)若CD =CB ,求点C 的坐标;(3)若△ACE 与△DOE 的面积相等,在直线AB 上有点P ,满足△DOC 与△DPC 的面积相等,求点P 坐标.➢ 课后练习1.若m <﹣2,则一次函数y =(m +1)x +1﹣m 的图象可能是( )A .B .C .D .2.若式子√k −1+(k ﹣1)0有意义,则一次函数y =(1﹣k )x +k ﹣1的图象可能是( )A .B .C .D .3.对于实数a ,b ,定义符号min {a ,b },其意义为:当a ≥b 时,min {a ,b }=b ;当a <b 时,min {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于x 的函数y =min {2x ﹣1,﹣x +3},则该函数的最大值为( )A .23B .1C .43D .534.桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km )随时间t (h )变化的图象(全程)如图所示.依据图中信息,下列说法错误的是( )A .甲大巴比乙大巴先到达景点B .甲大巴中途停留了0.5hC .甲大巴停留后用1.5h 追上乙大巴D .甲大巴停留前的平均速度是60km /h5.在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( )A .m <nB .m >nC .m ≥nD .m ≤n6.在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图象可能是( )A .B .C .D .7.甲乙两车分别从A 、B 两地同时出发,甲车从A 地匀速驶向B 地,乙车从B 地匀速驶向A 地.两车之间的距离(单位:km )与两车行驶的时间x (单位:h )之间的关系如图所示,已知甲车的速度比乙车快20km /h .下列说法错误的是( )A .甲乙两地相距360kmB .甲车的速度为100km /hC .点E 的横坐标为185D .当甲车到B 地时,甲乙两车相距280km8.如图,在平面直角坐标系xOy 中,直线y =﹣x +2与坐标轴交于A ,B 两点,OC ⊥AB 于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45°,得到线段AP ',连接CP ',则线段CP '的最小值为 .9.如图,一次函数y =kx +8与x 轴交于点A (8,0),点C 在直线AB 上且横坐标为6.点D 为x 轴上一点,BD =CD ,若点M 是x 轴上的动点,在直线AB 上找在一点N (点N 与点C 不重合),使△AMN 与△ACD 全等,点N 的坐标为 .10.已知一次函数y =ax +5和y =﹣x +b 的图象相交于点P (1,2),则方程{ax −y =−5y +x =b的解是 .11.直线l 1:y =x ﹣1与直线l 2:y =﹣2x +n 相交于点P (3,2),则关于x 的不等式x ﹣1≥﹣2x +n 的解集为 .12.在如图所示的平面直角坐标系中,点P 是直线y =x 上的动点,A (1,0),B (2,0)是x 轴上的两点,当P A +PB 取最小值时,S △ABP = .13.如图,一次函数y =x +6与坐标轴分别交于 A 、B 两点,点P 、C 分别是线段AB ,OB 上的点,且∠OPC =45°,PC =PO ,则点P 的坐标为 .14如图1,在平面直角坐标系中,直线l :y =x +6与x 轴、y 轴分别交于A 、B 两点,直线l 2与x 轴、y 轴分别交于点C 、D 两点,两直线交于点E ,且OA =OB =OC =2•OD .(1)求点E 的坐标;(2)如图2,在直线l 2上E 点的右侧有一点M ,过M 作y 轴的平行线交直线l 1于点N ,当△EMN 的面积为274时,求此时点M 的坐标.15.如图,在平面直角坐标系中,A ,B ,C 为坐标轴上的三个点,且OA =OB =OC =4,过点A 的直线AD 交直线BC 于点D ,交y 轴于点E ,△ABD 的面积为8.(1)求点D 的坐标;(2)求直线AD 的表达式;(3)过点C 作CF ⊥AD ,交直线AB 于点F ,求△EF A 的面积.➢冲击A+如图1,正方形ABCD的对角线AC,BD相交于点O,E是边BC上一点,连接DE交AC 于点F,连接BF.(1)求证:△CBF≌△CDF;(2)如图2,过点F作DE的垂线,交BC的延长线于点G,交OB于点N.①求证:FB=FG;②若tan∠BDE=12,ON=1,求CG的长.。
初三中考数学复习一次函数的图象和性质专项复习训练含答案
2019 初三中考数学复习 一次函数的图象和性质专项复习训练1.对于函数 y =2x -1,以下说法正确的选项是 ( D )A .它的图象过点 (1,0)B .y 值跟着 x 值增大而减小C .它的图象经过第二象限D .当 x >1 时, y >02.若 k ≠0,b <0,则 y =kx +b 的图象可能是 ( B ) 3.在同一平面直角坐标系中,直线 y =4x +1 与直线 y =- x +b 的交点不能够能在(D)A .第一象限B .第二象限C .第三象限D .第四象限4.若一个正比率函数的图象经过 A(3,-6),B(m ,-4)两点,则 m 的值为 ( A )A .2B .8C .-2D .-85.五一节时期,王老师一家自驾游去了离家170 km 的某地,如图是他们离家的距离 y(km)与汽车行驶时间 x(h)之间的函数图象.当他们离目的地还有 20 km 时,汽车一共行驶的时间是 ( C )A .2 hB .2.2 hC .2.25 hD .2.4 h6.已知抛物线 y =ax2+bx +c 与反比率函数 y =bx 的图象在第一象限有一个公共点,其横坐标为 1,则一次函数 y =bx +ac 的图象可能是 ( B )27.如图,直线 y =3x +4 与 x 轴,y 轴分别交于点 A 和点 B ,点 C ,D 分别为线段 AB ,OB 的中点,点 P 为 OA 上一动点, PC +PD 值最小时点 P 的坐标为 ( C )35A .(-3,0)B .(-6,0)C .(-2,0)D .(-2,0)8.将直线 y =x +b 沿 y 轴向下平移 3 个单位长度,点A( -1,2)对于 y 轴的对称点落在平移后的直上, b 的 __4__.9.在平面直角坐系xOy 中,点 A,B 的坐分 (3,m),(3,m+2),直y=2x+b 与段AB 有公共点, b 的取范 __m-6≤b≤m-4__(用含m 的代数式表示 ).10.正方形 A1B1C1O,A2B2C2C1,A 3B3C3C2,⋯按如所示搁置,点A1,A2,A 3和 C1,C2,C3,⋯分在直y=x+1 和 x 上,点B2 018的坐是__22_017__.11.若正比率函数y=kx(k 是常数, k≠0)的象第二、四象限,k 的能够是 __-2__(写出一个即可 ).12.在平面直角坐系中,已知一次函数 y=x-1 的象 P1(x 1,y1),P2(x2,y2)两点,若 x1<x2, y1__<__y2(填“>”“<”或“=”).13.把直 y=2x-1 向左平移 1 个位,平移后直的关系式 __y=2x+1__.14.如,将直 y=- x 沿 y 向下平移后的直恰巧点 A(2 ,- 4),且与 y 交于点 B,在 x 上存在一点 P 使得 PA+PB 的最小,点 P 的坐2__(3,0)__.415.如所示,已知直 y=-3x+4 与 x ,y 分交于 A ,B 两点,把△AOB点 A 按方向旋90°后获得△AO 1B1,点 B1的坐是 __(7,3)__.4416.一次函数 y=3x-b 与 y=3x-1 的象之的距离等于 3. b 的__-2 或 4__.17.小慧依据学函数的,函数y=|x-1|的象与性行了研究,下面是小慧的研究程,充圆满:(1)函数 y=|x-1|的自量 x 的取范是 __随意数 __;(2)列表,找出 y 与 x 的几.x ⋯-10 1 2 3y ⋯b 1 0 1 2⋯此中, b=__2__;(3)在平面直角坐系xOy 中,描出以上表中以各坐的点,并画出函数的象;(4)写出函数的一条性.解:由函数象可知,函数的最小0.18.如,直 l1:y=2x+1,l2:y=mx+4 订交于 P(1,b).(1)求 b,m 的;(2)垂直于 x 的直 x=a 与直 l 1,l2分交于点 C,D,若段 CD2,求 a 的.解: (1)∵点 P(1,b)在直 l1:y=2x+1 上,∴ b=2×1+1=3.∵点 P(1,3)在直l2:y=mx+4 上,∴ 3=m+4,∴ m=- 1.(2)当 x=a ,y C=2a+1;当 x=a ,y D=4-a.∵ CD=2,∴ |2a+1-(4-a)|1515=2,解得 a=3或 a=3,∴ a 的3或3 .第3页/共3页。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中最基本的函数之一,它的图像呈现出直线的特点。
通过学习一次函数的图像和性质,我们可以更好地理解和应用数学知识。
下面是一些关于一次函数图像和性质的练习题,帮助我们巩固所学的知识。
练习题一:给定一次函数y = 2x + 3,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = 2(0) + 3 = 3,所以当x为0时,y的值为3。
2. 当y为0时,代入函数表达式得到0 = 2x + 3,解方程得到x = -1.5,所以当y为0时,x的值为-1.5。
3. 函数的斜率即为函数中x的系数,所以斜率为2。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为3。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,3)和(1,5)。
连接这两个点,得到一条斜率为2,截距为3的直线。
练习题二:给定一次函数y = -0.5x + 2,求解以下问题。
1. 当x为0时,y的值是多少?2. 当y为0时,x的值是多少?3. 求函数的斜率和截距是多少?4. 画出函数的图像,并标注斜率和截距。
解答:1. 当x为0时,代入函数表达式得到y = -0.5(0) + 2 = 2,所以当x为0时,y的值为2。
2. 当y为0时,代入函数表达式得到0 = -0.5x + 2,解方程得到x = 4,所以当y为0时,x的值为4。
3. 函数的斜率即为函数中x的系数,所以斜率为-0.5。
截距即为函数在y轴上的截距,即当x为0时的函数值,所以截距为2。
4. 画出坐标系,选择几个合适的点,连接它们得到一条直线。
根据斜率和截距,我们可以选择点(0,2)和(4,0)。
连接这两个点,得到一条斜率为-0.5,截距为2的直线。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
第2讲一次函数的图像及性质(练习)原卷版
第2讲 一次函数的图像及性质(练习)夯实基础一、单选题1.直线y =2x ﹣1在y 轴上的截距是( )A .1B .﹣1C .2D .﹣22.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <3.一次函数51y x =-的图像经过的象限是( )A .一、二、三B .一、三、四C .二、三、四D .一、二、四 4.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤5.在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .6.点A (﹣1,y 1)、点B (1,y 2)在直线y =﹣3x 上,则( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法比较y 1、y 2大小7.已知点A (﹣1,y 1),点B (2,y 2)在函数y =﹣3x +2的图象上,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 8.一次函数y=kx=k(k=0)的图象大致是( )A .B .C .D .二、填空题9.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.10.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______. 11.一次函数4y x =--的截距是_________.12.如果一次函数()21y k x =+-中,y 随x 的增大而减小,那么k 的取值范围是___________.13.一次函数5y x b =-+的图象不经过第一象限,则b 的取值范围是_________. 14.一次函数y kx b =+的图像经过点(3,0)与(0,3),那么关于x 的不等式0kx b +>的解集是________.三、解答题15.已知:一次函数y kx b =+的图像经过点(1,3)A 且与直线32y x =-+平行. (1)求这个一次函数的解析式;(2)求在这个一次函数的图像上且位于x 轴上方的所有点的横坐标的取值范围.能力提升一、单选题1.如果点()11,P x y 和点()22,Q x y 是直线()0y kx k =≠上两点,当12x x <时,12y y <,那么直线()0y kx k =≠和函数()0k y k x=≠在同一直角坐标系内的大致图像可能是( ) A . B .C .D .2.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 3.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n <C .0k >D .k 0< 4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .5.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a <7.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)二、填空题8.若直线y =kx+b 平行直线y =5x+3,且过点(2,﹣1),则b =_____.9.如图,一次函数y =f (x )的图象经过点(2,0),如果y >0,那么对应的x 的取值范围是_____.10.如果在一次函数y =(k +y 随自变量x 的增大而增大,那么k 的范围为_____.11.如图,已知一次函数y kx b =+的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式+kx b ﹤0的解集是_______.12.将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是_______ 13.如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.14.直线123y x =-与两根坐标轴围成的三角形的面积是_______________________. 15.在平面直角坐标系中,已知点(52,4)A m m --在第二象限,且m 为整数,则过点A 的正比例函数的解析式为___________.三、解答题16.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.17.小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y (米)与时间x (分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?18.在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt ABC,如图所示.(1)若ABC S 的值为5平方单位,求m 的值;(2)记BC 交y 轴于点D ,CE ⊥y 轴于点E ,当y 轴平分∠BAC 时,求AD CE 的值 (3)连接OC ,当OC +AC 最小时,求点C 的坐标.19.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且=POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.20.如图,已知直线:l y x =x 轴于点A ,y 轴于点B ,将AOB ∆沿直线l 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=>上.(1)求k 的值;(2)将ABC ∆绕AC 的中点旋转180︒得到PCA ∆,请判断点P 是否在双曲线k y x=上,并说明理由.。
中考数学总复习《一次函数图像、性质与系数的关系》练习题及答案
中考数学总复习《一次函数图像、性质与系数的关系》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.在同一平面直角坐标中,直线y=ax+b与抛物线y=ax2+b的图象可能是()A.B.C.D.2.如图,直线l是一次函数y=kx+b的图象,下列说法中,错误的是()A.k<0B.若点(-1,y1)和点(2,y2)是直线l上的点,则y1<y2C.若点(2,0)在直线l上,则关于x的方程kx+b=0的解为x=2D.将直线l向下平移b个单位长度后,所得直线的解析式为y=kx3.函数y=kx+k与y=k x(k≠0)在同一坐标系内的图象可能是()A.B.C.D.4.如图,平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线y=kx交于M,N两点,则二次函数y=ax2+(b-k)x+c的图象可能是()A.B.C.D.5.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A.B.C.D.6.已知直线y=a x+b经过一、二、三象限,则抛物线y=a x2+b x大致是()A.B.C.D.7.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限8.如图,函数y=ax+a和y=ax2﹣2x+1(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.9.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是A.B.C.D.10.一次函数y=−3x+2的图像经过()A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限11.函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=−kx+b的大致图象为()A.B.C.D.12.二次函数y=a(x−2)2+c与一次函数y=cx+a在同一坐标系中的大致图象是()A.B.C.D.二、填空题13.已知正比例函数y=kx(k≠0)的函数值y随x值的增大而增大,则一次函数y=−2kx+k 在平面直角坐标系内的图象经过第象限.14.一次函数y=kx+2(k为常数,且k≠0)的图象如图所示,则k的可能值为(写一个即可)15.若一次函数y=(a+3)x+a﹣3不经过第二象限,则a的取值范围是.16.已知一次函数y=mx+1(m≠0),若y的值随x的增大而增大,则m的取值范围是.17.如图所示,直角坐标系中点A、B都在某一次函数的图象上,则该一次函数的表达式为,y随x的减小而18.从-1,1,2中任取一个数作为k,从-1,0,1,2中任取一个数作为b,则一次函数y=kx+b的图象不经过第三象限的概率是.三、综合题19.已知y是关于x的一次函数,且点(0,4),(1,2)在此函数图象上.(1)求这个一次函数表达式;(2)求当-2≤y<4时x的取值范围;(3)在函数图象上有点P,点P到y轴的距离为2,直接写出P点的坐标.20.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y(cm)与所挂物体的质量x (kg)之间的关系如下表:所挂物体的质量x(kg)0123456弹簧的长度y(cm)1515.616.216.817.41818.6(2)写出x与y之间的关系式;(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5kg时,求弹簧的长度。
中考总复习专题3 一次函数、反比例函数的图像、性质与应用(师用)
中考专题总复习3---一次函数、反比例函数的图像、性质与应用★重点★正、反比例函数,一次函数的图象和性质。
一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1 函数中的三个概念:常量,自变量,因变量。
2.表示方法:⑴解析法;⑵列表法;⑶图象法。
3.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。
4.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数 (定义→图象→性质) 1. 正比例函数⑴定义:y=kx(k ≠0) 或y/x=k 。
⑵图象:直线(过原点) ⑶性质:①k>0,…②k<0,… 2. 一次函数⑴定义:y=kx+b(k ≠0)⑵图象:直线过点(0,b )—与y 轴的交点和(-b/k,0)—与x 轴的交点。
⑶性质:①k>0,…②k<0,… ⑷图象的四种情况: 4.反比例函数⑴定义:三种形式:1-==kx xky 或xy=k(k ≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于…,y 随x …;②k<0时,图象位于…,y 随x …;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法1. 用待定系数法求解析式(列方程[组]求解)2.利用图象一次(正比例)函数、反比例函数、 一.填空题 1.(2010年上海)一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图3所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时,y 关于x 的函数解析式为_____________.【答案】y=100x -40图32.(2010安徽蚌埠二中)已知点(1,3)在函数)0(>=x xky 的图像上。
正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数)0(>=x xky 的图像又经过A 、E 两点,则点E 的横坐标为__________。
2019年中考数学总复习第三单元函数及其图像课时训练11一次函数的图像与性质练习
课时训练(十一)一次函数的图像与性质(限时:30分钟)|夯实基础|1.一次函数y=-2x+1的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·深圳]把函数y=x的图像向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)3.[2018·遵义]如图K11-1,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()图K11-1A.x>2B.x<2C.x≥2D.x≤24.[2018·陕西]如图K11-2,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的值为()图K11-2A.-B.C.-2D.25.[2018·宜宾]已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y轴对称,则点B的坐标为.6.[2018·连云港]如图K11-3,一次函数y=kx+b的图像与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则的值为.图K11-37.[2017·十堰]如图K11-4,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为.图K11-48.[2018·扬州]如图K11-5,在等腰直角三角形ABO中,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.9.如图K11-6,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.图K11-610.如图K11-7,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.11.[2017·泰州]平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图像上,并说明理由;(2)如图K11-8,一次函数y=-x+3的图像与x轴、y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.图K11-8|拓展提升|12.[2018·陕西]若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)13.[2018·滨州]如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图像为()图K11-914.[2018·河北]如图K11-10,直角坐标系xOy中,一次函数y=-x+5的图像l1分别与x,y轴交于A,B两点,正比例函数的图像l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,直接写出k的值.图K11-1015.[2018·张家界]阅读理解题.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=.例如,求点P (1,3)到直线4x+3y-3=0的距离. 解:由直线4x+3y-3=0知:A=4,B=3,C=-3.所以P (1,3)到直线4x+3y-3=0的距离为:d==2.根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x-4y-5=0的距离; (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.参考答案1.C2.D3.B4.A5.,[解析]把x=-代入y=x+1得:y=,∴点A 的坐标为-,,∵点B 和点A 关于y 轴对称,∴B ,,故答案为,.6.-[解析] ∵OA=OB ,∴∠OBA=45°,在Rt △OAB 中,OA=AB ·sin45°=2×=,即点A (,0),同理可得点B(0,),∵一次函数y=kx+b的图像经过点A,B,∴解得:=-.7.1<x<[解析]将A(1,k)代入y=ax+4得a+4=k,将a+4=k代入不等式组kx-6<ax+4<kx中得(a+4)x-6<ax+4<(a+4)x,解不等式(a+4)x-6<ax+4,得x<,解不等式ax+4<(a+4)x,得x>1,所以不等式组的解集是1<x<.8.[解析]如图:∵y=mx+m=m(x+1),∴函数y=mx+m的图像一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,解得∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴=×,解得:m=或m=(舍去),故答案为.9.解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴解得∴直线l所表示的一次函数的表达式为y=2x-3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵当x=6时,y=2×6-3=9,∴点P3在直线l上.10.解:(1)∵点B在直线l2上,∴4=2m,∴m=2.设l1的表达式为y=kx+b,由A,B两点均在直线l1上得到解得∴直线l1的表达式为y=x+3.(2)由图可知,C,D(n,2n),因为点C在点D的上方,所以+3>2n,解得n<2.11.解:(1)把x=m+1代入y=x-2,得y=m-1,故点P在一次函数y=x-2的图像上.(2)解方程组得易知直线y=x-2与x轴的交点为(2,0),因为点P在△AOB的内部,所以2<m+1<,解得1<m<.12.B[解析]设直线l1的解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4,联立可解得:∴交点坐标为(2,0),故选择B.13.A14.解:(1)将点C的坐标代入l1的解析式,得-m+5=4,解得m=2.∴C的坐标为(2,4).设l2的解析式为y=ax.将点C的坐标代入得4=2a,解得a=2, ∴l2的解析式为y=2x.(2)对于y=-x+5,当x=0时,y=5,∴B(0,5).当y=0时,x=10,∴A(10,0).∴S△AOC=×10×4=20,S△BOC=×5×2=5,∴S△AOC-S△BOC=20-5=15.(3)∵l1,l2,l3不能围成三角形,∴l1∥l3或l2∥l3或l3过点C.当l3过点C时,4=2k+1,∴k=,∴k的值为-或2或.15.解:(1)根据题意,得d==1.(2)根据题意,得=,即|C+1|=2.∴C+1=±2.解得C1=1,C2=-3.。
中考数学总复习《一次函数图像、性质与系数的关系》练习题附带答案
中考数学总复习《一次函数图像、性质与系数的关系》练习题附带答案一、单选题(共12题;共24分)1.在同一平面直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为()A.B.C.D.2.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象大致是()A.B.C.D.3.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2B.k=3C.b=2D.b=35.若一次函数y=kx+b的图象经过第一,二,四象限,则反比例函数y=kb x的图象在() A.二、四象限B.一、二象限C.三、四象限D.一、三象限6.一次函数y=kx+k2(k<0)的图象大致是()A.B.C.D.7.下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小8.已知正比例函数y=kx的图象如图所示,则一次函数y=kx﹣k的图象是()A.B.C.D.9.下列一次函数中,y随x值的增大而减小的是()A.y=2x+1B.y=3-4x C.y= √2x+2D.y=( √5-2)x10.若实数k、b是一元二次方程(x+3)(x−1)=0的两个根,且k<b,则一次函数y=kx+b 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k的大致图象是()A.B.C.D.12.已知k>0,b<0,则一次函数y=-kx-b的大致图象为()A.B.C.D.二、填空题(共6题;共6分)13.已知直线y=kx+b经过第一,二,四象限,那么直线y=bx+1−k不经过第象限.14.若在一次函数y=(a-1)x-a中,y随x的增大而减小,且它的图象不经过第三象限,则√a2-|a-1|= 15.一次函数y =kx+2+k与y轴的交点在原点上方(不与原点重合),则k的取值范围是.16.一次函数y=(k﹣1)x+1中,y随x增大而减小,则k的取值范围是.17.写一个经过点(-1,0),且y随x增大而增大的一次函数.18.若一次函数y =−x+b−32的图象经过原点,则b的值为.三、综合题(共6题;共75分)19.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.20.已知y是关于x的一次函数,且点(0,4),(1,2)在此函数图象上.(1)求这个一次函数表达式;(2)求当-2≤y<4时x的取值范围;(3)在函数图象上有点P,点P到y轴的距离为2,直接写出P点的坐标.21.已知y关于x的正比例函数y=(k−1)x.(1)若函数图象经过一、三象限,求k的取值范围;(2)若点(−2,−4)在函数图象上,求该函数的解析式.22.已知y-4与x成正比,当x=1时,y=2(1)求y与x之间的函数关系式,在下列坐标系中画出函数图象;(2)当x= −12时,求函数y的值;(3)结合图象和函数的增减性,求当y<-2时自变量x的取值范围.23.已知一次函数y=(4+2m)x+m−4,求:(1)m为何值时,函数图象与y轴的交点在x轴下方?(2)m为何值时,图象经过第一、三、四象限?24.某电信公司开设了甲、乙两种市内移动通信业务。
一次函数图像与性质习题全文
解析式. 解:直线y=kx+b与y轴交于点(0,b)
y
B (0,4)
∵直线y=kx+b与x轴交于点(4,0) ∴OA=|4|=4, OB=|b|
A
∵S△AOB=1/2×OA×OB=
0 4 x 1/2×4×|b|=8
∴|b|=4
∴b=±4
C
∴直线为:y=kx+4,y=kx-4;
∵直线y=kx+b过点(4,0)
.1、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时) 成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后, 油箱中余油22.5千克 (1)写出余油量Q与时间t的函数关系式;(2)画出这个函数的图象。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
(D)
不平行
6.下列图形中,表示一次函数y=mx+n与正比例函数 y=mnx (m,n为常数,且mn≠0)在同一坐标系内的图 象可能是( A)
(A)
(B)
(C)
(D)
m<0,n>0 m<0,n>0 m>0,n>0 m>0,n<0
mn<0 mn<0 mn>0 mn<0
7.一次函数y=(4m+1)x-(m+1)
练一练:1 根据图象,求出相应的函数解析式:
y
4
x
02
2 小明根据某个一次函数关系式填写了下表:
x
-2 -1 0
1
y
3
1
0
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是 多少?解释你的理由。
河北省近年中考数学复习第三单元函数第10讲一次函数的图像与性质试题
第10讲一次函数的图像与性质1.(2015·上海)下列y关于x的函数中,是正比例函数的为( C )A.y=x2 B.y=错误! C.y=错误! D.y=错误!2。
(2015·长沙模拟)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得,关于x,y的二元一次方程组错误!的解是( C )A。
错误! B.错误! C。
错误! D。
错误!3.(2016·广州)若一次函数y=ax+b的图像经过第一、二、四象限,则下列不等式总是成立的是( C )A.b<0 B.a-b>0 C.a2+b>0 D.a+b>0 4.(2015·西宁)同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图像如图所示,则满足y1≥y2的x的取值范围是( A )A.x≤-2 B.x≥-2 C.x<-2 D.x>-25.(2016·陕西)已知一次函数y=kx+5和y=k′x+7,假设k〉0且k′〈0,则这两个一次函数的交点在( A )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(2016·益阳)将正比例函数y=2x的图像向上平移3个单位,所得的直线不经过第四象限.7.(2016·怀化)已知一次函数y=2x+4。
(1)在如图所示的平面直角坐标系中,画出函数的图像;(2)求图像与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图像直接写出当y<0时,x的取值范围.解:(1)当x=0时,y=4;当y=0时,x=-2,则图像如图所示.(2)由(1)可知A(-2,0),B(0,4).(3)S△AOB=错误!×2×4=4.(4)x<-2.8.(2016·北京)如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y =2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.解:(1)∵点B在直线l2上,∴4=2m.∴m=2。
中考数学复习 第三章 函数 第二节 一次函数的图象与性质练习
第二节一次函数的图象与性质姓名:________ 班级:________ 用时:______分钟1.(2017·垦利模拟)一次函数y=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是( )A.k>0,b>0 B.k<0,b<0C.k<0,b>0 D.k>0,b<02.(2019·易错题)直线y=3x向下平移1个单位长度再向左平移2个单位长度,得到的直线是( ) A.y=3(x+2)+1 B.y=3(x-2)+1C.y=3(x+2)-1 D.y=3(x-2)-13.(2017·泰安中考)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )A.k<2,m>0 B.k<2,m<0C.k>2,m>0 D.k<0,m<04.(2018·南通中考)函数y=-x的图象与函数y=x+1的图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(2018·陕西中考)如图,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )A .-12B.12C .-2D .26.(2019·原创题)一次函数y =x +6的图象与坐标轴的交点坐标为____________________________. 7.(2018·眉山中考)已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.8.(2018·邵阳中考)如图所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是__________.9.(2019·改编题)一次函数y =kx +b 的图象与两坐标轴围成的三角形的面积是16,且过点(0,4),求此一次函数的解析式.10.(2018·娄底中考)将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -211.(2019·创新题)已知一系列直线y =a k x +b(a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子a i -a jx i -x j(1≤i≤k,1≤j ≤k,i≠j),下列一定正确的是( ) A .大于1 B .大于0 C .小于-1D .小于012.(2018·连云港中考)如图,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A ,B 两点,⊙O 经过A ,B 两点,已知AB =2,则kb的值为________.13.(2018·长春中考)如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,3),(n ,3),若直线y =2x 与线段AB 有公共点,则n 的值可以为____________________.(写出一个即可)14.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的解析式; (2)求△BDC 的面积.15.(2018·河北中考)如图,直角坐标系xOy 中,一次函数y =-12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.16.(2019·改编题)一次函数y =kx +b 的图象是一条直线,而y =kx +b 经过恒等变形可化为直线的另一种表达形式:Ax +By +C =0(A ,B ,C 是常数,且A ,B 不同时为0).如图1,点P(m ,n)到直线l :Ax +By +C =0的距离(d)计算公式是:d =|A·m+B·n+C|A 2+B 2.如图2,已知直线y =-43x -4与x 轴交于点A ,与y 轴交于点B ,点M(3,2),连接MA ,MB ,求△MAB 的面积.参考答案【基础训练】1.C 2.C 3.A 4.B 5.A6.(0,6)和(-6,0) 7.y 1>y 2 8.x =29.解:设坐标原点为O ,一次函数图象与x 轴交于点B.∵一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是16, ∴12OB×4=16,解得OB =8, ∴B(8,0)或B(-8,0).①当y =kx +b 的图象过点(0,4),(8,0)时,则⎩⎪⎨⎪⎧8k +b =0,b =4,解得⎩⎪⎨⎪⎧k =-12,b =4,∴一次函数的解析式为y =-12x +4.②当y =kx +b 的图象过点(0,4),(-8,0)时,则⎩⎪⎨⎪⎧-8k +b =0,b =4,解得⎩⎪⎨⎪⎧k =12,b =4,∴一次函数的解析式为y =12x +4.综上所述,一次函数的解析式为y =12x +4或y =-12x +4.【拔高训练】 10.A 11.B 12.-2213.2(答案不唯一) 14.解:(1)把x =2代入y =12x ,得y =1,∴点A 的坐标为(2,1).∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的解析式为y =12x -4.将y =-2代入y =12x -4得x =4,∴点C 的坐标为(4,-2). 设直线l 2的解析式为y =kx +b. ∵直线l 2过A(2,1),C(4,-2),∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪⎨⎪⎧k =-32,b =4,∴直线l 2的解析式为y =-32x +4.(2)∵直线l 2的解析式为y =-32x +4,∴x=0时,y =4, ∴D(0,4).∵l 3的解析式为y =12x -4,∴x=0时,y =-4,∴B(0,-4), ∴BD=8,∴S △BDC =12×8×4=16.15.解:(1)把C(m ,4)代入一次函数y =-12x +5可得4=-12m +5,解得m =2, ∴C(2,4).设l 2的解析式为y =ax ,则4=2a , 解得a =2,∴l 2的解析式为y =2x.(2)如图,过C 作CD⊥AO 于点D ,CE⊥BO 于点E ,则CD =4,CE =2. ∵y=-12x +5,令x =0,则y =5;令y =0,则x =10, ∴A(10,0),B(0,5), ∴AO=10,BO =5,∴S △AOC -S △BOC =12×10×4-12×5×2=20-5=15.(3)k 的值为32或2或-12.【培优训练】16.解:由题意得A(-3,0),B(0,-4),则OA =3,OB =4, 由勾股定理得AB =5.如图,过点M 作ME⊥AB 于点E ,则ME =d.y =-43x -4可化为4x +3y +12=0,由上述距离公式得d =|4×3+3×2+12|32+42=305=6,即ME =6, ∴S △MAB =12×5×6=15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练(十一)一次函数的图像与性质
(限时:30分钟)
|夯实基础|
1.一次函数y=-2x+1的图像不经过()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.[2020·深圳]把函数y=x的图像向上平移3个单位,下列在该平移后的直线上的点是()
A.(2,2)
B.(2,3)
C.(2,4)
D.(2,5)
3.[2020·遵义]如图K11-1,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()
图K11-1
A.x>2
B.x<2
C.x≥2
D.x≤2
4.[2020·陕西]如图K11-2,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的值为
()
图K11-2
A.-
B.
C.-2
D.2
5.[2020·宜宾]已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y轴对称,则点B的坐标为.
6.[2020·连云港]如图K11-3,一次函数y=kx+b的图像与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则的
值为.
图K11-3
7.[2020·十堰]如图K11-4,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为.
图K11-4
8.[2020·扬州]如图K11-5,在等腰直角三角形ABO中,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO 分成
面积相等的两部分,则m的值为.
图K11-5
9.如图K11-6,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l 上.
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
图K11-6
10.如图K11-7,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).
(1)求直线l1的表达式;
(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.
图K11-7
11.[2020·泰州]平面直角坐标系xOy中,点P的坐标为(m+1,m-1).
(1)试判断点P是否在一次函数y=x-2的图像上,并说明理由;
(2)如图K11-8,一次函数y=-x+3的图像与x轴、y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.
图K11-8
|拓展提升|
12.[2020·陕西]若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()
A.(-2,0)
B.(2,0)
C.(-6,0)
D.(6,0)
13.[2020·滨州]如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图像为()
图K11-9
14.[2020·河北]如图K11-10,直角坐标系xOy中,一次函数y=-x+5的图像l1分别与x,y轴交于A,B两点,正比例函数的图
像l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC-S△BOC的值;
(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,直接写出k的值.
图K11-10
15.[2020·张家界]阅读理解题.
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=.例如,求点P(1,3)到直线4x+3y-3=0的距离.
解:由直线4x+3y-3=0知:A=4,B=3,C=-3.
所以P(1,3)到直线4x+3y-3=0的距离为:d==2.
根据以上材料,解决下列问题:
(1)求点P1(0,0)到直线3x-4y-5=0的距离;
(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.
参考答案
1.C
2.D
3.B
4.A
5.,[解析] 把x=-代入y=x+1得:y=,∴点A的坐标为-,,∵点B和点A关于y轴对称,∴B,,故答案为
,.
6.-[解析] ∵OA=OB,∴∠OBA=45°,在Rt△OAB中,OA=AB·sin45°=2×=,即点A(,0),同理可得点B(0,),∵一次函数y=kx+b的图像经过点A,B,∴解得:=-.
7.1<x<[解析] 将A(1,k)代入y=ax+4得a+4=k,将a+4=k代入不等式组kx-6<ax+4<kx中得(a+4)x-6<ax+4<(a+4)x,解不等式(a+4)x-6<ax+4,得x<,解不等式ax+4<(a+4)x,得x>1,所以不等式组的解集是1<x<.
8.[解析] 如图:
∵y=mx+m=m(x+1),∴函数y=mx+m的图像一定过点(-1,0),当x=0时,y=m,
∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,
解得
∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴=×,
解得:m=或m=(舍去),故答案为.
9.解:(1)P2(3,3).
(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),
∵点P1(2,1),P2(3,3)在直线l上,
∴解得
∴直线l所表示的一次函数的表达式为y=2x-3.
(3)点P3在直线l上.
由题意知点P3的坐标为(6,9),
∵当x=6时,y=2×6-3=9,
∴点P3在直线l上.
10.解:(1)∵点B在直线l2上,
∴4=2m,
∴m=2.
设l1的表达式为y=kx+b,由A,B两点均在直线l1上得到解得
∴直线l1的表达式为y=x+3.
(2)由图可知,C,D(n,2n),
因为点C在点D的上方,所以+3>2n,解得n<2.
11.解:(1)把x=m+1代入y=x-2,得y=m-1,
故点P在一次函数y=x-2的图像上.
(2)解方程组
得
易知直线y=x-2与x轴的交点为(2,0),
因为点P在△AOB的内部,所以2<m+1<,
解得1<m<.
12.B[解析] 设直线l1的解析式为y1=kx+4,
∵l1与l2关于x轴对称,
∴直线l2的解析式为y2=-kx-4,
∵l2经过点(3,2),
∴-3k-4=2.
∴k=-2.
∴两条直线的解析式分别为y1=-2x+4,y2=2x-4,
联立可解得:
∴交点坐标为(2,0),故选择B.
13.A
14.解:(1)将点C的坐标代入l1的解析式,得-m+5=4,解得m=2.
∴C的坐标为(2,4).设l2的解析式为y=ax.将点C的坐标代入得4=2a,解得a=2, ∴l2的解析式为y=2x.
(2)对于y=-x+5,当x=0时,y=5,
∴B(0,5).
当y=0时,x=10,∴A(10,0).
∴S△AOC=×10×4=20,S△BOC=×5×2=5, ∴S△AOC-S△BOC=20-5=15.
(3)∵l1,l2,l3不能围成三角形,
∴l1∥l3或l2∥l3或l3过点C.
当l3过点C时,4=2k+1,
∴k=,
∴k的值为-或2或.
15.解:(1)根据题意,得d==1.
(2)根据题意,得=,
即|C+1|=2.
∴C+1=±2.解得C1=1,C2=-3.。