活性可控自由基聚合反应
可逆加成断裂链转移可控活性自由基聚合
洪春雁等用于苯乙烯的RAFT聚合制得了以树星型聚合物的形 成机理示意图
可逆加成-断裂链转 移试剂的选择
可逆加成-断裂链转 移试剂(RAFT试剂) 主要有:二硫代酯 、三硫代碳酸酯、 芳基二硫代氨基甲 酸酯、黄原酸酯和 ω-全氟二硫代酯。
RAFT聚 合的应用
目前,利用 RAFT 聚合可实现对聚合物分子 量大小和分布的控制,并实现聚合物的分子设 计,合成具有特定结构和性能的聚合物,已成 为高分子合成研究最活跃的领域之一。 RAFT技术可以在温和的条件下方便地合成 结构可控的聚合物,如嵌段、接枝、星形、 树枝状、支化及超支化聚合物等。
对上面的4种RAFT试剂,可以将左 边与碳原子相连的基团都看成Z基 团,右边的与硫原子相连的基团看 成是R基团。RAFT试剂的性质主要 决定于Z基团、R基团以及所形成的 自由基(R)的性质。根据不同的单体 ,选择RAFT试剂时,要充分了解R 基团、Z基团的性质以及单体自由 基的活性等。其活性可以用自由基 对它的链转移常数Ctr表示。
硫酯化合物链转移常数很大,若试剂选择合适且 反应条件得当,则可以得到分子量分散系数很小 (<1.2)的产物;
由于RAFT试剂存在于聚合物链的末端,从而保持 02 了聚合物的活性,即若再加入单体,可生成嵌段、
星型和其他具有特殊结构的聚合物,还可以很好 地控制聚合物链端结构,制备带有端基官能团的 遥爪聚合物,该特性可以用于进行分子设计。
可以在温和的条件下方便地合成结构可控的聚合物,如 嵌段、接枝、星形、树枝状、支化及超支化聚合物等
与NMP、Ini erter 和ATRP 等方法相 比, RA FT 聚合适用的单体范围更广, 几 乎所有能进行自由基聚合的烯类单体都 能进行RAFT 聚合, 且反应条件比较 温和,没有聚合实施方法的限制, 适宜于 本体、溶液、乳液、悬浮等聚合方法。
聚丙烯腈材料
Mn
PDI
kpapp×106 (s-1) 3.22 7.14
最佳值: [CuBr2]:[IDA]=1:2
33950 45940
1.29 1.25
3
4
1:3
1:4
27.41
22.6
37440
34840
1.30
1.36
6.36
5.08
[AN]:[CCl4]:[CuBr2]:[VC]=200:1:1:0.75, [AN]=6.0 mol/L, T=65º t=14 h, in DMF C,
活性可控自由基聚合制备聚丙 烯腈
1. 研究背景 2. 研究内容 3. 结论 4. 科研成果 5. 致谢
1 研究背景
聚丙烯腈(PAN)是一种重要的高分子材料前驱 体,化学稳定性好,不易水解,抗氧化,耐溶剂,能 有效阻止气体的渗透,可用来制备碳纤维,合成纤维 和膜材料等。
窄分子量分布是合成高性能聚丙烯腈的必然要求。
平衡态的活化能为 △H0eq= 13.6 kJ/mol
2.1.8 核磁谱图分析
1H-NMR谱图进一
步证实了
CCl4/CuBr2/IDA引
发的AGET ATRP具 备活性/可控特征。
Fig. 2-4. 1H-NMR spectrum of PAN with CCl4 as initiator and [AN]:[CCl4]:[CuBr2]:[IDA]:[VC] = 200:1:1:2:0.75 at 65º in DMF for C 14 h.
聚丙烯腈通常由传统自由基聚合制备。
聚合缺点:双基终止和链转移等副反应,聚合反 应不可控,聚丙烯腈的分子量分布较宽,严重影响其 加工和使用性能。
1 研究背景
可控活性自由基聚合
Iniferter研究进展
一、光Iniferter与热Iniferter结合 光Iniferter和热Iniferter能分别引发不同的单体进行活性自由基聚合, 并且具有各自的优点。钦曙辉等人将六取代乙烷型C—C 键和DC 基团 设计到一个分子中,合成出一种新的化合物DDDCS。
可以选择先光分解后热分解(或倒过来)的顺序进行MMA,St,异戊二 烯和乙酸乙烯酯(VAc)的聚合,制备一系列组分和链长度可控的ABA 型的三嵌段共聚物,尤其是制备PVAc-b-PSt-b-PVAc 三嵌段共聚物。
2)适用丙烯酸甲酯(MA)、乙酸乙烯酯(VAc)、丙烯腈(MAN)、甲基丙烯腈 (MAN)等单体的聚合;
3)用于聚合物的分子设计,如用单官能团、双官能团、多官能团Iniferter可 用于合成AB型、ABA型嵌段共聚物及星状聚合物
Iniferter法的优缺点
• 引发转移终止剂法对聚合过程控制的不是很好,所得聚合物的分子量与理论值 偏差较大,分子量分布较宽。 与RAFT、反向ATRP、SFRP法相比,Iniferter显著的优点是可聚合单体比较多, 能方便地制备接枝和嵌段共聚物。 对于反向ATRP,体系需要催化剂,使用传统引发剂(AIBN或BPO)会导致双 基终止严重。 RAFT法聚合产物的链端为活性基团、在反应最后阶段需进行基团转化。 SFRP法反应温度高时间长,需要加入加速剂。 Iniferter体系比较简单,实验条件温和。
引发转移终止剂
• 引发转移终止剂是指在自由基聚合过程中同时起到引发、转移和终止作用的 合物.
•
一般可分为热分解和光分解两种类型.
Iniferter的分类
一、热分解型(Thermoiniferter ) 热分解型Iniferter通常是对称的六取代乙烷类化合物,其中又以1, 2-二取代的四苯基乙烷衍生物居多。另外还有偶氮键的三苯甲基偶氮 苯(PAT)和S—S键的四乙基秋兰姆(TD)。
活性自由基聚合讲解
目前已发现很多可作为引发转移终止剂的化合物, 可分为热分解和光分解两种。
热引发转移终止剂:主要为是C-C键的对称六取 代乙烷类化合物。其中,又以1, 2-二取代的四苯基乙 烷衍生物居多,其通式如下图所示。主要品种包括四 苯基丁二腈TPSTN,五苯基乙烷PPE,四(对-甲氧 基)苯基丁二腈TMPSTN,l,1,2,2-四苯基-1,2-二苯氧 基乙烷TPPE和1,1,2,2-四苯基-l,2-二(三甲基硅氧基) 乙烷(TPSTE)等。
R R' + n M
R [ M ]n R'
16
根据以上反应机理,可将自由基聚合简单地视 为单体分子向引发剂分子中R-R’键的连续插入反 应,得到聚合产物的结构特征是两端带有引发剂碎 片。Otsu等由此得到启示,若能找到满足上述条件 的合适引发剂,则可通过自由基聚合很容易地合成 单官能或双官能聚合物,进而达到聚合物结构设计 之目的。由于该引发剂集引发、转移和终止等功能 于一体,故称之为引发转移终止剂(iniferter)。
C2H5 S
CH2 SCN C2H5 S C2H5
多官能度
C2H5
常用光引发转移终止剂结构式
NCS CH2
CH2 SCN C2H5
C2H5
H2
NCS
C
C2H5 S
C2H5
NCS
C
H2
C2H5
S
易断链
C2H5
H2
C
SCN
S
C2H5
C2H5
C
SCN
H2
S
C2H5
22
适用的单体
Iniferter技术不仅可以用于苯乙烯St和甲基丙烯酸
20
单官能度
活性自由基聚合
分子材料的性能和功能。
功能性化
通过活性自由基聚合,可以将功 能性单体引入高分子链中,制备 功能性高分子材料,如具有光敏、 热敏、导电、磁性等功能的高分
子材料。
高分子链结构调控
通过活性自由基聚合,可以精确 调控高分子链的微观结构和聚集 态结构,从而改善高分子材料的 力学性能、流变性能和加工性能
THANKS FOR WATCHING
感谢您的观看
特性
活性自由基聚合具有高分子量、窄分 子量分布、低副反应和易控制等特点 ,能够合成结构规整、性能优异的聚 合物材料。
历史与发展
历史
活性自由基聚合的概念最早由美 国科学家于20世纪50年代提出, 但直到20世纪80年代才得到实际 应用。
发展
随着对活性自由基聚合机理的深 入研究和新型聚合技术的开发, 活性自由基聚合已成为高分子合 成领域的重要研究方向之一。
压力
聚合过程中通常需要加压,以使单体更好地溶解和传递。
引发剂与抑制剂
选择适当的引发剂和抑制剂,以控制聚合反应的速度和产物的分 子量。
聚合产物的特性
高分子量
活性自由基聚合可制备高 分子量的聚合物,分子量 可达到数百万至数千万。
窄分子量分布
活性自由基聚合产物的分 子量分布较窄,有利于提 高聚合物材料的性能。
案例二:高分子改性研究
总结词
采用活性自由基聚合技术对现有高分子材料 进行改性,提高了其性能和应用范围。
详细描述
在案例二中,研究者采用活性自由基聚合方 法对现有高分子材料进行了改性。通过引入 功能性单体和共聚单体,成功改善了高分子 材料的亲水性、生物相容性和光敏性等性能。 此外,研究者还研究了改性后高分子材料的 流变性能和加工性能,为其在实际应用中的 加工和成型提供了理论支持。
可控活性自由基聚合反应
近半个世纪以来,活性聚合已成为高分子化学领域最具 学术意义和应用价值的研究方向之一。采用活性聚合反 应可以达到一般聚合反应无法达到的3个不同的目的 ① 严格控制单体与引发剂的浓度比,即可合成具有确定 相对分子质量的聚合物,即所谓计量聚合
② 按照特定的顺序加入不同的单体,即可合成具有指定 大分子链段结构的嵌段共聚物 ③ 活性聚合物与特定的低分子化合物反应制得遥爪聚合 物,进而合成加聚-缩聚嵌段共聚物以及具有各种复杂结 构的星型、环状聚合物
CH3 CH3 C CN
CH3 CH3 C + N CN
CH3 N=N C CH3 CN 2 CH3
CH3 C + N2 CN
.
.
O
.
CH3 CH3 C CN O N
+ n St
பைடு நூலகம்
+ n St
CH3 CH3 C CN
[ CH2
CH
]n-1 CH2
.
.
CH
+
N O
CH3 CH3 C CN
[ CH2
CH
而休眠种又可在可控条件下尽可能稳定而低速地离解成为
活性自由基,体系中的活性自由基浓度就可控制在尽可能 低的水平。 这有些类似于水库在暴雨洪水季节蓄水同时缓慢而匀速地 向下游泄水。
按照控制活性自由基浓度所采用方法的不同,或者说体 系中存在休眠种的不同,大体可分为可逆终止、可逆加 成-断链-转移以及原子转移等3种历程 3.14.2 可逆终止自由基聚合 目前主要包括硫代氨基甲酸苄酯、三苯甲基偶氮苯和烷 氧基胺等3大类引发剂体系
① 硫代氨基甲酸苄酯类
日本著名高分子学者大江隆行于1982年首次报道,在光照 下,以硫代氨基甲酸苄酯作为引发剂引发某些取代乙烯类 单体进行自由基聚合反应,可实现聚合反应在一定程度的 可控,所得聚合物的相对分子质量分布也较窄
自由基活性聚合
制备方法: 1.用竞聚率差别较大的两种单体一次加料直接共聚; 2.将一种单体连续加料
例:以2-溴异丁酸乙酯为引发剂,溴化亚铜/联二吡啶/铜为催 化剂,通过原子转移自由基聚合以及连续补加第二单体的方法 制备苯乙烯(St)-甲基丙烯酸甲酯 (MMA)的梯度共聚物。
制备聚合物刷:
聚合物刷是指通过物理吸附或者化学键的方式附着在特定 表面并呈现一定形貌的一层聚合物。聚合物刷的物理化学性质 及构象决定了其润湿特性、腐蚀特性、胶体稳定性、表面智能 及生物传感特性。
不足: 1.过渡金属催化剂的去除有一定困难; 2.需要使用较大量的催化剂来加速反应,却不能提高分子量; 3.对反应体系的pH值较敏感。
ATRP的应用:
大分子设计的有效工具
制备分布较窄的均聚物 制备无规、渐变、交替共聚物 制备具有特殊链端的聚合物 制备梯形、嵌段共聚物、星形聚合物 制备聚合物刷
制备梯形共聚物:
实现可控活性自由基聚合的方法:
1)引发转移终止剂法(Initiator-transfer Agent Terminator, Iniferter); 2)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP),稳定自由基主 要是氮氧自由基; 3)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer, RAFT); 4)原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)。
Rp kp M M
链终止速率方程:
Rt 2kt M 2
链终止反应 对自由基浓度的依赖程度更大
假若能使自由基浓度降低到某一程度,既可以维持可观的链增长速率, 又可以使链终止速率减少到相对于链增长可以忽略不计,这样便消除了自 由基可控聚合的主要症结。
醋酸乙烯酯的_活性_可控自由基聚合研究进展_蒋波
第25卷第4期高分子材料科学与工程Vol .25,No .4 2009年4月POLYMER MA TERIALS SCIENCE AND ENGINEERINGApr .2009醋酸乙烯酯的“活性”/可控自由基聚合研究进展蒋 波,易玲敏,詹晓力,陈 碧,陈丰秋(浙江大学化学工程与生物工程学系,浙江杭州310027)摘要:醋酸乙烯酯在聚合中容易发生链转移和链终止反应,所以实现醋酸乙烯酯的“活性”/可控自由基聚合是一个巨大的挑战。
文中从不同的活性自由基聚合方法角度对醋酸乙烯酯的“活性”/可控自由基聚合研究进行了综述。
在众多活性自由基聚合方法中以黄原酸酯、二硫代胺基甲酸酯为链转移剂的RA FT 聚合和以乙酰丙酮钴络合物为调控剂的钴调控自由基聚合真正实现了它的“活性”/可控自由基聚合。
关键词:醋酸乙烯酯;“活性”/可控自由基聚合;RAF T ;黄原酸酯中图分类号:T Q 325.5 文献标识码:A 文章编号:1000-7555(2009)04-0163-04收稿日期:2008-02-06基金项目:国家自然科学基金资助项目(20606029)通讯联系人:詹晓力,主要从事化学反应工程、聚合物与聚合反应工程的研究, E -mail :xlzhan @zj u .edu .cn 醋酸乙烯酯(VAc )是一种常见的单体,其聚合物聚醋酸乙烯酯(PVAc )在生物医药领域有广泛的应用[1,2],实现VAc 的“活性”/可控聚合有很重要的意义。
由于VAc 只能用自由基方法聚合,而且VAc 的自由基异常活泼,所以实现VAc 的“活性”/可控自由基聚合是一个挑战。
尽管许多研究者用不同的活性自由基聚合方法进行了VAc 的“活性”/可控聚合,但是真正实现VAc “活性”/可控聚合的报道并不多[3~6]。
本文针对VAc 的“活性”/可控自由基聚合,从不同的活性自由基聚合方法角度综述了国内外的研究进展。
1 引发转移终止剂法(Iniferter )1982年,日本学者大津隆行等人[3]提出了Iniferter 聚合方法。
光催化 可控自由基聚合 综述
光催化可控自由基聚合综述一、概述光催化可控自由基聚合是一种新兴的合成方法,通过光催化产生自由基,在可控条件下进行聚合反应,得到具有精确结构和性能的高分子材料。
本综述将从光催化原理、可控自由基聚合方法以及应用方面进行探讨。
二、光催化原理1. 光催化的基本原理光催化是指在光照条件下,光催化剂吸收光能,激发其电子并参与化学反应的过程。
光催化反应的关键是光催化剂的选择和光反应的机理研究。
2. 光催化产生自由基光催化反应中,光催化剂的激发态电子能够与其他分子发生反应,产生自由基。
这些自由基能够参与聚合反应,从而实现可控自由基聚合。
三、可控自由基聚合方法1. 控制自由基的产生通过合理选择光催化剂和光照条件,可以控制自由基的产生速率和数量,从而实现可控自由基的聚合。
2. 控制聚合反应条件在聚合过程中,可以通过调节温度、溶剂、反应时间等条件,来实现聚合反应的可控性,从而得到具有特定结构和性能的高分子材料。
四、光催化可控自由基聚合的应用1. 高性能功能材料的制备光催化可控自由基聚合可以合成具有特定结构和性能的高性能功能材料,如光催化剂、传感材料、电子材料等。
2. 环保高效合成方法与传统的聚合方法相比,光催化可控自由基聚合具有较高的选择性和效率,能够实现对废弃物料的有效利用,具有很大的环保意义。
五、挑战与展望光催化可控自由基聚合作为一种新兴的合成方法,仍然面临着许多挑战,如光催化剂的设计、反应条件的优化等。
未来,我们可以通过更深入的研究,进一步拓展其在材料合成和环境保护领域的应用。
光催化可控自由基聚合作为一种新兴的合成方法,具有重要的研究价值和应用前景。
通过深入理解其原理和方法,我们可以不断拓展其在高分子材料领域的应用,为解决能源和环境问题提供新的思路和方法。
期待在不久的将来,光催化可控自由基聚合能够为人类社会的发展做出更大的贡献。
光催化可控自由基聚合作为一种新兴的合成方法,近年来受到了广泛的关注和研究。
在过去的一段时间里,研究人员们对光催化原理和可控自由基聚合方法进行了深入的探讨和研究,取得了许多重要的进展。
“活性”可控自由基聚合
“活性”/可控自由基聚合熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。
本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。
关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。
自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。
鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。
就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。
所以实现可控自由基聚合要基于以下三个原则:1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。
这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。
2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。
活性聚合
•
• • •
• ……
可控/“活性” 可控 “活性”自由基聚合 (CRP)
CRP成为当今高分子合成化学发展最迅速的领域 原因:大量可供聚合的单体,简单的反应装置,不苛刻的反应 条件对自由基的有效控制。 更重要的是,CRP产品具有巨大的市场潜力,不过要 充分发挥其潜力,在很多方面还需要研究。 今后的研究方向:开发新的引发/催化体系、 拓宽单体种类、合成结构清晰可控的新型 聚合物。更重要的是缩短工业化的进程。
三、对CRP的综合讨论与比较
所有可控自由基聚合具有一些共同的特征:链增长自由
基和各种休眠种达到动态平衡是所有可控自由基 聚合体系的关键。 聚合体系的关键。
四、CRP CRP的应用与前景 CRP
•
具有水溶性的双亲性嵌段共聚物已被成功用作表面活性剂,并且用于一 些高端产品,例如染料分散剂、添加剂、保健品和化妆品等。具有纳米形态 的嵌段共聚物可用作电子器件。接枝共聚物可用作聚合物共混增溶剂,并且 可以可以用到嵌段共聚物所能适用的许多领域。梯度共聚物非常有望用作表 面活性剂、噪音和振荡阻尼材料。 通过对支化度的调节,可以精确的控制聚合物加工过程中的熔融粘度。 这些聚合物(包括梳形和星形聚合物)可以用作黏度调节剂和润滑剂。大分 子拓扑结构控制的一个突出例子是大分子刷,这些聚合物经轻度交联可得到 超软弹性体。 CRP在链末端功能化方面也具有独特的优势 目前,结构规整的官能化聚合物与无机组分或者天然物质通过共价键结合成 的分子杂化材料受到了广泛关注,并且将会带来许多具有新功能的材料。( 分子纳米复合材料……) 潜在的应用包括微电子材料、软刻印刷技术、光电子元件、特种膜、传感器 和微流体组分
让我们坚强永不放弃 让我们勇敢面对困境 让我们对生活的爱和希望 燃烧在心里 付诸于行动 让我们微笑生活继续 让我们努力创造奇迹 让我们期待 这场属于我们的胜利
六氟丙烯 三氟氯乙烯 可逆加成-断裂链转移(RAFT)聚合 原子转移自由基聚合(ATRP) 齐聚反应
六氟丙烯论文:三氟氯乙烯和六氟丙烯的活性/可控自由基聚合研究【中文摘要】自从上世纪40年代杜邦公司发明聚四氟乙烯以来,含氟聚合物一直吸引着众多科学家的兴趣。
由于含氟聚合物具有耐热和耐化学腐蚀性能好、折射率和表面能低等众多优点,因而作为高性能高分子材料被广泛应用,例如高性能弹性体、高性能表面活性剂、高性能涂料以及燃料电池膜等。
把活性/可控自由基聚合方法用于含氟聚合物的合成,不仅可以精确控制聚合物的分子量及其分布,而且可以设计、制备各种复杂结构的含氟聚合物,例如嵌段共聚物、接枝共聚物、星形共聚物及超支化共聚物等。
在过去二十年间,活性/可控自由基聚合取得了重大的进展,先后发现了氮氧稳定自由基聚合(NMP),原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合。
这些聚合方法已被广泛用于制备具有特定分子量,窄分子量分布,以及具有各种不同精确结构的聚合物。
尽管这些方法已成功被用于氟化苯乙烯,氟化丙烯酸酯等侧链氟化单体,但关于氟烯烃(如三氟氯乙烯,六氟丙烯等)的活性/可控聚合研究的报道却非常少。
在本论文中,我们合成了多种ATRP引发剂和RAFT链转移剂,分别探索研究了六氟丙烯和三氟氯乙烯单体的活性/可控自由基聚合反应,并获得了一些十分有意义的实验结果。
一.合成了...【英文摘要】Since the invention of the first perfluoropolymer, polytetrafluoroethylene (PTFE) by DuPontCompany, fluorinated polymers have attracted much attention in the field of polymer. Due to the fluorinated polymers exhibiting many high-performance features, such as heat and chemical resistance, low surface energy, low dielectric constants, low refractive index, excellent inertness to acids or bases, and long durability, they have been widely used in many applications such as fuel cell membranes, protective coatin...【关键词】六氟丙烯三氟氯乙烯可逆加成-断裂链转移(RAFT)聚合原子转移自由基聚合(ATRP) 齐聚反应【英文关键词】hexafluoropropylene (HFP) chlorotrifluoroethylene (CTFE) atom transfer radical polymerization (ATRP) reversible addition-fragmentation chain transfer (RAFT) polymerization hexafluoropropylene dimmer 【索购全文】联系Q1:138113721 Q2:139938848【目录】三氟氯乙烯和六氟丙烯的活性/可控自由基聚合研究摘要4-6ABSTRACT6-7第一章绪论11-35 1.1 引言11-12 1.2 活性自由基聚合12-17 1.2.1 碘转移自由基聚合(ITP)13-14 1.2.2 氮氧稳定自由基聚合(NMP)14-15 1.2.3 原子转移自由基聚合(ATRP)15-16 1.2.4 可逆加成-断裂链转移(RAFT)聚合16-17 1.3 氟化侧基单体的活性自由基聚合17-25 1.3.1 氟化侧链单体的原子转移自由基聚合18-22 1.3.2 含氟单体的氮氧稳定自由基聚合22-24 1.3.3 含氟单体的可逆加成断裂链聚合24-25 1.4 氟烯烃的活性自由基聚合25-29 1.4.1 氟烯烃的碘转移自由基聚合25-28 1.4.2 氟烯烃的硼氧稳定自由基聚合28 1.4.3 氟烯烃的原子转移自由基聚合28-29 1.4.4 氟烯烃的可逆加成-断裂链转移聚合29 1.5 本论文的设计思想及研究内容29-31参考文献31-35第二章三氟氯乙烯和乙烯基丁醚的可逆-加成断裂链转移聚合35-48 2.1 引言35-36 2.2 实验部分36-37 2.2.1 主要原料36 2.2.2 测试仪器36 2.2.3 RAFT链转移剂的合成36-37 2.2.4 三氟氯乙烯和乙烯基丁醚的RAFT共聚37 2.2.5poly(CTFE-alt-BVE)-b-PVAc嵌段共聚物的合成37 2.2.6 poly(CTFE-alt-BVE)-b-PVAc嵌段共聚物的水解37 2.3 结果与讨论37-45 2.3.1 RAFT链转移剂(BEDTC)的合成38-39 2.3.2 三氟氯乙烯和丁基乙烯基醚的RAFT共聚39-43 2.3.3 嵌段共聚物poly(CTFE-alt-BVE)-b-PVAc的合成43-44 2.3.4 嵌段共聚物水解44-45 2.3.5 溶剂对于氟烯烃活性聚合的影响45 2.4 本章小结45-47参考文献47-48第三章三氟氯乙烯和醋酸乙烯酯的可逆加成-断裂链转移聚合48-59 3.1 引言48 3.2 实验部分48-49 3.2.1 实验原料48-49 3.2.2 测试设备49 3.2.3 RAFT链转移剂(BEDTC)的合成49 3.2.4 醋酸乙烯酯和三氟氯乙烯的RAFT共聚49 3.2.5 嵌段共聚物poly(CTFE-co-VAc)-b-PVAc的合成49 3.3 结果与讨论49-57 3.3.1 CTFE和VAc的RAFT共聚50-56 3.3.2 嵌段共聚物poly(CTFE-co-VAc)-bPVAc的合成56-57 3.4 本章小结57-58参考文献58-59第四章通过六氟丙烯的ATRP和RAFT聚合来制备新型氟磺酸聚合物的探索59-67 4.1 引言59 4.2 实验部分59-61 4.2.1 主要原料59-60 4.2.2 测试仪器60 4.2.3 溴代聚苯醚(BrPPO)的合成60 4.2.4 大分子RAFT链转移剂(RPPO)的合成60 4.2.5 RPPO接枝六氟丙烯聚合60 4.2.6 3,5-二溴苄溴的合成60 4.2.7 六氟丙烯的原子转移自由基聚合60-61 4.3 结果与讨论61-65 4.3.1 六氟丙烯的RAFT 聚合63 4.3.2 六氟丙烯的ATRP聚合63-65 4.4 本章小结65-66参考文献66-67第五章溴化亚铜/2,2’-联吡啶络合物催化六氟丙烯二聚反应的研究67-75 5.1 引言67-68 5.2 实验部分68-69 5.2.1 试验原料与仪器68 5.2.2 测试表征68-69 5.2.3 六氟丙烯二聚体的合成69 5.3 结果和讨论69-73 5.3.1 齐聚反应及产物表征69-70 5.3.2 催化剂用量对二聚体产率的影响70-71 5.3.3 反应温度对六氟丙烯二聚体产率的影响71-72 5.3.4 反应时间对六氟丙烯二聚体产率的影响72 5.3.5 催化原理的初步探究72-73 5.4 本章小结73-74参考文献74-75论文结论75-76攻读学位期间发表的论文76-77致谢77。
活性可控自由基聚合反应
05
结论与展望
活性可控自由基聚合反应的贡献与价值
高效制备高分子材料
活性可控自由基聚合反应能够实现高分子材料的快速、高 效制备,提高生产效率和降低成本。
合成新型高分子材料
通过活性可控自由基聚合反应,可以合成具有特定结构、 性能和功能的新型高分子材料,满足各种应用需求。
促进高分子科学的发展
活性可控自由基聚合反应的深入研究,推动了高分子科学 的发展,为高分子材料的设计、合成和应用提供了新的理 论和技术支持。
氮氧稳定自由基聚合(NMP)
02
利用氮氧稳定自由基作为引发剂,通过氮氧稳定自由基的均裂
和结合实现聚合。
可逆加成断裂链转移聚合(RAFT)
03
利用可逆加成断裂链转移反应,通过在聚合物链中引入活性端
基实现聚合。
活性可控自由基聚合反应的机理
01
02
03
引发
通过加入引发剂产生自由 基,启动聚合反应。
增长
自由基与单体反应,生成 新的自由基,并不断增长。
链终止
自由基之间相互结合或与 阻聚剂反应,终止增长。
活性可控自由基聚合反应的特点和优势
可控性
通过调节反应条件,如 温度、压力、浓度等, 实现对聚合过程的有效
控制。
高分子量
活性可控自由基聚合能 够合成高分子量的聚合 物,具有优异的性能。
结构可控
通过选择不同的单体和 反应条件,可以合成具 有特定结构和性质的聚
合物。
适用范围广
活性可控自由基聚合适 用于多种单体,包括苯
乙烯、丙烯酸酯等。
03
活性可控自由基聚合反应 的应用
高分子合成中的应用
高分子合成
活性可控自由基聚合反应在合成高分 子材料中具有广泛的应用,如合成聚 合物、嵌段共聚物、星形聚合物等。
ATRP
24/0142/210/241/14
5
• 这些由过渡金属化合物与配体为催化剂,有机卤化物为引 发剂引发不饱和乙烯单体进行自由基聚合的过程,具有有 机合成反应中原子转移自由基加成反应(Atom transfer radical addition, ATRA)的特征,故这种类型的聚合, Matyjaszewski称之为原子转移自由基聚合(Atom transfer radical polymerization, ATRP),或者称之为催化引发原子 转移自由基聚合(Catalyzed Initiated Atom Transfer Radical Polymerization,CIATRP)
10
a)苯乙烯及取代苯乙烯
如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、 间甲基苯乙烯、对氯甲基苯乙烯、间氯甲基苯乙烯、对三氟 甲基苯乙烯、间三氟甲基苯乙烯、对叔丁基苯乙烯等。
b)(甲基)丙烯酸酯
如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙 烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异冰 片酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二 甲氨基乙酯等;
24/0142/210/241/14
31
体系的其它两个研究热点
(1)研究催化体系、引发剂、单体的结构、溶剂 及反应温度与ATRP反应常数的关系,目的是为 了选择和设计合适的配体、开发更为有效的催 化体系以及确定合适的ATRP反应条件。 (2)研究并探索克服与ATRP反应同时发生的各类 副反应的有效方法。
由于SR&NI ATRP体系利用传统自由基引发剂分解 产生有机自由基对催化体系进行活化,此过程中 不可避免产生少量均聚物,因此通过这种体系不 能获得纯净的嵌段共聚物。
24/0142/210/241/14
活性聚合
活性聚合(living polymerization)的概念是1956年 Szwarc[1]提出的,即无终止、无转移、引发速率远大于增 长速率的聚合反应。由于没有链转移,聚合过程中聚合物 链的数目保持恒定;而没有链终止,直到体系中单体消耗完 ,聚合反应停止时,聚合物链仍然保持活性基。一旦加入 新的单体,聚合反应即可继续进行。所以Szwarc把这种聚 合方法叫做“活性聚合”(Living Polymerization) 。
典型的热引发转移终止剂是1,2-二取代四苯基乙烷类衍生物,研究发现[11, 12]这些 对称的碳一碳键热引发转移终止剂引发极性单体甲基丙烯酸甲酯(MMA )的聚合为活性聚 合,并且引发剂的活性顺序为PPE>TMPSN>TPSN。所得的PMMA可以作为大分子引发 剂引发第二单体苯乙烯(St)聚合,制备PMMA-b-PSt共聚物,但嵌段效率比较低。然而对 于引发非极性单体St的聚合来说,它们的作用与传统自由基聚合引发剂类似,没有活性 聚合的特征。Braun[13,14]认为,当1,2-二取代的四苯基乙烷衍生物引发苯乙烯聚合时,得 到的聚合物ω-端为五取代的C-C键,键能比较高,受热时不能再分解,为死端聚合;而在 引发MMA聚合时,得到的聚合物。一端为六取代的C-C键,键能较低,受热时仍能可逆 分解,实现活性自由基聚合。 由于文献中报道的热引发转移终止剂种类少,活性低, 只能在较高的温度(>800℃)下实现极性单体MMA的活性聚合,对非极性单体St的聚合是 传统的自由基聚合,无活性聚合特征。丘坤元等[I5, 16]研究了两种C-C键型热引发转移终 止剂:2,3-二氰基-2,3-二苯基丁二酸二乙酯(DCDPS )和2,3-二氰基-2,3-二(对-甲苯基)丁二 酸二乙酯 (DCDTS )引发乙烯基单体的聚合。结果发现,与Otsu和Braun所报道的四苯基 取代的乙烷衍生物类热引发转移终止剂相比较,DCDPS和DCDTS的活性较高,不但在 较低温度(50~ 100℃)下实现了MMA的活性聚合,而且首次在小分子热引发转移终止剂领 域实现了St的活性聚合。另外,他们还首次合成了一种氨酯型非对称性结构的小分子热 引发转移终止剂,用它引发MMA的本体聚合具有活性自由基聚合的特点;而在二甲基甲 酰胺 (DMF)溶剂中的溶液聚合却不是活性自由基聚合。但本体及溶液聚合产物PMMA 都能起大分子引发剂的作用可合成嵌段聚合物。
活性聚合+自由基聚合总结
S C S CH CH3
S C CH3 CN S CH3
14
Z = Ph, R = CH(CH3)Ph
Z = Ph, R = C(CH3)2CN
高 分 子 化 学
3.9 活性自由基聚合
RAFT自由基聚合的机理:
M
I2
S Pn + S
活性种
I
R
加成 断裂
Pn
S R
断裂 加成
C Z
Pn S C Z
S Pn S C Z
这样一来,在活性种(自由基)与休眠种(大分子卤 化物)之间建立了可逆动态平衡,使体系中自由基浓度大 大降低,从而避免了双基终止副反应,实现对聚合反应的 控制。
高 分 子 化 学
10
3.9 活性自由基聚合
ATRP体系组成 典型的 ATRP 体系的组分包括单体、引发剂、金属催 化剂(活化剂)以及配体。 单体除了苯乙烯以外,(甲基)丙烯酸酯类、丙烯腈、 丙烯酰胺等都可以通过ATRP实现活性/可控自由基聚合。 引发剂一般是一些活泼的卤代烷,如 α- 卤代乙苯、 α卤丙酸乙酯、α-卤乙腈等。 ATRP 通过金属催化剂的可逆氧化还原反应,实现特 定基团在活性种与休眠种之间的可逆转移。因此作为金属 催化剂必须有可变的价态,一般为过渡金属的盐如最常用 的CuCl和CuBr。其它金属Ru (RuCl2) 、Fe (FeCl2)等。 配体的作用一方面是增加催化剂在有机相中的溶解性, 另一方面它与过渡金属配位后对其氧化还原电位产生影响, 从而可用来调节催化剂的活性。
高 分 子 化 学
5
Rt= kt[M•]2
3.9 活性自由基聚合
相对于链增长反应,链终止反应速率对链自由基浓度 的依赖性更大,降低链自由基浓度,链增长速率和链终止 速率均都下降,但后者更为明显。 假若能使链自由基浓度降低至某一程度,既可维持可 观的链增长速率,又可使链终止速率减少到相对于链增长 速率而言可以忽略不计,则消除了自由基可控聚合的主要 症结 ─ 双基终止,使自由基聚合反应从不可控变为可控。 根据动力学参数估算,链自由基浓度在10-8molL-1左 右时,聚合速率仍然相当可观,而Rt/Rp约为10-3 ~ 10-4, 即Rt相对于Rp实际上可忽略不计。 那么,接下来的问题是如何在聚合过程中保持如此低 的自由基浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.大分子单体的合成 大分子单体是末端含可聚合基团的线形聚合物。 在活性聚合中,加入不同的终止剂,可以获得端基带预 期官能团的聚合物。
CO2 H2C O CH2 H2C S CH2 CoCl2 ClCH2CH CH2
COOH
OH
SH
COCl
CH2CH
CH
CH2Li CH2Li
+ Cl + Cl
CH2CH CH2 OCH CH2
(4)ABC杂臂星形聚合物
氯硅烷法
苯乙烯-异戊二烯-丁二烯杂臂星形聚合物(PS-PI-PB) 的 合成
锂硅烷法
苯乙烯_二甲基硅氧烷_特丁基丙烯酸甲酯杂臂星形聚合物 (PS-PDMS-PtBuMA)的合成
(5)超支化聚合物 超支化聚合物概念: ABx(X≥2) 型的单体的缩聚反应 生成可溶性的高度支化的聚合
Kim,Y. Hபைடு நூலகம்; Webster, O. W. J. Am. Chem. Soc. 1990, 112, 4592
超支化聚合物的应用
酶的载体
利用酶的-NH2与超支化聚酰胺 的端基反应来实现酶的固定化。 用于合成超支化聚酰胺的单体 优点:效率高,结合强, 得到的固定酶很稳定
Cosulich, M. E.; Russo, S.; Pasquale, S.; Mariani, A. Polymer 2000, 41, 4951.
典型的活性聚合具备以下特点: (1)分子量大小可通过反应物的化学计量控制 ; (2)活性聚合体系中产物的平均聚合度可表示为 :
M 0 x Pn I 0
其中[M]0,[I]0分别为单体和引发剂的初始浓度, χ为单体转化率。上式表明产物数均分子量Mn与单 体转化率呈线性增长关系。 (3)数均分子量决定于单体和引发剂的浓度比 ; 因此 聚合产物的相对分子质量可控、相对分子质量分布很窄,并且可 利用活性端基制备含有特殊官能团的高分子材料。还可用来合成 复杂结构的聚合物。
超支化聚合物的应用
药物缓释剂
O HN O O O H2C H3C
X
y
O CH3
X
O
H2C
CH3 O H2C O
X
O
O H2C
O
H3C
O O H3C
X
X
H2 C O
O O
O
H2 C O
X
CH3
O O H3C H2 C O O O O
N H H2 C
O
y
O
X
X
CH3
O H3C
X
O CH2 O O O O H2 C O H2 C
的聚合反应为“可控聚合”。
典型的活性聚合具备以下特征: (1)聚合产物的数均分子量与单体转化率呈线性增长关系; (2)当单体转化率达100%后,向聚合体系中加入新单体,聚 合反应继续进行,数均分子量进一步增加,并仍与单体转 化率成正比;
(3)聚合产物分子量具有单分散性。
有些聚合体系并不是完全不存在链转移和链终止反应, 但相对于链增长反应而言可以忽略不计,宏观上表现出活 性聚合的特征。为了与真正意义上的活性聚合相区别,把 这类聚合称为活性/可控聚合。
Yan, D. Y.; Zhou, Y. F.; Hou, J. Science 2004, 303, 65
超支化聚苯乙烯(PS)的合成
活性阴离子聚合方法制备新型高分子链构造的新进展
活性阳离子聚合
在 1956年 Szwarc 开发出活性阴离子聚合后,人们就开始向往 实现同是离子机理的活性阳离子聚合,但长期以来成效不大。直 到 1985年, Higashimura 、 Kennedy 先后首先报导了乙烯基醚、 异丁烯的活性阳离子聚合,开辟了阳离子聚合研究的崭新篇章。
物。超支化聚合物的分子中只
含一个未反应的A基团和多个未 反应的B基团。这种聚合物不是 完美的树枝状大分子,而是结 构有缺陷的聚合物,这种聚合 物称为超支化聚合物。
超支化聚合物的应用
加工助剂
用超支化聚苯与线性苯 乙烯共混得到的共混物 与苯乙烯均聚物相比, 在高温下粘度下降,剪 切速率和稳定性提高, 而力学性能不受影响。
阴离子聚合 (AP) 可控/活性离子聚合 (CIP) 阳离子聚合 (CP) 引发链转移终止剂法 (Iniferter) 氮-氧稳定的自由基聚合 (NMP) 原子转移自由基聚合 (ATRP) 可逆加成-裂解-链转移聚合 (RAFT)
可控/活性聚合 (CP)
可控/活性自由基聚合 (CRP)
可控/活性聚合分类图
3.0
追加 单 体
2.0
2.5
-3
Mn× 10
2.0
1.5
1.0
1.0
0.5
0.0 0 50 100 150 200
转 化 率
%
用HI/I2引发2-乙酰氧乙基乙烯基醚聚合时 单体转化率与数均分子量和分子量分布的关系
活性阳离子聚合原理
阳离子活性中心这一固有的副反应被认为是实现活性阳离子 聚合的主要障碍。因此要实现活性阳离子聚合,除保证聚合体系
活性阴离子聚合
活性阴离子聚合的特点
阴离子聚合,尤其是非极性单体如苯乙烯、丁二烯等的聚合, 假若聚合体系很干净的话,本身是没有链转移和链终止反应的, 即是活性聚合。相对于其它链式聚合,阴离子聚合是比较容易实 现活性聚合的,这也是为什么活性聚合首先是通过阴离子聚合方 法实现的原因。 但是对于丙烯酸酯、甲基乙烯酮、丙烯腈等极性单体的阴离 子聚合,情况要复杂一些。这些单体中的极性取代基(酯基、酮 基、腈基)容易与聚合体系中的亲核性物质如引发剂或增长链阴 离子等发生副反应而导致链终止。
(2)添加Lewis碱稳定碳阳离子 在以上聚合体系中,若用强Lewis SnCl4 (四氯化锡酸)代替 I2,聚合反应加快,但产物分子量分布很宽,是非活性聚合。此 时若在体系中添加醚(如THF)等弱Lewis碱后,聚合反应变缓, 但显示典型活性聚合特征。Lewis碱的作用机理被认为是对碳阳 离子的亲核稳定化:
(1)使用立体阻碍较大的引发剂
1,1-二苯基已基锂、三苯基甲基锂等引发剂,立体阻碍大、反 应活性较低,用它们引发甲基丙烯酸甲酯阴离子聚合时,可以避 免引发剂与单体中羰基的亲核加成的副反应。同时选择较低的聚 合温度(如-78 ℃),还可完全避免活性端基“反咬”戊环而终 止的副反应,实现活性聚合。 1,1-二苯基已基锂 三苯基甲基锂
主要有三条途径,以烷基乙烯基醚的活性阳离子聚合为例 加以阐述:
(1)设计引发体系以获得适当亲核性的反离子
Higashimura等用HI/I2引发体系,首次实现了烷基乙烯基醚 活性阳离子聚合:
反离子 具有适当亲核性,使碳阳离子稳定化并同时又具有 一定的链增长活性,从而实现活性聚合。在以上聚合反应中,真 正的引发剂是乙烯基醚单体与HI原位加成的产物(1) ,I2为活化剂。
活性/可控自由基聚合反应
活性与可控聚合的概念
活性聚合概念的提出 活性聚合是1956年美国科学家Szwarc等人在研 究萘钠在四氢呋喃中引发苯乙烯聚合时发现的一种 具有划时代意义的聚合反应。其中阴离子活性聚合 是最早被人们发现,而且是目前唯一一个得到工业 应用的活性聚合方法。目前这一领域已经成为高分 子科学中最受科学界和工业界关注的热点话题。
非常干净、不含有水等能导致不可逆链终止的亲核杂质之外,最
关键的是设法使本身不稳定的增长链碳阳离子稳定化,抑制β-
质子的转移反应。
在离子型聚合体系中,往往存在多种活性中心,离子对和自 由离子,处于动态平衡之中:
C
离子对
X
C
X
自由离子
活性决定于碳阳离子和反离子 间相互作用力:相互作用力越 大,活性越小但稳定性越大; 相互作用越小,活性越大但稳 定性越小。
X
H3C
X
CH2
O O O
X
CH3
CH3
O
N H
O
y
O
Liu. H-B.; Uhrich, K.E. Polym. Prepr. 1997, 2, 582.
超支化聚合物的应用
分子自组装
宏观尺度多壁管的超分子自组装 (Superamolecular self-Assembly of macrosocopic Tubes)
已经开发成功的活性聚合主要是阴离子活性聚
合。其他各种聚合反应类型(阳离子聚合、自由基
聚合等)的链转移反应和链终止反应一般不可能完
全避免,但在某些特定条件下,链转移反应和链终
止反应可以被控制在最低限度而忽略不计。这样,
聚合反应就具有了活性的特征。通常称这类虽存在
链转移反应和链终止反应但宏观上类似于活性聚合
Higashimura等人在用HI/I2引发烷基乙烯基醚的 阳离子聚合中,发现聚合过程具有以下活性聚合的 典型特征: ① 数均相对分子质量与单体转化率呈线性关系; ② 聚合完成后追加单体,数均分子量继续增长; ③ 聚合速率与HI的初始浓度[HI]0成正比; ④ 引发剂中I2浓度增加只影响聚合速率,对相对分 子质量无影响; ⑤ 在任意转化率下,产物的分子量分布均很窄,<1.1。
超支化聚合物的应用
光 电 材 料
Zhang, Y.; Wada, T.; Sasabe, H. J. Polym. Sci. Polym. Chem. 1996, 34, 1359.
超支化聚合物的应用
超支化液晶聚合物
Sunder, A.; Quincy, M.; Mü lhaupt, R.; Frey, H. Angew. Chem. Int. Ed. 1999, 38, 2928.
(3)添加盐稳定阳碳离子 强Lewis酸作活化剂时不能实现活性聚合,原因是在Lewis酸 作用下碳阳离子与反离子解离而不稳定,易发生β-质子链转移等 副反应。若向体系中加入一些季铵盐或季磷盐,如nBu4NCl、 nBu4PCl等,由于阴离子浓度增大而产生同离子效应,抑制了增