利用导数求函数的单调区间
第21讲 利用导数研究函数的单调性(解析版)
第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
专题12 利用导数解决函数的单调性
专题12导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用.导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一求无参函数的单调区间例1已知函数()ln xf x e=.(1)当1a =时,判断()f x 的单调性;【解析】(1)当1a =时,()ln 1xx f x e+=,第一步,计算函数()f x 的定义域:()0,+∞.第二步,求出函数()f x 的导函数'()f x :()1ln 1xx x f x e --'=第三步,令()1ln 1g x x x=--,则()g x 在()0,∞+上为减函数,且()10g =所以,当()0,1x ∈时,()0g x >,()0f x '>,()f x 单调递增;当()1,x ∈+∞时,()0g x <,()0f x '<,()f x 单调递减.故()f x 递增区间为()0,1;()f x 递减区间为()1,+∞【变式演练1】函数()2sin sin 2f x x x =⋅,0,2x π⎡⎤∈⎢⎥⎣⎦的单调递增区间为__________.【答案】(0,)3π;(区间两端开闭都可以)【分析】利用三角恒等变换得32sin y =,再利用换元法设sin [0,1]t x =∈,利用导数和复合函数的单调性解不等式0sin x <<,即可得到答案;【详解】令223sin sin 22sin cos sin 2sin y x x x x x =⋅=⋅=,设sin [0,1]t x =∈,则3()2h t t =,∴()'362h t tt =',2242246122346t t t t t t---=,[0.1)t∈,∴()002h t t >⇒<<',∴0sin 03x x π<<<<,∴()f x 在区间(0,)3π单调递增.故答案为:(0,)3π.【点睛】本题考查复合函数的单调性与导数的结合,考查运算求解能力,求解时注意复合函数的单调性是同增异减的原则.【变式演练2】已知函数()()2ln 1x xf x x e e -=+++,则不等式()()2210f x f x --+≤的解集为___________.【答案】(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 是偶函数,利用导数和奇偶性得到函数()f x 的单调区间,再利用单调性和奇偶性解不等式即可.【详解】因为()()2ln 1x xf x x e e -=+++,x ∈R ,所以()()()2ln 1x xf x x e e f x -+-=++=,所以()f x 是偶函数.因为()22222111x x xx x x e f x e e x x e-'==++-+-+当0x >时,()0f x '>,所以()f x 在()0,∞+上单调递增.又因为()f x 是偶函数,所以()f x 在(),0-∞上单调递减.所以()()2210f x f x --+≤,即()()221f x f x -≤+,所以221x x -≤+,即23830x x +-≥,解得3x ≤-或13x ≥.故答案为:(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭.【变式演练3】已知函数()2sin f x x x =-+,若a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为()A .a b c <<B .b c a<<C .c a b<<D .a c b<<【答案】D 【解析】【分析】求得函数()f x 单调性与奇偶性,再结合指数函数与对数函数的性质,得出2log 72>>,得到()22(log 7)(f f f >>,进而得到2(2)(log 7)(f f f -->>,即可得到答案.【详解】由题意,函数()2sin f x x x =-+的定义域为R ,且()2()sin()2sin ()f x x x x x f x -=-⋅-+-=-=-,即()()f x f x -=-,所以函数()f x 是R 上的奇函数,又由()2cos 0f x x '=-+<,所以函数()f x 为R 上的单调递减函数,又因为133>=,22log 7log 42>=且22log 7log 83<=,即22log 73<<,所以2log 72>>,可得()22(log 7)(f f f >>,又由函数()f x 是R 上的奇函数,可得()(2)2f f --=,所以2(2)(log 7)(f f f -->>,即a c b <<.故选:D.【点睛】本题主要考查了函数的奇偶性与函数的单调性,以及指数函数与对数函数的图象与性质的综合应用,其中解答中熟练应用函数的基本性质,结合指数函数与对数函数的性质求得自变量的大小关系式解答的关键,着重考查了推理与运算能力.【变式演练4】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211xf x f x e -+=--,则下列命题中一定成立的是()A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->【答案】B 【解析】【分析】构造函数()()x f x g x e=,利用导数分析出函数()y g x =在(),1-∞-上单调递增,在()1,-+∞上单调递减,并推导出函数()()x f x g x e=的图象关于直线1x =-对称,进而可判断出各选项的正误.【详解】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=,当1x ≠-时,()()()10x f x f x '+->⎡⎤⎣⎦.当1x >-时,则()()0f x f x '->,()0g x '<;当1x <-时,则()()0f x f x '-<,()0g x '>.所以,函数()()xf xg x e=在(),1-∞-上单调递增,在()1,-+∞上单调递减.又()()211xf x f x e-+=--,所以()()1111xxf x f x ee-+---+--=,即()()11g x g x -+=--,故函数()()x f x g x e=的图象关于直线1x =-对称.对于A 选项,()()10g g ->,即()()10ef f ->,()1f -与()0f 的大小关系不确定,A 选项错误;对于B 选项,()()21g g -<-,即()()221e f ef -<-,即()()21ef f -<-,B 选项正确;对于C 、D 选项,()()20g g -=,即()()220e f f -=,C 、D 选项错误.故选:B .【点睛】本题考查利用构造函数法判断函数值的大小关系,根据导数不等式的结构构造新函数是解题的关键,考查推理能力,属于难题.类型二判定含参数的函数的单调性例2已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【解析】(1)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :()2122122(0)'x ax x x x xf a x -+=+-=>,记()2221g x x ax =-+.第二步,讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0:当0a ≤时,因为0x >,所以()1g x >,所以函数()f x 在()0,∞+上单调递增;当0a <≤时,因为()2420a ∆=-≤,所以()0g x ≥,函数()f x 在()0,∞+上单调递增;当a >时,由()00x g x >⎧⎨>⎩,解得22,22a a x ⎛+∈⎪⎝⎭,第三步,根据导函数的符号变换判断其单调区间:所以函数()f x 在区间22,22a a ⎛-+⎝⎭上单调递减,在区间20,2a ⎛- ⎪⎝⎭和22a ⎛⎫++∞⎪ ⎪⎝⎭上单调递增.【变式演练5】(主导函数是一次型函数)已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;【解析】(1)因为()ln (0)f x x ax x =->,所以11()'-=-=ax f x a x x,当0a时,()0f x '>,即函数()f x 在(0,)+∞单调递增;当0a >时,令()0f x '>,即10ax ->,解得10x a<<;令()0f x '<,即10ax -<,解得1x a>,综上所述:当0a 时,函数()f x 在(0,)+∞单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.【变式演练6】(主导函数为类一次型)已知函数()xf x e ax -=+.(I )讨论()f x 的单调性;【解析】(Ⅰ)函数()y f x =的定义域为R ,且()xf x a e -'=-.①当0a ≤时,()0f x '<,函数()y f x =在R 上单调递减;②当0a >时,令()0f x '<,可得ln x a <-;令()0f x '>,可得ln x a >-.此时,函数()y f x =的单调递减区间为(),ln a -∞-,单调递增区间为()ln ,a -+∞;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥.(1)讨论()f x 的单调性;【解析】(1)函数()2ln a f x x a x x =--的定义域为()0,∞+,()222221a a x ax af x x x x-+'=+-=.令()22g x x ax a =-+,244a a ∆=-.①当2440a a ∆=-≤时,即当01a ≤≤时,对任意的0x >,()0g x ≥,则()0f x '≥,此时,函数()y f x =在()0,∞+上单调递增;②当2440a a ∆=->时,即当1a >时,方程()0g x =有两个不等的实根,设为1x 、2x ,且12x x <,令220x ax a -+=,解得10x a =>,20x a =+>.解不等式()0f x '<,可得a x a <<+解不等式()0f x '>,可得0x a <<-或x a >+此时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+.综上所述,当01a ≤≤时,函数()y f x =的单调递增区间为()0,∞+,无递减区间;当1a >时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+;【变式演练8】(主导函数是类二次型)已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【解析】(1)()2(2)x x f x kxe x x ke '=-=-,当0k ≤时20x ke -<,令'()0f x >得0x <,令'()0f x <得0x >,故()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,当02k <≤时,令'()0f x =得0x =,或2ln 0x k=≥,当02k <<时2ln0k >,当'()0f x >时2ln x k >或0x <;当'()0f x >时20ln x k <<;()f x 的单调递增区间为()2,0,ln ,k ⎛⎫-∞+∞ ⎪⎝⎭;减区间为20ln k ⎛⎫ ⎪⎝⎭,.当2k =时2ln0k=,当0x >时'()0f x >;当0x <时'()0f x >;()f x 的单调递增区间为(),-∞+∞;【变式演练9】已知函数()22ln f x x x =-,若()f x 在区间()2,1m m +上单调递增,则m 的取值范围是()A .1,14⎡⎫⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,12⎡⎫⎪⎢⎣⎭D .[)0,1【答案】A 【分析】利用导数求出函数()f x 的单调递增区间为1,2⎛⎫+∞ ⎪⎝⎭,进而可得出()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,可得出关于实数m的不等式组,由此可解得实数m 的取值范围.【详解】因为()22ln f x x x =-的定义域为()0,∞+,()14f x x x'=-,由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1,2⎛⎫+∞ ⎪⎝⎭.由于()f x 在区间()2,1m m +上单调递增,则()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,所以12122m mm +>⎧⎪⎨≥⎪⎩,解得114m ≤<.因此,实数m 的取值范围是1,14⎡⎫⎪⎢⎣⎭.故选:A.【点睛】方法点睛:利用函数()f x 在区间D 上单调递增求参数,可转化为以下两种类型:(1)区间D 为函数()f x 单调递增区间的子集;(2)对任意的x D ∈,()0f x '≥恒成立.同时也要注意区间左端点和右端点值的大小关系.类型三由函数单调性求参数取值范围例3.若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是()A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【答案】A【解析】第一步:计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为()()21ln 242f x x b x =-++,故可得()2b f x x x '=-++,第二步根据题意转化为相应的恒成立问题:因为()f x 在区间()2,-+∞是减函数,故02bx x -+≤+在区间()2,-+∞上恒成立.因为20x +>,故上式可整理化简为()2b x x ≤+在区间()2,-+∞上恒成立,因为()2y x x =+在区间()2,-+∞上的最小值为1-,第三步得出结论:故只需b ≤-1.故选:A.【点睛】本题考查根据函数的单调性,利用导数求解参数范围的问题,属基础题.【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为()A .4B .16C .20D .18【答案】B 【解析】【分析】由函数()()22xf x exax b =-++在()1,1-上单调递增得:()2402a x a b x -+-++≥在()1,1-上恒成立,转化成26020a b b +-≥⎧⎨+≥⎩,结合线性规划知识求解即可【详解】因为函数()()22xf x e xax b =-++在()1,1-上单调递增,所以()()()()22''22'xx f x ex ax b e x ax b =-+++-++=()2402x a x a b e x ⎡⎤+-++≥⎣⎦-在()1,1-上恒成立.又0x e >,所以()2402a x a b x -+-++≥在()1,1-上恒成立.记()()224g x a x x a b -=+-++,则()()()()12401240g a a b g a a b ⎧-=---++≥⎪⎨=-+-++≥⎪⎩,整理得:26020a b b +-≥⎧⎨+≥⎩,把横坐标看作a 轴,纵坐标看作b 轴,作出不等式组表示的区域如下图,令2816a z b =++,则2288a z b =-+-,抛物线28a b =-恰好过图中点()4,2G -,由线性规划知识可得:当抛物线2288a zb =-+-过点()4,2G -时,28z -最小,此时z 取得最小值.所以()2min 4821616z =+⨯-+=故选B【点睛】本题主要考查了单调性与导数的关系,还考查了恒成立问题及线性规划求最值,考查计算能力及转化能力,属于中档题.【变式演练12】(转化为变号零点)已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是()A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【答案】D【解析】【分析】函数()f x 的定义域为(0,)+∞,22()2a x a f x x x x-'=-=,根据题意可得到,12<<,从而可得答案.【详解】解: 函数2()1f x x alnx =-+,定义域{|0}x x >,∴22()2a x a f x x x x-'=-=,当0a时,()0f x '>,()f x 在(0,)+∞上是增函数,不符合题意,当0a >时,在⎫+∞⎪⎪⎭上,()0f x '>,()f x 单调递增,在⎛ ⎝上,()0f x '<,()f x 单调递减, 函数2()1f x x alnx =-+在(1,2)内不是单调函数,12∴<<,28a ∴<<,故选:D .【点睛】本题考查利用导数研究函数的单调性,依题意得到02a -是关键,也是难点所在,属于中档题.【变式演练13】(直接给给定单调区间)已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为()A .-4B .-2C .2D .4【答案】B【解析】【分析】根据()f x 的单调区间,得到导函数()'fx 的零点,结合根与系数关系,求得m n +的值.【详解】依题意()'22f x x mx n =++,由于函数()32113f x x mx nx =+++的单调递减区间是()3,1-,所以3x =-,1x =是()'22fx x mx n =++的两个零点,所以3121313m m n n -+=-=⎧⎧⇒⎨⎨-⨯==-⎩⎩,所以2m n +=-.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.【变式演练14】(转化为存在型恒成立)若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是()A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【答案】D【解析】【分析】f (x )在(1,+∞)上存在单调递增区间,等价于()f x '>0在(1,+∞)上有解.因此结合()f x '的单调性求出其在(1,+∞)上的最值,即可得出结论.【详解】f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,只需()f x '>0在(1,+∞)上有解即可.由已知得2()2f x x x a '=-++,该函数开口向下,对称轴为12x =,故()f x '在(1,+∞)上递减,所以(1)f '=2a >0,解得a >0.故选:D.【点睛】本题主要考查了函数单调性的应用,难度不大.。
确定函数的单调性方法
确定函数的单调性方法
确定函数的单调性有以下几种方法:
1. 使用导数:对于可导函数,可以通过求导数来确定函数的单调性。
如果导数大于零,则函数是递增的;如果导数小于零,则函数是递减的。
2. 使用二阶导数:对于二次可导函数,可以通过求二阶导数来确定函数的单调性。
如果二阶导数大于零,则函数是凹的,即在该区间上递增;如果二阶导数小于零,则函数是凸的,即在该区间上递减。
3. 使用基本不等式:对于一些特定的函数,可以使用基本不等式来确定函数的单调性。
例如,对于正数的平方根函数,可以使用平均值不等式来证明它的单调性。
4. 使用图像:对于一些简单的函数,可以通过绘制函数的图像来确定函数的单调性。
通过观察图像的上升或下降趋势,可以确定函数的单调性。
需要注意的是,以上方法只能确定函数在某个特定的区间上的单调性。
对于整个定义域上的单调性,可能需要结合多个区间的单调性来确定。
利用导数研究函数单调性5种常见题型总结(原卷版)
第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。
利用导数求含参数的函数单调区间的分类讨论归类
利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。
例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。
高二数学利用导数研究函数的单调性试题答案及解析
高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。
利用导数求含参函数的单调区间
1.3.1利用导数求含参函数的单调区间【课标要求】理解导数与函数的单调性的关系,会用导数求含参函数的单调区间1.理解导数与函数的单调性的关系.()2. 会用导数求含参函数的单调区间()复习1.函数的单调性与导数在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内;如果f′(x)<0,那么函数y=f(x)在这个区间内2. 利用导数求函数单调区间的步骤(1)确定函数f(x)的;(2)求;(3)由f′(x)>0(或f′(x)<0),解出相应的x的范围.当时,f(x)在相应的区间上是增函数;当时,f(x)在相应区间上是减函数;(4)结合定义域写出单调区间.注意函数的单调区间之间只能用“和”或“,”隔开,不能用符号“∪”连接.典型例题例1讨论函数f(x)=ax2-a-ln x(a∈R)的单调性.反思与感悟:(1) 参数a对单调性的影响(2)如何分类讨论例2:设函数f(x)=-13x3+2ax2-3a2x,a∈R,求函数f(x)的单调区间反思与感悟:1参数a 对函数单调性的影响2分类讨论的方法例3已知函数f (x )=ln x -ax 2-2x , a ∈R ,求函数f (x )的单调区间反思与感悟:1参数a 对函数单调性的影响2分类讨论的方法当堂检测练习1 已知函数f(x)=ln (1+x)-x +k 2x 2(k ≥0),求f(x)的单调区间.练习2已知函数f (x )=13x 3-12(a 2+a +2)x 2+a 2(a +2)x ,a ∈R ,求函数y =f (x )的单调区间;练习3 已知函数f(x)=lnx -ax(a ∈R),求函数f(x)的单调区间.【思维导图】回顾本节主要内容,画出简易思维导图。
利用导数求函数的单调区间
利用导数求函数的单调区间
函数是中学数学的核心内容,是高考的热点,而导数的知识形成一门学科。
导数是解决函数的单调区间的突破口。
近几年,用导数作为工具研究函数的单调区间,更是高考的热点,在函数y=f (x)比较复杂的情况下利用导数求函数的单调区间比用函数单调区间的定义要简单得多。
定义:一般地,设函数y=f (x)在某个区间内有导数,如果在这个区间内y’>0,那么函数y=f (x)为在这个区间内的增函数;如果在这个区间内y‘<0, 那么函数y=f (x)为在这个区间内的减函数。
用导数求函数单调区间的三个步骤:
⑴求函数f (x)的导数f7(x);
⑵令f(x)>0解不等式,得x的范围就是递增区间;
⑶令f(x)<0解不等式,得x的范围就是递减区间。
例1: (2005年北京卷第一小问)已知函数f (x)=-x3 + 3x2+9x+a。
求f (x)的单调递减区间。
解:.・旺(x)=-x3 + 3x2+9x+a
・・・f(x) =-3x2 + 6x+9
令f(x)<0
.•・-3x2 + 6x+9<0
A x2-2x-3>0
...(x+1) (x —3)>0,即x< — 1 或x>3
・•・函数f (x)的单调递减区间为(-孙-1), (3, +s)
命题意图:利用导数求函数的单调区间。
例2:(2006年安徽卷本大题满分12分)设函数f (x)=x3+bx2+cx (x £口),已知g (x)=f (x)—f(x)是奇函数。
(I)求b、c的值。
利用导数求单调区间的一些大题(含答案解析)
例1.已知函数321()3f x x ax b =-+在2x =-处有极值. (1) 求函数()f x 的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
例2.已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1)、求实数k 的取值范围;(2)、若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.解:(1) 由321()3f x x ax b =-+,得22'()32f x x ax a =-- 令222a'()320,=-,(0)3f x x ax a x a a =--==>1得x由上述表格可知,3223()=()()()()11333327f x f a a a -=-----+=+极大值 3333()()11f x f a a a a a ==--+=-极大值(2)由(1)可知()(,)(,)3a f x a -∞-+∞在和上单调递增,在-a(,a )3上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <≤-=+>≥极大值极小值 a()-y f x ∴=∞在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得 又()y f x =在(,)3a -∞-上单调递增,且2(1)(1)0f a a a a -=-=-≤()--y f x ∴=∞a在(,)3上最多有一个实数根 于是,当01a <≤时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
解:(1)由题意x k x x f )1()(2+-='∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h令0)(='x h 得k x =或1=x 由(1)知1≤k ,① 当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意② 当时,,'随x 的变化情况如下表:由于02<k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k综上,所求k 的取值范围为31-<k例3(2007年高考天津理科卷)已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
利用导数探究函数的单调性(共10种题型)
利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。
利用导数判断函数的单调性
利用导数判断函数的单调性知识要点梳理1. 函数的导数与函数的单调性的关系: (1)(函数单调性的充分条件)设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在这个区间内为增函数;如果在这个区间内/y <0,那么函数y=f(x) 在这个区间内为减函数。
(2)(函数单调性的必要条件)设函数y=f(x) 在某个区间内有导数,如果函数y=f(x) 在这个区间内为增函数,那么在这个区间内/y ≥0;如果函数y=f(x) 在这个区间内为减函数。
那么在这个区间内/y ≤0。
2. 求可导函数的单调区间的一般步骤和方法: ①确定函数()f x 的定义域;②计算导数'()f x ,令'()0f x =,解此方程,求出它们在定义域区间内的一切实根; ③把函数()f x 的间断点(即f(x)的无定义的点)的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把()f x 的定义域分成若干个小区间;④确定'()f x 在各个开区间内的符号,根据'()f x 的符号判定函数()f x 在每个相应小区间的增减性(若'()f x >0,则f(x)在相应区间内为增函数;若'()f x <0,则f(x)在相应区间内为减函数。
)疑难点、易错点剖析:1.利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f ’(x)>0(或f ’(x)<0)仅是f(x)在某个区间上递增(或递减)的充分条件。
在区间(a,b )内可导的函数f(x)在(a,b )上递增(或递减)的充要条件应是'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立,且f ’(x)在(a,b ) 的任意子区间内都不恒等于0。
这就是说,函数f(x)在区间上的增减性并不排斥在该区间内个别点x 0处有f ’(x 0)=0,甚至可以在无穷多个点处f ’(x 0)=0,只要这样的点不能充满所给区间的任何子区间,因此在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令'()0('()0)f x f x ≥≤或恒成立,解出参数的取值范围,然后检验参数的取值能否使f ’(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f ’(x)不恒为0,则由'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立解出的参数的取值范围确定。
判断单调性的5种方法
判断单调性的5种方法单调性是数学中一个非常重要的概念,它描述了函数在定义域内的增减规律。
在学习数学的过程中,我们经常需要判断一个函数的单调性,因此掌握判断单调性的方法是十分必要的。
在本文中,我将介绍判断单调性的5种方法,希望能够帮助大家更好地理解和掌握这一概念。
方法一,利用导数。
判断函数的单调性最直接的方法之一就是利用导数。
对于函数f(x),如果在定义域内f'(x)>0,那么函数f(x)在该区间上是单调递增的;如果f'(x)<0,那么函数f(x)在该区间上是单调递减的。
当f'(x)=0时,需要额外考虑临界点处的单调性。
利用导数判断单调性是一种非常常用也非常有效的方法。
方法二,利用一阶导数的符号变化。
除了直接利用导数的大小来判断单调性外,我们还可以通过观察一阶导数的符号变化来判断函数的单调性。
具体来说,我们可以找到函数f(x)的一阶导数f'(x),然后观察f'(x)在定义域内的符号变化。
如果f'(x)在某一区间内始终大于0,则说明函数f(x)在该区间上是单调递增的;如果f'(x)在某一区间内始终小于0,则说明函数f(x)在该区间上是单调递减的。
方法三,利用二阶导数。
除了一阶导数外,我们还可以通过观察函数的二阶导数来判断单调性。
对于函数f(x),如果f''(x)>0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递增的;如果f''(x)<0,那么函数f(x)在该区间上是凹的,也就是说在该区间上是单调递减的。
利用二阶导数判断单调性在一些特定的函数中会更加方便和直观。
方法四,利用函数图像。
观察函数的图像也是判断单调性的一种方法。
通过观察函数的图像,我们可以直观地了解函数在定义域内的增减规律。
当然,这种方法对于一些复杂的函数可能并不太方便,但在一些简单的情况下,利用函数图像来判断单调性是非常直接和有效的。
导数求函数单调区间问题易错点分析
(2)因为f′(x)=3m x2-6(m +1)x+n,此函数
m +1 是二次函数,它的对称轴为x= .又因为m <0,
m
所以函数f(x)在x∈-∞,m
+m 1上是增函数,
在x∈m
+m 1,+∞上是减函数.
错解分析 此题要求的是函数f(x)的单调区间,而错 解求出的是导函数的单调区间;另外,错解利用函
错解 f′(x)=3ax2+1,若a>0时,则f′(x)>0,得3ax2
+1>0.因为此式恒成立,所以函数f(x)在R上为增函数.
若a<0时,f′(x)<0,得3ax2+1<0,解得x2>- 1 , 3a
所以x>
1 - 或x<-
3a
1 -.
3a
综上所述,a>0时,函数f(x)在R上为增函数;a<0时,函数
该区间内单调递增”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
()
错解 C 错解分析 一般地,由f′(x)>0能推出f(x)为增函 数,反之,则不一定.如函数f(x)=x3在区间(-∞, +∞)上单调递增,但是f′(x)≥0.因此f′(x)>0是函 数f(x)为增函数的充分不必要条件. 正解 A
数f′(x)的单调区间取代f(x)的单调区间,它们的单 调性是不一定相同的.(1)的结果是正确的. 正解 (1)略.
(2)f′(x)=3m x2-6(m +1)x+n =3m (x-1)x-1+m2 ,
2 当m <0时,1>1+ .
m
x 1+ 1 (1,+∞)
f′( x)
-0
+0
-
单
利用导数讨论函数的单调性
利用导数讨论函数的单调性广西南宁市第二十六中学(530201)许莉[摘要]导数是研究函数性质的一个重要工具,利用求导研究含参函数的单调性是高考的热点,也是学生感到棘手的一个问题.文章结合实例,分类讨论研究导数与函数的单调性之间的关系.[关键词]导数;函数;单调性[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)14-0030-02一、利用导数求函数的单调区间利用导数研究函数单调性的依据:若函数y=f(x)在某个区间内可导:若f′(x)>0,则f(x)在这个区间内单调递增;若f′(x)<0,则f(x)在这个区间内单调递减;若f′(x)=0,则f(x)在这个区间内是常数函数[1].[例1](2013年高考天津卷节选)已知函数f(x)=x2ln x.求函数f(x)的单调区间.分析:在对f(x)进行求导之前,应先考虑函数的定义域(因为单调区间必须是在定义域的限定范围内,而这个也是学生容易忽略的问题),再进行求导判断符号.解:函数f(x)的定义域为(0,+∞),f'(x)=2x ln x+x=x()2ln x+1,令f'(x)>0,得x>1e;令f'(x)<0,得0<x<1e,所以函数f(x)的单调递减区间是()0,1e,单调递增区间是()1e,+∞.小结:利用导数判断函数单调性的一般步骤:第一步,求函数的定义域;第二步,求导数f′(x),其中求导后若有分母就考虑通分,若能因式分解就要因式分解,不能因式分解再考虑求根公式或者其他化简;第三步,在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;第四步,写出函数f(x)的单调区间.二、利用导数讨论含参数函数的单调性[例2](2015年高考新课标卷2节选)已知函数f(x)=ln x+a(1-x),讨论函数f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而是当a不为0时分子为一个含参的一次函数,这类问题就转化为求解含参的一次函数问题.解:f(x)的定义域为(0,+∞),f'(x)=1x-a=1-axx,若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈()0,1a时,f′(x)>0;当x∈()1a,+∞时,f′(x)<0.所以f(x)在()0,1a单调递增,在()1a,+∞单调递减.小结:求导后导函数为含参的一次函数,求解不等式ax+b>0(<0)的步骤:(1)将不等式化为ax>-b;(2)a=0时,不等式不是一元一次不等式,单独讨论;(3)若a>0,则x>-ba;若a<0,则x<-ba,还要注意单调区间必须包含在定义域内.[例3](2016年高考四川卷节选)已知函数f(x)=ax2-a-ln x,其中a∈R,讨论f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而当a不为0时分子为一个含参的二次函数,这类问题就转化为求解含参的二次函数问题.对于含参的二次函数,首先考虑的是二次函数图像的开口方向,其次是是否有根,是否能直接求零点,而这也正是分类讨论的标准.对于学生来说,不重不漏地进行分类是答题的关键点.解:定义域{x|x>}0,f′()x=2ax-1x=2ax2-1x,x>0,当a≤0时,2ax2-1≤0,f′()x≤0,f()x在(0,+∞)上单调递减.当a>0时,令f'(x)=0,得x=当x∈(时,f'(x)<0;当x∈)∞时,f′(x)>0.故f(x)在(上单调递减,在)+∞上单调递增.小结:求导后导函数为含参的二次函数,求解不等式ax2+bx+c>0(<0)的步骤:(1)讨论二次项系数;(2)判断是否有零点;(3)根据对应一元二次方程数学·解题研究根的情况,得到一元二次不等式的解集,从而得到函数的单调性.[例4](2019年高考全国卷Ⅲ理20节选)已知函数f (x )=2x 3-ax 2+b .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后可以因式分解,从而得到二次含参函数的零点,这时二次函数的开口方向已经确定,只需要对得到的两个两点进行分类讨论即可.解:(1)f '(x )=6x 2-2ax =2x (3x -a ),令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈()-∞,0∪()a3,+∞时,f '(x )>0;当x ∈()0,a3时,f '(x )<0.故f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减;若a =0,f (x )在(-∞,+∞)上单调递增;若a <0,则当x ∈()-∞,a3∪()0,+∞时,f ′(x )>0;当x ∈()a3,0时,f ′(x )<0;故f (x )在()-∞,a3∪()0,+∞上单调递增,在()a3,0上单调递减.综上所述,若a =0,f (x )在()-∞,+∞上单调递增;若a <0,f (x )在()-∞,a3和()0,+∞上单调递增,在()a3,0上单调递减.若a >0时,f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减.小结:求导后导函数为含参的二次函数,但是可以直接求出导函数的零点,只需要判断两根的大小,再根据“大于取两边,小于取中间”,得到f ′(x )>0,则f (x )在这个区间内单调递增;若f ′(x )<0,则f (x )在这个区间内单调递减即可.[例5](2018年高考全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后的二次函数的开口方向已经确定,但是是否有零点还不能判断,因此分类的标准应该是对判别式进行讨论,进而再对可能存在的零点进行讨论,做到不重不漏.解:f (x )的定义域为()0,+∞,f '(x )=-1x2-1+a x =-x 2-ax +1x 2.(1)若a ≤2,则f '(x )≤0,所以f (x )在()0,+∞单调递减.(2)若a >2,令f '(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈()0,a -a 2-42∪()a +a 2-42,+∞时,f '(x )<0;当x ∈()0,a -a 2-42,a +a 2-42时,f ′(x )<0.所以f (x )在()0,a -a 2-42,()a +a 2-42,+∞单调递减,在()0,a -a 2-42,a +a 2-42单调递增.小结:求导后导函数为含参的二次函数,但是不能判断导函数是否有零点,则需要根据判别式的正负从而得到“存在零点”和“不存在零点”的分类标准,当判别式大于零时,还要判断是否可以比较两零点的大小,以及零点与定义域的关系,做到分类有序、不重不漏[2].通过以上例题发现,利用导数研究函数的单调性是一个有效的工具.利用导数求含参函数单调性的分类标准为:(1)求导后若导函数为含参数的一次函数,可以根据含参数的一次函数进行分类讨论.(2)求导后若导函数为含参数的二次函数,若求导后不能判断开口方向的,分类的标准是先讨论二次函数的开口方向,再讨论是否存在零点;若求导后导函数可以直接因式分解得到零点,则分类标准是直接对零点进行分类讨论;若求导后导函数确定了开口方向,但是不能判断是否有零点,则分类标准是直接对判别式进行分类讨论[3].而在分类时要做到不重不漏.[参考文献][1]祝敏芝.利用导数研究函数的单调性问题[J ].中学数学教学参考,2020(Z1):130-133.[2]王历权,范美卿,金雷.利用导数研究函数的单调性问题[J ].中学数学教学参考,2019(7):36-39.[3]陈达辉.利用导数研究函数单调性的几种类型[J ].数学学习与研究,2019(8):97.(责任编辑陈昕)数学·解题研究。
导数求单调区间的方法
导数求单调区间的方法
1. 哎呀,你知道吗,导数求单调区间有一招很妙哦!就像找宝藏一样,先找出函数的导数,然后通过导数的正负来判断单调性。
比如说函数
f(x)=x^2,它的导数是 2x,当 2x 大于 0 时,函数就是单调递增的呀!这
样不就清楚地知道函数的单调情况了吗!
2. 嘿,导数求单调区间真的超有趣的呢!这就好比给函数打通一条路,看看它到底是往高处走还是往低处走。
例如函数f(x)=sinx,求出导数cosx,根据 cosx 的正负,就能轻松知道函数在哪里递增哪里递减啦,是不是很神
奇呀!
3. 哇塞,导数求单调区间其实不难呀!就如同给函数装上导航,让你明确知道它的走向。
像函数 f(x)=e^x,它的导数还是它自己 e^x,永远大于0,那它不就是一直单调递增嘛,明白了吧!
4. 哈哈,想知道导数求单调区间的另一个办法吗?这就好像拿着一个神奇的探测器,去探测函数的变化。
比如说函数 f(x)=-x^3,它的导数是-
3x^2,根据这个就能知道它在哪些区间是单调递增,哪些区间是单调递减咯,生动形象吧!
5. 哟呵,导数求单调区间还有一招特别管用呢!跟顺藤摸瓜一样,顺着导数这根藤,就能找到函数单调的瓜。
好比函数f(x)=lnx,它的导数是1/x,通过 1/x 的正负,是不是很容易就确定单调区间啦!
6. 嘿嘿,导数求单调区间的这个方法一定要记住哦!那就是找到导数的零点。
就如同找到游戏里的关键节点一样。
比如函数 f(x)=x^3-3x,求导得3x^2-3,找到导数的零点后,就能把单调区间清楚划分啦,有趣吧!
结论:导数求单调区间的方法真的很多,而且都很实用,只要掌握了,就能轻松搞定函数的单调性啦!。
完整版)利用导数求函数单调性题型全归纳
完整版)利用导数求函数单调性题型全归纳利用导数求函数单调性题型全归纳一、求单调区间例1:已知函数$f(x)=ax+x^2-x\ln a(a>0,a\neq 1)$,求函数$f(x)$的单调区间。
解:$f'(x)=ax\ln a+2x-\ln a=2x+(a x-1)\ln a$。
令$g(x)=f'(x)$,因为当$a>0,a\neq 1$时,$g'(x)=2+a\ln a>0$,所以$f'(x)$在$\mathbb{R}$上是增函数,又$f'(0)=-\ln a0$的解集为$(0,+\infty)$,故函数$f(x)$的单调增区间为$(0,+\infty)$,减区间为$(-\infty,0)$。
变式:已知$f(x)=e^{-ax}$,求$f(x)$的单调区间。
解:$f(x)=e^{-ax}$,当$a\leq 0$时,$f(x)>0$,$f(x)$单调递增;当$a>0$时,由$f(x)=e^{-a x}>0$得:$x>\ln a$,$f(x)$在$(\ln a,+\infty)$单调递增;由$f(x)=e^{-a x}0$时,$f(x)$的单调递增区间为$(\ln a,+\infty)$,递减区间为$(-\infty,\ln a)$。
二、函数单调性的判定与逆用例2:已知函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,求正整数$a$的取值集合。
解:$f'(x)=3x+2ax-2$。
因为函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,所以$f'(x)=3x+2ax-2=0$在$(0,+\infty)$上有解。
所以$f''(x)=6+2a>0$在$(0,+\infty)$上恒成立。
利用导数求单调区间的一些大题(含答案)
例1.1.已知函数已知函数321()3f x x ax b =-+在2x =-处有极值处有极值. . (1) 求函数()f x 的单调区间;的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
的取值范围。
例2.已知函数232)1(31)(x k x x f +-=,k x x g -=31)(,且)(x f 在区间),2(+¥上为增函数.函数.(1)、求实数k 的取值范围;的取值范围; (2)、若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.的取值范围.解:解:(1) (1) (1) 由由321()3f x x ax b =-+,得22'()32f x x ax a =--令222a '()320,=-,(0)3f x x ax a x a a =--==>1得x当(),'()x f x f x 变化时,的变化情况如下表:x (,)3a -¥-3a- (,)3a a - a(,)a +¥()f x+_ 0 +'()f x极大值极大值极小值极小值由上述表格可知,32235()=()()()()11333327a a a a f x f a a a -=-----+=+极大值3333()()11f x f a a a a a ==--+=-极大值(2)(2)由(由(由(11)可知()(,)(,)3a f x a -¥-+¥在和上单调递增,在-a(,a ,a))3上单调递减,上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <£-=+>³极大值极小值a()-y f x \=¥在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得时取得又()y f x =在(,)3a -¥-上单调递增,且2(1)(1)0f a a a a -=-=-£()--y f x \=¥a在(,)3上最多有一个实数根上最多有一个实数根 于是,当01a <£时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
第03讲 利用导数求函数的单调性-《高中数学选修2-2重难点解读》(解析版)
第三讲 利用导数求函数的单调性1.函数单调性与导数的关系在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; 如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减;如果恒有f ′(x )=0,那么函数y =f (x )在这个区间内是常数函数.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0.2. 函数图象的变化趋势与导数值大小的关系如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f ′(x )|越大,则函数f (x )的切线的斜率越大,函数f (x )的变化率就越大考点一 利用导数求单调区间【例1】求下列函数的单调区间。
(1)3()23f x x x =-; (2)2()ln f x x x =-. (3)f (x )=2x -x 2.【答案】见解析【解析】(1)由题意得f(x)的定义域为R ,2()63f x x '=-.令2()630f x x '=->,解得x <或x >.当(,)2x ∈-∞-时,函数为增函数;当)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得x <<.当(x ∈时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和,)2+∞,单调递减区间为(22-.(2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x -+'=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<.故函数2()ln f x x x =-的单调递增区间为)2+∞,单调递减区间为(0,2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎨⎧ 1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1).令f ′(x )<0,则1-x 2x -x 2<0,即⎩⎨⎧ 1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2).1.函数()e x f x x -=的单调递减区间是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数求函数的单调
区间
集团文件版本号:(M928-T898-M248-WU2669-I2896-
利用导数求函数的单调区间
一学习目标:
1结合实例,找出函数的单调性与导数的关系;
2会利用导数研究函数的单调性,会求简单函数的单调
区间。
二重点、难点:
重点:求函数的单调区间.
难点:求含参数函数的单调区间。
.
三教材分析
本节课主要对函数单调性求法的学习;
它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
它是历年高考的热点、难点问题
四教学方法
开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
五教学过程
预习学案:
1.函数单调性的定义是什么?函数的单调区间怎样求?
2.讨论以下问题
(1) 求函数y=x 的导数,判断其导数的符号;
(2)求函数y=x 2的导数,判断其导数的符号.
3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结:
设函数y=f(x)在区间(a,b )内可导:
如果在(a,b)内,______________,则f(x)在此区间是增函数;
如果在(a,b)内,______________,则f(x)在此区间是减函数.
4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某
个区间上是单调递减函数,是不是其导数就一定小于零
能否举个例子说明一下?
小测验:
1.当0>x 时,()x
x x f 4
+=的单调减区间
2.函数53
123++-=x x y 的单调增区间为_______________,单调减区间为______________.
利用导数求函数的单调区间(讲授学案)——冯秀
转
题型:求函数的单调区间
例1、求下列函数的单调区间;
(1)x x y 23+= (2)()221ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤:
练习:求()x e x x f 2=的单调区间。
例2、(1)求函数()()0≠+=b x b x x f 的单调区间; (2)求函数())(3R a ax x x f ∈+=的单调区间.
练习:设函数())(01223≠+-+=a x a ax x x f ,求函数f(x)的单调区间.
当堂检测:
1.设()x
x x f 2+=(x<0),则f(x)的单调增区间是( )
A.(-∞,-2) B(-2,0) C.(- ∞,-)2 D.(-)0,2
2.函数y=xlnx 在区间(0,1) ( )
A.单调增函数 B 单调减函数
C.在⎪⎭⎫ ⎝⎛e 1,0上是减函数,在⎪⎭
⎫ ⎝⎛1,1e 是增函数
D. 在⎪⎭⎫ ⎝⎛e 1,0上是增函数,在⎪⎭⎫ ⎝⎛1,1e 是减函数
3.函数f(x)=x x x cos sin +,),(ππ-∈x 的单调递增区间为_________________.
4.已知函数()()R a x ax x x f ∈+++=123,试讨论函数f(x)的单调区间。
六教学反思
教学基本达到了预期目标,但是在运算及在含参数函数中的分类标准还有待加强训练。