2022年上海市青浦区九年级中考二模 数学 试题(学生版+解析版)

合集下载

2022年中考二模考试《数学试题》含答案解析

2022年中考二模考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各数中最大的数是( )A. 5B. 3C. πD. -82.随着”一带一路”建设不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×1073.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.5.下列计算正确是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y26.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPDA. 162°B. 152°C. 142°D. 128°9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x<2时,y随x增大而增大B. a-b+c<0C. 拋物线过点(-4,0)D. 4a+b=0二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA度数是_____度.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD =16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣227.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.S.(1)求抛物线的解析式; (2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件点N.答案与解析一.选择题(共10小题)1.下列各数中最大数是( )A. 5B. 3C. πD. -8【答案】A【解析】试题分析:因为-8<3<<5,所以最大的数是5,故选A.考点:实数的大小比较.2.随着”一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000 吨,将8200000 用科学记数法表示为( )A. 8.2×105B. 82×105C. 8.2×106D. 82×107【答案】C【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| < 10|)的记数法. 【详解】8200000 用科学记数法表示为8.2×106.故选C【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法的定义.3.如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4. 不等式x+1≥2的解集在数轴上表示正确的是( )A. B. C. D.【答案】A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.5.下列计算正确的是( )A. x4+x4=2x8B. x3·x2=x6C. (x2y)3=x6y3D. (x-y)(y-x)=x2-y2【答案】C【解析】试题分析:选项A,根据合并同类项法则可得x4+x4=2x4,故错误;选项B,根据同底数幂的乘法可得x3•x2=x5,故错误;选项C,根据积的乘方可得(x2y)3=x6y3,故正确;选项D,根据平方差公式(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故错误;故答案选C.考点:整式运算.6.点P(4,3)关于y轴的对称点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【详解】解:点P(4,3)关于y轴的对称点坐标为:(﹣4,3),则此点在第二象限.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确把握横纵坐标的关系是解题关键.7.已知点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,则y1,y2的大小关系( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定【答案】B【解析】【分析】直接利用反比例函数的增减性分析得出答案.【详解】解:∵反比例函数y=kx(k>0)中,k>0,∴在每个象限内,y随x的增大而减小,∵点A(﹣2,y1),B(﹣4,y2)都在反比例函数y=kx(k>0)的图象上,且﹣2>﹣4∴y1<y2,故选:B.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.8.如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD 为( )A. 162°B. 152°C. 142°D. 128°【答案】C【解析】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选C.9.某同学5次数学小测验的成绩分别为(单位:分):90,85,90,95,100,则该同学这5次成绩的众数是( )A. 90 分B. 85 分C. 95 分D. 100 分【答案】A【解析】【分析】 根据众数的定义即可解决问题.【详解】解:这组数据中90出现了两次,次数最多,所以这组数据的众数为90分.故选:A .【点睛】本题考查众数的定义,解题的关键是记住众数的定义.10.已知抛物线y =ax 2+bx +c (a≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是( )A. 当x <2时,y 随x 增大而增大B. a -b +c <0C. 拋物线过点(-4,0)D. 4a +b =0【答案】D【解析】【分析】 根据二次函数的性质以及图象对各项进行判断即可.【详解】A. 对称轴为直线x =2,根据二次函数的增减性可得,当x <2时,y 随x 增大而减小,错误;B. 对称轴为直线x =2,与x 轴一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),故当x=-1,0y a b c =>-+,错误;C. 对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),可得x 轴的另一个交点坐标为(0,0),且抛物线与x 轴有且只有两个交点,错误;D. 对称轴为直线x =2,可得22b a-=,即4a +b =0,正确; 故答案为:D .【点睛】本题考查了二次函数的问题,掌握二次函数的性质以及图象是解题的关键. 二.填空题(共6小题)11.分解因式:x4﹣2x2y2+y4=_____.【答案】(x+y)2(x﹣y)2【解析】【分析】直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【详解】x4−2x2y2+y4=(x2−y2)2=(x+y)2(x−y)2.故答案为(x+y)2(x−y)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.12.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.【答案】8 5【解析】【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【详解】解:根据勾股定理得:AC22345,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:85.【点睛】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.【答案】67.5.【解析】【分析】根据正方形的性质可得∠BAC=45°,由AE=AB根据等腰三角形的性质进行求解即可得. 【详解】∵四边形ABCD是正方形,∴∠BAD=90°,∵AC是对角线,∴∠BAC=12∠BAD=45°,∵AE=AB,∴∠BEA=(180°-∠BAC)÷2=67.5°,故答案为67.5.【点睛】本题考查了正方形的性质、等腰三角形的性质等,熟练掌握正方形的性质是解题的关键.14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.【答案】0.3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.15.如图:AB是⊙O的直径,C是⊙O上的一点,∠BAC的平分线交⊙O于D,若∠ABC = 400,则∠ABD = _________0【答案】65【解析】根据直径所对圆周角是直角可得: ∠ACB=90°,∠ADB=90°,因为∠ABC = 40°,所以∠BAC=90°-40°=50°,因为AD平分∠BAC,所以∠BAD=50÷2=25°,所以∠ABD=90°-25°=65°,故答案为65°.16.如图,在矩形ABCD中,AB=4,BC=6,将△ABE沿着AE折叠至△AB'E,若BE=CE,连接B'C,则B′C 的长为_____.【答案】18 5【解析】【分析】由折叠的性质可得S△ABE=S△AB'E,BE=B'E,可证∠BB'C=90°,由勾股定理可求AE的长,由面积法可求BB'的长,由勾股定理可求解.【详解】解:∵将△ABE沿着AE折叠至△AB'E,∴S△ABE=S△AB'E,BE=B'E,∵BE=CE,∴BE=EC=B'E=3,∴∠BB'C=90°,在Rt△ABE中,AE22AB BE+916+5,∵12×AE×BB'=2×12×AB×BE,∴BB'=2435⨯⨯=245,∴B'C22BC B B'-5763625-=185,故答案为:185.【点睛】本题考查了矩形的性质,折叠的性质,求出BB'的长是本题的关键.三.解答题(共9小题)17.(π﹣3.14)0+|tan60°﹣3|﹣(13)﹣2+27.【答案】235-【解析】【分析】直接利用特殊角三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.【详解】解:原式═1+3﹣3933-+=235-.【点睛】本题考查了实数的运算:包含了零指数幂、负整数指数幂、特殊角的三角函数值和去绝对值.18.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.19.某中学为了提高学生的综合素质,成立了以下社团A:机器人,B:围棋,C:羽毛球,D:电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团.【答案】(1)200(2)60(3)300【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,可求得这次被调查的学生数;(2)首先求得C项目对应人数,然后补全统计图即可;(3)用该校1000学生数×参加了羽毛球社团的人数所占的百分比即可得到结论.【详解】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人); 补充条形统计图如下图:(3)1000×60200=300(人),答:这1000名学生中有300人参加了羽毛球社团.【点睛】题考查的是条形统计图与扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.扇形统计图直接反映部分占总体的百分比大小.20. 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.【答案】(1)证明见解析(2)四边形ABCD是矩形;理由见解析【解析】试题分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用”角角边”证明△AED和△CFB全等即可;(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.考点:全等三角形的判定与性质;矩形的判定.21.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?【答案】慢车速度为50千米/小时,快车速度为60千米/小时【解析】【分析】设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意列方程即可得到结论.【详解】解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得150x﹣12=1501.2x,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.【点睛】本题考查了分式方程的应用,正确的理解题意是解题的关键.22.如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.【答案】(1)见解析;(2)MN=2.【解析】【分析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN=22=22.DM DN【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.23.如图,平面直角坐标系中,直线y33A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,0);(2)S=23(023)23(23)t tt t⎧<⎪⎨-⎪⎩;(3)存在,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0)【解析】【分析】(1)求出A,B两点的坐标,求出AB=2,则OC可求出,则点C的坐标可求出;(2)先求出∠ABC=90°,分两种情况考虑:当M在线段BC上;当M在线段BC延长线上;表示出BM,利用三角形面积公式分别表示出S与t的函数关系式即可;(3)点P是y轴上的点,在坐标平面内存在点Q,使以A、B、P、Q为顶点的四边形是菱形,如图所示,利用菱形的性质,根据AQ与y轴平行或垂直,求出满足题意Q得坐标即可.【详解】解:(1)对于直线y33当y=0 时,33x=0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y3∴B(03,∴OB3∵∠AOB=90°,∴AB2200A B+13+2,∵AB:AC=1:2,∴AC =4,∴OC =3,∴C (﹣3,0);(2)如图所示,∵1OA =,3OB =21AB OA ==,∴∠ABO =30°,同理:BC =3,∠OCB =30°,∴∠OBC =60°,∴∠ABC =90°,分两种情况考虑:①若M 在线段BC 上时,BC =3CM =t ,可得BM =BC ﹣CM =3﹣t ,此时S △ABM =12BM •AB =12×(3t )×2=3t (0≤t <3②若M 在BC 延长线上时,BC =3,CM =t ,可得BM =CM ﹣BC =t ﹣3,此时S △ABM =12BM •AB =12×(t ﹣3)×2=t ﹣3t 3); 综上所述,S =23(023)23(23)t t t t ⎧<⎪⎨-⎪⎩;(3)存在.若AB 是菱形的边,如下图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).【点睛】此题属于一次函数综合题,考查了含30度直角三角形的性质,勾股定理,坐标与图形性质,一次函数图象上点的坐标特征,三角形的面积,菱形的性质,利用了分类讨论的思想,熟练掌握一次函数的性质及菱形的性质是解本题的关键.24.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD 和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF 得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;S.(2)求△MCB的面积MCB(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.【答案】(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S =梯形﹣﹣即可解决问题.(3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOB S S S S =梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15.(3)存在.如图2中,∵OC=OB=5,∴△BOC是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质。

2022-2023学年九年级数学中考二模试题(带答案)

2022-2023学年九年级数学中考二模试题(带答案)

数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 8页,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.第Ⅰ卷每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸修正带修改.不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.第Ⅰ卷(选择题共48分)一、选择题:本大题共12 小题,每小题4 分,共48 分.在每小题给出的四个四个选项中,只有一个是符合题目要求的.属于同一类数的是1.下列各数中,与2(A) 1(B)20223(C) π(D)0.6182.如图所示,是一个空心正方体,它的左视图是3.把x24x C分解因式得(x-1)(x-3),则C的值为(A)4(B)3(C)-3(D)-4sin52°,正确的按键顺序4.利用我们数学课本上的计算器计算12是(A)(B)(C)(D)5.如图,在4×4的网格中,A,B,C,D,O均在格点上,则点O是(A)△ACD的内心(B)△ABC的内心(C)△ACD 的外心(D)△ABC 的外心6.已知0≤x-y≤1且1≤x+y≤4,则x的取值范围是(A) 1≤x≤2(B) 2≤x≤3(C) 12≤x≤52(D)32≤x≤527.如图,已知点E(-4, 2),F(-2. -2),以O为位似中心,把△EFO缩小为原来的12,则点E的坐标为(A) (2,-1)或(-2, 1)(B) (8,-4)或(-8,-4)(C) (2, -1)(D) (8,-4)8.如图,在扇形OAB中,∠AOB=100°30',OA=20,将扇形OAB沿着过点B的直线折叠,点O恰好落在AB的点D处,折痕交OA于点C,则AC的长为(A)4.5π(B)5π(C)203π(D)7.2π9.疫情期间,小区的王阿姨和李奶奶通过外卖订购了两包蔬菜.王阿姨订购的一包蔬菜包括西红柿、茄子、青椒各1千克,共花费11.8元;李奶奶订购的一包蔬菜包括西红柿2千克,茄子1.5千克,共花费13元,已知青椒每千克4.2元,则西红柿和茄子的价格是(A) 3.6元/千克,4元千克(B) 4.4 元/千克,3.2 元/千克(C) 4元/千克,3.6元千克(D) 3.2元/千克,4.4元/千克10.如图,等边三角形ABC和正方形DEFG按如图所示摆放,其中D,E两点分别在AB,BC上,且BD=DE.若AB=12,DE=4,则△EFC的面积为(A) 4(B) 8(C) 12(D) 16(x-2)2+1的图象沿y轴向11.如图,将函数y=12上平移得到一个函数的图象,其中点A(1,m),B (4,n)平移后的对应点为点A1,B2.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(A) y=12(x−2)2−2(B) y=12(x−2)2+7(C) y=12(x−2)2−5 (D) y=12(x−2)2+412.在平面直角坐标系xOy中,A(0,2),B(m,m-2),则AB+ OB的最小值是(A)第Ⅱ卷(非选择题共72分)二、填空题:本大题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.一个不透明的袋子中,装有4个红球、2个白球和2个黄球,每个球除颜色外都相同,从中任意摸出一个球,当摸到红球的概率是摸到白球概率的2倍时,需再往袋子里放入个红球..14.请你写两个多项式,使它们相乘的结果是4a2 -4ab +b2.你写的两个多项式分别为.15.若x1,x2是一元二次方程x2-5x+6=0的两个实数根,则x1x2-x1-x2的值为.16.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多个.(用含n 的代数式表示)(第16题图)17.将两个等腰Rt △ADE ,Rt △ABC (其中∠DAE=∠ABC=90°,AB=BC ,AD=AE )如图放置在一起,点E 在AB 上,AC 与DE 交于点H ,连接BH 、CE ,且∠BCE=15°,下列结论:①AC 垂直平分DE ; ②△CDE 为等边三角形;③tan ∠BCD=ABBE ;④3=3EBC EHCS S其中正确的结论是____________(填写所有正确结论的序号)(第17题图)三、解答题:本大题共7 小题,共 52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.(本题满分5分)如图,在△ABC 中,AB=AC ,∠1=∠2,求证:△ABD ≌△ACD.解不等式组:3(2)41213x x x x --<⎧⎪+⎨-⎪⎩≤ 20.(本题满分8 分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)请你根据图中的数据填写下表:姓名 平均数 众数 甲 7 乙6(2)请通过计算方差,说明谁的成绩更稳定.21.(本题满分8 分)已知关于x 的一元二次方程ax28x260.(1)若方程有实数根,求a 的取值范围;(2)若a 为正整数,且方程的两个根也是整数,求a 的值.甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B地出发沿相同路线匀速驶向A地,出发t (t>0)小时后,乙车因故在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)写出甲车行驶的速度,并直接在图中的()内填上正确的数;(2)求甲车从B地返回A地的过程中,y与x的函数解析式(不需要写出自变量x的取值范围);(3)若从乙车出发至甲车到达A地,两车恰好有两次相距80千米,直接写出t的取值范围.(第22题图)23.(本题满分9 分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=4,BE=1,5①求⊙O的半径;②求FN的长.(第23题图)24.(本题满分9 分)在平面直角坐标系中,抛物线y=x2+(k-1)x-k与直线y=kx+1交于A、B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k-1)x-k(k>0)与x轴交于点C、D两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以O、C为直径的圆相切?若存在,请求出k的值;若不存在,说明理由.数学答案及评分建议评卷要求:1.阅卷时本着对学生负责的态度,一丝不苟,精心阅卷.2.个别题目,若有多种解法,务必要阅卷组先商量后,阅卷组长统一得分标准,然后再得分,自己不要随意得分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:每小题4分,共12小题,计48分.二、填空题:(只要求填写最后结果,每小题填对得4分)13.0 ;14. 2a-b,2a-b; 15. 1 ;16.(4n+3);17. ①②③④三、解答题:18.(本题满分 5 分)解:∵∠1=∠2,∴BD=CD..............................................................................................1分在ABD 和△ACD ,AB =AC BD =CD AD =AD ⎧⎪⎨⎪⎩∴△ABD ≌△ACD ........................................................4分 ∴∠BAD=∠CAD .即AD 平分∠BAC .................................................................................5分 19.(本题满分 5 分) 解:3(2)41213x x xx --<⎧⎪⎨+-⎪⎩①≤ ②........................................................................................................1分解不等式①得,x >1;解不等式②得,x ≤4 ...............................................................3分 把不等式①②在数轴上表示,如图........................................................4分所以不等式的解集为:1<x≤4................................................................................................5分20.(本题满分 8 分)(1)7;64分(2)S甲2=15[67)2(77)2(87)2(77)2(77)2]=25;6分S乙2=15[36)2(66)2(66)2(76)2(86)2=1457 分因为S甲2<S乙2,所以甲比乙更稳定...........................................8分21.(本题满分8 分)解:(1)当a=0时,原方程化为8x+6=0,得x=-34,方程有实根,符合题意;当a≠0时,△=82-4×6a≥0,∴a≤83,∴a≤83且a≠0..4分(2)结合(1)的结论可得0<a≤83,因为a为整数,所以a=1,2.①当a=1时,原方程化为x2+8x+6=0,方程的根为无理根,不符合题意;②当a=2时,原方程化为x2+4x+3=0,x1=-1,x2=-3,符合题意.综上,a 的值为2. ................................................................................................................... 8分22.(本题满分 8 分) 解:(1)甲的速度=8008=100千米/小时;9....................................................................2分(2)由题意,得E 点坐标为(8,0),D (4,400)设DE 解析式y=kx+b ∴08k +b4004k +b⎧⎨⎩==∴k=-100,b=800,∴DE 解析式y=-100x+800................7分 (3)0<t <1.......................8分 23.(本题满分 9 分)解:(1)证明:连接OC ,如图所示: ∵直线DE 与⊙O 相切于点C ,∴OC ⊥DE , 又AD ⊥DE ,∴OC ∥AD .∴∠1=∠3 ∵OA=OC ,∴∠2=∠3,∴∠1=∠2, ∴AC 平分∠DAE ......................3分(2)①连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°.而DE ⊥AD ,∴BF ∥DE ,∴OC ⊥BF ,∴CF =BC ,∴∠COE=∠FAB , 设⊙O 的半径为r ,在Rt △OCE 中,cos ∠COE=4=5OC OE ,∴4=5r r +1,∴r=4,即⊙O 的半径为4...............................................................6分 ②连接BF ,在Rt △AFB 中,cos ∠FAB=AFAB,∴AF=8×45=325在Rt △OCE 中,OE=5,OC=4,∴CE=3, ∵AB ⊥FM ,∴AM =AF ,∴∠5=∠4, ∵FB ∥DE ,∴∠5=∠E=∠4,∵CF =BC ,∴∠1=∠2,∴△AFN ∽△AEC ,∴FN CE =AF AE ,即3FN=3259,∴FN=3215................................................................................................................ ................9分24.(本题满分 9 分)解:(1)A(-1,0),B(2,3)......................................................................................2分(2)设P(x,x2-1),如答图1所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=yF﹣yP=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=12PF(xF﹣xA)+12PF(xB﹣xF)=12PF(xB﹣xA)=32PF∴S△ABP=32(﹣x2+x+2)=﹣32(x﹣12)2+278.当x=12时,yP=x2﹣1=﹣34.∴△ABP面积最大值为278,此时点P坐标为(12,﹣34)............................................5分(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣1k ,0),F(0,1),OE=1k,OF=1.在Rt△EOF中,由勾股定理得:.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.(Ⅰ)设直线y=kx+1与以O、C为直径的圆相切的切点为Q,如答图2所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=2k.∴EN=OE﹣ON=1k ﹣2 k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ OF =ENEF,即21k1k﹣k=±5,∵k>0,∴k=5.∴存在实数k使得直线y=kx+1与以OC为直径的圆相切,此时k=.............................................................................................................. ............8分(Ⅱ)若直线AB过点C时,此时直线与以OC为直径的圆要相切,必有AB⊥x轴,而直线AB的解析式为y=kx+1,∴不可能相切.综上所述,k=5时,使得直线y=kx+1与以OC为直径的圆相切........................9分。

【中考专题】2022年中考数学二模试题(含答案详解)

【中考专题】2022年中考数学二模试题(含答案详解)

2022年中考数学二模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算-1-1-1的结果是( )A .-3B .3C .1D .-1 2、直线PQ 上两点的坐标分别是()20,5P -,()10,20Q ,则这条直线所对应的一次函数的解析式为( ) A .1152y x =+ B .2y x = C .1152y x =- D .310y x =-3、邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A .19℃ B .-19 ℃ C .15℃ D .-15℃4、如图,三角形ABC 绕点O 顺时针旋转后得到三角形A B C ''',则下列说法中错误的是( )·线○封○密○外A .OA OB = B .OC OC '= C .AOA BOB ''∠=∠D .ACB A C B '''∠=∠5、点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b ﹣a <0;(2)|a|<|b|;(3)a+b >0;(4)b a>0.其中正确的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 6、下列各式:22311,,,5,,7218a b x x y a x π++-中,分式有( ) A .1个 B .2个 C .3个 D .4个7、若分式2x 9x-的值为0,则x 的值是( ) A .3或﹣3 B .﹣3 C .0 D .38、cos45的相反数是( )A .BC .D 9、已知2a ++3b -=0,则a-b 的值是( ) .A .-1B .1C .-5D .510、如果2是一元二次方程2x c =的一个根,那么常数c 是( )A .2B .-2C .4D .-4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为________%.2、双曲线()251m y m x -=-,当0x >时,y 随x 的增大而减小,则m =________.3、实数a 、b 互为相反数,c 、d 互为倒数,x2()x a b cd x ++++=_______.4、已知 234x y z ==,则232x y z x y z +--+= .5、已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF =________cm. 三、解答题(5小题,每小题10分,共计50分) 1、2021年5月21日,第十届中国花博会在上海崇明开幕,花博会准备期间,有一个运输队承接了5000个花盆的任务,合同规定每个花盆的运费8元,若运送过程中每损坏一个花盆,则这个花盆不付运费,并从总运费中扣除40元,运输队完成任务后,由于花盆受损,实际得到运费38464元,受损的花盆有多少个? 2、某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x (元/件)(10x ≥的整数),每天销售利润为y (元). (1)直接写出y 与x 的函数关系式为:_________; (2)若要使每天销售利润为270元,求此时的销售单价; (3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y 的取值范围. 3、如图,O 是数轴的原点,A 、B 是数轴上的两个点,A 点对应的数是1-,B 点对应的数是8,C 是线段AB 上一点,满足54AC BC =.·线○封○密○外(1)求C 点对应的数;(2)动点M 从A 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M 到达C 点后停留2秒钟,然后继续按原速沿数轴向右匀速运动到B 点后停止.在点M 从A 点出发的同时,动点N 从B 点出发,以每秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A 点后停止.设点N 的运动时间为t 秒.①当4MN =时,求t 的值;②在点M ,N 出发的同时,点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,当点P 与点M 相遇后,点P 立即掉头按原速沿数轴向右匀速运动,当点P 与点N 相遇后,点P 又立即掉头按原速沿数轴向左匀速运动到A 点后停止.当2PM PN =时,请直接写出t 的值.4、已知在平面直角坐标系xOy 中,拋物线212y x bx c =-++与x 轴交于点()1,0A -和点B ,与y 轴交于点 ()02C ,,点P 是该抛物线在第一象限内一点,联结,,AP BC AP 与线段BC 相交于点F .(1)求抛物线的表达式;(2)设抛物线的对称轴与线段BC 交于点E ,如果点F 与点E 重合,求点P 的坐标;(3)过点P 作PG x ⊥轴,垂足为点,G PG 与线段BC 交于点H ,如果PF PH =,求线段PH 的长度. 5、已知抛物线223y x x =+-与x 轴负半轴交于点A ,与y 轴交于点B ,直线m 经过点A 和点B . (1)求直线m 的函数表达式; (2)若点()1,P a y 和点()2,Q a y 分别是抛物线和直线m 上的点,且30a -<<,判断1y 和2y 的大小,并说明理由.-参考答案-一、单选题1、A 【分析】 根据有理数的减法法则计算. 【详解】 解:-1-1-1=-1+(-1)+(-1)=-3. 故选:A . 【点睛】 ·线○封○密·○外本题考查有理数的减法.有理数减法法则:减去一个数等于加上这个数的相反数.2、A【分析】利用待定系数法求函数解析式.【详解】解:∵直线y=kx+b经过点P(-20,5),Q(10,20),∴205 1020k bk b-+=⎧⎨+=⎩,解得1215kb⎧=⎪⎨⎪=⎩,所以,直线解析式为1152y x=+.故选A.【点睛】本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.3、A【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】解:17-(-2)=17+2=19℃.故选A .【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.4、A【分析】根据点O 没有条件限定,不一定在AB 的垂直平分线上,可判断A ,根据性质性质可判断B 、C 、D . 【详解】 解:A .当点O 在AB 的垂直平分线上时,满足OA =OB ,由点O 没有限制条件,为此点O 为任意的,不一定在AB 的垂直平分线上,故选项A 不正确,符合题意; B .由旋转可知OC 与OC ′是对应线段,由旋转性质可得OC =OC ′,故选项B 正确,不符合题意; C .因为AOA '∠、BOB '∠都是旋转角,由旋转性质可得AOA BOB ''∠=∠,故选项C 正确,不符合题意; D .由旋转可知ACB ∠与A C B '''∠是对应角,由性质性质可得ACB A C B '''∠=∠,故选项D 正确,不符合题意. 故选择A . 【点睛】 本题考查线段垂直平分线性质,图形旋转及其性质,掌握线段垂直平分线性质,图形旋转及其性质是解题关键. 5、B 【分析】 根据图示,判断a 、b 的范围:﹣3<a <0,b >3,根据范围逐个判断即可. 【详解】 解:根据图示,可得﹣3<a <0,b >3, ·线○封○密·○外∴(1)b﹣a>0,故错误;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)ba<0,故错误.故选B.【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.6、B【分析】根据分式的定义判断即可.【详解】解:3a,11x是分式,共2个,故选B.【点睛】本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型.7、A【分析】根据分式的值为零的条件可以求出x的值.【详解】依题意得:x2﹣9=0且x≠0,解得x=±3.故选A.【点睛】本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8、A 【分析】 直接利用特殊角的三角函数值得出cos45°的值,再利用互为相反数的定义得出答案. 【详解】故选A . 【点睛】 本题主要考查了特殊角的三角函数值以及相反数,正确记忆特殊角的三角函数值是解题的关键. 9、C 【分析】 根据绝对值具有非负性可得a+2=0,b-3=0,解出a 、b 的值,然后再求出a-b 即可. 【详解】 解:由题意得:a+2=0,b-3=0, 解得:a= -2,b=3, a-b=-2-3=-5, 故选:C . 【点睛】 本题考查绝对值,关键是掌握绝对值的非负性. 10、C ·线○封○密○外【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】把x =2代入方程x 2=c 可得:c =4.故选C .【点睛】本题考查的是一元二次方程的根即方程的解的定义.二、填空题1、2.88【分析】先设出教育储蓄的年利率为x ,然后根据6年后总共能得本利和11728元,列方程求解.【详解】解析:设年利率为x ,则由题意得()100001611728x +=,解得 2.88x =%.故答案为:2.88【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答. 2、2-【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【详解】根据题意得:25110m m ⎧-=-⎨-⎩>,解得:m =﹣2. 故答案为﹣2. 【点睛】 本题考查了反比例函数的性质.对于反比例函数y =kx ,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大. 3【详解】 解:∵a 、b 互为相反数,c 、d 互为倒数,x∴a +b =0,cd =1,x当x当x =,原式=5+(0+1)×(故答案为4、3 4. 【解析】 试题解析:设,则x=2k ,y=3k ,z=4k ,则 232x y z x y z +--+=43433 66444k k k k k k k k +-==-+. 考点:分式的基本性质. 5、1或 5 ·线○封○密○外【分析】根据题意,画出图形,此题分两种情况;①点O 在点A 和点B 之间(如图①),则1122EF OA OB =+;②点O 在点A 和点B 外(如图②),则1122EF OA OB =-. 【详解】如图,(1)点O 在点A 和点B 之间,如图①,则11522EF OA OB cm =+=.(2)点O 在点A 和点B 外,如图②, 则11122EF OA OB cm =-=.∴线段EF 的长度为1cm 或5cm.故答案为1cm 或5cm.【点睛】此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.三、解答题1、32个花盆【分析】设有x 个花盆受损,根据题意,得5000×8-8x -40x =38464,解方程即可.【详解】设有x 个花盆受损,根据题意,得5000×8-8x -40x =38464,解方程得 x =32,答:受损的花盆有32个.【点睛】本题考查了一元一次方程的应用,根据题意,正确列出方程是解题的关键. 2、 (1)()210280160010y x x x =-+-≥ (2)销售单价为11或17元 (3)260360y ≤≤ 【分析】 (1)销售单价为x 元/件时,每件的利润为()8x -元,此时销量为[]10010(10)x --,由此计算每天的利润y 即可; (2)根据题意结合(1)的结论,建立一元二次方程求解即可; (3)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1) 由题意得[]2(8)10010(10)102801600y x x x x =---=-+-, ∴y 与x 的函数关系式为:()210280160010y x x x =-+-≥; (2) 由题意得:2102801600270x x -+-=,·线○封○密○外解得1211,17x x ==,∵10x ≥,∴销售单价为11或17元;(3)∵每件小商品利润不超过100%,∴()8100%810010108800x x -≤⨯⎧⎪⎨⎡⎤--⨯≤⎪⎣⎦⎩,得1016x ≤≤, ∴小商品的销售单价为1016x ≤≤,由(1)得()221028016001014360y x x x =-+-=--+,∵对称轴为直线14x =,∴1016x ≤≤在对称轴的左侧,且y 随着x 的增大而增大,∴当14x =时,取得最大值,此时()2101414360360y =-⨯-+=, 当10x =时,取得最小值,此时()2101014360260y =-⨯-+=即该小商品每天销售利润y 的取值范围为260360y ≤≤.【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.3、(1)4;(2)①53,173;②73或187或5. 【分析】(1)设点C 对应的数为c ,先求出AC =c -(-1)=c +1,BC =8-c ,根据54AC BC =,变形54AC BC =,即()5184c c +=-,解方程即可; (2)①点M 、N 在相遇前,先求出点M 表示的数:-1+2t ,点N 表示的数为:8-t ,根据4MN =,列方程()8124t t ---+=,点M 、N 相遇后,求出点M 过点C ,点M 表示的数为-1+2(t -2)=-5+2t ,根据4MN =,列方程()5284t t -+--=,解方程即可; ②点P 与点M 相遇之前,MP 小于2PN ,点P 与点M 相遇后,点M 未到点C ,先求点P 与点M 首次相遇AM +CP =5,即2t +3t =5,解得t =1,确定点P 与M ,N 位置,当2PM PN =时,列方程()128131t t t -=----⎡⎤⎣⎦,当点P 与点N 相遇时,3(t -1)+t-1=7-1解得52t =,此时点M 在C 位置,点N 、P 在8-t =8-2.5=5.5位置,点P 掉头向C 运动,点M 在点C 位置停止不等,根据当2PM PN =时,列方程5.5-3(t -2.5)-4=2{5.5-(t -2.5)-[5.5-3(t -2.5)]},点P 与点M 再次相遇时,()3 2.5 5.54t -=-解得3t =,点N 与点M 相遇时,8-t =4,解得4t =,当点P 到点A 之后,当2PM PN =时,列方程()2229t t -=-,解方程即可. (1)解:设点C 对应的数为c ,∴AC =c -(-1)=c +1,BC =8-c , ∵54AC BC =, ∴54AC BC =,即()5184c c +=-, 解得4c =;(2) 解:①点M 、N 在相遇前,点M 表示的数:-1+2t ,点N 表示的数为:8-t , ∵4MN =, ∴()8124t t ---+=, ·线○封○密○外解得53t =,点M 、N 相遇后,点M 过点C ,点M 表示的数为-1+2(t -2)=-5+2t ,∵4MN =,∴()5284t t -+--=, 解得173t =, ∴MN =4时,53t =或173;②点P 与点M 相遇之前,MP 小于2PN ,点P 与点M 相遇后,点M 未到点C ,点P 与点M 首次相遇AM +CP =5,即2t +3t =5,解得t =1,点M 与点P 在1位置,点N 在7位置,点P 掉头,PM =3(t -1)-2(t -1),PN =8-t -1-3 (t -1), 当2PM PN =时,()128131t t t -=----⎡⎤⎣⎦, 解得73t =,当点P 与点N 相遇时,3(t -1)+t-1=7-1,解得52t =, 此时点M 在C 位置,点N 、P 在8-t =8-2.5=5.5位置, 点P 掉头向C 运动,点M 在点C 位置停止不等, 当2PM PN =时,5.5-3(t -2.5)-4=2{5.5-(t -2.5)-[5.5-3(t -2.5)]}, 解得187t =; 点P 与点M 再次相遇时,()3 2.5 5.54t -=-, 解得3t =, 点N 与点M 相遇时,8-t =4, 解得4t =, 当点P 到点A 之后, 当2PM PN =时, PM =2(t-2)-1-(-1)=2t -2,PN =8-t -(-1)=9-t , 即()2229t t -=-, 解得5t =;综合得当2PM PN =时, t 的值为73或187或5. 【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位·线○封○密○外置,根据等量关系列方程是解题关键.4、(1)213222y x x =-++ (2)(3,2)P(3)158【分析】(1)将点(1,0)A -和点(0,2)C 代入212y x bx c =-++,即可求解; (2)分别求出(4,0)B 和直线BC 的解析式为122y x =-+,可得3(2E ,5)4,再求直线AE 的解析式为1122y x =+,联立2112213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩,即可求点(3,2)P ; (3)设213(,2)22P t t t -++,则1(,2)2H t t -+,则2122PH t t =-+,用待定系数法求出直线AP 的解析式为4422t t y x --=+,联立1224422y x t t y x ⎧=-+⎪⎪⎨--⎪=+⎪⎩,可求出(5t F t -,205)102t t --,直线AP 与y 轴交点4(0,)2t E -,则2t CE =,再由PF PH =,可得CE EF =,则有方程2222054()()()251022t t t t t t --=+---,求出52t =,即可求2115228PH t t =-+=. (1)解:将点(1,0)A -和点(0,2)C 代入212y x bx c =-++, ∴1022b c c ⎧--+=⎪⎨⎪=⎩,∴322b c ⎧=⎪⎨⎪=⎩, 213222y x x ∴=-++; (2) 解:213222y x x =-++, ∴对称轴为直线32x =, 令0y =,则2132022x x -++=, 解得1x =-或4x =, (4,0)B ∴,设直线BC 的解析式为y kx m =+,∴402k m m +=⎧⎨=⎩, ∴122k m ⎧=-⎪⎨⎪=⎩, 122y x ∴=-+, 3(2E ∴,5)4, 设直线AE 的解析式为y k x n '=+, ∴03524k n k n '-+=⎧⎪⎨'+=⎪⎩, ∴1212k n ⎧'=⎪⎪⎨⎪=⎪⎩, ·线○封○密·○外1122y x ∴=+, 联立2112213222y x y x x ⎧=+⎪⎪⎨⎪=-++⎪⎩, 3x ∴=或1x =-(舍),(3,2)P ∴;(3)解:设213(,2)22P t t t -++,则1(,2)2H t t -+, 2122PH t t ∴=-+, 设直线AP 的解析式为11y k x b =+, ∴11211013222k b k t b t t -+=⎧⎪⎨+=-++⎪⎩,∴114242t k tb -⎧=⎪⎪⎨-⎪=⎪⎩, 4422t t y x --∴=+, 联立1224422y x t t y x ⎧=-+⎪⎪⎨--⎪=+⎪⎩, 5t x t ∴=-, (5t F t ∴-,205)102t t --, 直线AP 与y 轴交点4(0,)2t E -, 4222t t CE -∴=-=, =PF PH , PFH PHF ∴∠=∠, //PG y 轴, ECF PHF ∴∠=∠, CFE PFH ∠=∠, CEF CFE ∴∠=∠, CE EF ∴=, 2222054()()()251022t t t t t t --∴=+---, 22(4)4(5)t t ∴-+=-, 52t ∴=, ·线○封○密○外2115228PH t t ∴=-+=. 【点睛】本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.5、(1)3y x =--(2)12y y <,理由见解析【分析】(1)令y =0,可得x 的值,即可确定点A 坐标,令x =0,可求出y 的值,可确定点B 坐标,再运用待定系数法即可求出直线m 的解析式;(2)根据30a -<<可得抛物线在直线m 的下方,从而可得12y y <.(1)令y =0,则2230x x +-=解得,123,1x x =-=∵点A 在另一交点左侧,∴A (-3,0)令x =0,则y =-3∴B (0,-3)设直线m 的解析式为y =kx +b把A (-3,0),B (0,-3)坐标代入得,303k b b -+=⎧⎨=-⎩解得,13k b =-⎧⎨=-⎩ ∴直线m 的解析式为3y x =--; (2) ∵抛物线223y x x =+-与直线3y x =--的交点坐标为:A (-3,0),B (0,-3) 又∵30a -<< ∴抛物线在直线m 的下方, ∵点()1,P a y 和点()2,Q a y 分别是抛物线和直线m 上的点, ∴12y y < 【点睛】 本题考查了二次函数,其中涉及到运用待定系数法求二次函数解析式,二次函数与坐标轴交点坐标的求法,运用数形结合的思想是解答本题的关键. ·线○封○密○外。

2022年静安区青浦崇明初三二模数学试卷含答案

2022年静安区青浦崇明初三二模数学试卷含答案

〔第5题图〕 静安、青浦、崇明2022学年第二学期教学质量调研测试卷九年级数学2022.4〔总分值150分,100分钟完成〕考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:〔本大题共6题,每题4分,总分值24分〕 1.当2a <-〕A .2a +;B .2a -;C .2a -;D .2a --. 2.如果a b <,那么以下不等式中一定正确的选项是〔 〕A .2a b b -<-;B .2a ab <;C .2ab b <;D .22a b <.3.函数(1)2y k x k =-+-(k 为常数),如果y 随着x 的增大而减小,那么k 的取值范围是〔 〕A .1k >;B .1k <;C .2k >;D .2k <.4表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的选项是〔 〕A .中位数在105~119分数段;B .中位数是119.5分C .中位数在120~134分数段;D .众数在120~134分数段.5.如图,将△ABC 沿直线AB 翻折后得到△1ABC ,再将△ABC 绕点A 旋转后得到△22AB C ,对于以下 两个结论:①“△1ABC 能绕一点旋转后与△22AB C 重合〞;②“△1ABC 能沿一直线翻折后与△22C AB 重合〞.的正确性是〔 〕 A .结论①、②都正确; B .结论①、②都错误;C .结论①正确、②错误;D .结论①错误、②正确.6.如果四边形ABCD 的对角线相交于点O ,且AO CO =,那么以下条件中,不能..判断四边形ABCD 为 平行四边形的是〔 〕A .OB OD =;B .AB ∥CD ;C .AB CD =; D .ADB DBC ∠=. 二、填空题:〔本大题共12题,每题4分,总分值48分〕 7.数25的平方根是.8.分解因式:221x x --=.9有意义,那么x 的取值范围是. 10.关于x 的方程2210x mx m -++=根的情况是.11.如果抛物线2(1)y a x h =-+经过点A 〔0,4〕、B 〔2,m 〕,那么m 的值是.12.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测 试分数的标准差是.13.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学 的概率是.14.如图,在△ABC 中,点D 在边AC 上,2AD CD =,如果BA a =,BD b =,那么BC =.15.在Rt △ABC 中,90C ∠=,点D 、E 分别是边AC 、AB AF 与DE 相 交于点G ,如果110AFB ∠=,那么CGF ∠的度数是. 16. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将x〔第14题图〕从而到达“降次〞的目的,我们称这样的方法为“降次法〞.012=--x x ,可用“降次法〞求得134--x x 的值是.17.如果⊙1O 与⊙2O 相交于点A 、B ,⊙1O 的半径是5,点1O 到AB 的距离为3,那么⊙2O 的半径r 的取值范围是.18.如图,在等腰梯形ABCD 中,AD ∥BC ,点E 、F 、G 分别在边AB 、BC 、CD 上,四边形AEFG 是正方形,如果60B ∠=,1AD =,那么BC 的长是.三、解答题:〔本大题共7题,总分值78分〕【将以下各题的解答过程,做在答题纸的相应位置上】 19.〔此题总分值10分〕 化简:11122(1)(1)x x x x --++-,并求当1x =时的值. 20.〔此题总分值10分〕解方程:223141x x x x++=+.21.〔此题总分值10分,第〔1〕小题总分值6分,第〔2〕小题总分值4分〕:如图,在菱形ABCD 中,AE BC ⊥,垂足为E ,对角线4BD =,12tan CBD∠=. 求:〔1〕边AB 的长;〔2〕∠ABE ∠的正弦值.22.〔此题总分值10分〕小丽购置了6支水笔和3本练习本,共用21元;小明购置了12支水笔和5本练习本,共用39元.水笔与练习本的单价分别相同,求水笔与练习本的单价.23.〔此题总分值12分,第〔1〕小题总分值7分,第〔2〕小题总分值5分〕:如图,在△ABC 中,AB AC =,点D 、E 分别是边AC 、AB 的中点,DF AC ⊥,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .〔1〕求证:2AD DG BD =⋅;〔2〕联结CG ,求证:ECB DCG ∠=∠.24.〔此题总分值12分,第〔1〕小题总分值3分,第〔2〕小题总分值5分,第〔3〕小题总分值4分〕⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,13cos BAO ∠=,设⊙P 的半径为x ,线段OC 的长为y .〔1〕求AB 的长;〔2〕如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; 〔3〕当OCA OPC ∠=∠时,求⊙P 25.〔此题总分值14分,第〔1 如图,反比例函数的图像经过点A 的负半轴、x 〔1〕求直线AB 的表达式;〔2〕求点C 、D 的坐标; 〔3〕如果点E崇明县2022一、选择题:1.D . 2.A . 3.B . 4.B . 5.D . 6.C .二.填空题: 7.5±.〔第21题图〕AB E D〔第18题图〕A B C D E G F8.(11x x -+-.9.32x ≤. 10.没有实数根. 11.4.1213.35.14.3122b a -.15.40°. 16.1. 17.4r ≥.18.2+ 三、解答题: 19.解:原式11x x x=-+-4分111xx -=-=. 2分当1x =时,原式===4分 20.解:设21x y x +=,1分得:34y y+=,1分2430y y -+=,1分 11y =,23y =.2分当1y =时,211x x+=,210x x -+=,此方程没有数解. 2分当3y =时,213x +=,2310x x -+=,x =2分经检验x 都是原方程的根,1分所以原方程的根是53±=x .∴4225⨯⨯=AE ,1分 ∴54=AE , 1分∴54sin ==∠AB AE ABE .1分 22.解:设水笔与练习本的单价分别为x 元、y 元.1分∴632112539x y x y +=⎧⎨+=⎩. 4分解得23x y =⎧⎨=⎩. 4分答:水笔与练习本的单价分别是2元与3元. 1分 23.证明:〔1〕∵AB AC =,12AD AC =,12AE AB =, ∴AD AE =.1分∵∠BAD =∠CAE ,∴△BAD ≌△CAE .………………………………………〔1分〕∴∠ABD =∠ACE ,………………………………………………………………〔1分〕 ∵DF ⊥AC ,AD =CD ,∴AF =CF ,……………………………………………〔1分〕 ∴∠GAD =∠ACE ,∴∠GAD =∠ABD .………………………………………〔1分〕 ∵∠GDA =∠ADB ,∴△GDA ∽△ADB .………………………………………〔1分〕∴AD DGDB AD=, ∴2AD DG BD =⋅. 1分 〔2〕∵AD DGDB AD =,AD CD =, ∴CDDG DB CD =. 1分 ∵CDG DCB ∠=∠,∴△CDG ∽△DBC . 1分 ∴DBC DCG ∠=∠. 1分 ∵AB AC =,∴ABC ACB ∠=∠. 1分 ∵ABD ACE ∠=∠,25.解:〔1〕设反比例函数的解析式为xky =. ∵它图像经过点A 〔2,5〕和点B 〔5,p 〕,∴52k =-. ∴10-=k .∴反比例函数的解析式为xy 10-=. 1分∴1025p =-=-.∴点B 的坐标为〔5,2〕. 1分设直线AB 的表达式为y mx n =+,那么5225m nm n =-+⎧⎨=-+⎩. 1分∴17m n =⎧⎨=⎩.∴直线AB 的表达式为7y x =+. 1分 〔2〕方法一:□ABCD 中,AB ∥CD ,设直线CD 的表达式为y x c =-.1分 ∴C 〔0,c -〕,D 〔c ,0〕.1分 ∵CD AB =, ∴22CD AB =.∴2222(52)(25)c c +=-++-. 1分 ∴3c =.∴点C 、D 的坐标分别是〔0,-3〕、〔3,0〕. 1分方法二:∵□ABCD 的顶点C 、D 分别在y 轴的负半轴、x 轴的正半轴上,∴线段AB 向右平移5个单位,再向下平移5个单位后与线段CD 重合. 2分 ∴点C 、D 的坐标分别是〔0,-3〕、〔3,0〕. 2分方法三:作AH ⊥x 轴,BG ⊥y 轴,垂足分别为H 、G ,易证△AHD ≌△CGB , 2分 由5DH BG ==,5CG AH ==,得C 、D 的坐标. 2分〔3〕设二次函数的解析式为23y ax bx =+-〔0a ≠〕,那么有54230933a b a b =--⎧⎨=+-⎩. 1分∴12a b =⎧⎨=-⎩.∴二次函数的解析式为223y x x =--. 1分 作EF ⊥y 轴,BG ⊥y 轴,垂足分别为F 、G . ∵OC OD =,BG CG =,∴45BCG OCD ODC ∠=∠=∠=. ∴90BCD ∠=, ∵DCE BDO ∠=∠,∴ECF BDC ∠=∠. 1分∴53BCtan ECF tan BDC CD ∠=∠===. 1分设3OF t =,那么5EF t =.∴点E 〔5t ,3t 〕. 1分 ∴23325103t t t -=--. 解得:10t =〔舍〕,21325t =. ∴点E 〔513,3625-〕. 1分。

2022年上海市浦东新区中考数学二模试题及答案解析

2022年上海市浦东新区中考数学二模试题及答案解析

2022年上海市浦东新区中考数学二模试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,有理数是( ) A. 18B. √2C. πD. √632. 下列代数式中,不是单项式的是( ) A. a 2B. 2aC. a2D. a +23. 如果将抛物线y =5x 2向上平移1个单位,那么所得新抛物线的表达式是( ) A. y =5(x +1)2B. y =5(x −1)2C. y =5x 2+1D. y =5x 2−14. 为了制定切合本校学生的体能训练标准,某校从九年级随机抽取30名男生进行引体向上测试,每人测试一次,记录有效引体向上次数如表所示,那么这30名男生此次测试中引体向上次数的众数和中位数分别是( ) 次数 6 7 8 9 10 11 人数3109521A. 7,7B. 7,8C. 8,7D. 8,85. 已知在△ABC 中,点D 、E 分别是AB 、AC 的中点,设AB ⃗⃗⃗⃗⃗ =m ⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =n ⃗ ,那么向量DE ⃗⃗⃗⃗⃗ 用向量m ⃗⃗ 、n ⃗ 表示为( ) A. n⃗ +m ⃗⃗⃗ B. n⃗ −m ⃗⃗⃗ C. 12n ⃗ −12m ⃗⃗⃗ D. 12n ⃗ +12m ⃗⃗⃗ 6. 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 可能是( )A. r =1B. r =3C. r =5D. r =7二、填空题(本大题共12小题,共48.0分)7. 计算:m4÷m2=______.8. 分解因式:a2−9=______.9. 已知f(x)=3−2x,那么f(0)=______.x+410. 方程√2x−1=3的解是______.11. 上海市第七次全国人口普查数据显示,全市常住人口约为24870000人.将24870000这个数用科学记数法表示为______.12. 如果关于x的方程x2−6x+m=0有两个相等的实数根,那么m的值为______ .13. 反比例函数y=k的图象经过点(−3,2),则k的值为______.x14. 不透明的布袋里有3个红球、2个黄球、4个白球,它们除颜色外其他都相同.从布袋里任意摸出一个球恰好是黄球的概率是______.15. 如果正多边形的中心角是36°,那么这个正多边形的边数是______.16. 为了解全校500名初中毕业生的体重情况,从中随机抽取部分学生的体重作为样本,制).那么作成如图所示的频率分布直方图(每小组包括最小值,不包括最大值;纵轴表示:频率组距这所学校体重小于80千克且不小于70千克的初中毕业生约有______人.17. 如图,已知在△ABC中,∠C=90°,AC=4,点D在边BC上,且BD=AC,sin∠ADC=4.5那么边BC的长为______.18. 如图,已知在Rt△ABC中,∠C=90°,将△ABC绕着点C旋转,点B恰好落在边AB上的点D(不与点B重合)处,点A落在点E处,如果DE//BC,联结AE,那么sin∠EAC的值为______.三、解答题(本大题共7小题,共78.0分。

2024年上海青浦区初三二模数学试卷和答案

2024年上海青浦区初三二模数学试卷和答案

上海青浦区2023-2024学年第二学期九年级学业质量调研数学试卷(时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.是同类二次根式的是()A.B. C.D.2.下列计算正确的是()A.a 2+a 2=a 4B.(2a )3=6a 3C.3a 2•(﹣a 3)=﹣3a 5D.4a 6÷2a 2=2a 3.3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.5x y =B.5x y =-C.5y x=D.5y x=-4.某兴趣小组有5名成员,身高(厘米)分别为:161,165,169,163,167.增加一名身高为165厘米的成员后,现兴趣小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变小C .平均数不变,方差变大D.平均数变小,方差不变.5.已知四边形ABCD 中,AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中,能判断这个四边形为等腰梯形的是()A.AC BD= B.ABC BCD∠=∠ C.,OB OC OA OD== D.,OB OC AB CD==6.如图,在平行四边形ABCD 中,对角线AC BD 、相交于点O ,过O 作AC 的垂线交AD于点,E EC 与BD 相交于点F ,且ECD DBC ∠=∠,那么下列结论错误的是()A.EA EC =B.DOC DCO ∠=∠C.4BD DF= D.BC CDCE BF=二、填空题:(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.分解因式:22xy x y -=_______.8.方程5=的解是_______.9.函数1xy x =+的定义域是________.10.如果关于x 的方程20x x c --+=有实数根,那么实数c 的取值范围是_______.11.如果将抛物线21y x =+向右平移3个单位,那么所得新抛物线的表达式是_______.12.甲、乙两位同学分别在、、A B C 三个景点中任意选择一个游玩,那么他们选择同一个景点的概率是_______.13.某校有2000名学生参加了“安全伴我行”的宣传教育活动.为了解活动效果,随机从中抽取m 名学生进行了一次测试,满分为100分,按成绩划分为,,,A B C D 四个等级,将收集的数据整理绘制成如下不完整的统计图表.请根据以上信息,估计该校共有_______名学生的成绩达到A 等级.成绩频数分布表等第成绩x频数A 90100x ≤≤n B 8090x ≤<117C7080x ≤<32D070x ≤<8成绩扇形统计图14.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 的仰角为α,看这栋楼底部C 的俯角为β,热气球A 处与楼的水平距离为m 米,那么这栋楼BC 的高度为_______米.(用含m αβ、、的式子表示)15.如图,在ABC 中,中线AD BE 、相交于点F ,设,AB a FE b == ,那么向量BC 用向量a b、表示为_______.16.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角15BAC ∠=︒,那么这个正多边形的中心角是_______度.17.正方形ABCD 的边长为1,E 为边DC 的中点,点F 在边AD 上,将D ∠沿直线EF 翻折,使点D 落在点G 处,如果BG BC =,那么线段DF 的长为_______.18.在矩形ABCD 中,2,4,AB BC AC ==与BD 相交于点O .A 经过点B ,如果O 与A 有公共点,且与边CD 没有公共点,那么O 的半径长r 的取值范围是_______.三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.计算:2301(2024)20853π⎛⎫--++ ⎪-⎝⎭20.解方程组:22221,230.x y x xy y +=⎧⎨--=⎩①②21.如图,AB 是O 的直径,AB 与CD 相交于点E ,弦AD 与弦CD 相等,且 BCBD =.(1)求ADC ∠的度数;(2)如果1OE =,求AD 的长.22.某学校计划租用7辆客车送275名师生去参加课外实践活动.现有甲、乙两种型号的客车可供选择,它们的载客量(指的是每辆客车最多可载该校师生的人数)和租金如下表.设租用甲种型号的客车x 辆,租车总费用为y 元.型号载客量(人/辆)租金(元/辆)甲451500乙331200(1)求y 与x 的函数解析式(不需要...写定义域);(2)如果使租车总费用不超过10200元,一共有几种租车方案?(3)在(2)的条件下,选择哪种租车方案最省钱?此时租车的总费用是多少元?23.已知:如图,在四边形ABCD 中,AD BC ∥,点E 是对角线AC 上一点,EA ED =,且DAB DEC DCB ∠=∠=∠.(1)求证:四边形ABCD 是菱形;(2)延长DE 分别交线段AB CB 、的延长线于点F G 、,如果GB BC =,求证:22AD EF GD =⋅.24.在平面直角坐标系xOy 中,抛物线23y ax bx =+-的图像与x 轴交于点(3,0)A -和点(1,0)B .与y 轴交于点,C D 是线段OA 上一点.(1)求这条抛物线的表达式和点C 的坐标;(2)如图,过点D 作DG x ⊥轴,交该抛物线于点G ,当DGA DGC ∠=∠时,求GAC △的面积;(3)点P 为该抛物线上第三象限内一点,当1OD =,且45DCB PBC ∠+∠=︒时,求点P 的坐标.25.在ABC 中,2AB AC ==,以C 为圆心、CB 为半径的弧分别与射线BA 、射线CA 相交于点D E 、,直线ED 与射线CB 相交于点F .(1)如图,当点D 在线段AB 上时.①设ABC α∠=,求BDF ∠;(用含α的式子表示)②当1BF =时,求cos ABC ∠的值;(2)如图,当点D 在BA 的延长线上时,点M N 、分别为BC DF 、的中点,连接MN ,如果MN CE ∥,求CB 的长.2023学年第二学期九年级学业质量调研数学试卷含答案(时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂】1.是同类二次根式的是()A. B. C. D.【答案】C【解析】【分析】各项化简后,利用同类二次根式定义判断即可.【详解】解:A不是同类二次根式,B3=C=3D=不是同类二次根式.故选C.【点睛】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.2.下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.3a2•(﹣a3)=﹣3a5D.4a6÷2a2=2a3.【答案】C【解析】【分析】根据合并同类项法则、单项式的乘方、乘法和除法逐一计算可得.【详解】A .a 2+a 2=2a 2,此选项错误;B .(2a )3=8a 3,此选项错误;C .3a 2•(﹣a 3)=﹣3a 5,此选项正确;D .4a 6÷2a 2=2a 4,此选项错误;故选:C .【点睛】本题主要考查整式的运算,解题的关键是掌握合并同类项法则,积的乘方法则,及单项式的乘法和除法法则.3.下列函数中,函数值y 随自变量x 的值增大而增大的是()A.5xy =B.5x y =-C.5y x=D.5y x=-【答案】A 【解析】【分析】本题主要考查了一次函数图像与反比例函数图像的性质,熟练掌握函数图象的增减性是解题关键.【详解】A :5x y =为一次函数,x 取所有实数,∵105>,∴函数值随自变量的值增大而增大,故选项正确;B :5x y =-为一次函数,x 取所有实数,∵105-<,∴函数值随自变量的值增大而减小,故选项错误;C :5y x=为反比例函数,0x ≠,在0x <内,函数值随自变量的值增大而减小,并且在0x >内,函数值随自变量的值增大而减小,故选项错误;D :5y x=-为反比例函数,0x ≠,在0x <内,函数值随自变量的值增大而增大,并且在0x >内,函数值随自变量的值增大而增大,但在从左侧到右侧时不满足条件“函数值随自变量的值增大而增大”,故选项错误;故选:A .4.某兴趣小组有5名成员,身高(厘米)分别为:161,165,169,163,167.增加一名身高为165厘米的成员后,现兴趣小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变小C.平均数不变,方差变大D.平均数变小,方差不变.【答案】B 【解析】【分析】本题考查算术平均数和方差的知识,熟记算术平均数和方差的计算公式是解题的关键.【详解】()1611651691631675165x =++++÷=原,()()()()()222222116116516516516916516316516716585S ⎡⎤=⨯-+-+-+-+-=⎣⎦原,()1611651691631671656165x =+++++÷=新,()()()()()()222222212016116516516516916516316516716516516563S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦新,∴平均数不变,方差变小,故选:B .5.已知四边形ABCD 中,AB 与CD 不平行,AC 与BD 相交于点O ,那么下列条件中,能判断这个四边形为等腰梯形的是()A.AC BD= B.ABC BCD∠=∠ C.,OB OC OA OD== D.,OB OC AB CD==【答案】C 【解析】【分析】本题考查全等三角形的判定和性质以及等腰梯形的判定,解此题的关键是求出AD BC .【详解】A 、AC BD =,不能证明四边形ABCD 是等腰梯形,错误;B 、ABC BCD ∠=∠,不能证明四边形ABCD 是等腰梯形,错误;C 、∵OB OC OA OD ==,,∴OBC OCB ∠=∠,OAD ODA ∠=∠,∴()SAS AOB DOC ≌,∴ABO DCO ∠=∠,AB CD =,OAB ODC ∠=∠,∵360ABC DCB CDA BAD ∠+∠+∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴AD BC ,∴四边形ABCD 是梯形,∵AB CD =,∴四边形ABCD 是等腰梯形.D 、OB OC =,AB CD =,不能证明四边形ABCD 是等腰梯形,错误;故选C .6.如图,在平行四边形ABCD 中,对角线AC BD 、相交于点O ,过O 作AC 的垂线交AD 于点,E EC 与BD 相交于点F ,且ECD DBC ∠=∠,那么下列结论错误的是()A.EA EC =B.DOC DCO ∠=∠C.4BD DF= D.BC CD CE BF=【答案】D 【解析】【分析】由题意可知,OE 垂直平分AC ,则EA EC =,可判断A 的正误;由DAO ECA ∠=∠,ADO DBC ECD ∠=∠=∠,DOC DAO ADO ∠=∠+∠,DCO ECA ECD ∠=∠+∠,可得DOC DCO ∠=∠,可判断B 的正误;证明FDC CDB ∽,则DF CD CD BD =,即1212BDDF BD BD =,可得4BD DF =,进而可判断C 的正误;证明CBF ECD ∽,可得FC BD C BF CDCE B =≠,进而可判断D 的正误.【详解】解:∵平行四边形ABCD ,∴OA OC =,12OB OD BD ==,AD BC ∥,又∵OE AC ⊥,∴OE 垂直平分AC ,∴EA EC =,A 正确,故不符合要求;∴DAO ECA ∠=∠,∵AD BC ∥,∴ADO DBC ECD ∠=∠=∠,∴DOC DAO ADO ∠=∠+∠,又∵DCO ECA ECD ∠=∠+∠,∴DOC DCO ∠=∠,B 正确,故不符合要求;∴12CD OD BD ==,∵FCD CBD ∠=∠,FDC CDB ∠=∠,∴FDC CDB ∽,∴DF CD CD BD =,即1212BD DF BD BD =,解得,4BD DF =,C 正确,故不符合要求;∵AD BC ∥,∴BCF CED ∠=∠,又∵CBF ECD ∠=∠,∴CBF ECD ∽,∴FC BD C BF CD CE B =≠,D 错误,故符合要求;故选:D .【点睛】本题考查了平行四边形的性质,垂直平分线的性质,三角形外角的性质,等角对等边,相似三角形的判定与性质.熟练掌握平行四边形的性质,垂直平分线的性质,三角形外角的性质,等角对等边,相似三角形的判定与性质是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.分解因式:22xy x y -=_______.【答案】()xy y x -【解析】【分析】本题考查因式分解,掌握提取公因式法分解因式是解题的关键.【详解】解:22()xy x y xy y x -=-,故答案为:()xy y x -.8.方程5=的解是_______.【答案】13x =【解析】【分析】本题考查了二次根式的性质和一元一次方程的解法,解题的关键是准确计算.5=,∴2125x -=,解得:13x =,经检验:13x =是原方程的解,故答案为:13x =.9.函数1x y x =+的定义域是________.【答案】x ≠-1【解析】【分析】根据分母不为零,即可求得定义域.【详解】解:由题意,10x +≠即1x ≠-故答案为:1x ≠-【点睛】本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.10.如果关于x 的方程20x x c --+=有实数根,那么实数c 的取值范围是_______.【答案】14c ≥-【解析】【分析】本题考查一元二次方程根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根,根据方程的0∆≥即可解答.【详解】解:方程20x x c --+=有实数根,∴()()21410c --⨯-⨯≥,∴14c ≥-,故答案为:14c ≥-.11.如果将抛物线21y x =+向右平移3个单位,那么所得新抛物线的表达式是_______.【答案】2=(3)+1y x -【解析】【分析】本题考查了二次函数的平移,正确理解二次函数的平移规律是解题的关键.根据函数图像平移的方法:左加右减,上加下减,即可得到答案.【详解】将抛物线21y x =+向右平移3个单位,所得新抛物线的表达式是2=(3)+1y x -.故答案为:2=(3)+1y x -.12.甲、乙两位同学分别在、、A B C 三个景点中任意选择一个游玩,那么他们选择同一个景点的概率是_______.【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种,故他们选择同一个景点的概率是:3193=,故答案为:13.13.某校有2000名学生参加了“安全伴我行”的宣传教育活动.为了解活动效果,随机从中抽取m名学生进行了一次测试,满分为100分,按成绩划分为,,,A B C D四个等级,将收集的数据整理绘制成如下不完整的统计图表.请根据以上信息,估计该校共有_______名学生的成绩达到A等级.成绩频数分布表等第成绩x频数A90100x≤≤nB8090x≤<117C7080x≤<32D070x≤<8成绩扇形统计图【答案】430【解析】【分析】此题考查了扇形统计图、频数分布表理清它们之间的数据关系是解题的关键.用2000乘以A等级人数的占比即可求解.【详解】解:本次抽取的人数为3216%200÷=人,∴A等级的人数为20011732843---=人,估计该校共有达到A等级的学生数为43 2000430200⨯=人,故答案为:430.14.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B的仰角为α,看这栋楼底部C的俯角为β,热气球A处与楼的水平距离为m米,那么这栋楼BC的高度为_______米.(用含m αβ、、的式子表示)【答案】()tan tan m αβ+【解析】【分析】本题考查了解直角三角形的仰角俯角问题,首先过点A 作AD BC ⊥于点D ,根据题意得BAD ∠=α,DAC β∠=,AD m =米,然后利用三角函数求解即可求得答案.【详解】解:首先过点A 作AD BC ⊥于点D ,如下图所示,则BAD ∠=α,DAC β∠=,AD m =米,在Rt △ABD 中,tan tan BD AD m αα== 米,在Rt ACD △中,tan tan DC AD m ββ== 米,∴()·tan ·tan tan tan BC BD DC m m m αβαβ=+=+=+米.故答案为:()tan tan m αβ+15.如图,在ABC 中,中线AD BE 、相交于点F ,设,AB a FE b == ,那么向量BC 用向量a b、表示为_______.【答案】6a b+ 【解析】【分析】本题考查了三角形的中位线定理,相似三角形的判定和性质,三角形法则等知识.根据三角形的中位线定理和相似三角形的判定和性质可得33BE FE b == ,利用三角形法BD BE ED =+ 则求出即可.【详解】解:连接DE ,∵中线AD BE 、相交于点F ,∴DE AB ∥,12DE AB =,∴1122ED AB a == ,∴DEF ABF ∽,∴12EF ED FB AB ==,∴33BE FE b == ,∴132BD BE ED a b =+=+ ,又∵点D 是BC 的中点,∴26BC BD a b ==+,故答案为:6a b + .【点睛】16.如图,有一幅不完整的正多边形图案,小明量得图中一边与对角线的夹角15BAC ∠=︒,那么这个正多边形的中心角是_______度.【答案】30【解析】【分析】本题考查了三角形内角和定理,正多边形的性质,正多边形的外角与边数的关系,熟练掌握正多边的外角和等于是解题的关键.根据三角形内角和定理以及正多边形的性质,得出150B ∠=︒,然后可得每一个外角为30︒,进而即可求解.【详解】解:AB BC = ,∴15BAC BCA ∠=∠=︒,∴1801801515150B BAC BCA ∠=︒-∠-∠=︒-︒-︒=︒,∴多边形的外角为18015030︒-︒=︒,∴多边形的边数为:3601230=,∴正多边形的中心角是3603012︒=︒,故答案为:30.17.正方形ABCD 的边长为1,E 为边DC 的中点,点F 在边AD 上,将D ∠沿直线EF 翻折,使点D 落在点G 处,如果BG BC =,那么线段DF 的长为_______.【答案】14##0.25【解析】【分析】本题考查正方形的折叠,相似三角形的判定和性质,全等三角形的判定和性质,掌握折叠的性质是解题的关键.连接BE ,证明EGB ECB ≌,可得90DEF CEB ∠+∠=︒,然后得到DEF CBE ∽即可解题.【详解】如图,连接BE ,由翻折可得:90D EGF ∠=∠=︒,12DEF GEF DEG ∠=∠=∠,DE EG =,又∵E 为边DC 的中点,∴12DE EC EG ===,又∵BG BC =,BE BE =,∴EGB ECB ≌,∴12GEB CEB CEG ∠=∠=∠,∴119022DEF CEB DEG CEG ∠+∠=∠+∠=︒,又∵ABCD 是正方形,∴90D C ∠=∠=︒,∴90DEF DFE ∠+∠=︒,∴DFE CEB ∠=∠,∴DEF CBE ∽,∴DF DE CE BC =,即12112DF =,解得14DF =.故答案为:1418.在矩形ABCD 中,2,4,AB BC AC ==与BD 相交于点O .A 经过点B ,如果O 与A 有公共点,且与边CD 没有公共点,那么O 的半径长r 的取值范围是_______.522r -≤<【解析】【分析】本题考查矩形的性质,勾股定理,圆与圆的位置关系和直线和圆的位置关系,掌握圆与圆的位置关系和直线和圆的位置关系是解题的关键.过点O 作OE CD ⊥于点E ,根据勾股定理得到AC =,然后根据COE CAD ∽,得到2OE =,由已知可以得到r 的取值范围即可.【详解】解:过点O 作OE CD ⊥于点E ,∵ABCD 是矩形,∴90ABC ADC OEC ∠=∠=∠=︒,12AO OC AC ==,∴AC ===,∴AO OC ==,又∵90ADC OEC ∠=∠=︒,∴OE AD ,∴COE CAD ∽,∴12OE CO AD AC ==,∴122OE AD ==,又∵O 与A 有公共点,且与边CD 没有公共点,22r -≤<,22r -≤<.三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.计算:2301(2024)8π⎛⎫--++ ⎪⎝⎭【答案】154-【解析】【分析】本题主要考查了实数的运算,零指数幂,分数指数幂,化简二次根式,先计算分数指数幂和零指数幂,利用平方差公式进行二次根式和化简,最后算加减.【详解】解:2301(2024)8π⎛⎫-- ⎪⎝⎭23343112+⎡⎤⎛⎫=-+⎢⎥⎪⎝⎭⎢⎥⎣⎦)24311259+⎛⎫=-+⎪-⎝⎭1341=-+154=-.20.解方程组:22221,230.x y x xy y +=⎧⎨--=⎩①②【答案】93x y =⎧⎨=⎩,2121x y =⎧⎨=-⎩【解析】【分析】本题考查了二元二次方程组解法,解题关键是通过因式分解将二元一次方程组转化为两个二元一次方程组解答.因式分解组中的方程②,得到两个二元一次方程,再代入①即可解方程组.【详解】解:由②得:()()30x y x y -+=,即3x y =或x y =-,把3x y =代入①得3y =,9x =;把x y =-代入①得21y =-,21x =;∴方程组的解为:93x y =⎧⎨=⎩,2121x y =⎧⎨=-⎩.21.如图,AB 是O 的直径,AB 与CD 相交于点E ,弦AD 与弦CD 相等,且 BCBD =.(1)求ADC ∠的度数;(2)如果1OE =,求AD 的长.【答案】(1)60︒(2)23【解析】【分析】本题考查圆周角定理,等边三角形的判定与性质,垂径定理,圆心角、弧、弦的关系及解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)连接AC ,根据垂径定理可得 AC AD =,从而可得,AC AD =然后利用等量代换可得,AC AD CD ==从而可得ACD 是等边三角形,再利用等边三角形的性质即可解答;(2)连接OD ,根据垂径定理可得1,,2DE EC CD AB CD ==⊥从而可得90,AED ∠=︒再利用直角三角形的两个锐角互余可得30,DAO ∠=︒然后利用圆周角定理可得60,DOE ∠=︒再在.Rt OED 中,利用锐角三角函数的定义求出DE 的长,即可解答.【小问1详解】连接AC ,∵AB 是O 的直径, BCBD =,∴ AC AD =,AC AD ∴=,AD CD = ,AC AD CD ∴==,ACD ∴是等边三角形,60ADC ∴∠=︒;【小问2详解】连接OD ,∵AB 是O 的直径, BCBD =,1,2DE EC CD AB CD ∴==⊥,90AED ∴∠=︒,60ADC ∠=︒ ,9030DAO ADC ∴∠=︒-∠=︒,260DOE DAO ∴∠=∠=︒,在Rt OED 中,1OE =,tan60DE OE ∴=⋅︒=,2CD DE ∴==,CD AD ∴==.22.某学校计划租用7辆客车送275名师生去参加课外实践活动.现有甲、乙两种型号的客车可供选择,它们的载客量(指的是每辆客车最多可载该校师生的人数)和租金如下表.设租用甲种型号的客车x 辆,租车总费用为y 元.型号载客量(人/辆)租金(元/辆)甲451500乙331200(1)求y 与x 的函数解析式(不需要...写定义域);(2)如果使租车总费用不超过10200元,一共有几种租车方案?(3)在(2)的条件下,选择哪种租车方案最省钱?此时租车的总费用是多少元?【答案】(1)300y x =8400+(2)共有3种租车方案(3)租用甲种型号的客车4辆,租用乙种型号的客3辆,租车最省钱,租车的总费用是9600元【解析】【分析】本题考查一元一次不等式组和一次函数的应用,解题的关键是读懂题意,列出函数关系式.(1)租用甲种型号的客车x 辆,则租用乙种型号的客车()7x -辆;根据题意列函数关系式即可;(2)根据租车总费用不超过10200元,师生共有275人可得()30084001020045337275x x x +≤⎧⎨+-≥⎩,又x 为整数,解不等式组即可得到租车方案;(3)结合(1)(2),利用一次函数性质租金最少的方案即可解题.【小问1详解】租用甲种型号的客车x 辆,则租用乙种型号的客车()7x -辆,()150012007300y x x x ∴=+-=8400+;【小问2详解】∵租车总费用不超过10200元,师生共有275人,()30084001020045337275x x x +≤⎧∴⎨+-≥⎩,解得2363x ≤≤,∵x 为整数,∴x 可取4,5,6,∴一共有3种租车方案;【小问3详解】在3008400y x =+中,y 随x 的增大而增大,又x 可取4,5,6,∴当4x =时,y 取最小值,最小值为300484009600⨯+=(元),∴租用甲种型号的客车4辆,租用乙种型号的客3辆,租车最省钱,租车的总费用是9600元.23.已知:如图,在四边形ABCD 中,AD BC ∥,点E 是对角线AC 上一点,EA ED =,且DAB DEC DCB ∠=∠=∠.(1)求证:四边形ABCD 是菱形;(2)延长DE 分别交线段AB CB 、的延长线于点F G 、,如果GB BC =,求证:22AD EF GD =⋅.【答案】(1)见解析(2)见解析【解析】【分析】(1)由,AD BC 得180DAB ABC ∠+∠=︒,则180DCB ABC ∠+∠=︒,所以AB CD ,则四边形ABCD 是平行四边形,由2,DEC CAD ∠=∠且,DAB DEC ∠=∠得2DAB CAD ∠=∠,所以,CAB CAD ACB ∠=∠=∠则AB CB =,即可证明四边形ABC D 是菱形;(2)由菱形的性质得AB AD BC CD ===,而GB BC =,所以AD GB =,可证明ADF BGF ∽,得1,AF AD BF GB ==则11,22AF BF AB CD ===再证明AEF CED ∽,得1,2EF AF ED CD ==所以2ED EF =,再证明EDC CDG ∽,得,CD ED GD CD =则2,AD EF GD AD =即可证明²2AD EF GD =⋅.【小问1详解】)证明:∵AD BC ,∴180,DAB ABC CAD ACB ∠+∠=︒∠=∠,∵DAB DCB ∠=∠,∴180DCB ABC ∠+∠=︒,∴AB CD ,∴四边形ABCD 是平行四边形,∵EA ED =,∴EDA CAD ∠=∠,∴2DEC EDA CAD CAD ∠=∠+∠=∠,∵DAB DEC ∠=∠,∴2DAB CAD ∠=∠,∴CAB CAD ACB ∠=∠=∠,∴AB CB =,∴四边形ABCD 是菱形;【小问2详解】证明:根据题意作图如下,∵四边形ABCD 是菱形,∴AB AD BC CD ===,∵,AD BC GB BC ==,∴AD GB =,∵AD GB ,∴ADF BGF ∽,1AF AD BF GB ∴==,1122AF BF AB CD ∴===,∵AF CD ,∴AEF CED ∽,12EF AF ED CD ∴==,∴2ED EF =,∴,ECD CAD G EDA ∠=∠∠=∠,且CAD EDA ∠=∠,∴ECD G ∠=∠,∵EDC CDG ∠=∠,∴EDC CDG ∽,∴CD ED DG CD =,2AD EF GD AD ∴=,²2AD EF GD ∴=⋅.【点睛】此题重点考查平行线的性质、菱形的判定性质、等腰三角形的判定与性质、相似三角形的判定与性质等知识,推导出CAB CAD ACB ∠=∠=∠是解题的关键.24.在平面直角坐标系xOy 中,抛物线23y ax bx =+-的图像与x 轴交于点(3,0)A -和点(1,0)B .与y 轴交于点,C D 是线段OA 上一点.(1)求这条抛物线的表达式和点C 的坐标;(2)如图,过点D 作DG x ⊥轴,交该抛物线于点G ,当DGA DGC ∠=∠时,求GAC △的面积;(3)点P 为该抛物线上第三象限内一点,当1OD =,且45DCB PBC ∠+∠=︒时,求点P 的坐标.【答案】(1)223y x x =+-,()03C -,(2)158(3)()14P --,【解析】【分析】(1)将(3,0)A -、(1,0)B 代入得,933030a b a b --=⎧⎨+-=⎩,可求12a b =⎧⎨=⎩,则223y x x =+-,当0x =时,=3y -,进而可求()03C -,;(2)如图1,作CM DG ⊥于M ,记AC 与DG 的交点为N ,设()0D m ,,则()223G m m m +-,,()3M m -,,则3AD m =+,()223DG m m =-+-,CM m =-,()22GM m m =-+,由tan tan DGA DGC ∠=∠,可得()()223232m m m m m m +-=-+--+,计算求出满足要求的解为12m =-,则11524G ⎛⎫-- ⎪⎝⎭,,待定系数法求直线AC 的解析式为3y x =--,进而可得1522N ⎛⎫-- ⎪⎝⎭,,则54GN =,根据()12GAC GAN GCN C A S S S GN x x =+=⨯- ,计算求解即可;(3)如图2,作BH CD ⊥于H ,在CD 上取HN BH =,连接BN 交抛物线于点P ,由45BNH DCB PBC ∠=︒=∠+∠,可知点P 即为所求,由勾股定理得,CD BC ===,由1122BCD S BD OC CD BH =⋅=⋅ ,可求3105BH =,则222365BN BH HN =+=,待定系数法求直线CD 的解析式为33y x =--,设()33N n n --,,由()()222361335BN n n =-+--=,可求15n =-,75n =-(舍去),则11255N ⎛⎫-- ⎪⎝⎭,,待定系数法求直线BN 的解析式为22y x =-,联立得,22223x x x -=+-,计算求解,然后作答即可.【小问1详解】解:将(3,0)A -、(1,0)B 代入得,933030a b a b --=⎧⎨+-=⎩,解得,12a b =⎧⎨=⎩,∴223y x x =+-,当0x =时,=3y -,即()03C -,;【小问2详解】解:如图1,作CM DG ⊥于M ,记AC 与DG 的交点为N ,设()0D m ,,则()223G m m m +-,,()3M m -,,∴3AD m =+,()223DG m m =-+-,CM m =-,()22GM m m =-+,∵DGA DGC ∠=∠,∴tan tan DGA DGC ∠=∠,∴AD CMDG GM =,即()()223232m mm m m m +-=-+--+,解得,12m =-,经检验,12m =-是原分式方程的解,且符合要求;∴11524G ⎛⎫-- ⎪⎝⎭,,设直线AC 的解析式为y kx c =+,将(3,0)A -,()03C -,代入得,303k c c -+=⎧⎨=-⎩,解得,13k c =-⎧⎨=-⎩,∴直线AC 的解析式为3y x =--,当12x =-时,15322y ⎛⎫=---=- ⎪⎝⎭,即1522N ⎛⎫-- ⎪⎝⎭,,∴54GN =,∴()1151532248GAC GAN GCN C A S S S GN x x =+=⨯-=⨯⨯= ,∴GAC △的面积为158;【小问3详解】解:如图2,作BH CD ⊥于H ,在CD 上取HN BH =,连接BN 交抛物线于点P ,∵HN BH =,BH CD ⊥,∴45BNH DCB PBC ∠=︒=∠+∠,∴点P 即为所求,由勾股定理得,CD BC ===,∵1122BCD S BD OC CD BH =⋅=⋅ ,∴112322BH ⨯⨯=,解得,3105BH =,∴222365BN BH HN =+=,设直线CD 的解析式为y kx d =+,将(1,0)D -,()03C -,代入得,03k d d -+=⎧⎨=-⎩,解得,33k c =-⎧⎨=-⎩,∴直线CD 的解析式为33y x =--,设()33N n n --,,∴()()222361335BN n n =-+--=,解得,15n =-,75n =-(舍去),∴11255N ⎛⎫-- ⎪⎝⎭,,设直线BN 的解析式为y kx e =+,将(1,0)B ,11255N ⎛⎫-- ⎪⎝⎭代入得,011255k e k e +=⎧⎪⎨-+=-⎪⎩,解得,22k e =⎧⎨=-⎩,∴直线BN 的解析式为22y x =-,联立得,22223x x x -=+-,解得,1x =舍去或=1x -,∴()14P --,.【点睛】本题考查了二次函数解析式,二次函数与角度综合,正切,二次函数与面积综合,一次函数解析式,勾股定理,三角形外角的性质等知识.熟练掌握二次函数解析式,二次函数与角度综合,正切,二次函数与面积综合,一次函数解析式,勾股定理,三角形外角的性质是解题的关键.25.在ABC 中,2AB AC ==,以C 为圆心、CB 为半径的弧分别与射线BA 、射线CA 相交于点D E 、,直线ED 与射线CB 相交于点F .(1)如图,当点D 在线段AB 上时.①设ABC α∠=,求BDF ∠;(用含α的式子表示)②当1BF =时,求cos ABC ∠的值;(2)如图,当点D 在BA 的延长线上时,点M N 、分别为BC DF 、的中点,连接MN ,如果MN CE ∥,求CB 的长.【答案】(1)①12α②24(2)1BC =+【解析】【分析】(1)①根据等边对等角得到ACB ABC CDB α∠=∠=∠=,CDE CED ∠=∠,然后根据四边形的内角和是360︒计算解题;②先根据F BDF ∠=∠得到1BD BF ==,然后推导CDB ACB ∽,得到BC BD AB BC =,可以求出BC 长,过点A 作AG BC ⊥于点G ,然后求出cos ABC ∠值即可;(2)设MN 交BD 于点H ,设BC a =,则1AH BH ==,然后证明BCA BDC ∽,得到22a BD =,然后根据平行线分线段成比例得到EN HA DN DH =,EN CM FN MF =,再根据DN FN =,就可得到HA CM DH MF=,代入数值即可解题.【小问1详解】解:①∵AC AB CB CD CE ===,,∴ACB ABC CDB α∠=∠=∠=,CDE CED ∠=∠,又∵360ACB ABC CDB CDE CED ∠+∠+∠+∠+∠=︒,∴()1136018022CDB CDE αα∠+∠=︒-=︒-,∴()11180********ADE CDB CDE αα⎛⎫∠=︒-∠+∠=︒-︒-= ⎪⎝⎭;②∵12ADE BDF ABC αα∠=∠=∠=,,∴12F BDF α∠=∠=,∴1BD BF ==,又∵1802BCD A α∠=︒-=∠,CBD DBC ∠=∠,∴CDB ACB ∽,∴BC BDAB BC =,即12BCBC =,解得:BC =BC =;过点A 作AG BC ⊥于点G ,则1222BG BC ==,∴222cos 24BG ABC AB ∠===;【小问2详解】解:设MN 交BD 于点H ,设BC a =,∵M 是BC 的中点,∴12BM CM a ==,又∵MN CE ,∴BMH BCA ∽,∴1BH BMHA MC ==,又∵2AB AC ==,∴1AH BH ==,∵AC AB =,BC CD =,∴ACB ABC CDB ∠=∠=∠,∴BCA BDC ∽,∴BC BDBA BC =,即2aBDa =,解得:22a BD =,∴212a DH DB BH =-=-,∵MN CE ,∴2212212ENHA a DN DH a ===--,又∵ACB ABC ∠=∠,12BDF ACB ∠=∠,∴12ABC ACB ∠=∠,∴ACB F ∠=∠,∴22a BF BD ==,∴222a aFM FB MB =+=+,∵MN CE ,∴212122aEN CM a a FN MF a ===++,又∵N 是DF 的中点,∴DN FN =,∴EN EN DN FN =,即22121a a =-+,解得:1a =+1a =-,BC=∴1【点睛】本题考查等腰三角形的性质和判定,相似三角形的判定和性质,解直角三角形,平行线分线段成比例,掌握相似三角形的判定和性质是解题的关键.。

最新2022中考数学二模试卷(解析版)

最新2022中考数学二模试卷(解析版)

一.选择题(共12小题)1.2019的倒数是()A.2019B.﹣2019C.D.﹣2.下列计算正确的是()A.B.a+2a=3aC.(2a)3=2a3D.a6÷a3=a2 3.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为()A.15×107元B.1.5×108元C.0.15×109元D.1.5×107元4.下列航空公司的标志中,是轴对称图形的是()A.B.C.D.5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6.众所周知,湖南师大附中是“金牌摇篮”.在2019﹣2020学年已经结束的各学科全国决赛中,附中高三学生共获得金牌14枚,银牌12枚,12人入选国家集训队,位列全省第一(全省共27人).在全国决赛中,其中各学科获得的金牌数如表所示:学科数学物理化学生物金牌数 3 5 3 3则这些金牌数的中位数为()A.3B.5C.4D.3.57.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤28.抛物线y=x2﹣2x﹣3的顶点坐标是()A.(﹣1,﹣4)B.(3,0)C.(2,﹣3)D.(1,﹣4)9.如图,PA切⊙O于点A,直线PBC经过点圆心O,若∠P=30°,则∠ACB的度数为()A.30°B.60°C.90°D.120°10.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2mB.2mC.(2﹣2)mD.(2﹣2)m11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.12.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④二.填空题(共6小题)13.分解因式:4x2﹣16=.14.直线y=﹣2x+1不经过第象限.15.在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.已知关于x的一元二次方程x2﹣4x+m=0有一个根为1,则方程的另一个根为.17.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE=8,则BC=.18.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′.当α+β=90°时,我们称△AB′C′是△ABC的“双旋三角形”.如果等边△ABC的边长为a,那么它的“双旋三角形”的面积是(用含a的代数式表示).三.解答题(共8小题)19.计算:+()﹣1﹣2cos60°+(2﹣π)0.20.先化简,再求值:,其中x=2020.21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.22.如图,已知△ABC中,以AB为直径的⊙O交AC于点D,∠CBD =∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=12,sin∠BED=,求BE的长.23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?24.如图,菱形ABCD的对角线AC,BD相交于点O,过点C作CE∥BD,且CE=BD.(1)求证:四边形OCED是矩形;(2)连接AE交CD于点G,若AE⊥CD.①求sin∠CAG的值;②若菱形ABCD的边长为6cm,点P为线段AE上一动点(不与点A重合),连接DP,一动点Q从点D出发,以1cm/s的速度沿线段DP匀速运动到点P,再以cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A 所需要的时间最短时,求AP的长和点Q走完全程所需的时间t.25.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.26.如图,直线l:y=x﹣2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135°.(1)求证:△OAC∽△DBO;(2)若点C、D都在反比例函数y=的图象上,求k的值;(3)记△OBD的面积为S1,△AOC的面积为S2,且=,二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.参考答案与试题解析一.选择题(共12小题)1.2019的倒数是()A.2019B.﹣2019C.D.﹣【分析】直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:2019的倒数是:.故选:C.2.下列计算正确的是()A.B.a+2a=3aC.(2a)3=2a3D.a6÷a3=a2 【分析】直接利用二次根式的加减运算法则以及合并同类项法则、积的乘方运算法则和同底数幂的除法运算分别计算得出答案.【解答】解:A、+,无法计算,故此选项错误;B、a+2a=3a,正确;C、(2a)3=8a3,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.3.据测算,我国每天土地沙漠化造成的经济损失平均为150 000 000元,这个数字用科学记数法表示为()A.15×107元B.1.5×108元C.0.15×109元D.1.5×107元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000 000用科学记数法表示为1.5×108.故选:B.4.下列航空公司的标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.5.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.6.众所周知,湖南师大附中是“金牌摇篮”.在2019﹣2020学年已经结束的各学科全国决赛中,附中高三学生共获得金牌14枚,银牌12枚,12人入选国家集训队,位列全省第一(全省共27人).在全国决赛中,其中各学科获得的金牌数如表所示:学科数学物理化学生物金牌数 3 5 3 3则这些金牌数的中位数为()A.3B.5C.4D.3.5【分析】先将表格中的数据按照从小到大排列,然后即可得到这组数据的中位数.【解答】解:金牌数按照从小到大排列是3,3,3,5,故这些金牌数的中位数是3,故选:A.7.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤2【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选:D.8.抛物线y=x2﹣2x﹣3的顶点坐标是()A.(﹣1,﹣4)B.(3,0)C.(2,﹣3)D.(1,﹣4)【分析】此题利用配方法化简y=x2﹣2x﹣3得到y=(x﹣1)2﹣4,由此即可确定顶点的坐标.【解答】解:∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,故顶点的坐标是(1,﹣4).故选:D.9.如图,PA切⊙O于点A,直线PBC经过点圆心O,若∠P=30°,则∠ACB的度数为()A.30°B.60°C.90°D.120°【分析】如图,连接OA,AC.利用切线的性质推知△ABO是直角三角形,则∠AOP=60°;然后根据圆周角定理求得∠ACB=∠AOB.【解答】解:如图,连接OA,AC.∵PA切⊙O于点A,直线PBC经过点圆心O,∴OA⊥PA,即∠PAO=90°.又∵∠P=30°,∴∠AOP=60°,∴∠ACB=∠AOB=30°.故选:A.10.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2mB.2mC.(2﹣2)mD.(2﹣2)m【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选:B.11.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设该物品的价格是x钱,共同购买该物品的有y人,依题意,得:.故选:A.12.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC =∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE =DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF ≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【解答】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.二.填空题(共6小题)13.分解因式:4x2﹣16=4(x+2)(x﹣2).【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).14.直线y=﹣2x+1不经过第三象限.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该直线不经过哪个象限,本题得以解决.【解答】解:∵y=﹣2x+1,k=﹣2,b=1,∴该直线经过第一、二、四象限,不经过第三象限,故答案为:三.15.在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(2,1).【分析】根据坐标的平移规律解答即可.【解答】解:将点A(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(﹣2+4,3﹣2),即(2,1),故答案为(2,1).16.已知关于x的一元二次方程x2﹣4x+m=0有一个根为1,则方程的另一个根为 3 .【分析】设方程的另一个根为x2,根据韦达定理即可得到结论.【解答】解:设方程的另一个根为x2,根据题意得,x2+1=4,解得:x2=3,∴方程的另一个根为3.故答案为:3.17.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE=8,则BC=12 .【分析】由DE∥BC则可以得出△ADE∽△ABC,于是可得=,根据已知数据即可求出BC的长.【解答】解:∵DE∥BC∴△ADE∽△ABC∴=而AE=6,EC=3,DE=8则=∴BC=12故答案为12.18.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′.当α+β=90°时,我们称△AB′C′是△ABC的“双旋三角形”.如果等边△ABC的边长为a,那么它的“双旋三角形”的面积是(用含a的代数式表示).【分析】首先根据等边三角形、“双旋三角形”的定义得出△AB′C′是顶角为150°的等腰三角形,其中AB′=AC′=a.过C′作C′D⊥AB′于D,根据30°角所对的直角边等于斜边的一半得出C′D=AC′=a,然后根据S△AB′C′=AB′•C′D即可求解.【解答】解:∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,∴AB′=AB=a,∠B′AB=α,∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,∴AC′=AC=a,∠CAC′=β,∴∠B′AC′=∠B′AB+∠BAC+∠CAC′=α+60°+β=60°+90°=150°.如图,过C′作C′D⊥AB′于D,则∠D=90°,∠DAC′=30°,∴C′D=AC′=a,∴S△AB′C′=AB′•C′D=a•a=a2.故答案为a2.三.解答题(共8小题)19.计算:+()﹣1﹣2cos60°+(2﹣π)0.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2+2﹣2×+1=4.20.先化简,再求值:,其中x=2020.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=•=x﹣2,当x=2020时,原式=2020﹣2=2018.21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.【分析】(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)本次调查的学生人数为6÷20%=30(名);(2)B选项的人数为30﹣3﹣9﹣6=12(名),补全图形如下:(3)估计“了解”的学生约有600×=240(名);(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为=.22.如图,已知△ABC中,以AB为直径的⊙O交AC于点D,∠CBD =∠A.(1)求证:BC为⊙O的切线;(2)若E为中点,BD=12,sin∠BED=,求BE的长.【分析】(1)由圆周角定理和已知条件证出∠CBD+∠ABD=90°.得出∠ABC=90°,即可得出结论.(2)连接AE.由圆周角定理得出∠BAD=∠BED,由三角函数定义求出直径AB=20.证出AE=BE.得出△AEB是等腰直角三角形.得出∠BAE=45°,由三角函数即可得出结果.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠A+∠ABD=90°.又∵∠A=∠CBD,∴∠CBD+∠ABD=90°.∴∠ABC=90°.∴AB⊥BC.又∵AB是⊙O的直径,∴BC为⊙O的切线.(2)解:连接AE.如图所示:∵AB是⊙O的直径,∴∠AEB=∠ADB=90°.∵∠BAD=∠BED,∴sin∠BAD=sin∠BED=.∴在Rt△ABD中,sin∠BAD==,∵BD=12,∴AB=20.∵E为的中点,∴AE=BE.∴△AEB是等腰直角三角形.∴∠BAE=45°.∴BE=AB×sin∠BAE=20×=10.23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.24.如图,菱形ABCD的对角线AC,BD相交于点O,过点C作CE∥BD,且CE=BD.(1)求证:四边形OCED是矩形;(2)连接AE交CD于点G,若AE⊥CD.①求sin∠CAG的值;②若菱形ABCD的边长为6cm,点P为线段AE上一动点(不与点A重合),连接DP,一动点Q从点D出发,以1cm/s的速度沿线段DP匀速运动到点P,再以cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A 所需要的时间最短时,求AP的长和点Q走完全程所需的时间t.【分析】(1)首先证明四边形OCED是平行四边形,再根据∠COD =90°推出是矩形.(2)①由DE∥AC,DE=OC=OA,推出==,设DG=m,则CG=2m,DC=AD=3m,求出AC即可解决问题.②过点P作PT⊥AC于T.由sin∠PAT==,推出PT=PA,由点Q的运动时间t=+=PD+PA=PD+PT,根据垂线段最短可知,当D,P,T共线,且DT⊥AC时,PD+PT的值最小,最小值=线段OD的长.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵EC=BD,∴EC=OD,∵EC∥OD,∴四边形OCED是平行四边形,∵∠COD=90°,∴四边形OCED是矩形.(2)解:①∵四边形OCED是矩形,∴DE∥AC,DE=OC=OA,∴==,设DG=m,则CG=2m,DC=AD=3m,∵AE⊥CD,∴∠AGD=∠AGC=90°,∴AG===2m,∴AC===2m,∴sin∠CAG===.②过点P作PT⊥AC于T.∵sin∠PAT==,∴PT=PA,∵点Q的运动时间t=+=PD+PA=PD+PT,根据垂线段最短可知,当D,P,T共线,且DT⊥AC时,PD+PT 的值最小,最小值=线段OD的长,由(2)可知3m=6,m=2,∴AC=4,OA=2,∵∠AOD=90°,∴OD===2,∵DE∥OA,∴==1,∴OP=PD=,此时AP===3,∴满足条件的PA的值为3,点Q走完全程所需的时间t=2(s).25.已知二次函数y=ax2+bx+c(a≠0).(1)若b=1,a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;(2)若a<0,c=0,且对于任意的实数x,都有y≤1,求4a+b2的取值范围;(3)若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论;(2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y1)和(1,y2)分别代入函数解析式,由y1•y2>0,及2a+3b+6c=0,得不等式组,变形即可得出答案.【解答】解:(1)证明:∵y=ax2+bx+c(a≠0),∴令y=0得:ax2+bx+c=0∵b=1,a=﹣c,∴△=b2﹣4ac=1﹣4(﹣c)c=1+2c2,∵2c2≥0,∴1+2c2>0,即△>0,∴二次函数的图象与x轴一定有两个不同的交点;(2)∵a<0,c=0,∴抛物线的解析式为y=ax2+bx,其图象开口向下,又∵对于任意的实数x,都有y≤1,∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)由2a+3b+6c=0,可得6c=﹣(2a+3b),∵函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,∴c(a+b+c)>0,∴6c(6a+6b+6c)>0,∴将6c=﹣(2a+3b)代入上式得,﹣(2a+3b)(4a+3b)>0,∴(2a+3b)(4a+3b)<0,∵a≠0,则9a2>0,∴两边同除以9a2得,(+)(+)<0,∴或,∴﹣<<﹣,∴二次函数图象对称轴与x轴交点横坐标的取值范围是<﹣<.26.如图,直线l:y=x﹣2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135°.(1)求证:△OAC∽△DBO;(2)若点C、D都在反比例函数y=的图象上,求k的值;(3)记△OBD的面积为S1,△AOC的面积为S2,且=,二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.【分析】(1)先求出点A,点B坐标,可求∠OAB=∠OBA=45°,由外角的性质可求∠DOB=∠ACO,∠AOC=∠ODB,可证△OAC ∽△DBO;(2)由相似三角形的性质可得,设=a>0,用a表示点C,点D坐标,代入反比例函数解析式,可求解.(3)先求出点C,点D坐标,代入解析式,由题意可得当x=2时,y有最大值2,组成方程组,可求a的值.【解答】解:(1)∵直线l:y=x﹣2分别交x,y轴于A、B两点,∴点A(2,0),点B(0,﹣2),∴AO=BO=2,∴∠OAB=∠OBA=45°,∴∠OCA+∠AOC=45°,∠ODB+∠DOB=45°,∵∠COD=135°,∴∠DOB+∠AOB+∠AOC=135°,∴∠DOB+∠AOC=45°,∴∠DOB=∠ACO,∠AOC=∠ODB,∴△OAC∽△DBO;(2)如图,过点C作CF⊥x轴于F,过点D作DE⊥y轴于E,∵△OAC∽△DBO,∴,∴设=a>0,∴BD=,AC=2a,∵∠CAF=∠OAB=45°,∴∠ACF=∠CAF=45°,∴AF=CF==a,∴点C坐标(2+a,a),同理可求点D坐标(﹣,﹣2﹣),∵点C、D都在反比例函数y=的图象上,∴(2+a)•a=•(2+)∴(a2+2a+)(a+1)(a﹣1)=0,∵a>0,∴a2+2a+≠0,a+1≠0,∴a﹣1=0,∴点C(2+,)∴k=(2+)=2+2;(3)∵△OAC∽△DBO,∴=()2=,∴=,∴AC=2,∴AF=CF=2,∴点C(4,2),∵,∴,∴BD=,∴DE=BE=1,∴点D(﹣1,﹣3),∴△OBD的面积为S1=×2×1=1,△AOC的面积为S2,=×2×2=2,∵二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当1≤x≤2时,y有最大值2,∴,解得:,∴a=﹣.。

备考练习2022年上海青浦区中考数学二模试题(精选)

备考练习2022年上海青浦区中考数学二模试题(精选)

2022年上海青浦区中考数学二模试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、10.2%+等于( ) A .1.2%B .1.02%C .1.002%D .100.2%2、一个边长为10厘米的正方形铁丝线圈,若在保持周长不变的情况下把它拉成一个圆,则它的半径为( )厘米. A .2π B .20πC .10πD .10π3、下列说法正确的是( ) A .任何数都有倒数B .一个数的倒数一定不等于它本身C .如果两个数互为倒数,那么它们的乘积是1D .a 的倒数是1a4、若212x x -=--,则x 的取值范围是( ) A .2x ≤ B .2x < C .2x > D .0x <·线○封○密○外5、如果1a =,2b =,4c =,那么下列说法正确的是( ) A .a ,b ,c 的第四比例项是6 B .2a ,2b ,2c 的第四比例项是18 C .c 是a ,b 的比例中项D .b 是a ,c 的比例中项6、三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( ) A .15B .20C .25D .307、下列计算正确的是( )A .1=B =C .3+=D .=8、在数学兴趣班中,男生有20名,女生有16人,则下列说法正确的是( ) A .男生比女生多20%B .女生比男生少20%C .男生占数学兴趣班总人数的80%D .女生占数学兴趣班总人数的80%9、一个数的小数点向右移动两位,然后添上“%”,得到的数与原数相比( ) A .扩大到原来的10倍 B .扩大到原来的100倍 C .不变D .缩小到原来的100倍10、有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某校共有男教师16名,占该校女教师人数的25,那么该校共有教师_______________名. 2、中超联赛中,上海申花3:0力克辽宁队,据统计,申花队在这场比赛中共射门18次,则申花队在这场比赛中射门的命中率约为________.3、等边三角形是轴对称图形,它的对称轴共有 ___条.4、如果圆的周长是62.8厘米,那么这个圆的面积是_____________平方厘米.5、123中有______个13.三、解答题(5小题,每小题10分,共计50分)1、某商店以每件200元的价格购进一批服装,加价40%后作为定价出售. (1)求加价后每件服装的售价是多少元?(2)促销活动期间,商店对该服装打八折出售,这时每件服装还可盈利多少元?2、在一张地图上量得上海与南京两市的距离为5厘米,上海与杭州两市的距离为3.2厘米.已知上海与南京两市的实际距离约为300千米,求上海与杭州两市的实际距离约为多少千米. 3、计算:210.751324⨯÷.4、 “五一”长假小明和父母一起去云南旅游,他们到“野象谷”游玩是乘坐缆车进谷的,小明听导游说,这里的缆车单程长为2.35千米,在钢缆上来回均匀地安装188个吊窗,并且这些吊窗按顺序编号:1,2,3,4,…,187,188.小明入谷时乘坐的是45号吊窗,途中他观察迎面而来的吊窗的编号,他先看到142号,过一会他又看到145号,那么当他看到和145号吊窗并排时,他离缆车终点还有多少米?5、神舟六号飞船在太空圆形轨道中飞行115.5小时,绕地球77圈,行程325万千米.(1)求神舟六号飞船绕地球一圈需要几分钟;飞行速度是每分钟多少千米.(精确到个位) (2)已知神舟五号以相同的速度在半径相同的圆形轨道中飞行了21小时,求:神舟五号飞船绕地球飞行的圈数.(3)已知地球半径为6378公里,求在圆形轨道上飞行的飞船距地面多少千米.(精确到个位) -参考答案-一、单选题 1、D·线○封○密·○外【分析】由题意把1可以看作100%,根据加法的意义,把两个数合并成一个数即可. 【详解】解:1+0.2%=100.2%. 故选:D . 【点睛】本题主要考查有理数的加法中百分数加法的计算方法,注意掌握把1看作100%,直接进行计算即可. 2、B 【分析】由题意可知圆的周长为10440cm ⨯=,利用圆的周长公式求解即可. 【详解】104d π=⨯,40d π=,202d r π==. 故选:B . 【点睛】本题考查圆的周长, 圆的周长公式是解题的关键. 3、C 【分析】根据题意,对各题进行依次分析、进而得出结论. 【详解】解:A 、0没有倒数,故选项错误; B 、1的倒数是1,故选项错误;C 、如果两个数互为倒数,那么他们的乘积一定是1,故选项正确;D 、a=0时,a 没有倒数,故选项错误. 故选:C . 【点睛】本题考查了倒数的知识,属于基础题,比较简单,注意平时基础知识的积累. 4、B 【分析】 根据等式的性质去分母可以发现x-2<0,从而得到x 的取值范围. 【详解】 解:方程两边同时乘以(x-2),得:|x-2|= -(x-2),由绝对值的定义式可知:x-2<0,所以x<2. 故选B . 【点睛】 本题考查绝对值的意义,综合运用绝对值的意义和等式的性质是解题关键. 5、D 【分析】 根据第四比例项和比例中项的性质作答即可. 【详解】 解:∵1a =,2b =,4c =, 设a ,b ,c 的第四比例项为x ,则有:a c b x =,解得:2481bcxa ,故A 选项错误;·线○封○密·○外设2a ,2b ,2c 的第四比例项为y ,则有:222acb y,解得:2224161bc y a ,故B 选项错误;如果c 是a ,b 的比例中项,则有2c ab =,解得:122c ab ,故C 选项错误;如果b 是a ,c 的比例中项,则有2b ac =,解得:142b ac ,故D 选项正确; 故选:D . 【点睛】本题主要考查了第四比例项和比例中项的性质,熟悉相关性质是解题的关键. 6、D 【分析】先求出三个数的比,然后运用比例的性质,即可求出答案. 【详解】 解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8, ∴三个数之比为10:15:24, 设三个数分别为10x 、15x 、24x , 则10152498x x x ++=, 解得:2x =,∴第二个数为1530x =. 故选:D . 【点睛】本题考查了比例的性质,解一元一次方程,解题的关键是熟练掌握题意,运用比例的性质进行解题. 7、D 【分析】根据二次根式的性质和运算法则可以选出正确选项 . 【详解】解:∵=A 错误;B 错误; ∵3为有理数,错误;∵2===,∴D 正确, 故选D . 【点睛】 本题考查二次根式的应用,熟练掌握二次根式的化简方法和合并方法是解题关键. 8、B 【分析】根据百分率=比较量(部分量)÷单位“1”,即可得出结论. 【详解】解:A .男生比女生多(20-16)÷16=25%,故本选项错误; B .女生比男生少(20-16)÷20=20%,故本选项正确;C .男生占数学兴趣班总人数的20÷(20+16)≈55.56%,故本选项错误;D .女生占数学兴趣班总人数的16÷(20+16)≈44.44%,故本选项错误. 故选B·线○封○密○外【点睛】此题考查的是百分数应用题,掌握百分率=比较量(部分量)÷单位“1”是解题关键.9、C【分析】根据百分号的意义去解决问题.【详解】解:一个数小数点向右移两位相当于扩大100倍,加上一个%相当于缩小100倍,所以没有变.故选:C.【点睛】本题考查百分号的意义,解题的关键是能够理解加上一个百分号,相当于把这个数缩小100倍.10、C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.二、填空题1、56 【分析】根据教师人数=男教师人数+女教师人数列式,计算即可. 【详解】解:21616=1640=565+÷+(人). 故答案为:56 【点睛】本题考查了分数应用题,根据题意求出女教师的人数是解题关键. 2、16.67% 【分析】命中率是命中的次数占总次数的百分比,据此进行解答即可. 【详解】解:由题意可知,申花队射门18次,命中3次∴命中率为:3100%16.67%18⨯≈ 故答案为:16.67%. 【点睛】此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘百分之百,代入数据计算即可. 3、3 【分析】根据轴对称图形和对称轴的概念可得答案. 【详解】 ·线○封○密○外解:等边三角形3条角平分线所在的直线是等边三角形的对称轴,∴有3条对称轴,故答案为:3.【点睛】此题考查轴对称图形,如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做它的对称轴.4、314【分析】根据圆的周长C=2πr和圆的面积公式S=πr2解答即可.【详解】解:π取近似值3.14,圆是半径为62.8÷3.14÷2=10(厘米),S=πr2=3.14×102=314(平方厘米),所以这个圆的面积是314平方厘米.故答案为:314.【点睛】本题考查了圆的周长和面积的计算.解答本题的关键是记住圆的周长C=2πr和圆的面积公式S=πr2.5、7【分析】首先,把带分数化成假分数,17233;其次,用分数的除法计算即可解得.【详解】17233= 71737333÷=⨯= 故答案为:7 【点睛】 本题主要考查了带分数与假分数的互化和分数的除法,解题的关键是掌握分数的除法. 三、解答题 1、(1)280元;(2)24元 【分析】 (1)根据进价×(1+40%)计算即可; (2)先求出商品打八折出售的价钱,然后再减去成本即可求出答案. 【详解】 (1)()200140%280⨯+=(元) 答:加价后每件服装的售价是280多少元; (2)28080%20022420024⨯-=-=(元) 答:这时每件服装还可盈利24元. 【点睛】 本题主要考查百分数的应用,掌握百分数的计算是解题的关键. 2、约为192千米 【分析】 由题意易得图上距离与实际距离的比例尺,然后利用比例尺求解即可. 【详解】 ·线○封○密·○外解:由题意得:图上距离与实际距离的比例尺为1 5300=60÷,∴上海与杭州之间的距离为13.2=19260÷(千米);答:上海与杭州两市的实际距离约为192千米.【点睛】本题主要考查比例尺的应用,熟练掌握比例尺的应用是解题的关键.3、12 25【分析】首先把小数化成分数,带分数化成假分数,先算前面的乘法,再把除法化成乘法,约分后即可得到正确结果.【详解】解:210.751324⨯÷210.751324=⨯÷=3225 4324⨯÷=124 225⨯=12 25【点睛】本题考查了含小数及分数的乘除法混合运算,掌握运算顺序及运算法则是解题的关键.4、他离缆车终点还有1100米.【分析】根据题意分析列出式子计算即可;【详解】因为单程是2.35千米,所以来回是4.7千米,来回共有188个吊窗,可求出每个吊窗之间的距离,小明入谷是45号吊窗,当他和145号吊窗并排时,可以求出他终点的距离为:2350212350(14545)11001882⨯-⨯-⨯=(米). 答:他离缆车终点还有1100米. 【点睛】 本题主要考查了一元一次方程的应用,准确分析是解题的关键. 5、(1)90分钟; 469千米;(2)14圈;(3)343千米. 【分析】 (1)已知绕地球77圈所用时间,可求绕地球一圈所用时间;由绕地球77圈飞行115.5小时的行程,故可求飞行速度; (2)先计算神舟六号绕地球一圈的行程,即圆形轨道的周长,进而可求圈数; (3)由圆形轨道的周长可求圆形轨道的半径,圆形轨道半径减去地球半径即为所求. 【详解】 (1)325万=3250000, 115.5÷77=1.5(小时)=90(分钟); 3250000÷77÷90≈469(千米/分); 所以神舟六号飞船绕地球一圈需要90分钟,飞行速度是每分钟469千米. (2)21小时=1260分钟, 469×1260÷(3250000÷77)≈469×1260÷42207≈14(圈). 所以神舟五号飞船绕地球飞行14圈. (3)3250000÷77÷3.14÷2-6378≈6721-6378=343(千米). 所以圆形轨道上飞行的飞船距地面343千米. ·线○封○密·○外【点睛】本题主要考查了圆的周长问题,熟练掌握圆的周长计算公式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.已知正多边形每个内角的度数为 ,则正多边形的边长与半径的比值为________.
13.如图,已知平行四边形 中, 是 上一点, ,联结 交 于 ,若向量 ,向量 ,则向量 ________.
14.如图,已知 中,点 是 上一点, ,若 , ,则 ________.
15.小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在 点测得古树顶的仰角为 ,向前走了100米到 点,测得古树顶的仰角为 ,则古树的高度为________米.
6.如图,在平面直角坐标系中,已知 , ,以 为顶点, 为一边作 角,角的另一边交 轴于 ( 在 上方),则 坐标为()
A. B. C. D.
【6题答案】
【答案】B
【解析】
【分析】过点A作AD⊥y轴于点D,过点B作BE⊥AC于点E,由题意易得AD=2, ,BD=1,然后可得 , ,设BC=x,则CD=x+1,进而根据相似三角形及勾股定理可进行求解.
(1)求直线 的表达式;
(2)若抛物线的顶点不在第一象限,求 的取值范围;
(3)若直线 与直线 所成夹角的余切值等于3,求抛物线 的表达式.
28.梯形 中, , 于点 , , , 以 直径, 以 为直径,直线 与 交于点 ,与 交于点 (如图),设 .
(1)记两圆交点为 、 ( 在上方),当 时,求 的值;
【详解】解:A. 向量 模只有大小,没有方向,则 不成立,故该选项不正确,不符合题意;
B. 单位向量 与向量 方向不一定相同,则 ,不一定成立,故该选项不正确,不符合题意;
C. ,故该选项正确,符合题意;
D. 单位向量 与向量 方向不一定相同,则 ,不一定成立,故该选项不正确,不符合题意;
故选C
【点睛】本题考查了向量的运算,向量的问题一定要注意从方向与模两方面考虑.
3.下列二次根式的被开方数中,各因式指数为1的有()
A. B.
C. D.
【3题答案】
【答案】A
【解析】
【分析】根据二次根式的性质及因式分解可进行求解.
【详解】解:A、 的被开方数的因式指数为1,故符合题意;
B、 的被开方数的因式分别为5, ,其中x的指数为2,故不符合题意;
C、 的被开方数的因式有3, ,其中4是2的平方,故不符合题意;
故选:D.
【点睛】本题主要考查平方根、近似数及分数指数幂,熟练掌握平方根、近似数及分数指数幂是解题的关键.
5.下列关于代数式的说法中,正确的有()
①单项式 系数是2,次数是2022次;②多项式 是一次二项;③ 是二次根式;④对于实数 , .
A.1个B.2个C.3个D.4个
【5题答案】
【答案】B
【解析】
③把237145精确到万位是240000;④对于实数 ,规定
A 1个B.2个C.3个D.4个
5.下列关于代数式的说法中,正确的有()
①单项式 系数是2,次数是2022次;②多项式 是一次二项;③ 是二次根式;④对于实数 , .
A 1个B.2个C.3个D.4个
6.如图,在平面直角坐标系中,已知 , ,以 为顶点, 为一边作 角,角的另一边交 轴于 ( 在 上方),则 坐标为()
2021学年第二学期九年级数学期中线上练习
一、选择
1.在 中, , 的余弦是()
A. B. C. D.
2.已知非零向量 和单位向量 ,那么下列结论中,正确的是()
A. B. C. D.
3.下列二次根式的被开方数中,各因式指数为1的有()
A. B.
C. D.
4.下列说法中,错误的有()
①2能被6整除;②把16开平方得16的平方根,表示为 ;
篮球
足球
羽毛球
健美操
人数
4
16
10
4
6
(1)此次调查的总体是__________,样本容量是__________.
(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;
(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;
【11题答案】
【答案】2.8
【解析】
【分析】先根据题意及圆周角定理,分别得出各种情况所占的百分比,再求天数的加权平均数即可.
【详解】由图可知,“1天发芽”的圆心角为36°,“3天发芽”的百分比为50%
“1天发芽”的百分比为
“2天发芽”与“4天发芽”的百分比之和为
“2天发芽”与“4天发芽”的扇形弧长相等
10.为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为 ,第一季度的总产值为 (亿元),则 关于 的函数解析式为________________.
11.如图,是实验室里一批种子的发芽天数统计图,其中“1天发芽”的圆心角和“3天发芽”的百分比如图所示,“2天发芽”与“4天发芽”的扇形弧长相等.则这批种子的平均发芽天数为________.
【详解】解:过点A作AD⊥y轴于点D,过点B作BE⊥AC于点E,如图所示:
∵ , ,
∴AD=2, ,BD=1,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,
设BC=x,则CD=x+1,
∴ ,
在Rt△BEC中,由勾股定理得: ,
解得: (负根舍去),
∴ ,
∴ ,
∴点 ;
故选B.
【点睛】本题主要考查等腰直角三角形的性质、相似三角形的性质与判定及勾股定理;熟练掌握等腰直角三角形的性质、相似三角形的性质与判定及勾股定理是解题的关键.
二、填空
7.如果从 、 、-1、 、 任意选取一个数,选到的数是无理数的概率为________.
【7题答案】
【答案】
【解析】
【分析】先找出无理数的个数,再利用概率公式计算即可.
【详解】解:在 、 、-1、 、 中,无理数有 和 ,共计2个,
所以,选到的数是无理数的概率为 .
故答案为:
【点睛】本题主要考查了概率公式及无理数的定义,找出无理数的个数是解题关键.
(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.
(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.
甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.
A. B. C. D.
二、填空
7.如果从 、 、-1、 、 任意选取一个数,选到的数是无理数的概率为________.
8.将抛物线 向左平移2个单位,向上平移1个单位后,所得抛物线为 ,则抛物线 解析式为________.
9.抛物线y=(a−1)x2−2x+3在对称轴左侧,y随x 增大而增大,则a的取值范围是________.
【详解】解:在 中, ,则 ;
故选C.
【点睛】本题主要考查角的余弦,熟练掌握求一个角的余弦是解题的关键.
2.已知非零向量 和单位向量 ,那么下列结论中,正确的是()
A. B. C. D.
【2题答案】
【答案】C
【解析】
【分析】根据向量的模只有大小,没有方向,向量既有长度也有方向对各选项分析判断后利用排除法求解.
抛物线 为
【点睛】本题考查了二次函数图象的平移,牢记“左加右减,上加下减”是解题的关键.
9.抛物线y=(a−1)x2−2x+3在对称轴左侧,y随x的增大而增大,则a的取值范围是________.
【9题答案】
【答案】a<1
【解析】
【分析】根据题意列出不等式并解答即可.
【详解】解:∵抛物线y=(a−1)x2−2x+3在对称轴左侧,y随x的增大而增大,
【答案】
【解析】
【分析】根据题意分别求得每个月的产值,然后相加即可求解.
【详解】解:∵某医药公司一月份的产值为1亿元,若每月平均增长率为 ,
∴二月份的为
三月份的为
第一季度的总产值为 (亿元),则
故答案为:
【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.
11.如图,是实验室里一批种子的发芽天数统计图,其中“1天发芽”的圆心角和“3天发芽”的百分比如图所示,“2天发芽”与“4天发芽”的扇形弧长相等.则这批种子的平均发芽天数为________.
8.将抛物线 向左平移2个单位,向上平移1个单位后,所得抛物线为 ,则抛物线 解析式为________.
【8题答案】
【答案】 ##
【解析】
【分析】设抛物线 为 ,根据平移的规律写出平移后的解析式,并与已知相等,即可求解.
【详解】设抛物线 为
将抛物线 向左平移2个单位,向上平移1个单位后,可得
即 为
解得
(2)当 与线段 交于 、 时,设 ,求 关于 的函数关系式,并写出定义域;
(3)连接 ,线段 与 交于点 ,分别连接 、 ,若 与 相似,求 的值.
2021学年第二学期九年级数学期中线上练习
一、选择
1.在 中, , 的余弦是()
A. B. C. D.
【1题答案】
【答案】C
【解析】
【分析】根据角的余弦可进行求解.
16.如图,已知 中, 、 分别在边 、 上, , 平分 ,交 于 ,若 ,则 ________.
17.如图,已知在 中, , , , 是边 上一点,将 沿直线 翻折,点 落在点 处,如果 ,那么点 与点 的距离等于________.
18.如图,在直角梯形 中, , , 是 上一定点, , , , ,点 是 上一个动点,以 为圆心, 为半径作 ,若 与以 为圆心,1为半径的 有公共点,且 与线段 只有一个交点,则 长度的取值范围是________________.
相关文档
最新文档