光合作用和呼吸作用知识总结
呼吸作用光合作用知识点归纳
呼吸作用光合作用知识点归纳呼吸作用和光合作用是生物体生存和生长发育过程中的两个重要过程。
呼吸作用是指生物体利用氧气氧化有机物质,产生能量和二氧化碳的过程。
而光合作用是指植物利用太阳能将二氧化碳和水转化为有机物质,并释放氧气的过程。
本文将分别对呼吸作用和光合作用进行归纳和介绍。
一、呼吸作用的基本概念和过程1. 呼吸作用是指生物体通过氧化有机物质来释放能量的过程。
它是维持生物体生命活动的基本过程之一。
2. 呼吸作用主要发生在细胞的线粒体中。
通过线粒体内的呼吸链,有机物质被氧化,产生大量的能量,以供细胞使用。
3. 呼吸作用的过程分为三个阶段:糖解、Krebs循环和呼吸链。
糖解是将葡萄糖分解为乳酸或乙酸,产生少量的能量。
Krebs循环是将乙酸氧化为二氧化碳和水,并产生大量的能量。
呼吸链是将产生的能量转化为ATP,供细胞使用。
二、光合作用的基本概念和过程1. 光合作用是指植物利用太阳能将二氧化碳和水转化为有机物质,并释放氧气的过程。
它是维持生物圈中能量流动的基础过程。
2. 光合作用主要发生在植物的叶绿体中。
叶绿体中的叶绿素吸收光能,通过光能转化为化学能,用于合成有机物质。
3. 光合作用的过程分为两个阶段:光反应和暗反应。
光反应是在叶绿体的光合体中,利用光能将光合色素激发,产生ATP和NADPH。
暗反应是在叶绿体基质中,利用ATP和NADPH将二氧化碳还原为有机物质。
三、呼吸作用和光合作用的关系1. 呼吸作用和光合作用是相互依存的。
植物在白天进行光合作用,产生有机物质和氧气,而在夜晚无法进行光合作用,需要依靠呼吸作用分解有机物质,产生能量。
2. 呼吸作用和光合作用的产物互为反应物。
光合作用产生的氧气是呼吸作用所需的,而呼吸作用产生的二氧化碳是光合作用的原料。
3. 呼吸作用和光合作用共同调节植物的能量平衡。
当光合作用产生的能量过剩时,植物会通过呼吸作用消耗多余的能量;当光合作用的能量不足时,植物会通过呼吸作用分解有机物质,产生额外的能量。
高考生物呼吸作用光合作用考点总结
高考生物呼吸作用光合作用考点总结高考生物考题中,呼吸作用与光合作用是常常涉及的重要概念。
下面是对两个考点的总结:一、呼吸作用:呼吸作用是生物体将有机物转化为能量的一种代谢现象,主要包括有氧呼吸和无氧呼吸。
1.有氧呼吸:有氧呼吸是指生物体在充分供氧的情况下进行的呼吸作用,可分为三个阶段:糖解(糖原的分解)、Krebs循环和氧化磷酸化。
糖解:将葡萄糖分子分解成两个三碳的丙酮酸,然后通过有机酸分解成乙醇。
反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATPKrebs循环:乙醇进一步被氧化成乙醛酸,最终释放出二氧化碳。
反应方程式为:2C3H6O3 + 9ADP + 9Pi + 6NAD+ + 6FAD → 6CO2 +6C2H4O2 + 9ATP + 6NADH + 6FADH2氧化磷酸化:乙醛酸被氧化成乙酸,并通过线粒体呼吸链最终生成水。
反应方程式为:6C2H4O2+24ADP+24Pi+18O2→12CO2+12H2O+24ATP2.无氧呼吸:无氧呼吸是指在缺氧的情况下进行的呼吸作用,主要产生能量的方式为乳酸发酵和乙酸发酵。
乳酸发酵:糖在肌肉中发酵产生乳酸,反应方程式为:C6H12O6+2ADP+2Pi→2C3H6O3+2ATP乙酸发酵:细菌在无氧条件下将糖转化为乙酸和二氧化碳,反应方程式为:C6H12O6+2ADP+2Pi→2C2H5OH+2CO2+2ATP二、光合作用:光合作用是指绿色植物利用光能将二氧化碳和水转化为有机物质(葡萄糖)的过程。
1.光化学反应:光能被吸收,激发叶绿素a的电子,产生高能电子;水分子被光解,产生氧气和两个氢离子。
反应方程式为:光能+2H2O→2H++1/2O22.光合糖合成反应:高能电子通过光合色素系统传递,最终与二氧化碳反应生成葡萄糖。
反应方程式为:6CO2+18ATP+12NADPH+12H+→C6H12O6+18ADP+18Pi+12NADP++6H2O 值得注意的是,光合作用不仅出现在植物中,还出现在一些浮游植物和光合细菌中。
光合作用和呼吸作用
光合作用和呼吸作用光合作用和呼吸作用是生物体中两个重要的能量转换过程,它们在生物界起着关键的作用。
本文将分别介绍光合作用和呼吸作用的定义、发生地点、反应过程以及它们在生态系统中的相互关系。
一、光合作用光合作用是植物和一些原核生物(如蓝藻、细菌)利用光能将二氧化碳和水转化为有机物质(如葡萄糖)的过程。
光合作用是地球上能量的主要来源,也是支撑生物圈形成和维持的基础。
1. 发生地点光合作用主要发生在植物的叶绿体中,特别是叶片的叶绿体细胞内。
2. 光合作用的反应过程光合作用可以分为光能反应和暗反应两个阶段。
(1)光能反应光能反应发生在叶绿体的类囊体中。
当叶绿体受到光照时,光能被捕获,通过光化学反应将光能转化为化学能,同时释放出氧气。
光能反应产生的化学能以ATP和NADPH的形式储存起来,为下一阶段的反应提供能源。
(2)暗反应暗反应发生在叶绿体的基质中。
暗反应利用光能反应阶段产生的ATP和NADPH,将二氧化碳转化为有机物质。
其中,葡萄糖是暗反应的最终产物,同时还生成了氧气。
3. 光合作用在生态系统中的作用光合作用是将光能转化为化学能的过程,不仅使植物能够生长和繁殖,还为其他生物提供能量来源。
同时,光合作用还通过吸收二氧化碳和释放氧气,有助于调节大气中的气体组成。
二、呼吸作用呼吸作用是生物体将有机物质分解成二氧化碳和水释放能量的过程,也是生物体获取能量的重要途径。
1. 发生地点呼吸作用发生在细胞质和线粒体中。
2. 呼吸作用的反应过程呼吸作用包括三个阶段:糖解、解酸和氧化磷酸化。
(1)糖解糖类被分解为较小的分子,产生能量和一定量的ATP。
(2)解酸在解酸过程中,糖分解产物进一步氧化,并且释放出更多的能量和NADH。
(3)氧化磷酸化氧化磷酸化是呼吸作用的最后一个阶段。
通过线粒体呼吸链的电子传递,产生更多的ATP和水。
3. 呼吸作用在生态系统中的作用呼吸作用是维持生物体正常代谢和生长发育的基本过程。
通过呼吸作用释放的能量,生物体能够进行各种生命活动,如运动、生殖等。
植物三大作用知识点归纳
植物三大作用知识点归纳植物的三大作用是光合作用、呼吸作用和转化作用。
一、光合作用光合作用是指植物利用光能将二氧化碳和水转化为有机物质的过程。
植物通过叶子中的叶绿素吸收光能,并利用其在叶绿体中进行化学反应,最终产生葡萄糖和氧气。
光合作用是自然界中最重要的化学反应之一,也是生态系统中所有生命得以维持的基础。
主要有以下几个特点:1.植物通过光合作用能够吸收和储存大量的能量,提供自己生长和繁殖所需的能源。
2.光合作用能够释放氧气,并吸收二氧化碳,有助于维持大气中的氧气和二氧化碳的平衡。
3.光合作用还能够合成植物所需的有机物质,例如葡萄糖、淀粉等,以供植物生长和运动的需要。
二、呼吸作用呼吸作用是指植物将有机物质转化为能量的过程。
与动物一样,植物也需要能量来进行生长、繁殖和维持生命活动等。
植物通过呼吸作用将葡萄糖等有机物质与氧气进行化学反应,生成二氧化碳和水,并释放出能量。
主要有以下几个特点:1.呼吸作用能够为植物提供所需的能量,维持其生命活动的正常进行。
2.呼吸作用是一种供能过程,这意味着呼吸作用是有损耗的,植物通过消耗有机物质来获取能量,因此需要进行光合作用来再生有机物质。
3.植物的呼吸作用不仅发生在夜间,而且在白天光合作用进行时也同时进行。
三、转化作用转化作用是指植物对外部刺激的响应和适应过程,包括光变性、温度变性、重力变性、水分变性等。
环境条件的变化会刺激植物产生生理和形态上的变化,以适应不同的生存环境。
主要有以下几个特点:1.植物能够通过转化作用对环境的变化作出响应,例如在强光下调整叶片的角度,以减少光照强度对叶片的伤害。
2.植物的转化作用可以通过细胞和基因的活动来发生,例如在寒冷条件下,植物的细胞会产生一种叫做抗冷蛋白的物质来提高其耐寒性。
3.转化作用还可以通过植物体内的调节机制来实现,例如植物会通过开启或关闭气孔来调节水分蒸腾,以适应不同的水分环境。
综上所述,植物的三大作用是光合作用、呼吸作用和转化作用。
光合作用与呼吸作用知识点总结
光合作用与呼吸作用知识点总结在生物学中,光合作用和呼吸作用是两个重要的生命活动过程。
它们在维持生命活动中起着至关重要的作用。
本文将对光合作用和呼吸作用的基本概念、过程及其重要性进行总结。
一、光合作用光合作用是植物和某些蓝藻菌、原生生物等光合有机体利用光能转化为化学能的过程。
光合作用主要包括光能捕获、光反应和暗反应三个过程。
1. 光能捕获:植物中的叶绿素能够吸收太阳光的能量,并且能够吸收特定波长的光,主要是蓝色和红色的光线。
这些光线被吸收后,能量会转化为植物细胞中的化学能。
2. 光反应:光反应发生在叶绿体的内膜系统中。
在这个过程中,光能转化为化学能。
通过光反应,光合有机体将光能转化为化学能,并生成氧气。
同时,还形成了一种高能化合物,即三磷酸腺苷(ATP)。
3. 暗反应:暗反应是在光反应的基础上进行的,主要发生在叶绿体的基质中。
在这个过程中,植物利用光合有机体在光反应过程中生成的ATP和NADPH,将二氧化碳和水转化为葡萄糖等有机物。
暗反应主要是卡尔文循环,通过一系列复杂的化学反应,最终合成出有机物。
光合作用不仅能够提供植物所需的能量,还能产生氧气,并且通过光合作用合成的有机物可以作为其他生物的食物来源。
二、呼吸作用呼吸作用是生物体将有机物氧化分解为二氧化碳和水,同时释放出能量的过程。
呼吸作用分为细胞内呼吸和细胞外呼吸两个阶段。
1. 细胞内呼吸:细胞内呼吸是在细胞的线粒体中进行的。
它由三个主要阶段组成:糖酵解、三羧酸循环和电子传递链。
在这个过程中,有机物如葡萄糖等被分解为二氧化碳和水,并且释放出大量的能量,在线粒体中生成较高能量的化合物ATP。
2. 细胞外呼吸:细胞外呼吸是细胞内呼吸的延伸,发生在细胞外组织。
在这个过程中,通过呼吸作用产生的能量被输送到全身各部分,供细胞进行生命活动所需的能量。
呼吸作用是所有生物体所共有的过程,它不仅在供能方面有重要作用,还在有机物的分解和合成过程中起着至关重要的调节作用。
高中生物呼吸作用和光合作用知识点
高中生物呼吸作用和光合作用知识点
高中生物呼吸作用和光合作用知识点
一、呼吸作用:
1、呼吸作用是指生物体维持正常的代谢过程中消耗氧、产生二氧化碳的一种作用。
2、呼吸作用的主要过程包括氧合作用、氧化还原反应和三碳(糖)酸循环。
3、氧合作用是指生物体在细胞内将氧与有机物的氢结合,产生水和活性碳酸根,放出能量的一种生物反应。
4、氧化还原反应是指在细胞内氧化有机物,消耗氧,释放能量的一种生物反应。
5、三碳酸循环是指在呼吸中水分子拆分,产生二氧化碳,消耗多种烃、酮和醛,放出能量的一种生物反应。
二、光合作用:
1、光合作用是指植物在光照作用下,将水分子拆分,同时将二氧化碳和水转化为有机物,释放出能量的一种重要生物作用。
2、光合作用的主要过程包括光捕猎反应,光补充反应,光水分解反应以及光照脱碳反应四个步骤。
3、光捕猎反应是指植物质细胞内的光合系统将外界的光能转换成生物的化学能的一种反应。
4、光补充反应是指植物利用光捕猎反应获得的光能,运用ATP 和NADPH将二氧化碳合成为有机物的一种反应。
5、光水分解反应是指植物利用光能将水分子拆分成氢和氧的一种反应。
6、光照脱碳反应是指植物利用光能把光合作用脱离反应和光补充反应产生的有机物,放出大量能量的一种反应。
高中生物必修1第五章重点知识整理(呼吸作用、光合作用)
高中生物必修1第五章重点知识整理(呼吸作用、光合作用)呼吸作用一、呼吸作用过程 1、有氧呼吸总反应式及物质转移: 2、无氧呼吸二、O 2浓度对细胞呼吸的影响★当CO 2释放总量最少时,生物呼吸作用最C 6H 2O+能量O 2浓度CO热能(内能) ATP 中活跃的化学弱,最宜存放。
—1—光与光合作用一、“绿叶中色素的提取和分离”实验中滤纸条上色素分布胡萝卜素:橙黄色叶黄素:黄色叶绿素a:蓝绿色叶绿素b:黄绿色叶绿体中的色素叶绿素类胡萝卜素叶绿素a(蓝绿色)叶绿素b(黄绿色)胡萝卜素(橙黄色)叶黄素(黄色)含量排名︓2主要吸收:主要吸收:二、光合作用过程总反应式:物质转移(以生成葡萄糖为例):三、光照和CO 2浓度变化对植物细胞内C 3、C 5、[H]、ATP 和O 2及(CH 2O)含量的影响CO 2+H 2O光能叶绿体四、专有名词辨析1、实际光合作用速率(强度):真正的光合作用强度。
2、净光合作用速率(强度):表现光合作用速率,可直接测得。
衡量量:O 2释放量、CO 2吸收量、有机物积累量。
3、呼吸作用速率:衡量量:O 2消耗量、CO 2产生量、有机物消耗量。
—2—五、环境因素对光合作用强度的影响 1、光照强度、光质对光合作用强度的影响2、CO 2浓度对光合作用强度的影响3、温度对光合速率的影响呼吸作用和光合作用关系(1)黑暗 (2)光合作用强度=呼吸作用强度—一、高中生物反应式CO 2 吸收 (O 2CO 2 释放 (O 2吸收CO 2放出CO 2O(3)光合作用强度﹥呼吸作用强度 CO 2✧ 光合作用产生的O 2—呼吸作用消1、光合作用2、有氧呼吸3、酒精发酵4、乳酸发酵5、醋酸发酵二、能产生水的细胞器:核糖体、线粒体、叶绿体(暗反应)、高尔基体(形成纤维素:单糖→多糖) 三、肝脏分泌胆汁,胆汁为消化液其中无消化酶,其消化方式为物理消化即:胆汁对脂肪颗粒起乳化作用。
四、寒冷时体温调节主要为 神经调节、体液调节 主要增加产热,减少散热。
完整版光合作用和呼吸作用知识点总结
完整版光合作用和呼吸作用知识点总结光合作用和呼吸作用是自然界中两个重要的生物化学过程。
光合作用是指植物通过光能将二氧化碳和水转化成有机物质,并释放出氧气的过程。
呼吸作用是指将有机物与氧气反应生成能量、二氧化碳和水的过程。
以下是对光合作用和呼吸作用的详细知识点总结:光合作用:1.光合作用发生在植物的叶绿体中的叶绿体膜上,主要包括光合光反应和暗反应两个阶段。
2.光合光反应是指在叶绿体的光合膜中,通过光能激发叶绿体色素分子,产生高能电子和氧气。
其中,光合色素主要有叶绿素a和叶绿素b。
3.光合光反应主要包括光能捕获、光化学传递和光合电子传递三个过程。
光能捕获是指光合色素分子吸收光能,激发电子跃迁到高能态。
光化学传递是指激发电子通过传递分子链,最终被载体分子接受。
光合电子传递是指高能电子在电子传递链上传递,最终用于合成有机物和生成ATP。
4.暗反应是指在光合作用中,光能转化成化学能,通过一系列酶催化的反应将二氧化碳转化成有机物质。
暗反应主要包括碳同化和C3和C4途径两个过程。
碳同化是指在植物叶片的叶绿体中,通过碳酸化作用将二氧化碳转化成碳水化合物。
C3和C4途径是植物通过不同的途径将二氧化碳转化成有机物质。
呼吸作用:1.呼吸作用是通过氧气氧化有机物质,释放出能量并生成二氧化碳和水的过程。
2.有氧呼吸是指在有氧条件下进行的呼吸作用,主要分为糖类有氧呼吸和脂类有氧呼吸。
糖类有氧呼吸是指糖类被氧化分解生成二氧化碳和水,并释放出能量。
脂类有氧呼吸是指脂类被氧化分解生成二氧化碳和水,并释放出更多的能量。
3.无氧呼吸是指在无氧条件下进行的呼吸作用,主要分为乳酸发酵和酒精发酵。
乳酸发酵是指在无氧条件下,糖类被氧化成乳酸。
酒精发酵是指在无氧条件下,糖类被氧化成乙醇和二氧化碳。
4.呼吸作用主要发生在细胞的线粒体中,包括三个步骤:糖分解、三羧酸循环和呼吸链。
糖分解是指糖类被分解成丙酮酸,进而通过三羧酸循环生成能量分子ATP。
呼吸作用和光合作用的知识框架
呼吸作用和光合作用的知识框架引言生物体中的呼吸作用和光合作用是两种基本的生命现象,它们在生态系统中起着至关重要的作用。
本文将对呼吸作用和光合作用的定义、特点、区别和重要性进行详细介绍,帮助读者建立起对这两种生命现象的清晰认识。
呼吸作用的定义呼吸作用是生物体利用氧气和有机物产生能量的过程,包括有氧呼吸和无氧呼吸两种方式。
在有氧呼吸过程中,有机物在氧气的存在下被氧化,产生大量的能量和二氧化碳。
而无氧呼吸则是在氧气缺乏的条件下进行,产生的能量相对较少。
呼吸作用的特点•呼吸作用是一种生物体内在的代谢过程,确保生物体能够获取所需的能量。
•有氧呼吸是最主要的呼吸过程,能够产生大量的能量供生物体使用。
•无氧呼吸虽然效率较低,但在某些特殊环境下也能为生物体提供能量。
光合作用的定义光合作用是植物利用光能合成有机物的过程,是生物体中唯一能够自主合成有机物的途径。
光合作用通过光合色素吸收光能,将二氧化碳和水转化为葡萄糖和氧气。
光合作用的特点•光合作用是植物、藻类等光合生物独有的代谢过程,形成了整个生态系统中重要的能量转换环节。
•光合作用产生的氧气是维持地球氧气含量平衡的重要来源。
•光合作用生成的有机物可以为生物体提供能量和构建细胞组织。
呼吸作用和光合作用的区别•呼吸作用是消耗有机物和氧气,产生二氧化碳和水,释放能量;而光合作用则是消耗二氧化碳和水,产生有机物和氧气,吸收能量。
•呼吸作用是将有机物中的化学能转化为细胞内的三磷酸腺苷(ATP)分子,以供细胞代谢活动使用;光合作用则是将太阳能转化为化学能,以合成有机物为目的。
•呼吸作用是发生在所有生物体细胞中的代谢过程,而光合作用主要发生在植物、藻类等光合生物的叶绿素细胞中。
呼吸作用和光合作用在生态系统中的重要性呼吸作用和光合作用是生态系统中重要的能量转换过程。
呼吸作用通过有机物的氧化释放能量,维持生物体的代谢活动;光合作用通过合成有机物,为整个生态系统提供能源和构建材料。
光合作用与呼吸作用知识点
光合作用与呼吸作用知识点光合作用和呼吸作用是生物体中两个非常重要的代谢过程。
它们在维持生物体能量平衡和物质转化方面起着关键的作用。
本文将介绍光合作用和呼吸作用的基本概念、作用过程和相关知识点。
一、光合作用的基本概念和作用过程光合作用是绿色植物、藻类和一些细菌等光合生物利用光能将二氧化碳和水转化为有机物质和氧气的过程。
它是地球上所有生物的能量来源,同时还能够产生氧气,维持氧气含量的平衡。
光合作用的过程包括两个阶段:光依赖反应和暗反应。
光依赖反应发生在叶绿体的光合膜上,其中叶绿素吸收太阳能量,在光合色素系统中产生高能电子。
这些电子经过一系列传递过程,最终在光化学反应中用来还原辅酶NADP+,将二氧化碳还原成有机物质。
暗反应发生在叶绿体基质中,利用经光依赖反应产生的高能物质ATP和NADPH,将二氧化碳和水合成为葡萄糖等有机物质。
暗反应的过程又称为Calvin循环,其中包括碳固定、还原和再生三个阶段。
最终,光合作用产生的有机物质可以被植物用于生长和代谢,并释放出氧气。
光合作用的一些关键知识点包括:光合作用方程式(光合作用反应的化学方程式)、光合作用与温度、光合作用的物质参与和影响因素等。
二、呼吸作用的基本概念和作用过程呼吸作用是指所有生物体内将有机物质氧化分解为二氧化碳和水,并释放能量的过程。
呼吸作用是生物细胞的基本能量供应来源,可分为有氧呼吸和无氧呼吸两种形式。
有氧呼吸是指在氧气存在的条件下,将有机物质完全氧化分解为二氧化碳、水和能量的过程。
有氧呼吸主要发生在线粒体内,包括三个主要步骤:糖酵解、三羧酸循环和氧化磷酸化。
无氧呼吸是指在缺氧或氧气供应有限的条件下,将有机物质转化为能量的过程。
无氧呼吸可以分为乳酸发酵和酒精发酵两种形式。
乳酸发酵主要发生在动物肌肉细胞中,产生乳酸和少量能量。
酒精发酵则主要发生在酵母等微生物中,产生乙醇和少量能量。
呼吸作用的一些关键知识点包括:呼吸作用方程式(呼吸作用反应的化学方程式)、呼吸作用与能量释放、呼吸作用与发酵、呼吸作用的物质参与和调控等。
高中生物光合作用与呼吸作用关系知识点总结
高中生物光合作用与呼吸作用关系知识点总结高中生物学中,光合作用与呼吸作用是两个极为重要且紧密相关的概念。
本文将就这两个知识点进行总结,并探讨其关系。
一、光合作用光合作用是指植物在光的作用下,将水和二氧化碳转化为光合产物和氧气的生物化学反应。
主要发生在光合细胞器——叶绿体中的叶绿体基质和补体中的相关蛋白质上。
光合作用可以分为光合产生与光合消耗两个过程。
1. 光合产生:光合产生指的是植物通过光合作用产生的能量和养分。
在光合细胞器中,光能被叶绿素吸收后,通过一系列复杂的化学反应,光能转化为化学能,进而合成光合产物葡萄糖和氧气。
葡萄糖作为植物的营养物质,经过转化和运输,可以被植物其他部位使用。
2. 光合消耗:光合消耗指的是光合作用过程中消耗的物质和能量。
光合消耗主要包括水的分解、二氧化碳的固定和能量的耗散。
光合作用将水分解成氢离子和氧气,同时将二氧化碳还原为葡萄糖。
在这一过程中,能量被消耗,化学反应负责消耗这些物质和能量。
二、呼吸作用呼吸作用是指生物体将有机物(如葡萄糖)与氧气反应,释放出能量,并将产生的二氧化碳和水排出体外的生物化学过程。
呼吸作用主要发生在细胞质和线粒体中。
呼吸作用可以分为三个阶段:糖解、Krebs循环和氧化磷酸化。
1. 糖解:糖解是指葡萄糖分子被分解成较小的分子,同时释放出少量的能量。
糖解分为两种方式:无氧糖解和有氧糖解。
在无氧糖解中,葡萄糖在缺氧的条件下,分解成乳酸或酒精,并释放能量。
而有氧糖解则是在充氧条件下,葡萄糖分解为二氧化碳和水,并释放大量能量。
2. Krebs循环:Krebs循环是指糖解产物通过一系列化学反应,进一步分解为二氧化碳和水,并释放出更多的能量。
这一过程主要发生在线粒体的基质中。
3. 氧化磷酸化:氧化磷酸化是呼吸作用最后一个阶段,也是最重要的阶段。
在此过程中,通过一系列复杂的化学反应,将之前产生的能量最大限度地释放出来,并以三磷酸腺苷(ATP)的形式储存起来。
氧化磷酸化发生在线粒体内的内膜上,主要靠细胞色素等蛋白质的参与完成。
光合作用和呼吸作用知识点总结
光合作用和呼吸作用知识点总结
1. 光合作用
光合作用是植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。
下面
是光合作用的主要知识点:
•光合作用的位置:光合作用主要发生在叶绿体内的叶片细胞中。
•光合作用的作用:光合作用是植物生长的能量来源,也是氧气的主要产生者。
•光合作用的公式:光合作用的化学方程式为:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2。
•光合作用的阶段:光合作用可分为光反应和暗反应两个阶段。
•光合作用的影响因素:光强、温度、二氧化碳浓度等因素都会影响光合作用的速率。
2. 呼吸作用
呼吸作用是生物将有机物质分解为能量的过程,同时释放出二氧化碳和水。
以
下是呼吸作用的主要知识点:
•呼吸作用的位置:呼吸作用发生在细胞的线粒体内。
•呼吸作用的作用:呼吸作用是维持生物体生命活动所需的能量来源。
•呼吸作用的公式:呼吸作用的化学方程式为:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量。
•呼吸作用的类型:呼吸作用分为有氧呼吸和无氧呼吸两种类型。
•呼吸作用与光合作用的关系:呼吸作用产生的二氧化碳是光合作用的原料,两者形成了生物体的气体交换循环。
总的来说,光合作用和呼吸作用是植物生长和生命活动中至关重要的过程,二
者相辅相成,在生物体内形成了能量和物质循环。
深入了解光合作用和呼吸作用对于理解植物生长和生态系统运转具有重要意义。
光合与呼吸作用知识点
光合与呼吸作用知识点一、光合作用。
(一)概念。
绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。
(二)反应式。
1. 总反应式。
- 6CO_2+12H_2O→(光能, 叶绿体)C_6H_12O_6+6H_2O + 6O_22. 分步反应式(光反应和暗反应)- 光反应。
- 场所:叶绿体的类囊体薄膜上。
- 物质变化:- 水的光解:2H_2O→(光能, )4[H]+O_2- ATP的合成:ADP + Pi+能量→(酶, )ATP(这里的能量来自光能)- 能量变化:光能转化为ATP中活跃的化学能。
- 暗反应(卡尔文循环)- 场所:叶绿体基质。
- 物质变化:- CO_2的固定:CO_2+C_5→(酶, )2C_3- C_3的还原:2C_3+[H]→(ATP、酶, )(CH_2O)+C_5- 能量变化:ATP中活跃的化学能转化为有机物中稳定的化学能。
(三)影响光合作用的因素。
1. 光照强度。
- 在一定范围内,光合速率随光照强度的增加而加快。
当光照强度达到一定值时,光合速率不再增加,此时的光照强度称为光饱和点。
- 光照强度较低时,光合速率也较低,此时的光照强度称为光补偿点,此时植物光合作用吸收的CO_2量与呼吸作用释放的CO_2量相等。
2. 温度。
- 温度通过影响酶的活性来影响光合作用。
不同植物光合作用的最适温度不同。
- 在最适温度之前,光合速率随温度升高而加快;超过最适温度,光合速率随温度升高而下降。
3. CO_2浓度。
- 在一定范围内,光合速率随CO_2浓度的增加而加快。
当CO_2浓度达到一定值时,光合速率不再增加,此CO_2浓度称为CO_2饱和点。
- CO_2浓度较低时,光合速率较低,CO_2补偿点是指植物光合作用吸收的CO_2量与呼吸作用释放的CO_2量相等时的CO_2浓度。
4. 水分。
- 水是光合作用的原料之一,缺水会导致气孔关闭,CO_2进入叶肉细胞受阻,从而影响光合作用。
初中生物知识点解析光合作用与呼吸作用
初中生物知识点解析光合作用与呼吸作用初中生物知识点解析:光合作用与呼吸作用光合作用与呼吸作用是生物学中非常重要的概念。
它们分别发生在植物和动物身上,对维持生命活动起着至关重要的作用。
本文将对光合作用与呼吸作用进行详细解析,以便初中生更好地理解这两个过程。
一、光合作用光合作用是植物通过光能将二氧化碳和水转化为有机物质的过程。
它是光合细胞器中的叶绿体内进行的。
光合作用由光合色素吸收光能、生成ATP和NADPH2以及产生氧气等步骤组成。
1. 叶绿体结构叶绿体是植物细胞中的一个重要器官,一般位于叶子的表皮细胞中。
它由叶绿素、葡萄糖等物质组成,具有包括内膜、外膜、基粒以及溶酶体等结构。
2. 光合作用的原理光合作用的原理是在叶绿体内,通过光合色素吸收太阳光的能量,以此提供反应所需的ATP和NADPH2。
在光合作用过程中,二氧化碳通过气孔进入植物体内,同时水分也被吸收。
3. 光合作用的步骤光合作用包括光能的吸收、光能的转化、ATP的合成和NADPH2的合成等步骤。
其中,光合作用的第一步是植物吸收光能,通过光合色素,绿叶表面主要的绿色素是叶绿素a,能吸收紫外光和蓝色光,而不吸收绿色光,所以给人一种绿色。
二、呼吸作用呼吸作用是生物体利用有机物分解供能的过程,通过氧化有机物质释放出能量,并将能量转化为ATP。
同时,呼吸作用还能够产生二氧化碳和水。
1. 呼吸作用的类型呼吸作用分为有氧呼吸和无氧呼吸两种类型。
有氧呼吸需要氧气的参与,是一种高效能量的产生方式。
而无氧呼吸则是在缺氧的环境中进行,产生的能量较少。
2. 呼吸作用的过程呼吸作用主要由三个步骤组成:糖酵解、卡恩循环及氧化磷酸化。
在这个过程中,有机物质在细胞质内被分解成二氧化碳和水,最终释放出能量。
3. 呼吸作用与光合作用的关系呼吸作用与光合作用形成了一个动态平衡。
光合作用产生的有机物可通过呼吸作用的分解释放能量,从而维持生物体的正常生命活动。
综上所述,光合作用与呼吸作用是生物体中重要的能量代谢过程。
植物的光合作用和呼吸作用
植物的光合作用和呼吸作用植物是地球上最主要的生物类群之一,它们能够通过光合作用和呼吸作用维持自身的生命活动。
光合作用是植物通过光能转化为化学能的过程,呼吸作用则是植物通过氧气和有机物反应释放能量。
本文将详细介绍植物的光合作用和呼吸作用。
一、光合作用光合作用是植物利用光能合成有机物的过程,它是地球上能量的主要来源之一。
光合作用主要发生在植物的叶绿体中,它包括光能吸收、光能转化和有机物合成三个基本过程。
1. 光能吸收叶绿体中存在着一种绿色的色素叫叶绿素,它具有吸收光能的能力。
当光线照射到叶绿体时,叶绿素会吸收光能,并将其转化为植物所需的能量。
2. 光能转化在叶绿体中,光能转化为化学能的过程被称为光合反应。
光合反应包括光依赖反应和暗反应两个阶段。
光依赖反应发生在叶绿体的叶绿体内膜上。
在这个阶段,光能被叶绿素吸收后,产生高能电子和氧气。
高能电子经过一系列的传递和转化,最终被用于驱动ATP合成。
ATP是一种储存和释放能量的化合物,它在暗反应中扮演重要角色。
暗反应发生在叶绿体的基质中。
在这个阶段,植物利用光能转化来的ATP和高能电子,将二氧化碳和水转化为葡萄糖和氧气。
葡萄糖是植物的主要有机物之一,它可以被储存起来,用于植物的生长和代谢。
3. 有机物合成光合作用最终的产物是葡萄糖,但除了葡萄糖之外,植物还通过光合作用合成其他有机物,比如脂类、蛋白质和核酸等,这些有机物是构成植物细胞的基本成分。
二、呼吸作用呼吸作用是植物利用有机物和氧气产生能量的过程,它与动物的呼吸作用类似。
呼吸作用发生在植物的细胞中,它包括有机物分解和能量释放两个基本过程。
1. 有机物分解在呼吸作用中,植物的有机物(如葡萄糖)被分解成二氧化碳和水。
这个过程发生在植物的线粒体中,通过一系列的反应,有机物逐步被分解释放出能量。
2. 能量释放有机物的分解释放出的能量被用于驱动植物的生命活动。
植物利用这些能量进行细胞分裂、细胞生长、原物质运输等一系列生命活动,同时还能将多余的能量储存起来,以备不时之需。
植物的光合与呼吸作用知识点总结
植物的光合与呼吸作用知识点总结一、植物的光合作用光合作用是指植物利用光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的过程。
光合作用发生在植物的叶绿体中,主要包括光合色素吸收光能、光合电子传递、光合磷酸化和光合碳合成等过程。
1. 光合色素吸收光能:植物的叶绿体中含有多种光合色素,其中最重要的是叶绿素。
叶绿素能够吸收太阳光中的光能,然后将其转化为植物能够利用的化学能。
2. 光合电子传递:光合作用中,光能被光合色素吸收后,通过电子传递链的传递,光能转化为化学能。
在这个过程中,水分子被分解为氢离子和氧气。
3. 光合磷酸化:光合电子传递产生的能量被用于将ADP(腺苷二磷酸)和磷酸转化为ATP(三磷酸腺苷)。
这个过程称为光合磷酸化,它提供了植物合成有机物质所需的能量。
4. 光合碳合成:光合作用的最终产物是有机物质,主要是葡萄糖。
通过光合碳合成,植物将二氧化碳和水转化为葡萄糖。
这个过程需要光合色素、酶以及其他辅酶的参与。
二、植物的呼吸作用呼吸作用是指植物将有机物质分解为二氧化碳和水释放出能量的过程。
植物的呼吸作用有两种形式:细胞呼吸和植物器官呼吸。
1. 细胞呼吸:细胞呼吸是植物的细胞发生的呼吸作用。
它包括三个主要阶段:糖解(将葡萄糖分解为丙酮酸)、线粒体呼吸(将丙酮酸氧化为二氧化碳和水释放出能量)、氧化磷酸化(将释放的能量转化为ATP)。
细胞呼吸过程中产生的能量被用于植物的生长、维持生命等活动。
2. 植物器官呼吸:植物的根、茎、叶等器官也进行呼吸作用。
这种呼吸作用主要是指这些器官中的细胞进行呼吸产生的CO2释放。
通过呼吸,植物器官能够获得所需的能量,同时也释放出二氧化碳。
三、光合与呼吸的关系光合作用和呼吸作用是植物生命活动的两个重要过程。
它们之间存在一定的联系和互补关系。
1. 光合与呼吸的能量转化关系:光合作用吸收太阳能并将其转化为植物能够利用的化学能,提供了呼吸作用所需的能量(ATP)。
同时,呼吸作用中产生的二氧化碳也为光合作用提供原料。
植物的光合作用和呼吸作用
植物的光合作用和呼吸作用一、光合作用1.定义:光合作用是绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物(如淀粉),并且释放出氧的过程。
2.公式:二氧化碳 + 水→ 有机物(储存能量)+ 氧3.条件:光、叶绿体4.场所:含叶绿体的细胞5.光合作用的意义:a.完成物质转变:将无机物转变为有机物,为生物圈中的其他生物提供了食物来源,同时释放氧气供生物呼吸利用。
b.完成能量转变:将光能转变成化学能,是自然界中的能量源泉。
c.促进生物圈的碳氧平衡:消耗大气中的二氧化碳,释放氧气,维持生物圈中的二氧化碳和氧气的相对平衡。
二、呼吸作用1.定义:呼吸作用是细胞内的有机物在氧的参与下被分解成二氧化碳和水,同时释放出能量的过程。
2.公式:有机物 + 氧→ 二氧化碳 + 水 + 能量3.条件:所有活细胞,有光无光都要进行4.呼吸作用的实质:分解有机物,释放能量5.呼吸作用的意义:a.完成有机物的分解:释放出有机物中的能量,供生物体进行各项生命活动利用。
b.维持生物体的生命活动:呼吸作用释放的能量一部分用于生物体的生长、发育、繁殖等生命活动,一部分以热能的形式散失。
c.为其他化合物的合成提供原料:呼吸作用产生的二氧化碳和水,可作为光合作用的原料,维持生物圈中的碳氧平衡。
三、光合作用与呼吸作用的区别与联系a.场所:光合作用发生在含叶绿体的细胞,呼吸作用发生在所有活细胞。
b.条件:光合作用需要光,呼吸作用有光无光都能进行。
c.原料:光合作用吸收二氧化碳,释放氧气,呼吸作用吸收氧气,释放二氧化碳。
d.产物:光合作用产生有机物和氧气,呼吸作用产生二氧化碳和水。
e.能量:光合作用储存能量,呼吸作用释放能量。
f.光合作用和呼吸作用是相互对立、相互依存的过程。
g.光合作用储存的能量,在呼吸作用中释放出来,为生物体的生命活动提供能量。
h.光合作用和呼吸作用共同维持生物圈中的碳氧平衡。
习题及方法:1.习题:光合作用和呼吸作用的公式分别是什么?方法:回忆光合作用和呼吸作用的定义,写出它们的化学公式。
光合作用与呼吸作用的核心知识点总结
光合作用与呼吸作用的核心知识点总结光合作用和呼吸作用是生物体能量转化的两个重要过程。
光合作用是指植物利用光能将二氧化碳和水转化为葡萄糖和氧气的过程,而呼吸作用则是指生物体将有机物质分解为能量和废物的过程。
1. 光合作用光合作用发生在植物的叶绿体中,需要阳光、二氧化碳和水作为原料。
核心反应如下:6CO2 + 12H2O + 光能→ C6H12O6 + 6O2 + 6H2O其中,光能由叶绿素吸收,细胞色素系列是光合作用的关键组分。
在光合作用中,有两个阶段:光反应和暗反应。
光反应:发生在叶绿体的基质中,通过光合色素吸收光能分解水,产生氧气和高能化合物ATP、NADPH。
暗反应:发生在叶绿体的基质内和质体中,利用ATP和NADPH合成葡萄糖。
2. 呼吸作用呼吸作用是指生物体将有机物质通过氧气分解,产生能量和废物的过程。
呼吸作用可以分为有氧呼吸和无氧呼吸两种形式。
有氧呼吸:需要氧气参与的呼吸作用,发生在细胞的线粒体内。
核心反应如下:C6H12O6 + 6O2 → 6CO2 + 6H2O + 能量此过程由糖类分解、乙酸氧化和氧化磷酸化三个阶段组成,最终产生能量(ATP)和二氧化碳、水作为废物排出体外。
无氧呼吸:在没有氧气参与的情况下进行的呼吸作用,细菌和酵母等微生物可以通过无氧呼吸来产生能量。
3. 光合作用与呼吸作用的关系光合作用和呼吸作用在生态系统中相互关联,它们形成了碳的循环。
光合作用产生的葡萄糖被生物体利用进行呼吸作用,产生能量,并释放出二氧化碳和水。
这些二氧化碳和水再被植物利用进行光合作用,形成一个循环。
4. 光合作用和呼吸作用对生物体的重要性光合作用能够将太阳能转化为有机物质的能量,是维持地球生态平衡的基础。
呼吸作用则为生物体提供能量,维持各种生命活动的正常进行。
光合作用和呼吸作用的平衡对维持生态系统中的能量流动和物质循环起着重要作用。
光合作用能够减少大气中的二氧化碳含量,并释放出氧气,呼吸作用则利用氧气分解有机物质并产生能量。
光合作用与呼吸知识点总结
光合作用与呼吸知识点总结光合作用和呼吸是生物中两个重要的代谢过程,它们在能量转换和物质的吸收与释放方面起着关键作用。
本文将对光合作用和呼吸的知识点进行总结。
一、光合作用光合作用是指绿色植物和一些细菌利用太阳能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的过程。
光合作用可以概括为光能转化为化学能的过程。
1. 光合作用的方程式:光合作用的化学方程式为:光合作用可以分为光能转化为化学能的光反应和化学能转化为有机物质的暗反应两个阶段。
2. 光反应:光反应发生在叶绿体的光合体内,需要光能的输入。
在光反应中,光能被光合色素(如叶绿素)吸收,产生高能态电子,并在电子传递链的过程中释放能量。
最终,高能态电子被用来还原光合体内的载体分子,生成氧气。
3. 暗反应:暗反应发生在叶绿体的基质中,不需要光能的输入,但需要光反应产生的能量供应。
在暗反应中,二氧化碳被固定为有机物质,并通过一系列酶的催化转化为葡萄糖等有机物质。
4. 光合作用的调节因素:光合作用的速率受光强度、CO2浓度、温度和水分等因素的影响。
光合作用速率随着光强度的增加而增加,在一定范围内CO2浓度的增加对光合作用速率也有促进作用,适宜的温度和水分利于光合作用的进行。
二、呼吸作用呼吸是生物体内一种将有机物质分解为二氧化碳和水释放能量的过程。
呼吸作用常常被称为细胞呼吸或氧化作用。
1. 呼吸作用的方程式:呼吸作用的化学方程式为:呼吸作用可以分为有氧呼吸和无氧呼吸两种类型。
2. 有氧呼吸:有氧呼吸是在氧气存在的情况下进行的,将葡萄糖和其他有机物质完全氧化为二氧化碳和水,释放大量的能量。
有氧呼吸主要包括糖酵解、Krebs循环和氧化磷酸化三个阶段。
3. 无氧呼吸:无氧呼吸是在缺氧条件下进行的,产生乳酸或酒精和二氧化碳,并释放少量能量。
无氧呼吸主要包括乳酸发酵和酒精发酵两种类型。
4. 呼吸作用与光合作用的关系:呼吸作用和光合作用是互为补充的过程。
光合作用产生的有机物质供给生物体进行呼吸作用,同时呼吸作用产生的二氧化碳也供给光合作用进行固定。
初中植物光合作用呼吸作用知识点总结
植物光合作用呼吸作用知识点总结一、光合作用的概念及反应式1.光合作用的概念:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧的过程,就叫光合作用。
二氧化碳 +水有机物+气2.光合作用的原料、条件、产物、场所① 原料:二氧化碳+水③ 产物:有机物+氧② 条件:光能④场所:叶绿体中二、光合作用的意义:1. 光合作用的意义①构建植物体 ②养育了生物圈中的其他生物2. 制造的有机物为自身提供营养物质,也是动物和人的食物来源3. 有机物中储存的能量,是地球上一切生命所必需的最终能量来源。
4. 产生氧气,吸收二氧化碳,维持生物圈中氧气和二氧化碳的平衡(碳--氧平衡)。
5.其他(1)从细胞水平看:细胞壁—— 纤维素,细胞膜—— 蛋白质和脂质,细胞核—— DNA 。
光叶绿体三、实验:绿叶在光下制造有机物1.为什么要把天竺葵放在黑暗处一昼夜?消耗掉植物原有的淀粉。
2.为什么要用黑纸片把叶片的一部分遮盖起来 ?提供遮光和光照两种环境,形成对照。
3.绿色植物制造的有机物是什么? 淀粉4.见光(实验) 摘取一个叶片放在培养皿中,滴加碘液,观察叶片颜色:变蓝。
5..如何加快酒精溶解叶绿素的速度? 加热能直接加热吗? 不能为什么?6.请把“绿叶在光下制造有机物”的实验步骤排序。
D---C---E---B---A---F 。
A.将叶片放在酒精中,隔水加热(水浴加热)B.摘取叶片C.设计对照实验并做遮光处理D.在黑暗处放置一昼夜E.移到阳光下照射几小时F.冲洗叶片,滴加碘液注意:①酒精易燃,不可直接在酒精灯上加热;不可用燃着的酒精灯去给另一个酒精灯点火。
②加热时应用酒精灯的外焰;熄灭酒精灯时应用灯帽盖灭,然后再将灯帽提起一下。
③酒精灯不用时应及时熄灭,盖好灯帽,以免酒精挥发。
7.实验说明题(1) 叶片见光部分遇碘液变蓝,说明叶片见光部分产生什么? 淀粉,这说明了(2) 叶片遮光部分遇到碘液不变色,说明什么? 无淀粉,说明什么是光合作用(3)银边天竺葵叶片银边部分遇碘液变成蓝色了吗? 不变蓝,为什么? 无叶绿四、绿色植物与生物圈中的碳—氧平衡2.光合作用在农业生产上的应用:①增加光照强度,延长光照时间时间,合理密植。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合作用和呼吸作用学案考试大纲解读重难点突破一、酶1、酶的化学本质及作用酶是活细胞产生的具有催化作用的有机物,绝大多数酶是蛋白质,少数酶是RNA①酶未必都是蛋白质;未必均能与双缩脲试剂发生紫色反应;其合成原料未必都是氨基酸;其合成场所未必都是核糖体②酶未必只在细胞内发挥作用(如消化酶)③酶一定只能起催化作用(无其他功能)2、酶的特性⑴.高效性:酶的催化效率大约是无机催化剂的107~1013倍。
⑵.专一性:每一种酶只能催化一种或一类化学反应。
⑶.作用条件较温和①最适pH和温度下,酶活性最高,温度和pH偏高或偏低,酶活性都会明显降低。
②过酸、过碱或高温下,酶失活。
3、与酶有关的实验设计探索酶的适宜温度(或pH) 温度(或pH)梯度下的同一温度(或pH)处理后的底物和酶混合底物的分解速度或底物的剩余量二.与酶有关的曲线分析1.表示酶高效性的曲线分析:(1)催化剂可加快化学反应速率,与无机催化剂相比,酶的催化效率更高。
(2)酶只能缩短达到化学平衡所需时间,不改变化学反应的平衡点2.表示酶专一性的曲线分析:加入酶B的反应速率与无酶A或空白对照条件下的反应速率相同,而加入酶A的反应速率随反应物浓度增大明显加快,说明酶B对此反应无催化作用。
进而说明酶具有专一性。
3.影响酶活性的曲线分析:(1)甲、乙曲线表明:①在一定温度(pH)范围内,随温度(pH)的升高,酶的催化作用增强,超过这一范围,酶的催化作用逐渐减弱。
②过酸、过碱、高温都会使酶失活,而低温只是抑制酶的活性,酶分子结构未被破坏,温度升高可恢复活性。
(2)从丙图可以看出:反应溶液pH的变化不影响酶作用的最适温度。
4.底物浓度和酶浓度对酶促反应的影响分析:(1)在其他条件适宜,酶量一定条件下,酶促反应速率随底物浓度增加而加快,但当底物达到一定浓度后,受酶数量和酶活性限制,酶促反应速率不再增加。
(2)在底物充足,其他条件适宜的条件下,酶促反应速率与酶浓度成正比。
二、细胞的能量通货——ATP1.ATP的结构和功能(1) ATP分子结构简式ATP是三磷酸腺苷的英文名称缩写,其结构简式是A—P~P~P,(远离腺苷A的那个高能磷酸键容易断裂,也容易形成)各字母代表的含义:A——腺苷(腺嘌呤+核糖);P——磷酸基团;~——高能磷酸键。
(2) ATP的功能:细胞内的一种高能磷酸化合物,直接给细胞生命活动提供能量2.ATP与ADP的相互转化⑴A TP与ADP的相互转化三、 ATP的主要来源----细胞呼吸1、有氧呼吸和无氧呼吸过程对比2、反应式对比3、影响细胞呼吸的因素影响呼吸作用的因素有温度、氧气浓度、二氧化碳浓度、含水量等,其中主要是温度。
现在简单谈谈这些因素的影响及其在生产实践中的应用。
1. 温度呼吸作用在最适温度(25℃~35℃)时最强;超过最适温度,呼吸酶活性降低甚至变性失活,呼吸作用受抑制;低于最适温度,酶活性下降,呼吸作用受抑制。
生产上常利用这一原理在低温下储存蔬菜、水果。
在大棚蔬菜的栽培过程中夜间适当降温,抑制呼吸作用,减少有机物的消耗,可达到提高产量的目的。
2. 氧气浓度在氧气浓度为零时,只进行无氧呼吸;氧气浓度为10%以下时,既进行有氧呼吸,又进行无氧呼吸;氧气浓度为10%以上时,只进行有氧呼吸。
生活中常利用降低氧气浓度能抑制呼吸作用,减少有机物消耗这一原理来延长蔬菜水果的保鲜时间。
但是,在完全无氧的情况下,无氧呼吸强,分解的有机物也较多,一样不利于蔬菜水果的保质、保鲜,所以一般采用低氧(5%)保存,此时有氧呼吸较弱,而无氧呼吸又受到抑制。
无土栽培通入空气,农耕松土等都是为了增加氧气的含量,加强根部的有氧呼吸,保证能量供应,促进矿质元素的吸收。
3. 二氧化碳浓度CO2是呼吸作用产生的,从化学平衡角度分析,CO2浓度增加,呼吸速率下降。
在密闭的地窖中,氧气浓度低,CO2浓度较高,抑制细胞的呼吸作用,使整个器官的代谢水平降低,有利于保存蔬菜水果。
4. 含水量呼吸作用的各种化学反应都是在水中进行的,自由水含量增加,代谢加强。
粮油种子的贮藏,必须降低含水量,使种子处于风干状态,从而使呼吸作用降至最低,以减少有机物消耗。
如果种子含水量过高,呼吸作用加强,使贮藏的种子堆中温度上升,反过来又进一步促进种子的呼吸作用,使种子的品质变坏。
四、光合作用1.光合作用的过程分析4、分析:光照与CO 2浓度变化对植物细胞内C 3、C5、[H]、A TP 、C 6H 12O 6合成量的影响当外界因素中光照强弱、CO 2浓度骤然变化时,短时间内将直接影响光合作用过程中C 3、C 5、[H]、ATP 及C 6H 12O 6生成量,进而影响叶肉细胞中这些物质的含量,它们的关系归纳如下:(1)⎩⎪⎨⎪⎧光照强→弱CO 2供应不变――→光反应减弱⎩⎪⎨⎪⎧[H]减少ATP 减少――→暗反应 ⎩⎪⎨⎪⎧C 3还原减弱CO 2固定仍正常进行―→⎩⎪⎨⎪⎧C 3含量上升C 5含量下降―→(CH 2O )合成量 减少即:停止光照(强→弱)时,[H]↓,ATP↓,C 3↑,C 5↓,(CH 2O)↓。
(2)同理:突然增强光照时,[H]↑,ATP↑,C 3↓,C 5↑,(CH 2O)↑。
(3)⎩⎪⎨⎪⎧光照不变减少CO 2供应――→暗反应⎩⎪⎨⎪⎧CO 2固定减弱C 3还原仍正常进行―→ ⎩⎪⎨⎪⎧C 3含量下降C 5含量上升―→⎩⎪⎨⎪⎧[H]相对增加ATP 相对增加―→(CH 2O )合成量相对 减少 即:停止(减少)CO 2供应时,C 3↓,C 5↑,[H]↑,ATP↑,(CH 2O)↓。
(4)同理:突然增加CO 2供应时,C 3↑,C 5↓,[H]↓,A TP↓,(CH 2O)↑。
五、影响光合作用的环境因素及其在生产上的应用(一)内部因素对光合作用速率的影响 1.同一植物的不同生长发育阶段曲线分析:在外界条件相同的情况下,光合作用速率由弱到强依次是幼苗期、营养生长期、开花期。
应用:根据植物在不同生长发育阶段光合作用速率不同,适时、适量地提供水肥及其他环境条件,以使植物茁壮成长。
2.同一叶片的不同生长发育时期曲线分析:随幼叶发育为壮叶,叶面积增大,叶绿素含量不断增加,光合速率增大;老叶内叶绿素被破坏,光合速率随之下降。
应用:农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理,可降低其细胞呼吸消耗的有机物。
(二)单因子变量对光合作用的影响(外界因素) 1.光照——光合作用的动力①光照时间越长,产生的光合产物越多。
②光质,由于色素吸收可见光中的红光和蓝紫光最多,吸收绿光最少,故不同波长的光对光合作用的影响不一样,建温室时,选用无色透明的的玻璃(或塑料薄膜)做顶棚,能提高光能利用率。
③光照强度:在一定光照强度范围内,增加光照强度可提高光合作用速率。
曲线分析:A点。
A点光照强度为0,此时只进行细胞呼吸,释放CO2量表示此时的呼吸强度。
AB段表明光照强度加强,光合作用速率逐渐加强,CO2的释放量逐渐减少,有一部分用于光合作用;而到B点时,细胞呼吸释放的CO2全部用于光合作用,即光合作用强度=细胞呼吸强度,B点对应的光照强度称为光补偿点。
BC段表明随着光照强度不断加强,光合作用强度不断加强,到C点以上不再加强了。
C点对应的光照强度称为光饱和点。
应用:阴生植物的光补偿点和光饱和点比较低,如上图虚线所示。
间作套种时农作物的种类搭配,林带树种的配置,冬季温室栽培避免高温等都与光补偿点有关。
外界条件变化时,CO2(光)补偿点移动规律:①呼吸速率增加,CO2(光)补偿点右移呼吸速率减小,CO2(光)补偿点左移②呼吸速率基本不变,条件的改变使光合速率下降,CO2(光)补偿点右移;条件的改变使光合速率上升时,CO2(光)补偿点左移2.光照面积曲线分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点。
随叶面积的增大,光合作用强度不再增加,原因是有很多叶被遮挡,光照不足。
OB段表明干物质量随光合作用增加而增加,而由于A点以后光合作用强度不再增加,但叶片随叶面积的不断增加,呼吸量(OC段)不断增加,所以干物质积累量不断降低(BC段)。
应用:适当间苗、修剪,合理施肥、浇水,避免徒长。
封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。
3.CO2浓度曲线分析:图1中A点表示光合作用速率等于细胞呼吸速率时的CO2浓度,即CO2补偿点图2中的A′点表示进行光合作用所需CO2的最低浓度。
两图中的B和B′点都表示CO2饱和点,两图都表示在一定范围内,光合作用速率随CO2浓度增加而增大。
应用:大田要“正其行,通其风”,多施有机肥;温室内可适当补充CO2,即适当提高CO2浓度可提高农作物产量。
4.必需矿质元素曲线分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合作用速率,但当超过一定浓度后,会因土壤溶液浓度过高而导致植物光合作用速率下降。
应用:在农业生产上,根据植物的需肥规律,适时、适量地增施肥料,可以提高作物的光能利用率。
5.温度曲线分析:温度主要是通过影响影响与光合作用有关酶的活性而影响光合作用速率。
应用:冬天,温室栽培可适当提高温度;夏天,温室栽培可适当降低温度。
白天调到光合作用最适温度,以提高光合作用速率;晚上适当降低温室温度,以降低细胞呼吸速率,保证植物有机物的积累。
(三)多因子变量对光合作用速率影响的分析(外界因素)曲线分析:P点时,限制光合速率的因素应为横坐标所表示的因子,随其因子的不断加强,光合速率不断提高。
当到Q点时,横坐标所表示的因素不再是影响光合速率的因子,要想提高光合速率,可采取适当提高图示中的其他因子的方法。
应用:温室栽培时,在一定光照强度下白天适当提高温度,增加光合作用酶的活性,提高光合速率,也可同时充入适量的CO2,进一步提高光合速率,当温度适宜时,要适当提高光照强度和CO2浓度以提高光合速率。
总之,可根据具体情况,通过提高光照强度、调节温度或增加CO2浓度等来充分提高光合速率,以达到增产的目的。
适当提高光照强度和CO2浓度以提高光合速率。
易错易混点3、光合作用与呼吸作用的区别4、光合作用和呼吸作用在[H]和ATP方面比较。